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Abstract

Cell complexes are topological spaces constructed from simple blocks called cells.
They generalize graphs, simplicial complexes, and polyhedral complexes that form
important domains for practical applications. They also provide a combinatorial
formalism that allows the inclusion of complicated relationships of restrictive
structures such as graphs and meshes. In this paper, we propose Cell Complexes
Neural Networks (CXNs), a general, combinatorial and unifying construction for
performing neural network-type computations on cell complexes. We introduce an
inter-cellular message passing scheme on cell complexes that takes the topology
of the underlying space into account and generalizes message passing scheme to
graphs. Finally, we introduce a unified cell complex encoder-decoder framework
that enables learning representation of cells for a given complex inside the Eucli-
dean spaces. In particular, we show how our cell complex autoencoder construction
can give, in the special case cell2vec, a generalization for node2vec.

1. Introduction

Motivated by the recent success of neural networks in various domains and data types (e.g., [30,
31,142, 14511441 14]]), we propose Cell Complex Neural Networks (CXNs), a general unifying scheme
that allows neural network-type computations on cell complexes; i.e., we define a neural network
structure on cell complexes.

Cell complexes are topological spaces constructed from pieces called cells that are homeomorphic
to topological balls of varying dimensions. They form a natural generalization of graphs, simplicial
complexes, and polyhedral complexes [25]. They also provide a combinatorial formalism that allows
the inclusion of complicated relationships not available to more restrictive structures such as graphs
and simplicial complexes, while retaining most of intuitive structure of these simpler objects.

Because the simplest nontrivial types of cell complexes are graphs [25], our work can be considered
as a generalization of Graph Neural Networks (GNNs) [[11]. Earlier work that generalizes regular
Convolutional Neural Network (CNN) to graphs was presented in [19] and extended in [38 |18, 28]].
Further, a significant effort has been made towards generalizing deep learning to manifolds, most
notably geometric deep learning and the work of Bronstein et al. [10, 8]]. Other work includes utilizing
filters on local patches using geodesic polar coordinates [33] and heat kernels propagation schemes
[9], among many others [29, 19, 41, 149, |34]. We refer the reader to recent reviews [33}, 48] of GNN5s
and its variations and to [13]] for a recent survey on geometric deep learning.
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The main contributions of this work are summarized as follows. We propose CXNs, a general unifying
and simple training scheme on cell complexes that vastly expands the domains upon which we
can apply deep learning protocols. Our method encompasses most of the popular types of GNNss,
and generalizes those architectures to higher-dimensional domains such as 3D meshes, simplicial
complexes, and polygonal complexes. The training on a cell complex is defined in an entirely
combinatorial fashion, and hence, naturally extends general message passing schemes currently
utilized by GNNSs. This combinatorial description allows for intuitive manipulation, conceptualization,
and implementation.

We introduce an inter-cellular message passing scheme on cell complexes that takes the topology of
the underlying space into account. Precisely, we define a message passing scheme that is induced
from the boundary and coboundary maps used to compute homology and cohomology in algebraic
topology. As a concrete example of this scheme, we define Convolutional Cell Complex Networks
(CCXN). Also, we propose a Cell Complex Autoencoder (CXNA) to incorporate CXNs in a deep
learning model and meaningfully represent cells of the complex in the Euclidean space. We provide
examples of representational learning on cell complexes that generalize well-known representational
learning on graphs such as graph factorization [2] and node2vec [2]. Computationally, a cell complex
net is defined using adjacency matrices, analogous to those used to encode the structure of a graph
neural network. This means their implementation can be readily adapted from the existing graph
neural networks libraries (e.g., [17]). The rest of this paper is organized as follows. Section [I.T]
presents background and important notations about cell complexes. The proposed CXNs is presented
in Section[2] Cell complex autoencoder CXNA is introduced in Section[3] The topology-based message
passing scheme on CXNs is discussed in Section[d.4] of the Appendix followed by a presentation of
potential applications in Section 4.5]

1.1. Cell Complexes: Background and Notations

A cell complex is a topological space X obtained as a disjoint union of cells, each of these cells is
homeomorphic to the interior of a k-Euclidean ball for some k. These cells are attached together via
attaching maps in a locally reasonable mannelﬂ In our setting, the set of k-cells in X is denoted by
X*, and it is called the k— skeleton of X. The set of all cells in X whose dimension is less than k is
denoted by X <*. The set X>¥ is defined similarly. The dimension of a cell ¢ € X is denoted by d(c),
and the dimension of a cell complex is the largest dimension of one of its cells.

