
Published as a conference paper at ICLR 2023

DIFFUSION PROBABILISTIC MODELING OF PROTEIN
BACKBONES IN 3D FOR THE MOTIF-SCAFFOLDING
PROBLEM

Brian L. Trippe∗ †

btrippe@mit.edu
Jason Yim∗†

jyim@mit.edu
Doug Tischer ‡

dtischer@uw.edu
David Baker‡
dabaker@uw.edu

Tamara Broderick†

tbroderick@mit.edu
Regina Barzilay†
regina@csail.mit.edu

Tommi Jaakkola†
tommi@csail.mit.edu

ABSTRACT

Construction of a scaffold structure that supports a desired motif, conferring protein
function, shows promise for the design of vaccines and enzymes. But a general
solution to this motif-scaffolding problem remains open. Current machine-learning
techniques for scaffold design are either limited to unrealistically small scaffolds
(up to length 20) or struggle to produce multiple diverse scaffolds. We propose to
learn a distribution over diverse and longer protein backbone structures via an E(3)-
equivariant graph neural network. We develop SMCDiff to efficiently sample scaf-
folds from this distribution conditioned on a given motif; our algorithm is the first
to theoretically guarantee conditional samples from a diffusion model in the large-
compute limit. We evaluate our designed backbones by how well they align with
AlphaFold2-predicted structures. We show that our method can (1) sample scaffolds
up to 80 residues and (2) achieve structurally diverse scaffolds for a fixed motif.1

1 INTRODUCTION

A central task in protein design is creation of a stable scaffold to support a target motif. Here, motifs
are structural protein fragments imparting biological function while scaffolds stabilize the motif’s
structure. Vaccines and enzymes have already been designed by solving certain instances of this
motif-scaffolding problem (Procko et al., 2014; Correia et al., 2014; Jiang et al., 2008; Siegel et al.,
2010). However, successful solutions to this problem in the past have necessitated substantial expert
involvement and laborious trial and error. Machine learning (ML) offers the hope to automate, and
better direct this search. But existing ML approaches face one of two major roadblocks. First, many
methods do not build scaffolds longer than about 20 residues. For many motif sizes of interest,
the resulting proteins would be smaller than the shortest commonly-studied simple protein folds
(35–40 residues) (Gelman & Gruebele, 2014). Second, while other methods may generate longer
scaffolds using stochastic search techniques, they require hours of computation to generate a single
plausible scaffold (Wang et al., 2022; Anishchenko et al., 2021; Tischer et al., 2020). Moreover, when
a plausible scaffold is found, it remains to be experimentally validated. Therefore, it is desirable to
return not just a single scaffold but rather a set of scaffolds exhibiting diverse sequences and structural
variation to increase the likelihood of success in practice.

In the present work, we demonstrate the promise of a particular generative modeling approach within
ML for efficiently returning a diverse set of motif-supporting scaffolds. Generative models have been
shown to capture a distribution over diverse protein structures (Lin et al., 2021). But it is not clear
how to handle conditioning (on the motif) using these approaches. Diffusion probabilistic models
(DPMs) offer a potential alternative; not only do they provide a more straightforward path to handling
conditioning, but they have also enjoyed success generating small-molecules in 3D (Hoogeboom
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Figure 1: Overview of the conditional generative modeling approach to the motif-scaffolding problem.
We train our new protein backbone diffusion model, ProtDiff, to generate realistic protein
backbone structures. Next, we run SMCDiff, our conditional sampling algorithm, with ProtDiff
to generate scaffolds (colored in red) conditioned on the motif (colored in blue). For self-consistency
evaluation, we use a pretrained fixed-backbone sequence-design model (ProteinMPNN (Dauparas
et al., 2022)) to generate the scaffold sequence from a sampled backbone. We then input the sequence
to a structure prediction model, in our case AlphaFold2 (AF2) (Jumper et al., 2021), to generate
the full protein structure from the generated sequence. We compare the backbone of the predicted
structure with the original backbone structure using TM-score (Xu & Zhang, 2010) and root-mean-
square-distance (RMSD) for the motif.

et al., 2022). Extending DPMs to protein structures, though, is non-trivial; since proteins are larger
than small molecules, modeling proteins requires handling the sequential ordering of residues and
long-range interactions. Finally, while existing models often generate distance matrices (Anand
& Huang, 2018; Lin et al., 2021), we instead focus on generating a full set of 3D coordinates,
which should improve designability in practice. Our resulting model, ProtDiff, is similar to
concurrent work on E(3)-equivariant diffusion models for molecules (Hoogeboom et al., 2022), but
with modifications specific to protein structure. Moreover, we develop a novel motif-scaffolding
procedure based on Sequential Monte Carlo, SMCDiff, that repurposes an unconditionally trained
DPM for conditional sampling. We prove that if a DPM matches the data distribution, SMCDiff
is guaranteed to provide exact conditional samples in a large-compute limit; this property contrasts
with previous methods (Song et al., 2021; Zhou et al., 2021), which we show introduce non-trivial
approximation error that impedes performance. Our final motif-scaffolding generative framework,
then, has two steps (Fig. 1): first we train ProtDiff to learn a distribution over protein backbones,
and then we use SMCDiff with ProtDiff to inpaint arbitrary motifs.

Ours is the first machine-learning method to construct scaffolds longer than 20 residues around motifs
— we build up to 80 residues scaffolds on a test case. Beyond our progress on the motif-scaffolding
problem, we provide the following technical contributions: (1) we introduce a protein-backbone
generative model in 3D – with the ability to generate backbone samples that structurally agree with
AlphaFold2 predictions, and (2) we develop a novel conditional sampling algorithm for inpainting.
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1.1 RELATED WORK

Motif-scaffolding. Past approaches have sought to scaffold a motif with native or prespecified protein
fragments, but are limited to finding a suitable match in the Protein Data Bank (PDB) and cannot
adapt the scaffold to compensate for slight structural mismatches (Cao et al., 2022; Silva et al., 2016;
Yang et al., 2021; Sesterhenn et al., 2020; Linsky et al., 2020). More recently Wang et al. (2022)
used pre-trained protein structure prediction networks to recapitulate native scaffolds, but this method
failed to generate scaffolds longer than 20 residues and can output only a single candidate scaffold
rather than a diverse set. By contrast, our goal is to sample diverse, long scaffolds.

Diffusion models for molecule generation. Several concurrent works have extended equivariant
diffusion models to molecule generation. Anand & Achim (2022) extended diffusion models for
generation of protein backbone frames and sequences conditioned on secondary structure adjacency
matrices. Similarly, Luo et al. (2022) focused on CDR-loop generation using diffusion models
conditioned on non-CDR regions of the antibody-antigen. Our method does not require conditioning
and is applicable to general proteins. Lee & Kim (2022) approach the same problem as our work
but build diffusion models over 2D distances matrices that requires post-processing to produce 3D
structures through Rosetta minimization. We demonstrate capability of diffusion models to directly
model 3D coordinates of proteins. Hoogeboom et al. (2022) developed an equivariant diffusion model
(EDM) for generating small molecules in 3D. However, because EDM does not enforce a spatial
ordering of the atoms that compose small molecules, as we describe in Section 5, it does not learn a
coherent chain structure as needed in proteins.

Inpainting and conditional sampling in diffusion models. Point-Voxel Diffusion (PVD) (Zhou
et al., 2021) is a 3D diffusion model for generating shapes from the ShapeNet dataset. Though
trained to generate shapes unconditionally, PVD completes (or inpaints) full shapes when a partial
point cloud is fixed during inference. For general diffusion models, Song et al. (2021) proposed an
alternative inpainting approach and remarked that this approach produces approximate conditional
samples. However, these methods do not provide theoretical guarantees, and when we compare them
to SMCDiff, we find that their approximation error impedes performance when applied to motif-
scaffolding. Saharia et al. (2021) developed an inpainting diffusion model by training a diffusion
model to denoise randomly generated masked regions while unmasked regions were unperturbed.
However, their approach requires a detailed data augmentation strategy that does not exist for proteins.

We describe additional related work on protein generative models in Appendix A.

2 PRELIMINARIES

2.1 THE MOTIF-SCAFFOLDING PROBLEM

A protein can be represented by its amino acid sequence and backbone structure. Let A be the set of
20 genetically-encoded amino acids. We denote the sequence of an N -residue protein by s ∈ AN

and its C-α backbone coordinates in 3D by x = [x1, . . . ,xN ]T ∈ RN,3. We describe a protein as
having a fixed structure that is a function of its sequence, so we may write x(s). We divide the N
residues into the functional motifM and the scaffold S, such thatM∪ S = {1, 2, . . . , N}. The
goal is to identify, given the motif structure xM, sequences s whose structure recapitulates the motif
to high precision x(s)M ≈ xM. Appendix B discusses several caveats of this simplified framing
(e.g. our assumption of static structures).

