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Abstract

Deep learning models often fail to generalize to target data due to shifts between target
and training data distributions. Hence, their impact in the real world is limited. To
solve this, including training data from more sites may not be enough, as new data may
also present shifts with the original training data, complicating the learning process. We
hypothesize that curriculum-learning may provide more robust models against training
site shifts by sorting these sites in order of increased difficulty. In this work, we focus on
Vessel Occlusion detection in CT angiographies from stroke-suspected patients from three
sites, training first on large homogeneous balanced sites, which we hypothesize are easier
to learn. Next, we incorporate small heterogeneous imbalanced sites, which may be more
complex. Our approach is compared to training only on a large homogeneous site (single-
site training) and to training on all sites (pooled-site training). We reach a 2% improvement
in FROC and AUROC scores. Thus, adequately ordering the training sites based on simple
characteristics such as label balance or data size may improve model robustness.
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1. Introduction

Deep learning models often fail to generalize to unseen data, due to data shifts with re-
spect to their original training data (i.e. label imbalance due to prevalence shift, variable
acquisition hardware, etc.). To counteract training-to-test data shifts, more training sites
could be included. However, the new sites could also present shifts with the original train-
ing data, which may not fix the problem completely. Hence, the adoption of deep learning
systems for crucial applications such as Vessel Occlusion (VO) detection in stroke is limited.
Curriculum-learning derives robust models by guiding the training process from simple to
more complex tasks (Bengio et al., 2009). Curriculum-learning could be adapted to include
training sites in a simple-to-complex fashion, with promising results in machine translation
or histopathology (Zhang et al., 2019; Srinidhi and Martel, 2021). In this work, we apply
curriculum-learning to sort training sites to improve VO detection in brain CT angiogra-
phies (CTA). We train first on large homogeneous balanced sites, which we hypothesize are
simpler to process. Next, we include small heterogeneous imbalanced sites, which could be
more complex. As baseline comparisons, we also train on large, homogeneous data only,
and on a pool of all sites.

Figure 1: Curriculum-learning approach. The model is first trained on large, balanced, homogeneous
sites (Heidelberg), usually simpler to learn. A solid basis could be obtained to handle smaller,
imbalanced, heterogeneous sites (Bonn and FAST ), which are in principle more complex.

2. Methods

Data. Table 1 presents our data sites. The Heidelberg site is large, being balanced for
patients with VOs, and with most patients having the angiography contrast in the arteries
(arterial phase). CTAs with arterial phase are usually preferred since the contrast in small
veins tends to lead to false positives for VO detection. The other two sites (Bonn and
FAST ) are smaller, less balanced, and with a more heterogeneous phase. Given the apparent
complexity to process these sites, the test set is built with patients only from Bonn and
FAST, containing 25% of their patients.

Architecture. The self-configuring object detection pipeline nnDetection (Baumgartner
et al., 2021) was used to detect VOs in the CTAs, using the same hyperparameters as
(Brugnara et al., 2023), a recent work on VO detection in the same data sites. The pipeline
applied the RetinaNet detector with focal loss (Lin et al., 2017).
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Curriculum-learning setup. The curriculum-learning model (see Fig.1) was trained in
Stage 1 for the first half of the epochs, with samples from the Heidelberg site. This site was
large, homogeneous, and in principle, simpler to learn. For the second half of the epochs
(Stage 2 ), samples from Bonn and FAST were included in the training process, as these data
sites were smaller and heterogeneous, being in principle harder to process. To compensate
for the newly added training samples between Stages 1 and 2, the learning rate was increased
x3. As baselines, a single-cohort model was trained only on Heidelberg patients, to simulate
training in an only site. Moreover, a pooled-cohort model was trained on all sites to simulate
a training aimed to improve performance by just adding more training sites.

Model evaluation. VO detection performance was assessed with the FROC score. As
not all patients had VOs, the classification performance for the patients with VOs was
computed with the AUROC score. The probability of having a VO was the probability of
the highest-ranking box predicted by nnDetection in each patient.

Table 1: Characteristics for each CTA site. Main differences between sites are highlighted

Characteristics Heidelberg Bonn FAST

# patients (test set) 1179 (0) 323 (85) 326 (91)
% patients with occlusions 61 28 18

vendors Siemens Philips Siemens
pixel size (mm) 0.48±0.10 0.54±0.07 0.51±0.09

slice thickness (mm) 0.51±0.03 0.50±0.00 0.93±0.15
acquisition phase (% arterial) 93 72 65

3. Results and Discussion

Figure 2: AUROC and FROC curve plots and scores on the three models proposed. Confidence
intervals on general measures obtained by bootstrapping with 1000 iterations. Statistical significance
for curriculum-learning denoted with * in the graph legends.

Fig.2 shows the significant improvements on VO detection by our method. To handle
multi-site data, the curriculum-learning model learned the basics from the Heidelberg co-
hort, obtaining a solid basis to manage shifts from other sites. Sorting the training sites
properly may thus improve robustness, helping in the adoption of deep learning systems
for VO detection in stroke. Our approach is model-agnostic and relies on generic dataset
properties (dataset size, label balance, etc.), allowing to easily adapt to other fields. In the
future, we aim to continue optimizing the curriculum-building process during further tests.
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dation (reference number: 2022 EKCS.17). Part of this work was funded by Helmholtz
Imaging, a platform of the Helmholtz Incubator on Information and Data Science. The
present contribution is supported by the Helmholtz Association under the joint research
school ”HIDSS4Health – Helmholtz Information and Data Science School for Health.”

References
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