A cell complex is called regular if every attaching map is a homeomorphism onto the closure of
the image of its corresponding cell. In this paper, all cell complexes will be regular and consist of
finitely many cells. Regular cell complexes generalize graphs, simplicial complexes, and polyhedral
complexes while retaining many desirable combinatorial and intuitive properties of these simpler
structures. The information of attaching maps of a regular cell-complex are stored combinatorially in

a sequence of matrices called the boundary matrices (O : RIX" o RIX IH‘). These matrices describe,
roughly speaking, the number of times k-cells wrap around (k — 1)-cells in X . The definition of these
matrices Jy depends on whether the cells of X are oriented or not. Our method is applicable to both
oriented and non-oriented cell complexes. However, we only discuss the non-oriented case for the
sake of brevity, and leave the oriented case to section 4.3 of the Appendix. Since our cell complexes

are regular and non-oriented, the entries of J are in {0,1}. Dually, we define oy : RIX RN RIX "l
to be the transpose of the matrix .

Let X be a cell complex, ¢™ denotes an n-cell in X, and facets(c™) denotes the set of all (n—1)-cells
X that are incident to ¢". Similarly, let cofacets(c™) denotes the set of all (n + 1)-cells of X that
are incident to ¢". Note that facets(c™) or cofacets(c™) might be the empty set. We say that two
n-cells a™ and b" are adjacent if there exists an (n + 1)-cell ¢"** such that a™,b" € facets(c"*!).
Likewise, we say that a™ and b" are coadjacent in X if there exists an (n — 1)-cell ¢"~* with
a™b™ € cofacets(c"'). The set of all cells adjacent to a cell a in X is denoted by Nyq;(a) while
the set of all cells coadjacent to a cell a in X is denoted by N, (a). If ™ b™ are n-cells in X, then
we define the set CO[a™,b"] to be the intersection of cofacets(a™) N cofacets(b™). Note that this
notation is symmetric: CO[a™,b"] = CO[V",a™] ﬂ Similarly, the set C[a™,b"] is defined to be the
intersection of facets(a™) n facets(b™).

"The reader is referred to [23] for further technical details of cell complex definition and algebraic topology.
“This is not the case when X is not oriented. See SectionE]in the Appendix for more details.
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Figure 1: Examples of adjacency and coadjacency matrices for simplicial complexes. Left: the
adjacency matrix A,q4; and adjacency degree matrix D,q4; of the simplicial complex X . The blue and
the orange submatrices in A,q; represent A° aq; and Al q4; of X, respectively. The yellow and grey

submatrices of Dq; represent D° 4 and D! qj» respectively. Right: the coadjacency matrix A, and
coadjacency degree matrix D, of the simplicial complex Y. The pink and the light green matrices in
A, represent AL and A2, of Y, respectively. The red and dark green submatrices of D.,, represent
D!, and D? respectlvely

co’

Note that these notions generalize the analogous notions of adjacency and coadjacency matrices
defined on graphs. More precisely, let X be a cell complex of dimension n. Let N denotes the total

number of cells in the complex X and define N:=N- | X "| Let cy1,++, ¢ denotes all the cells in
X<". Then, we define the matrix Aqg; of dimension N x N by storing a |CO[ci, ¢;]| in Aag; (i)
if the cell ¢; is adjacent to c;, otherwise, we store a 0 in Aad] (4,7). Note that the matrix Aqq; (4, ])
does not store the adjacency information of n-cells in X since the dimension of the complex X is
n. We denote the adjacency matrix between k-cells in X by Aa 4> Where 0 <k < n. The adjacency
degree matrix D,q; is defined via Dgq;(i,i) = X; Aagj(4,5), and hence, we define the adjacency
degree matrix between k-cells D* adj (0 <k <n) similarly. Finally, the coadjacency matrix Ao, the

coadjacency degree matrix D,,, the k-cells coadjacency matrices A% , and the k-cells coadjacency
degree matrices DCO for 0 < k < n, are defined similarly. Examples of these matrices are presented in

Figure[T]
2. Cell Complex Neural Networks (CXNs)