2.2 DIFFUSION PROBABILISTIC MODELS

Our approach to the motif-scaffolding problem builds on denoising diffusion probabilistic models
(DPMs) (Sohl-Dickstein et al., 2015). We follow the conventions and notation set by Ho et al. (2020),
which we review here. DPMs are a class of generative models based on a reversible, discrete-time
diffusion process. The forward process starts with a sample x(0) from an unknown data distribution
q, with density denoted by q(x(0)), and iteratively adds noise at each step t. By the last step, T ,
the distribution of x(T ) is indistinguishable from an isotropic Gaussian: x(T ) ∼ N (x(T ); 0, I).
Specifically, we choose a variance schedule β(1), β(2), . . . , β(T ), and define the transition distribution
at step t as q(x(t) | x(t−1)) = N (x(t);

√
1− β(t)x(t−1), β(t)I).
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DPMs approximate q with a second distribution pθ by learning the transition distribution of the
reverse process at each t, pθ(x

(t−1) | x(t)). We follow the conventions set by Ho et al. (2020)
in our parameterization and choice of objective. In particular, we take pθ(x

(t−1) | x(t)) =

N (x(t−1);µθ(x
(t), t), β(t)I) with µθ(x

(t), t) = 1√
α(t)

(
x(t) − β(t)√

1−ᾱ(t)
ϵθ(x

(t), t)

)
, α(t) := 1 −

β(t), and ᾱ(t) :=
∏t

s=1 α
(t). We implement ϵθ(x(t), t) as a neural network. For training, we

marginally sample x(t) ∼ q(x(t) | x(0)) from the forward process as x(t) =
√
ᾱ(t)x(0)+

√
1− ᾱ(t)ϵ

and minimize the objective T−1
∑T

t=1 Eq(x(0),x(t))

[
∥ϵ− ϵθ(x

(t), t)∥2
]

by stochastic optimization
(Ho et al., 2020, Algorithm 1). To generate samples from pθ(x

(0)), we simulate the reverse process.
That is, we sample noise for time T as x(T ) ∼ N (0, I), and then for each t = T − 1, . . . , 0, we
simulate progressively “de-noised” samples as x(t) ∼ pθ(x

(t) | x(t+1)).

3 PROTDIFF : A DIFFUSION MODEL OF PROTEIN BACKBONES IN 3D

Implementation of diffusion probabilistic models requires choosing an architecture for the neural
network ϵθ(x

(t), t) introduced abstractly in Section 2.2. In this section we describe ProtDiff,
which corresponds to the choice of ϵθ(x(t), t) as a translation and rotation equivariant graph neural
network tailored to modeling protein backbones. We leave architectural and input encoding details to
Appendix C.

The challenge of modeling points in 3D. The properties and functions of proteins are dictated by the
relative geometry of their residues, and are invariant to the coordinate system chosen to encode them.
Recent work on neural network modeling of 3D data has found, both theoretically and empirically,
that neural networks constrained to satisfy geometric invariances can provide inductive biases that
improve generalization and training efficiency (Batzner et al., 2022). Motivated by this observation,
we parameterize ϵθ by an equivariant graph neural network (EGNN) (Satorras et al., 2021), which
in 3D is equivariant to transformations in the Euclidean group. Xu et al. (2022) proved that if ϵθ is
equivariant to a group then pθ is invariant to the same group.

Tailoring EGNN to protein backbones. We now describe our EGNN implementation, which we
tailor to protein backbones and DPMs through the choice of edge and node features. To model
every pairwise residue interaction, we represent backbones by a fully connected graph. Each node
in the graph is indexed by n = 1, . . . , N, and corresponds to a residue. We associate each node
with coordinates xn ∈ R3 and D features hn ∈ RD. For each pair of nodes n, n′ we define an
edge and associate it with edge features. We construct our EGNN by stacking L equivariant graph
convolutional layers (EGCL) . Each layer takes node coordinates and features as input, and outputs
updated coordinates and features with the first layer taking initial values (x, h). We write the output
of EGNN after L layers as x̂ = EGNN[x, h]. In the context of diffusion models, we predict the noise
at time t with the following parameterization:

ϵθ(x
(t), t) = x̂− x(t), x̂ = EGNN[x(t), h(t)]. (1)

We now describe our choice of node and edge features. Our choice is motivated by the linear chain
structure of protein backbones; residues close in sequence are necessarily close in 3D space. To allow
this chain constraint to be learned more easily, we fix an ordering of nodes in the graph to correspond
to sequence order. We include as edge features positional offsets as done in Ingraham et al. (2019),
which we represent using sinusoidal positional encoding features (Vaswani et al., 2017). For node
features, we similarly use a sinusoidal encoding of sequence position as well as of the diffusion time
step t following Kingma et al. (2021). We additionally process the time encoding to be orthogonal to
the positional encoding .

4 SMCDIFF : CONDITIONAL SAMPLING IN DIFFUSION MODELS BY PARTICLE
FILTERING

The second stage of our generative modeling approach to the motif-scaffolding problem is to sample
scaffolds x

(0)
S from pθ(x

(0)
S | x(0)

M ). Section 4.1 discusses the intractability of sampling from
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pθ(x
(0)
S | x(0)

M ) exactly and the limitations of a simple approximation introduced by (Song et al.,
2021). In Section 4.2, we then frame computation of pθ(x

(0)
S |x

(0)
M ) as a sequential Monte Carlo (SMC)

problem (Doucet et al., 2001) and approximate it with a particle filtering algorithm (Algorithm 1).

4.1 THE CHALLENGE OF CONDITIONAL SAMPLING AND THE ERROR OF THE REPLACEMENT
METHOD

The conditional distributions of a DPM are defined implicitly through the steps of the reverse process.
We may write the conditional density explicitly as

pθ(x
(0)
S | x(0)

M ) ∝ pθ(x
(0)
S ,x

(0)
M ) = pθ(x

(0)) =

∫
pθ(x

(T ))

T−1∏
t=0

pθ(x
(t) | x(t+1))dx(1:T ).

However, the high-dimensional integral on the right-hand side above is intractable (both analytically
and numerically) to compute.

Algorithm 1 SMCDiff: Particle filtering for con-
ditionally sampling from unconditional diffusion
models

1: Input: x(0)
M (motif), K (# particles)

2: // Forward diffuse motif
3: x̆

(1:T )
M ∼ q(x

(1:T )
M | x(0)

M )
4:
5: // Reverse diffuse particles
6: ∀k, x(T )

k
i.i.d.∼ pθ(x

(T ))
7: for t = T, . . . , 1 do
8: // Replace motif
9: ∀k, x(t)

k ← [x̆
(t)
M,x

(t)
S,k]

10:
11: // Re-weight based on x̆

(t−1)
M

12: ∀k, w(t)
k ← pθ(x̆

(t−1)
M | x(t)

k )

13: ∀k, w̃(t)
k ← w

(t)
k /

∑K
k′=1 w

(t)
k′

14: x̃
(t)
1:K ∼ Resample(w̃(t)

1:K ,x
(t)
1:K)

15:
16: // Propose next step

17: ∀k, x(t−1)
k

indep.∼ pθ(x
(t−1) | x̃(t)

k )
18: end for
19: Return x

(0)
S,1:K

To overcome this intractability, we build on the
work of Song et al. (2021), who introduced a
practical algorithm that generates approximate
conditional samples. This strategy is to (1) for-
ward diffuse the conditioning variable to obtain
x
(1:T )
M ∼ q(x

(1:T )
M | x(0)

M ), and then (2) for each
t, sample x

(t)
S ∼ pθ(x

(t)
S | x

(t+1)
M ,x

(t+1)
S ). We

call this approach the replacement method (fol-
lowing Ho et al. (2022)) and make it explicit in
Appendix Algorithm 2. However, in Proposi-
tion D.1 we show that the replacement method
introduces irreducible approximation error that
cannot be eliminated by making pθ more expres-
sive. Additionally, although this approximation
error is not analytically tractable in general, we
show in Corollary D.2 the dependence of this
error on the covariance of x(0)

M and x
(0)
S in the

case that q(x(0)
M ,x

(0)
S ) is bivariate Gaussian.

4.2 CONDITIONAL SAMPLING
IS A SEQUENTIAL MONTE CARLO PROBLEM

We next frame approximation of q(x(0)
S | x(0)

M )
as a sequential Monte Carlo problem that we
may solve by particle filtering. Intuitively, par-
ticle filtering addresses a limitation of the replacement method: the failure at each time t to look
beyond the current step to the less-noised motif x(t−1)

M when sampling x
(t)
S ∼ pθ(x

(t)
S | x(t+1)). Our

key insight is that because pθ(x
(t−1)
M | x(t)) provides a mechanism to assess the likelihood of x(t−1)

M ,
we can prioritize noised scaffolds that are more consistent with the motif. Particle filtering leverages
this mechanism to provide a sequence of discrete approximations to each pθ(x

(t)
S | x

(t−1:T )
M ) that

look ahead by this extra step. Finally, at t = 0 we have an approximation to pθ(x
(0)
S | x(0:T )

M ). Then,
using Proposition 4.1 below, we can obtain an approximate sample from q(x

(0)
S | x(0)

M ). This framing
permits the application of standard particle filtering algorithms (Doucet et al., 2001). Algorithm 1
summarizes an implementation of this procedure that uses residual resampling (Doucet & Johansen,
2009) to mitigate the collapse of the sequential approximations into point masses. SMCDiff provides
a tunable trade-off between computational cost and statistical accuracy through the choice of the
number of particles K. In our next proposition we make this trade-off explicit.

Proposition 4.1. Suppose that pθ exactly matches the forward diffusion process such that for every
x(t+1), pθ(x

(t) | x(t+1)) = q(x(t) | x(t+1)) and consider any motif x(0)
M . Let xS,K be a particle
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chosen at random from the output of Algorithm 1 with K particles. Then xS,K converges in
distribution to q(x

(0)
S | x(0)

M ) as K goes to infinity.

The significance of Proposition 4.1 is that it guarantees Algorithm 1 can provide arbitrarily accu-
rate conditional samples provided an accurate diffusion model and large enough compute budget
(determined by the number of particles). To our knowledge, SMCDiff is the first algorithm for
asymptotically exact conditionally sampling from unconditional DPMs. Our proof of the proposition,
which we leave to Appendix D, is obtained from an application of standard asymptotics for particle
filtering (Chopin & Papaspiliopoulos, 2020, Proposition 11.4).

5 EXPERIMENTS

We empirically demonstrate the ability of our method to scaffold motifs and sample protein backbone
structures. We describe our procedure for evaluating backbone designs in Section 5.1. We demonstrate
the promise of our method for the motif-scaffolding problem in Section 5.2. And we investigate our
method’s strengths and weaknesses via experiments in unconditional sampling in Section 5.3. We
train a single instance of ProtDiff and use it across all of our experiments. For simplicity, we
limited our training data to single chain proteins taken from PDB that are no longer than 128 residues.
See Appendix F for training details.

Baselines. As mentioned in Section 1.1, Wang et al. (2022) is the only prior machine learning work
to address the motif-scaffolding problem. We do not compare against this as a baseline because
no stable implementation was available at the time of writing. The most closely related method
for unconditional sampling with available software is trDesign (Anishchenko et al., 2021), but this
method does not allow specification of a motif. The ML method most similar to ProtDiff is the
concurrently developed equivariant diffusion model (EDM) proposed by Hoogeboom et al. (2022).
Like ProtDiff, EDM uses a densely connected EGNN architecture but without sequence-distance
edge features. Consequently, it does not impose any sequence order, and therefore does not yield a
way to relate generated coordinates to a backbone chain.

5.1 In silico EVALUATION OF DESIGNED BACKBONES

While experimental validation via X-ray crystallography remains the gold standard for evaluating
computationally designed proteins, recent work (Wang et al., 2022; Lin et al., 2021) has proposed to
leverage highly accurate protein structure prediction neural networks as an in silico proxy for true
structure. More specifically, Wang et al. (2022) jointly design protein sequence and structure, and
validate by comparing the design and AlphaFold2 (AF2) (Jumper et al., 2021) predicted structures.
Here, our goal is to assess the quality of scaffolds generated independent of a specific sequence, so
we treat fixed backbone sequence design as a downstream step as in Lin et al. (2021).

Our evaluation with AF2 is as follows. For each generated scaffold we use a C-α only version of
ProteinMPNN (Dauparas et al., 2022) with a temperature of 0.1 to sample 8 amino acid sequences
likely to fold to the same backbone structure. We then run AF2 with the released CASP141 weights
and 15 recycling iterations. We do not include a multiple sequence alignment as an input to AF2. Our
choice of utilizing ProteinMPNN and AF2 (without MSAs) is motivated by their empirical success
in various de novo protein design tasks and the ability to recapitulate native proteins (Dauparas
et al., 2022; Bennett et al., 2022). To assess unconditionally sampled scaffolds, we then evaluate
the agreement of our backbone sample with the AF2 predicted structures using the maximum TM-
score (Zhang & Skolnick, 2005) across all generated sequences which we refer to as scTM, for
self-consistency TM-score. To assess whether prospective scaffolds generated support a motif, we
compute the root mean squared distances (RMSD) of the desired and predicted motif coordinates
after alignment and refer this metric as the motif RMSD. Appendix Algorithm 4 outlines the exact
steps.

Because a TM-score > 0.5 indicates that two structures have the same fold (Zhang & Skolnick, 2005),
we say that a backbone is designable if scTM > 0.5. The ability for AF2 to reproduce the same
backbone from an independently designed sequence is evidence a sequence can be found for the

1Biannual protein folding competition where AF2 achieved first place. Weights available under Apache
License 2.0 license.
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Figure 2: Motif-scaffolding case studies. (A) Example of two scaffold structures generated around a
segment of 5trv. Orange: desired input motif, Grey: AlphaFold-predicted structure of two scaffolds,
with the motif highlighted (purple). Both scaffolds were sampled using SMCDiff with scTM > 0.5.
(B,C) Motif RMSD for 5trv and 6exz test cases, its dependence on scaffold size, and comparison of
SMCDiff to two naive inpainting methods (fixed, replacement).

starting structure. To verify this is a reasonable cutoff, we analyzed scTM over our training set and
found 87% to be designable.

5.2 MOTIF-SCAFFOLDING VIA CONDITIONAL SAMPLING

We evaluated our motif-scaffolding approach (combining SMCDiff and ProtDiff) on motifs
extracted from existing proteins in the PDB and found that our approach can generate long and
diverse scaffolds that support these motifs. We chose to first evaluate on motifs extracted from
proteins present in the training set because we knew that at least one stabilizing scaffold exists. We
considered 2 examples taken from the PDB with IDs 6exz and 5trv, which are 69 and 118 residues
long, respectively. We chose these examples due to their high secondary structure composition while
being representative of the shortest and longest lengths seen during training. For each structure, we
chose a 15–25 residue helical segment as the motif (see Appendix H for details). The remainder of
each protein is one possible supporting scaffold. We sought to assess if we could recover this and
other scaffolds with the same size and motif placement.

Based on prior work (Wang et al., 2022), we expected that building larger scaffolds around a motif
would be more challenging than building smaller scaffolds. To assess this length dependence, we
expanded the segment of used as the motif when running SMCDiff by including additional residues
on each side. In each case, though, we compute the motif RMSD over the minimal motif. In
Figure 2B, we present motif-scaffolding performance and its dependence on scaffold size for 5trv,
the longer of the two test proteins. For the 5trv test case, the lower quartile of the motif RMSD
for SMCDiff is below 1Å for scaffolds up to 80 residues. Since 1Å is atomic-level resolution, we
conclude that our approach can succeed in this length range.

Figure 2A provides a visualization of our method’s capacity to generate long and diverse scaffolds.
The figure depicts two dissimilar scaffolds of lengths 34 and 54 produced by SMCDiff with 64
particles. Both scaffolds are designable and agree with AF2 (scTM > 0.5). Diversity is particularly
evident in the different orderings of secondary structures.

Figure 2B compares SMCDiff to two naive inpainting methods, fixed and replacement. In
fixed, the motif is fixed for every timestep t, and the reverse diffusion is applied only to the scaffold
(as done by Zhou et al. (2021)); replacement is the method described in Section 4. In contrast to
SMCDiff, these baselines fail to generate a successful scaffolds longer than 50 residues on 5trv, as
determined by the location of their lower quartiles.

We next applied these three inpainting methods to harder targets in order to measure generalization
to out-of-distribution and more difficult motifs comprising of dis-contiguous regions and loops. We
consider a motif obtained from the respiratory syncytial virus (RSV) protein and calcium binding
EF-hand motif, both of which are not in the training dataset. RSV is known to be difficult due to its
composition of helical, loop, and sheet segments, while EF-hand is a dis-contiguous loop motif found
in a calcium binding protein. More details about both motifs can be found in Wang et al. (2022);
there the authors report the only known successful scaffold of these motifs but they attain it with
a computationally intensive hallucination approach. We found that our method failed to generate
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Figure 3: Protein backbone samples from ProtDiff. (A) Density plot of scTM for different length
categories (50–70, 70–128). The dashed line at scTM = 0.5 indicates the threshold of “designability”,
points to the right are considered “designable” (see text). (B) Scatter plot of scTM and the highest
TM-score of each sample to all of PDB. Points represented as a grey “×” are detected to contain an
(invalid) left-handed helix. Dashed lines indicate thresholds scTM = 0.5. (C) Example of a designable
backbone sample (rainbow) with scTM > 0.5 (boxed in red in panel B) to its closest PDB example
(6c59, grey) with a TM-score of 0.54.

scaffolds predicted to recapitulate the motif (Appendix H); however, SMCDiff provided smaller
median motif RMSDs than the other two inpainting methods.