We define below a general CXNs using a message passing scheme that generalizes the notations of
message passing schemes in graphs. Section 4 of the Appendix provides a brief review of message
passing schemes on graphs (Section[4.2)), and introduce message passing schemes on cell complexes
(Section [d}4). We also present here CCXN (Section [2.1) as an example of CXNs. The forward
propagation computation of a cell complex neural net requires the following data as inputs: (1) A cell
complex X of dimension n, possibly oriented and (2) For each m-cell ¢"* in X, we have an initial

vector hg) ¢ Rl The forward propagation algorithm then performs a sequence of message passing
executed between cells in X . Precisely, given the desired depth L > 0 of the net one wants to define
on the complex X, the forward propagation algorithm on X consists of L x n inter-cellular message

passing scheme defined for 0 < k < L:

k
hig) = a““)(h““ . E oeNad,w))(¢>3‘“’(h£’5*>,h§ﬁ*),Felscow,co](hi’f*”))) eRY, (D)

k k k-1 k k-1 k-1) 0 ik
hin)— _a( ) (h’in 1)7E n- 16Nadd(c"*1)(¢§1—)1(hin 1)7hl(1n 1 e”ECO[a" 1 en-1 (h( )))) eR'n? (2)

where hi’i? , h(lfqz,h(ﬁ? € le E,F are permutation invariant differentiable nctlonand (k) qb(k)
are trainable differéntiable functions where, 0 < j <n—-1and 0 < k < L[| Note thht for ehch cell

™ in X, the vectors hgn) are never updated during the training of a CXN. Although the formulation
above is simple, it can generalize most types of the popular types of GNNs (e.g., [28},40] ).

3The permutation invariance condition on F' and E may not be necessary in general (e.g. on triangulated
meshes only cyclic invariance is needed). However, a permutation invariant function is needed whenever there is
no canonical way to order the cofaces adjacent to a face in the complex.

“Examples of the functions agk) ,qﬁ;.k) in practice are MLP. A concrete example is given in
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Figure 2: Two layers Cell Complex Neural Network (CXN). The computation is demonstrated with
respect to the red target vertex. The information flow goes from lower cells to higher incident cells.

Figure [2] demonstrates the above construction/formulation on a simplicial complex network with
depth L = 2. We will use X to denote this complex. Note that we abuse the notation in the figure and

do not distinguish between a simplex s and its vector hgk). For each vertex {v;}7_; in X, we assume
we are given a vector h,(J?); we have hg?) for each edge {e;}7_;. and have h;-?) for the faces {F};}2,.

In the first stage, we start the computation for cells with dimension 0. In this stage, each v;, 0 <

1 <5, computes : hg)}) . (()k)(hgi, Evje/\fadj(m)(¢(()1)(h1(;?),h(0) h(O)))), where e;; is the edge that

€ij

connects v; to vj. Figuregj (a) shows this graph for v1. Notice that all nodes share the same trainable

(1)

functions «; * and qS(l) Further, each edge e; induces a computational graph and computes h(l),

1<i<T: hé}) . k)(ho Ny (1) (¢§1)(h£?)’h§?)7 hg,zz))), here F;; denotes the unique face

that bounds both edges e; and e;. Note that all edges share the same trainable functions agl) and gbgl).
In stage 2, we compute h§2) for all simplices s of dimension 0 and 1. Figureshows this computation

for hg). Note that (1) the computational graphs that feed into it are the ones computed in stage 1 and
(2) how the information from this node flows from the surrounding nodes, edges, and faces.

2.1. Convolutional Cell Complex Nets (CCXN)

We present CCXN, the simplest type of cell complex neural networks. Specifically, using the adjacency
matrices on a cell complex X defined in and Figure|l| we extend the definition of convolutional
graph neural networks (CGNN) [28] to CCXN. The input for a CCXN is specified by cell embeddings

H© ¢ RV*d that define the initial cells features on every cell in X <", Here, d is the embedding
dimension of the cells. The convolutional message passing scheme on X is defined by :