Compute cost. The computation of SMCDiff with 64 particles is approximately 2 minutes per inde-
pendent sample, while alternative methods fixed and replacement can produce 64 independent
samples in the same time. By contrast, the hallucination approach of Wang et al. (2022) involves
running a Markov chain for thousands of steps, and has runtime on the order of hours for a single
sample (Anishchenko et al., 2021).

5.3 UNCONDITIONAL SAMPLING

We next investigate the origins of the diversity seen in Figure 2 by analyzing the diversity and
designability of ProtDiff samples without conditioning on a motif.

We first check that ProtDiff produces designable backbones. To do this, we generated 10 backbone
samples for each length between 50 and 128 and then calculated scTM for each sample. In Fig. 3A,
we find that 11.8% of samples have scTM > 0.5. However, the majority of backbones do not pass
this threshold. We also observe designability has strong dependence on length since we expect that
longer proteins are harder to model in 3D and design sequences for. We separated the lengths below
128 residues into two categories and refer to them as short (50–70) and long (70–128). Our results in
Figure 3A indicate 17% of designs in the short category are designable vs. 9% in the long category.
In Figure 13, we present a structural clustering of these designable backbones; we find that these
backbones exhibit diverse topologes.

We next sought to evaluate the ability of ProtDiff to generalize beyond the training set and produce
novel backbones. In Figure 3B each point represents a backbone sample from ProtDiff. The
horizontal coordinate of a point is the scTM, and the vertical coordinate is the minimum TM-score
across the training set. We found a strong positive correlation between scTM and this minimum
TM-score, indicating that many of the most designable backbones generated by ProtDiff were a
result of training set memorization. However, if the model were only memorizing the training set, we
would see TM-scores consistently near 1.0; the range of scores in Figure 3B indicate this is not the
case – and the model is introducing a degree of variability. Figure 3C gives an example of backbone
with scTM > 0.5 that appears to be novel. Its closest match in the PDB has TM-score = 0.54.

Fig. 3B illustrates a limitation of our method: many of our sampled backbones are not designable.
One contributing factor is that ProtDiff does not handle chirality. Hence ProtDiff generates
backbones with the wrong handedness, which cannot be realized by any sequence. Fig. 3B shows
that 45% of all backbone samples had at least one incorrect, left-handed helix. Of these, most have
scTM < 0.5. We describe calculating left-handed helices in Appendix G.
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Figure 4: Interpolations between ProtDiff samples demonstrating the diversity of backbones cap-
tured. Top: 64-residue example. Bottom: 56-residue example. ProtDiff samples are determined
by the Gaussian noise across all steps, ϵ(0:T ).

Fig. 4 illustrates an interpolation between two samples, showing how ProtDiff’s outputs change as
a function of the noise used to generate them. To generate these interpolations, we pick two backbone
samples that result in different folds. For independent samples generated with noise ϵ(0:T ) and ϵ̃(0:T )

we interpolate with noise set to
√
αϵ(0:T )+

√
1− αϵ̃(0:T ) for α between 0 and 1. The depicted values

of α are chosen to highlight transition points with full interpolations included in Appendix H.3. A
future direction is to exploit the latent structure of ProtDiff to control backbone topology.

6 DISCUSSION

The motif-scaffolding problem has applications ranging from medicine to material science (King
et al., 2012), but remains unsolved for many functional motifs. We have created the first generative
modeling approach to motif-scaffolding by developing ProtDiff, a diffusion probabilistic model
of protein backbones, and SMCDiff, a procedure for generating scaffolds conditioned on a motif.
Although our experiments were limited to a small set of proteins, our results demonstrate that our
procedure is the first capable of generating diverse scaffolds longer than 20 residues with computation
time reliably on the order of minutes or less. Our work demonstrates the potential of machine learning
methods to be applied in realistic protein design settings.

General conditional sampling. SMCDiff is applicable to generic DPMs and is not limited to
only proteins and motif-scaffolding. While we do not make claims of SMCDiff outperforming
state-of-the-art conditional diffusion models on other tasks such as image generation, we demonstrate
a clear advantage of SMCDiff over the replacement method on a toy task of inpainting MNIST
images in Appendix I. Extending SMCDiff outside of motif-scaffolding is outside the scope of the
present work, but the advantages of a single model for both unconditional and conditional generation
warrants additional research.

Modeling limitations. Our present results do not indicate our procedure can generalize to motifs
that are not present in the training set. We believe improvements in protein modeling could provide
better inductive biases for generalization. ProtDiff, based on EGNN, is reflection equivariant
since it only sees pairwise distances between 3D C-α coordinates. Additionally, ProtDiff does
not explicitly model primary sequence or side-chains. Hoogeboom et al. (2022) demonstrate the
benefits of modeling sequence information in small molecules; joint modeling sequence and structure
in a single model could improve the designability of protein scaffolds and backbones as well.

Data limitations. We remarked our training set is small due to filtering based on length and
oligometry (using only monomeric proteins). Scaling up to longer proteins opens up thousands more
examples from the PDB, but in preliminary experiments has proven challenging. Lastly, further
development and comparison of methods for motif scaffolding will benefit from standard evaluation
benchmarks. Developing a benchmark proved to be difficult since motifs are not labeled in protein
databases. It will be important to gather motifs of biological importance in order to guide ML method
development towards real-world applications. Because no such benchmarks exist, developing them is
a valuable direction for future work.
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A ADDITIONAL RELATED WORK

We next cover additional related work on generative models of proteins sequence and structure,
beyond the discussion in Section 1.1. Following the success of deep language models, Ferruz et al.
(2022) developed protein sequence models to generate new proteins, but these models do not allow
specification of structural motifs. Another class of methods, referred to as fixed backbone sequence
design (Fleishman et al., 2011; Ingraham et al., 2019; Xiong et al., 2020; McPartlon et al., 2022;
Hsu et al., 2022), attempts to solve the problem of identifying a sequence that folds into any given
designable backbone structure. In the present work, we utilize a particular sequence design method,
ProteinMPNN (Dauparas et al., 2022), but in principle any other fixed-backbone sequence design
method could be used in its place. Anand & Huang (2018); Lin et al. (2021); Wu et al. (2021) propose
generative adversarial networks, variational autoencoders, and energy-based models, respectively, on
distance matrices, but these approaches (1) do not generate backbones compatible with a specified
motif and (2) rely on an unwieldy optimization step to translate the distance matrix into backbone
coordinates. Other authors use neural net (Tischer et al., 2020; Anishchenko et al., 2021; Wang et al.,
2022; Huang et al., 2022; Wu et al., 2021), but require a computationally challenging conformational
landscape exploration.

B PROBLEM ASSUMPTIONS AND MODELING HEURISTICS

The formulation of the motif-scaffolding problem presented in Section 2.1 makes several simplifying
assumptions, and our modeling approach relies on several heuristics. We describe these assump-
tions and heuristics in what follows, and comment on how they might be addressed by further
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methodological developments. But we first describe an illustrative example of an instance of motif
scaffolding.

Protein sequence-structure relationship. Generally speaking, a protein’s sequence encodes an
ensemble of conformations, populated to different degrees at biological temperatures. Anfinsen’s
hypothesis states that the ground state conformation is thermodynamically accessible (Anfinsen,
1973), providing a mapping from sequence to a unique (ground state) structure. In practice, the
ground state structures make up the vast majority of experimentally determined protein conformations,
as over 95% of structures in the Protein Data Bank (PDB) are collected at cryogenic temperatures
(Fraser et al., 2011). Thus we simplify our problem by saying that a sequence uniquely maps to a
static structure (i.e. the ground state structure). However, violations of this assumption arise in some
PDB structures as a result of (1) of context specific determinants of structure such as post-translational
modifications and environmental factors including pH, binding partners, and salts, as well as (2)
thermodynamic inaccessibility of the ground state.

Motif sequence and side-chains. As stated in Section 2.1, we assume we may represent a functional
motif by the coordinates of its C-α atoms. However, the biochemical functions of proteins depend
not only on backbone structure, but also on side-chains. For example, the activity of many enzymes is
imparted by triplets of residues, known as catalytic triads, whose ability to catalyze reactions depends
on the spatial organization of side-chain atoms. Our problem statement and subsequent evaluation
scheme are agnostic to the amino acid identity of motif residues, let alone side-chain positioning. A
more complete representation of a motif would include the side-chain identities (i.e. the amino acid
sequence) and side-chain atom coordinates.

Scaffold length and motif placement. We have additionally assumed that the size of scaffolds and
the indices of motif residues within the backbone chain,M, are known a priori. However, in practice
satisfactory scaffolds could have different lengths and different motif placements, and typically it is
not known a priori what lengths and placements will be best. Previous works have addressed this
challenge through brute force by sampling multiple lengths and placements, and relied on post-hoc
filtering to identify the most promising scaffolds (Wang et al., 2022; Yang et al., 2021). Subsequent
work on ML methods could potentially generalize beyond this assumption to efficiently sample
appropriate scaffold lengths and motif placements.

Sequence and side-chain modeling. ProtDiff models only the backbone coordinates and leaves
sequence design to a subsequent stage, for which we have used ProteinMPNN. A more complete
representation of a proteins could include both sequence and structure (where structure can be divided
into the backbone and side-chain atom coordinates). To model sequence, we rely on a separately
trained neural network, ProteinMPNN, but this is not ideal. Unless ProtDiff produces perfect
backbones, one would expect the backbone samples of ProtDiff to present a substantial domain
shift when used as input for ProteinMPNN.

3D backbone representation. In this work, we represent a protein structure using the C-α coor-
dinates of every residue along the backbone. However, this representation is coarse-grained and
ignores additional backbone atomic coordinates, namely the backbone carbon and nitrogen atoms.
Dauparas et al. (2022) observed additionally modeling the heavy atoms of the backbone nitrogen
and carbon atoms along with the C-β of every residue (to capture side-chain information) improved
performance (by sequence recovery) for fixed-backbone sequence design. We hypothesize modeling
additional coordinates of every residue would also improve designability performance of ProtDiff.
Constraining ProtDiff to place the remaining atoms in the correct orientation could help enforce
correct chirality and mitigate chain breaks.

C ADDITIONAL PROTDIFF DETAILS

As a reminder from Section 3, each node in the graph is indexed by n = 1, . . . , N and corresponds
to a residue with coordinates xn ∈ R3 and node features hn ∈ RD. For each pair of nodes n, n′ we
define an edge and associate it with edge features ann′ ∈ RD. Our neural network to predict ϵθ is
an instance of EGNN composed of multiple EGCL layers . We recount details of EGCL and then
discuss construction of edge and node features, ann′ and hn.
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Equivariant graph convolution layers (EGCL). Each layer l = 1, . . . , L defines an update as
(xl, hl) = EGCL[xl−1, hl−1] where for each node n

xl
n = xl−1

n +
∑
n′ ̸=n

ω⃗nn′ · ϕx(h
l−1
n , hl−1

n′ , dnn′ , ann′) and hl
n = ϕh(h

l−1
n ,mn), for

ω⃗nn′ =
xl−1
n − xl−1

n′√
dnn′ + γ

, mn =
∑
n′ ̸=n

ϕe(h
l−1
n , hl−1

n′ , dnn′ , ann′), and dnn′ = ∥xl−1
n − xl−1

n′ ∥22.

ϕe, ϕh, and ϕx are fully connected neural networks, and γ is a small positive constant included for
numerical stability. The first EGCL layer takes in initial node embeddings, h0 while edge embeddings,
ann′ , are kept fixed throughout.

Initial node and edge embeddings. Each edge between two residues indexed in the sequence by
(n, n′) is featurized with D features obtained through a sinusoidal encoding of its relative offset:

ann′ =

φ(n− n′, 1)
...

φ(n− n′, D)

 , where φ(x, k) =

{
sin

(
x · π/N2·k/D)

, k mod 2 = 0

cos
(
x · π/N2·(k−1)/D

)
, k mod 2 = 1.

For node features, we similarly use a sinusoidal encoding of sequence position as well as of the
diffusion time step t as

hn(t) =

φ(n, 1)
...

φ(n,D)

+R

φ(t, 1)
...

φ(t,D)

 ,

where R is a D×D orthogonal matrix chosen uniformly at random. Intuitively, applying R transforms
the time encoding to be orthogonal to the positional encoding.

Coordinate scaling While protein structures are typically parameterized in Angstroms, we transform
the input protein coordinates to be in nanometers rather by dividing by 10. This scaling brings the
backbones to a spatial scale similar to the reference distribution at which the forward noising process
is stationary, a unit variance isotropic Gaussian. Importantly, the distribution of the final step T is
indistinguishable from an isotropic Gaussian (Supplementary Fig. 5.)

Figure 5: Distribution of x(T ) after centering and scaling x(0) to nanometers.

D CONDITIONAL SAMPLING: SMCDIFF DETAILS AND SUPPLEMENTARY
PROOFS

We here provide additional details related to SMCDiff and the replacement method described in
Section 4. Details of the replacement method (Song et al., 2021) and our analysis of its error are in
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Algorithm 2 Replacement method for approx-
imate conditional sampling

1: Input: x(0)
M (motif)

2: // Forward diffuse motif
3: x̆

(1:T )
M ∼ q(x

(1:T )
M | x(0)

M )
4:
5: // Reverse diffuse scaffold
6: x(T ) ∼ pθ(x

(T ))
7: for t = T, . . . , 1 do
8: // Replace with forward diffused motif
9: x(t) ← [x̆

(t)
M,x

(t)
S ]

10:
11: // Propose next step
12: x(t−1) ∼ pθ(x

(t−1) | x(t))
13: end for
14: Return x

(0)
S , x(1:T )

Appendix D.1. Appendix D.2 provides details of our sampling method, SMCDiff, including (1) a
proof of Proposition 4.1 and (2) details of the residual resampling step. We leave technical proofs
and lemmas to Appendix D.3.

Notation. In the following, we require notation that is more precise than in previous sections. For
each t = 0, . . . , T, we let qt(·) and pt(·) denote the density functions of x(t) according to the forward
process and to our neural network approximation of the reverse process, respectively. We denote
densities restricted to the motif and scaffold with subscriptsM and S. For example, we here write
pM,t(x

(t)
M), whereas we wrote pθ(x

(t)
M) in the main text. We write (random) conditional densities as

qM,t(· | x(t−1)
M ) and write the (deterministic) conditional density for an observation x

(t−1)
M = xM as

qM,t(· | x(t−1)
M = xM).

An object of interest will be the Kullback-Leibler (KL) divergence. We write
KL [qt(·)∥pt(·)] :=

∫
qt(x) log

qt(x)
pt(x)

dx, where log(·) is the natural (base e) logarithm. We
will also encounter the expected KL between conditional densities, which we will write as
EKL

[
qt(· | x(t−1))∥pt(· | x(t−1))

]
:=

∫
qt−1(x)KL

[
qt(· | x(t−1) = x)∥pt(· | x(t−1) = x)

]
dx,

where the outer expectation is taken with respect to the unconditional density associated with
first argument of EKL [·∥·] .

D.1 THE REPLACEMENT METHOD AND ITS ERROR

The replacement method was proposed by Song et al. (2021) for the task of inpainting in the context
of score-based generative models. Work (Ho et al., 2022) concurrent with the present paper applied
the replacement method to DPMs. Although Song et al. (2021) notes that this approach can be
understood as approximate conditional sampling, they provide no discussion of approximation error.
We here show that the replacement method introduces irreducible error that is inherent to the forward
process. Algorithm 2 provides an explicit description of the replacement method.

The first return of Algorithm 2, x(0)
S , is used as a putative inpainting solution or approximate

conditional sample. But Algorithm 2 additionally returns subsequent time steps, x(1:T ). We denote
the approximation over all steps implied by the generative procedure in Algorithm 2 by pRepl

1:T (· |
x
(0)
M = xM) and compare it to the exact conditional, q1:T (· | x(0)

M = xM). We here consider error in
KL divergence because it permits an analytically tractable and transparent analysis. We additionally
consider the idealized scenario where p0:T (·) perfectly captures the reverse process. Under this
condition, the forward KL takes a surprisingly simple form.
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Proposition D.1. Suppose that p0:T (·) exactly matches the forward diffusion process such that for
every x, pt(· | x(t+1) = x) = qt(· | x(t+1) = x). Then for any motif xM,

KL
[
q1:T (· | x(0)

M = xM)∥pRepl
1:T (· | x(0)

M = xM)
]

=

T−1∑
t=1

EKL
[
qS,t(· | x(t+1),x

(0)
M = xM)∥qS,t(· | x(t+1))

]
.

(2)

Proposition D.1 reveals that the replacement method introduces approximation error that is intrinsic
to the forward process and cannot be eliminated by making p0:T (·) more expressive. Although the
individual terms in the right hand side of Equation (2) are not analytically tractable in general, in the
following corollary we show that this approximation error can be non-trivial by considering a special
case. For this following example, we depart from the earlier assumption that x is in 3D, and consider
scalar valued xM and xS .