H® = ReLU(A gy H*-D (=1 (3)

where fladj =1+ D_1 2Aadj _1/2 H(k) e RV are the cell embeddings computed after k steps

of applying and W(k 1) € RdXd is a trainable weight matrix at the layer k. We discuss the following
few remarks about the definition above. First, observe that we chose the embedding dimension of
cells to be d for all H(®). However, this restriction is not necessary in general and we chose it only
for notational convenience. Second, we train the CCXN with a single weight TW* for every layer k
for all cells. This restriction is also not necessary in general. As indicated in equations (1}2)), one
may choose to train a different CCXN for every k-cells adjacency matrix Aa & 1nd1v1dually In this

case, we need to train n — 1 cell complex networks. Finally, the matrix /ladj in equationis typically
normalized to avoid numerical instabilities when stacking multiple layers [28]]. Specifically, with
the renormalization trick, we make the substitution I + D Aad] 1/ 2, [);Cll]( 2AadJD 1/2
equat10nwhere Aadj Aqgj + Iy and Dad] (1,i)=%; A adj (z, 7)- Observe that with this s1mplrﬁed
case, this version for CCXN is a generalization of CGNN where the only difference being the
generalized notion of adjacency on cell complexes.

3. Cell Complex Autoencoders (CXNA) and Cell Complex Representations

In this section, we present how to incorporate the cell complex structure into a deep learning model.
Given a cell complex X, we want to learn a function that embeds the cells of X into some Euclidean
space such that the structure information of these cells is preserved. Inspired by the success of graph



autoencoders in representational learning on graphs [24]], we propose a general method to learn cell
complex representations. While the method provided in [24]] is general and encompasses various
representational learning strategies (e.g., Graph Factorization [2], node2vec [20], and DeepWalk
[35]), it assumes a node to node message passing scheme using edges. Because our setting has
to accommodate for different message passing schemes on a cell complex, we present below an
autoencoder definition that is consistent with the inter-cellular message passing scheme in equation
[1] Other cell autoencoder definitions that are consistent with different message passing schemes
can be defined similarly. It is important to note that we are aware of a related work [21]] appeared
simultaneously with our work, and [6,|39]] where a vector representation based on random walks on
simplices in a simplicial complex was suggested. Contrary to these works, our approach is a unified
framework that describes these special cases to a larger set of vector-based representations and a
larger set of complexes.

A cell complex autoencoder consists of three components: (1) an encoder-decoder system, the
trainable component of the autoencoder, (2) a similarity measure on the cell complex, which is a
user-defined similarity function that represents a notion of similarity between the cells in the complex,
and (3) a loss function, which is a user-defined function utilized to optimize the encoder-decoder
system according to the similarity measure. Mathematically, let X be a cell complex of dimension n.
Then, an encoder on X is a function of the form:

enc: X" - R%.

This encoder associates to every k-cell ¢* (0 < k < n) a feature vector z. € R? that encodes the
structure of this cell and its relationship to other cells in X. A decoder is a function of the form:

dec:RYx R? > R*

This decoder associates to every pair of cell embeddings a measure of similarity that quantifies
some notion of relationship between these cells. The pair (enc,dec) on X is called a cell complex
encoder-decoder system on X E} The functions enc and dec are typically trainable functions that
are optimized using user-defined similarity measure and loss function. A similarity measure on a
cell complex is a function of the form simy : X< x X<" — R* such that simx (a”,c') reflects a
user-defined similarity between the two cells a* and ¢! in X <™. We will assume that sim x (a*,¢!) = 0
whenever k # [. An example of a similarity measure defined on X is A,q; defined in Section We
want the encoder-decoder system specified above to learn a representation embedding of the cells in
X <" such that: dec(enc(a®), enc(c!)) = dec(zyx,2.) ~ simx (a®,c!). To thisend, let ] : RxR — R

be a user-defined loss function and define:
Ly = > I(dec(enc(z,r ), enc(za)),sim(a® ")), “4)

all possible CO[a* ,ck]c X k+1

and finally define £ := ZZ’;& Ly.

Different concrete CXNAs can be provided as shown in Table[I] After training the encoder-decoder
model, we can use the encoder to generate the embeddings for k-cell, 0 < k < n.

Table 1: Various definitions of CXNAs.

Method Decoder similarity Loss
Laplacian eigenmaps [3] 1o — z|3 general dec(2q,2.).stm(a,c)
Inner product methods [[]] 2l'z, Aggj(a,c) | ||dec(zq,z.) — sim(a,c)||3
szc
Random walk methods [20, 33] ﬁ px (ale) —log(dec(zq,2.))
bexk € ¢

We end this section by noting how the random walk method given in Table |1| effectively defines
cell2vec, a cell complex representation method that generalizes node2vec [20] and DeepWalk [35] to
cell complexeﬂ

>In our definition of the encoder-decoder system, we chose to embed all cells on X in the same ambient space.
This assumption is not needed in general and we are only making this restriction for notational convenience.
Alternatively, one may have a sequence of similarity measure to describe the similarity between cells that have
the same dimension.

SRandom walks on graphs can be naturally extended to cell complexes by using the adjacency relations on
cell complexes as a mean to define a random walk between cells of the same dimension.
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4. APPENDIX

4.1. Why Cell Complex Nets?

This work focuses on the construction of the necessary tools that perform neural networks-type
computations over domains that have geometric and combinatorial characteristics. Our ultimate goal
is to harness the power of deep learning in solving problems that arise when studying these domains
or working on problems that are naturally modeled by such domains.

With the above goal in mind, one may wonder why we chose cell complexes for representation over
other less general complexes available in algebraic topology? Cell complexes neural nets (CXNs) are
generalization of graph neural networks (GNNs), and the gap of generalization between graphs and
cell complexes contain many other complexes (e.g., simplicial complexes, polyhedral complexes, and
A-complexes) that are less general than cell complexes. We discuss below the reasons of why CXNs
form a better and more expressive generalization than, say, graph and simplicial complex neural
networks[’]

= Hierarchical relational reasoning representation: Graphs are natural objects for mode-
ling relations between entities. In this context and towards building intelligent behaviour,
GNNs have been extensively explored to build relational reasoning between various objects
[137, 152,14} 40] and in knowledge graphs [13,47]]. However, we believe building intelligent
behaviour goes beyond the ability to create relational reasoning between entities. Abstraction
and analogy that humans are capable of require building relations among the relations in
a hierarchical manner. The importance of this perspective is evident in the unprecedented
success of deep learning models where complicated concepts are built from simpler ones in
a hierarchical fashion.

Therefore, utilizing GNNs for relational reasoning is “shallow” because the edges can be
only used to model relationships between entities. Even labeled multi-graph [40, 27]] are
insufficient to model hierarchical relational reasoning because the relationships modeled
by the multi edges or multi nodes remain between the raw entities and no deeper relations
can be made. CXNs have the ability to model hierarchical relational reasoning. Precisely,
the 1-skeleton of a cell complex can represent the shallow relation between objects while
the higher cells can be used to build more abstract relations between the relations in a
hierarchical manner. Note that other objects, such as simplicial complexes, have uniform
structure, in the sense that k-faces have fixed number of edges, which is not natural to model
hierarchical complex relational reasoning. Within this context, knowledge graphs can be
generalized to knowledge cell complexes where entities and relations in knowledge graphs
are replaced with hierarchical representation of abstract entities and relations between them.

= Nature of data and application: Contrary to simplicial complex neural networks, our
definition is a unifying and combinatorial framework that accommodates for almost all data
forms that are significant in practice such as polygonal 2d and 3d meshes. In addition to the
nature of data, the application at hand determines, in many cases, the type of complexes one
needs to work with. For instance, in several CAD [36} 32]] and simulation applications [S1],
quad meshes are preferred over simplicial complexes [7]. Quad meshes are also preferred
when solving PDE on surface and are best suited for defining Catmull-Clark subdivision
surfaces [43, 23]].

» Trainability of neural networks over geometric domains and resource efficiency: As is
well-known, GNNs are challenging to train for large graphs [26], and simplicial complexes
require massive amount of memory and computational power even without doing deep
learning computations on them. Hence, it is essential to consider the complexity of the
geometric object representation when designing a neural network over these domains. In this
context, building geometric objects with cell complexes requires significantly less number
of cells than building the same objects with simplicial complexes or other complexes.

"We are aware of few related works about unoriented simplicial neural networks [12}[16] that were published
at the same time our work got published. We note, however, that our approach is applicable to a more general set
of complexes and handles both oriented and non-oriented cases. See Section@]for the oriented case.