Corollary D.2. Suppose [x
(0)
M ,x

(0)
S ] is bivariate normal distributed with mean zero, unit variance,

and covariance ρ. Further suppose that qS,t(· | x(0)
S ) = N (·;

√
ᾱ(t)x

(0)
S , 1 − ᾱ(t)) and qS,t+1(· |

x
(t)
S ) = N (·;

√
1− β(t+1)x

(t)
S , β(t+1)) as in Section 2, where β(t+1) and ᾱ(t) are between 0 and 1.

Then

EKL
[
qS,t(· | x(t+1)

S ,x
(0)
M )∥qS,t(· | x(t+1)

S )
]
≥ −1

2

(
log(1− β(t+1)ᾱ(t)ρ2) + β(t+1)ᾱ(t)ρ2

)
.

We note two takeaways of Corollary D.2. First, as we might intuitively expect, this error can be large
when significant correlation in the target distribution is present. Second, we see that the approximation
error can be larger at earlier time steps, when ᾱ(t) is closer to 1.

D.2 SMCDIFF DETAILS AND VERIFICATION PROOF OF PROPOSITION 4.1

The idea behind the SMCDiff procedure in Algorithm 1 is to break sampling of x(0)
S ∼ qS,0(· | x(0)

M )
into three stages:

1. Draw x
(1:T )
M ∼ qM,1:T (· | x(0)

M ).

2. Draw x
(1:T )
S ∼ qS,1:T (· | x(0:T )

M ).

3. Draw x
(0)
S ∼ qS,0(· | x(0:T )

M ,x
(1:T )
S )

If all three steps were performed exactly, by the law of total probability x
(0)
S in step (3) would

(marginally) be an exact sample from qS,0(· | x(0)
M ). As such, SMCDiff aims to perform step (1) and

approximate steps (2) and (3). Step (1) corresponds to forward diffusing the motif in lines 2–3 and is
exact because we diffuse according to q.

Step (3) corresponds to line 17 in the last iteration (when t = 1). Specifically, to sample from
qS,0(· | x(0:T )

M ,x
(1:T )
S ) we make three observations. (i) The Markov structure of the forward process

implies that qS,0(· | x(0:T )
M ,x

(1:T )
S ) = qS,0(· | x(0:1)

M ,x
(1)
S ). (ii) By the assumption that the forward

and approximated reverse process agree, we have qS,0(· | x(0:1)
M ,x

(1)
S ) = pS,0(· | x(0:1)

M ,x
(1)
S ).

(iii) Finally, because pt(· | x(t+1)) factorizes acrossM and S for each t, pS,0(· | x(0:1)
M ,x

(1)
S ) =

pS,0(· | x(1)
M ,x

(1)
S ). As a result, under the assumptions of the proposition, we may sample from

qS,0(· | x(0:T )
M ,x

(1:T )
S ), and perform step (3) exactly as well.

Step (2) is the only non-trivial step, and cannot be performed exactly. The challenge is that although
the reverse process approximation, pS,1:T (· | x(0:T )

M ), is well-defined, computing it explicitly involves
an intractable, high-dimensional integral.

The sequential Monte Carlo approach of SMCDiff, then, is to circumvent this intractability by
constructing a sequence of approximations. For each t = T, T − 1, . . . , 1, we approximate pS,t(· |
x
(t−1:T )
M ) (and thereby qS,t(· | x(t−1:T ))) with K weighted atoms (the particles). We denote these
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Algorithm 3 Residual Resample

1: Input: w1:K (weights), x1:K (particles)
2: ∀k, (ck, rk)← (⌊Kwk⌋,Kwk − ⌊Kwk⌋)
3: x̃C = [x1, . . . ,x1︸ ︷︷ ︸

c1

, . . . ,xK , . . . ,xK︸ ︷︷ ︸
cK

]

4: R← K −
∑K

k=1 ck
5: [i1, . . . , iR] ∼ Multinomial(r1:K , R)
6: x̃R ← [xi1 , . . . ,xiR ]
7: x̃ = concat(xR,xC)
8: Return x̃

approximations (which are implicit in Algorithm 1) by P(t)
K (·) :=

∑K
k=1 w̃

(t)
k δ(·;x(t)

S,k), where each

w̃
(t)
k and x

(t)
S,k are as in Algorithm 1, and δ(·;x) denotes a Dirac mass at x. In particular, P(1)

K (·) is an

approximation to pS,1(· | x(0:T )
M ). Proving the proposition amounts to showing that in the limit as

K goes to infinity, each P(1)
K (·) converges weakly to pS,1(· | x(0:T )

M ), which by assumption is equal
to qS,1(· | x(0:T )

M ). This weak convergence follows from standard asymptotics for particle filters
(Chopin & Papaspiliopoulos, 2020, Proposition 11.4), which we make explicit in Lemma D.1. As
a result, if we perform step (3) with x

(1)
S ∼ P(1)

K (·), then this lemma implies that x(0)
S converges in

distribution to qS,0(x
(0)
S | x(0)

M ), since (i) qS,0(x
(0)
S | x(1)

M ,x
(1)
S ) is continuous in x

(1)
S and (ii) x(0)

S is
independent of x(0)

M conditional on x(1).

Recall that to show the proposition, it was to sufficient to show that P(1)
K converged weakly to

qS,1(· | x(0:T )
M ); this implied that the K particle returned by Algorithm 1 would then converge in

distribution to qS,0(· | x(0:T )
M ) which, by the law of total probability, implied that they marginally

converge to qS,0(· | x(0)
M ). However, while the particles return by Algorithm 1 may be treated as

exchangeable, they are not independent, because they depend on shared randomness in x
(1:T )
M . To

obtain approximate samples that are independent, it is necessary to run Algorithm 1 multiple times.

Residual resampling. Line 14 of Algorithm 1 indicates a Resample step. In particle filtering,
resampling steps (or branching mechanisms (Doucet et al., 2001, Chapter 2)) filter out particles
with very small weights, and replace them with additional copies of particles with large weights.
Notably, the resampling step is the only point of departure of Algorithm 1 from the replacement
method; without resampling, the algorithms behave identically. While a variety of possible branching
mechanisms exist, we use residual resampling (Algorithm 3) in our implementation for its simplicity.

D.3 PROOFS AND LEMMAS

Particle filtering lemma with technical conditions

Lemma D.1. Consider P(1)
K :=

∑K
k=1 w̃kδ(·;x(1)

S,k), where w̃k and x
(1)
S,1:K are as constructed in

Algorithm 1. Assume the conditions of Proposition 4.1. Then P(1)
K converges weakly to pS,1(· | x(0:T )

M )

as K goes to infinity. That is, for any Borel measurable A, limK→∞ P(1)
K (A) =

∫
A
pS,1(x |

x
(0:T )
M )dx.

Proof. The proof of the lemma follows from an application of standard asymptotics for particle
filtering (Chopin & Papaspiliopoulos, 2020, Proposition 11.4). In particular, to apply Proposition
11.4 we use the formalism of Feynman–Kac (FK) models, following the notation of (Chopin &
Papaspiliopoulos, 2020, Chapter 5). Though typically (and in (Chopin & Papaspiliopoulos, 2020)) FK
models are defined via a sequence of approximations at increasing time steps, we consider decreasing
time steps because we are approximating the reverse time process. We take the initial distribution
as MT (x

(T )
S ) = pS,T (x

(T )
S ), the transition kernel as Mt(x

(t+1)
S ,x

(t)
S ) = pS,t(x

(t)
S | x(t+1)), and
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the potential functions as Gt(x
(t)
S ) = pM,t−1(x

(t−1)
M | x(t)). The sequence of FK models, Qt, then

correspond to

Qt(x
(t:T )
S ) = L−1

t MT (x
(T )
S )GT (x

(T )
S )

t∏
i=T−1

Mi(x
(i+1)
S ,x

(i)
S )Gi(x

(i)
S )

for each t, where Lt is a normalizing constant.

By substituting in our choices of Mt and Gt, we can rewrite and simplify Qt as

Qt(x
(t:T )
S ) = L−1

t pS,T (x
(T )
S )pM,T−1(x

(T−1)
M | x(T ))

t∏
i=T−1

pS,i(x
(i)
S | x

(i+1))pM,i−1(x
(i−1)
M | x(i))

= L−1
t pS,T (x

(T )
S )pt:T−1(x

(t:T−1) | x(T ))pM,t−1(x
(t−1)
M | x(t))

∝ pt:T (x
(t:T ) | x(t−1)

M )

∝ pS,t:T (x
(t:T )
S | x(t−1:T )

M ),

where lines 3 and 4 drop multiplicative constants that do not depend on x
(t:T )
S . From the above

derivation, we see that each Qt(x
(t)
S ) = pS,t(x

(t)
S | x(t−1:T )

M ), and in particular that Q1(x
(1)
S ) =

pS,1(x
(1)
S | x(0:T )

M ). As such, the desired convergence in the statement of the lemma is equivalent to
that P(1)

K converges to Q1.