4.2. Graph Neural Networks

Given a graph G = (V,E), a graph neural network on G with depth L > 0 updates a feature
representation for every node in the graph L times. Initially, every node ¢ is given a feature vector

hgo). On the k stage of the computation, each node i in the graph collects messages from its neighbors
7, represented by their feature vectors h;k_l), and aggregates them together to form a new feature

representation hgk) for the node 7. A graph neural network requires the following input data:
1. A graph G = (V,E).
2. For each node 7 € V' we have an initial vector hgo) e R,

Given the above data, the feedforward neural algorithm on G executes L message passing schemes
defined recursively for 0 < k < L by:

W) = a’f(hf-’“‘l% Ejenn(6F (b0 p{ 0 e ))) e R, )

where ¢e;; € RP is an edge feature from the node j to the node i, E is a permutation invariant

differentiable function, and ak,qSk are trainable differentiable functions. Note that at each stage k, all
messages share the same differentiable functions ¢* and a*.

Consider the graph given in Figure[3] Let’s say we want to build a graph neural network on this graph
with depth 2. To illustrate the computation, we pick a vertex v; in the graph. In the first stage, the
surrounding neighbors of v1, namely {v2,v3,04}, pass their messages to v;. The information obtained
from these messages are aggregated and combined together via trainable differentiable functions o'
and ¢'. In the second stage, all neighbors of v; collect the messages information from their respective
neighbors in a similar fashion as illustrated in Figure 3]

Vo . {
V4 .\ e w n w.
target node
> 2 . .
N e
Vy Vs i
®

Figure 3: An example of graph neural net with depth 2. The computation are only illustrated on
the red node. In this figure, we abuse the notation and do not distinguish between a node ¢ and its

associated vector hgk). The blue box represents the differentiable functions ! and ¢! while the white
box represents the functions o® and ¢?.

4.3. The adjacency relation when complex X is oriented

In this section, we discuss the adjacency and coadjacency relations in a cell complex X when X is
oriented. Recall that each cell a in X has two possible orientations. An oriented cell complex is a cell
complex in which every cell has a chosen orientation. When X is regular, then the entries of 0y, are in
{0, £ 1}.

The definitions of facets(c™) and cofacets(c¢™) are more complicated for the oriented case as
compared to the non-oriented case. When X is oriented, we store along with each cell in facets(c™)
and cofacets(c™) the orientation induced by c¢,, with respect to the maps 9,, and J;;, respectively.

In this case, we use facets*(c") c facets(c"™), facet™(c") c facets(c™) to the subsets of
facets(c™) to denote the cells that are positively oriented and negatively oriented with respect
to ¢, respectively. The set cofacets*(¢™) and the set cofacets™ (¢™) are defined analogously. Ob-
serve that facets(c™) = facets®™ (¢")u facets™ (™) and facets™ (c™)n facets™ (¢) = . Similarly,
cofacets(c™) = cofacets* (™) U cofacets™(c"™) and cofacets*(c™) ncofacets™(c") = @.
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Figure 4: Examples of computing the adjacency and co-adjacency neighbors of cells in cell complexes.

Consider the cell complexes given in Figure ] we compute few examples of the sets we define
above to illustrate the concept. For Figure ] (a), we have cofacets(vi) = {-e1,e2}, cofacets(vs) =
{e1, — e, — e3, — eq,e5}, cofacets(vs) = {es,eq, — e5,66,e7} and cofacets(vy) = {-eq, — er}.
Moreover, facets(Fy) = {e1, — ea}. Finally, cofacets(eg) = { F3} and cofacets(er) = {-F3}. On
the other hand, for Figure (b) cofacets(er) = {F1,- Fy} and cofacets(ez) = {F1, — F»}.

If X is an oriented complex, then a cell b" is said to be adjacent to an n-cell a™ with respect to
an (n + 1)-cell c*! when a” € facets™(c"*!) and b" € facets™(c"*1). Similarly, an n-cell b"
is said to be coadjacent to a™ with respect to an (n — 1)-cell ¢! if a” € cofacets*(c"!) and
b™ € cofacets™(c"t). The set of all adjacent cells of a cell a in X is denoted by Nyq;(a). Similarly,
the set of all coadjacent cells of a cell a in X is denoted by NV, (a).

In Figure@(a), we have N,q4; (v2) = {v1,03} Nygj(v4) = @. For Figure(b), we have NV, (F}) =
{F,}. This is because I € cofacets™(e1) and Fs € cofacets™ (e1). On the other hand, N, (F3) =
@. Note that in this example Nyq;(e1) = Nygj(e2) = &

If o™ and b™ are n-cells in X, then we define the set CO[a™, b™] to be the intersection co facets(a™)n
cofacets® (b™). The set CO[a™, b"] describes the set of all incident (n + 1)-cells of ™ that have a”
as an adjacent cell. Note that in general CO[a™,b"] # CO[b",a"]. Similarly, the set C[a™,b"] is
defined to be the intersection of facets(a™) n facets* (b™).

In Figure[d] (a), we have CO[v,v3] = {es,e4} whereas CO[v3,v2] = {e4}. On the other hand, we
have CO[e1, e2] = CO[eg,e1] = @ in Figure 4| (b).

4.4. General Message Passing Scheme

The inter-cellular message passing scheme given in Section [2Jupdates the vectors on the flows from a
given O-cell and gathers the information from surrounding cells in a radial fashion defined by the
adjacency matrices of the cell complex. Although this message passing scheme is natural from the
perspective of generalizing GNNs passing schemes, it forms a single method out of many other
natural methods that can be defined in the context of CXNs.

4.4.1. Co-adjacency Message Passing Scheme

The message passing scheme given in Section [2]does not update the vectors associated with the final
n— cells on the complex. In certain applications, it might be desirable to make the flow of information
go from the lower cells to the higher cells. An example of such an application is mesh segmentation
where it is desirable to update the information associated with a face on the mesh after gathering
local surrounding information. The scheme given in Section [2]can be easily adjusted for this purpose.
To this end, we utilize the data on the cells complex as before while re-defining the message passing
schemes as follows:

M2 2K B (B0, P e 0)) 5 @
k
hilf) = agk)(hillc_l)7Ealz.'\fco(cl)(¢§k)(h’ille_1)ahl(ﬁ_l)7 Feoec[al,cl](hig)))) € Rll @)

Note that the initial vector associated with zero cells in X is never updated in this case. An example
of these computations is illustrated in Figure[3}
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Figure 5: CXN with 2 layers. This example demonstrates a simplicial complex neural network for
clarity. The computation is only demonstrated with respect to the light grey face. The information
flow goes from higher cells to lower incident cells.

4.4.2. Homology and Cohomology-Based Passing Schemes

This subsection briefly outlines a message passing scheme that is consistent with the boundary and
coboundary maps in the context of homology and cohomology of a cell complex.

Let ¢,,, be a cell in a, possible oriented, cell complex X and let h,(;k) be its embedding. Let Bd(x)
be set of cells y of dimension k — 1 such that y € (z) and x and y have compatible orientations.
Similarly, let CoBd(z) denotes all cells of y € X with h € 9(y) and both x and y have compatible
orientations. Denote by Z(«) to the union Bd(z) u CoBd(x), we may define the passing scheme as

follows:
- - — k
hi = aﬁ,’f)(hg’; Y, Buer(oy (@50 4ay (R 1" 1)))) eR'm ®
Notice that the trainable function qb(k ) o
m,d(a)

the vector associated with a, namely hfzkfl

needs to accommodate for the fact that the dimension of

), may vary for different a € Z(x).

4.5. Potential Applications
The proposed CXNs has several potential applications. For example:

1. Studying the type of underlying spaces. The ropological type of the underlying space is a
central question in topology. Specifically, given two spaces A and B, are they equivalent up
to a given topological equivalence? In practice, this can be translated to a similarity question
between two structures. Indeed, TDA has been extensively utilized towards this purpose [[15}
22]. On the other hand, deep learning allows studying the structure of the underlying space
by building complex relationship between various elements in this space. Cell complexes
form a general class of topological spaces that encompasses graphs, simplicial complexes,
and polyhedral complexes. Hence, CXNs provides a potential tool to study the structure
similarity between discrete domains such as 3D shapes and discrete manifolds

2. Learning cell complex representation. The cell complex autoencoder framework introdu-
ced in3]extends the applications of graphs autoencoder to a much wider set of possibilities.

8Within this context, GNNs with their current neighborhood aggregation scheme have been shown to not
being able to solve the graph isomophism problem [50].
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In particular, cell complexes are natural objects for language embedding as they can be
used to build complex relationships of arbitrary length. Specifically, we can build a cell
complex out of a corpus of text: words are vertices, they share an 1-cells if they are adjacent
in the corpus, within a sentence, sentences form the boundaries of 3-cells, paragraphs form
the boundaries of 4-cells, chapters form the boundaries of 4-cells, etc. Notice that unlike
less general complexes (e.g. simplical complexes), a k-cell in a cell complex may have an
arbitrary number of (k — 1) incident cells.
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