Chopin & Papaspiliopoulos (2020, Proposition 11.4) provide this result for the generic particle
filtering algorithm (see Chopin & Papaspiliopoulos (2020, Algorithm 10.1), which is written in the
FK model form described above). More specifically, Proposition 11.4 proves almost sure convergence
of all Borel measurable functions of P(t)

K , which implies the desired weak convergence.

Although the proof provided in Chopin & Papaspiliopoulos (2020) is restricted to the simpler, but
higher variance, case where the resampling step uses multinomial resampling, the authors note that
Chopin (2004) proves it holds in the case of residual resampling (which we use in our experiments)
as well.

Replacement method error — lemmas and proofs

We here provide proofs of Proposition D.1 and Corollary D.2.

Proof of Proposition D.1:

Proof. The result obtains from recognizing where the replacement method approximation agrees
with the forward process, using conditional independences in both processes, and applying the chain
rule for KL divergences. We make this explicit in the derivation below, with comments explaining
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the transition to the following line.

KL
[
q1:T (· | x(0)

M = xM)∥pRepl
1:T (· | x(0)

M = xM)
]

=

∫
q1:T (x

(1:T ) | x(0)
M = xM) log

q1:T (x
(1:T ) | x(0)

M = xM)

pRepl
1:T (x(1:T ) | x(0)

M = xM)
dx(1:T )

// By the chain rule of probability.

=

∫
q1:T (x

(1:T ) | x(0)
M = xM)

[
log

qM,1:T (x
(1:T )
M | x(0)

M = xM)

pRepl
1:T (x

(1:T )
M | x(0)

M = xM)
+

log
qS,1:T (x

(1:T )
S | x(0:T )

M = x
(0:T )
M )

pRepl
S,1:T (x

(1:T )
S | x(0:T )

M = x
(0:T )
M )

]
// By the agreement of q and pRepl on the motif, and the chain rule of probability.

=

∫
q1:T (x

(1:T ) | x(0)
M = xM)

[
log

qS,T (x
(T )
S | x(0:T )

M = x
(0:T )
M )

pRepl
T (x

(T )
S | x(0:T )

M = x
(0:T )
M )

+

T−1∑
t=1

log
qS,t(x

(t)
S | x

(t+1)
S = x

(t+1)
S ,x

(0:T )
M = x

(0:T )
M )

pRepl
S,t (x

(t)
S | x

(t+1)
S = x

(t+1)
S ,x

(0:T )
M = x

(0:T )
M )

]
dx(1:T )

// Because qS,T (·) = pRepl
S,T (·) = N (·; 0, I) and the assumption that pθ matches q.

=

∫
q1:T (x

(1:T ) | x(0)
M = xM)

[ T−1∑
t=1

log
qS,t(x

(t)
S | x(t+1) = x(t+1),x

(0)
M = x

(0)
M )

qS,t(x
(t)
S | x(t+1) = x(t+1))

]
dx(1:T )

=

T−1∑
t=1

EKL
[
qS,t(· | x(t+1),x

(0)
M = x

(0)
M )∥qS,t(· | x(t+1))

]
.

Proof of Corollary D.2:

The proof of the corollary relies of on a lemma on the variances of the two relevant conditional
distributions. We state this lemma, whose proof is at the end of the section, before continuing. For
notational simplicity, we drop the scripts and annotations on ᾱ(t) and β(t+1), and instead write α and
β, respectively.

Lemma D.2. Suppose x
(0)
M ,x

(t)
S , and x

(t+1)
S are distributed as in Corollary D.2. Then Var[x

(t)
S |

x
(t+1)
S ] = β and Var[x

(t)
S | x

(t+1)
S ,x

(0)
M ] ≤ β(1− βρ2α).

Now we provide a proof of Corollary D.2.

Proof. First recall that

KL
[
N (µ1, σ

2
1)∥N (µ2, σ

2
2)
]
=

1

2

(
log

σ2
2

σ2
1

+
σ2
1 + (µ1 − µ2)

2

σ2
2

− 1

)
≥ 1

2

(
log

σ2
2

σ2
1

+
σ2
1

σ2
2

− 1

)
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and observe that this lower bound is monotonically decreasing in σ2
1 for σ2

1 ≤ σ2
2 . Therefore

EKL
[
qS,t(· | x(t+1)

S ,x
(0)
M )∥qS,t(· | x(t+1)

S )
]

=

∫
qM,0(x

(0)
M )qS,t+1(x

(t+1)
S | x(0)

M )
[

KL
[
qS,t(· | x(t+1)

S = x
(t+1)
S ,x

(0)
M = x

(0)
M ])∥qS,t(· | x(t+1)

S = x
(t+1)
S ])

]
]
dx

(0)
Mx

(t+1)
S

≥
∫

qM,0(x
(0)
M )qS,t+1(x

(t+1)
S | x(0)

M )
[

KL
[
N (0,Var[x

(t)
S | x

(t+1)
S = x

(t+1)
S ,x

(0)
M = x

(0)
M ])∥N (0,Var[x

(t)
S | x

(t+1)
S = x

(t+1)
S ])

]
]
dx

(0)
Mx

(t+1)
S

≥ KL
[
N (0, β(1− βρ2α))∥N (0, β)

]
≥ 1

2

(
log

β

β(1− βρ2α)
+

β(1− βρ2α)

β
− 1

)
= −1

2

(
log(1− βρ2α) + βρ2α

)
where the second inequality follows from Lemma D.2, and the monotonicity of the KL in σ2

1 .

Proof of Lemma D.2:

Proof. That Var[x(t)
S | x(t+1)

S ] = β follows immediately from that [x(t)
S ,x

(t+1)
S ] is marginally

bivariate normal distributed with covariance
√
1− β.

The upper bound on Var[x
(t)
S | x

(t+1)
S ,x

(0)
M ] is trickier. Observer that [x(t)

S ,x
(t+1)
S ] | x(0)

M is bivariate
Gaussian and that

Var

[[
x
(t)
S

x
(t+1)
S

]
| x(0)

M

]
=

[
1− ρ2α

√
1− β(1− ρ2α)√

1− β(1− ρ2α) 1 + βρ2α− ρ2α

]
.

As such, the conditional variance may be computed in closed form as Var[x
(t)
S | x(t+1)

S ,x
(0)
M ] =

β(1−ρ2α)+(1−β)(1−ρ2α)
(
1− (1− ρ2α)/(1− ρ2α+ βρ2α)

)
. But since (1−ρ2α)/(1−ρ2α+

βρ2α) ≥ 1−(βρ2α)/(1−ρ2α) and therefore 1−(1−ρ2α)/(1−ρ2α+βρ2α) ≤ (βρ2α)/(1−ρ2α)
we can write

Var[x
(t)
S | x

(t+1)
S ,x

(0)
M ] = β(1− ρ2α) + (1− β)(1− ρ2α)

(
1− 1− ρ2α

1− ρ2α+ βρ2α

)
≤ β(1− ρ2α) + (1− β)(1− ρ2α)

βρ2α

1− ρ2α
)

= β(1− ρ2α) + (1− β)βρ2α

= β(1− βρ2α).

E DETECTING CHIRALITY

Section 6 noted the limitation of ProtDiff that it can generate left-handed helices (which do not
stably occur in natural proteins). Figure 6 presents two such examples. We additionally note that, as
in Figure 6 Left, model samples can include multiple helices with differing chirality.
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Figure 6: Two examples of protein backbone samples with incorrect left handed helices.

F TRAINING DETAILS

ProtDiff uses 4 equivariant graph convolutional layers (EGCL) with 256 dimensions for node and
edge embeddings. The training data was restricted to single chain proteins (monomers) found in PDB
and lengths in the range [40, 128]. We additionally filtered out PDB with >5Å atomic resolution.
This amounted to 4269 training examples. Training was performed using the Adam optimizer with
hyperparameters learning_rate=1e-4, β1 = 0.9, and β2 = 0.999. We trained for 1,000,000
steps using batch size 16. We used a single Nvidia A100 GPU for approximately 24 hours. We
implemented all models in PyTorch. We used the same linear noise schedule as Ho et al. (2020)
where β0 = 0.0001, βT = 0.02, and T = 1024. We did not perform hyperparameter tuning.

G ADDITIONAL METRIC DETAILS

Self-consistency algorithm. Section 5.1 described our self-consistency metrics for evaluating the
designability of backbones generated with ProtDiff. Algorithm 4 makes explicit the procedure
we use for computing these metrics.

Algorithm 4 Self-consistency calculation

Input: x ∈ RN,3

1: for i ∈ 1, . . . , 8 do
2: si ← ProteinMPNN(x)
3: x̂i ← AF2(si)
4: end for
5: sc_tm← maxi∈1,...,8TMscore(x̂i,x)

Output: , sc_tm

Using dihedral angles to calculate helix chirality. Natural proteins are chiral molecules that
contain only right-handed alpha helices. However, because the underlying EGNN in our model
is equivariant to reflection, it can produce samples with left-handed helices. While examining
model samples, we additionally observed samples with both left and right-handed helices (Figure 6),
even though in theory the EGNN should be able to detect and avoid the chiral mismatch. Left-
handed helices are fundamentally invalid geometries in proteins and represent a trivial failure mode
when calculating the self-consistency and other metrics. Samples with a mixture of left and right-
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handed helices are especially problematic because they cannot be corrected simply by reflecting the
coordinates. As such, it is important to identify and separate samples with mixed chirality.

To detect chiralty, we compute the dihedral angle between four consecutive C-α atoms as a chiral
metric to distinguish between the two helix chiralities. Algorithmically, for every C-α i, we calculate
the dihedral between C-α i, i+1, i+2, and i+3. C-α i with dihedral angles between 0.6 and
1.2 radians are classified as right-handed helices, and angles between -1.2 and -0.6 are classified
as left-handed helices, with everything else classified as non-helical. Because C-α atoms in native
helices tend to form contiguous stretches longer than one residue in the primary sequence, helical
stretches less than one amino acid were removed. This filtering is meant to help avoid accidentally
counting the occasional isolated backbone geometry that falls into a helical bin as a true helix. Finally,
for all C-α atoms i that are still categorized as part of a helix, the associated i+1, i+2 and i+3
C-α atoms are also counted as part of that helix.

H ADDITIONAL EXPERIMENTAL RESULTS

In this section, we describe additional results to complement the main text. We provide a description
of the motif targets in Section 4, along with results of a scaffolding failure case in Appendix H.1.
To understand the qualitative outcomes of scTM, we present additional results of backbone designs,
their AF2 prediction, and most closely related PDB parent chain for different thresholds of scTM in
Appendix H.2. We provide additional examples of latent interpolations in Appendix H.3. Finally,
Appendix H.4 presents a structural clustering of unconditional backbone samples; this result provides
further evidence of ProtDiff’s ability to generate diverse backbone structures.

Figure 7: Structures used for motif-scaffolding test cases. Native structures (grey) and their motifs
(orange) that were used for the motif-scaffolding task are shown.

H.1 ADDITIONAL MOTIF-SCAFFOLDING RESULTS

We here provide additional details of the motif-scaffolding experiments described in Section 5. Table 1
specifies the total lengths, motif sizes, and motif indices of our test cases. In Figure 7 we depict the
structures of the native proteins (6exz and 5trv) from which the motifs examined quantitatively in
the main text were extracted. Figure 8 analyzes commonly observed failure modes of ProtDiff
backbone samples involving chain breaks, steric clashes, and incorrect chirality.

Figure 9 presents quantitative results on a harder inpainting target. In this case, the motif is defined
as residues 163–181 of chain A of respiratory syncytial virus (RSV) protein (PDB ID: 5tpn). We
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attempted to scaffold this motif into a 62 residue protein, with the motif as residues 42–62. We
chose this placement because previous work (Wang et al., 2022) identified a promising candidate
scaffold with this motif placement. In contrast to the cases described in the main text, for which
a suitable scaffold exists in the training set, SMCDiff and the other inpainting methods failed to
identify scaffolds that recapitulated this motif to within a motif RMSD of 1 Å.

Table 1: Motif-scaffolding test case additional details.

Origin/ Protein Total length Motif size (residue range)
6exz 72 15 (30–44)
5trv 118 21 (42–62)
RSV (PDB-ID: 5tpn) 62 19 (16–34)
EF-hand (PDB-ID:
1PRW)

53 5 (0–4), 13 (31–43)

Figure 8: Failure modes in ProtDiff backbone samples. (A) Backbone clashes and chain breaks.
The C-α atoms can be spaced further than the typical 3.8Å between neighbors, resulting in a chain
break (dashed lines). Additionally, backbone segments can be too close to each other, resulting in
obvious overlaps and clashes. (B) Backbones with a mixture of left (circled in red) and right (circled
in green) handed helices. These chirality errors cannot be corrected simply by mirroring the sampled
backbone.
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Figure 9: Additional inpainting results on a more challenging motif extracted from the respiratory
syncytial virus (RSV) and EH-hand motif. The three inpainting methods are evaluated as described
in Section 5.

H.2 QUALITATIVE ANALYSIS OF SCTM IN DIFFERENT RANGES

In this section, we give intuition for backbone designs and AF2 predictions associated with different
values of scTM to aid the interpretation of the scTM results provided in Section 5. Figure 10 examines
a possible categorization of scTM in three ranges. The first two rows correspond to backbone designs
that achieve scTM > 0.9. We see the backbone designs in the first column closely match the AF2
prediction in the second column. A closely related PDB example can be found when doing a similarity
search of the highest PDB chain with the highest TM-score to the AF2 prediction. We showed in
Figure 3B that scTM > 0.9 is indicative of a close structural match being found in PDB.

The middle two rows correspond to designs that achieve scTM ∼ 0.5. These are examples of
backbone designs on the edge of what we deemed as designable (scTM > 0.5). In these cases, the
AF2 prediction shares the same coarse shape as the backbone design but possibly with different
secondary-structure ordering and composition. In the length 69 example, we see the closest PDB
chain has a TM-score of only 0.65 to the AF2 prediction but roughly the same secondary-structure
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ordering as the backbone design. The length 100 sample is a similar case of AF2 producing a roughly
similar shape to the backbone design, but has no matching monomer in PDB.

The final category of scTM < 0.25 reflects failure cases when scTM is low. The AF2 predictions in
this case have many disordered regions and bear little structural similarity with the original backbone
design. Similar PDB chains are not found. We expect that improved generative models of protein
backbones would not produce any samples in this category.

Figure 10: Qualitative analysis of unconditional backbone samples from ProtDiff. The first
column displays backbone designs from ProtDiff and their sequence lengths. The second column
displays the highest scTM scoring AF2 predictions from the ProteinMPNN sequences of the
corresponding backbone design in the first column. The third column displays the closest PDB chain
to the AF2 prediction in the second column with the PDB ID and TM-score written below. The third
column is blank for the last two rows since no PDB match could be found. See Appendix H.2 for
discussion.
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H.3 ADDITIONAL LATENT INTERPOLATION RESULTS

We here provide additional latent interpolations. Figures 11 and 12 depict interpolations for between
model samples for lengths 89 and 63, respectively.

Figure 11: Latent interpolation of length 89 backbone sample from α = 0 to 1.

Figure 12: Latent interpolation of length 63 backbone sample from α = 0 to 1.
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H.4 STRUCTURAL CLUSTERING

All 92 samples with scTM > 0.5 were compared and clustered using MaxCluster Herbert & Sternberg
(2008). Structures were compared in a sequence independent manner, using the TM-score of the
maximal subset of paired residues. They were subsequently clustered using hierarchical clustering
with average linkage, 1 - TM-score as the distance metric and a TM-score threshold of 0.5 (Figure 13
A).

Figure 13: Clustering of self-consistent ProtDiff samples. The distance matrix is 1 - TM-score
between pairs of samples, and ranges from 0 (exact matach) to 1 (no match). Dendrograms are from
hierarchical clustering using the average distance metric. Designs on the right are cluster centroids.
Gray lines connect larger clusters with more than one member to its centroid, while the remaining
designs are from a random selection of the remaining single-sample clusters. Protein backbones are
colored from blue at the N-terminus to red at the C-terminus.

I APPLICABILITY OF SMCDIFF BEYOND PROTEINS: MNIST INPAINTING

Our goal in this section is to study the applicability of SMCDiff beyond motif-scaffolding, by
applying it to inpainting on the MNIST digits dataset. We compare SMCDiff with the replacement
method on the task of sampling the remaining half of MNIST digits. We first train DDPM with
β1 = 10−4, βT = 0.2, T = 1000 using a small 8-layer CNN on MNIST with batch size 128 and
ADAM optimizer for 100 epochs until it is able to generate reasonable MNIST samples (Figure 14).
We then selected 3 random MNIST images and occluded the right half. The left half would then serve
as the conditioning information to the diffusion model (Figure 15).
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Figure 14: Unconditional MNIST
samples.

Figure 15: Full MNIST images and their occluded
halves used for inpainting experiments.

For each occluded image, we fixed a single forward trajectory and sampled 16 images from each
method: replacement method and SMCDiffwith 16 or 64 particles (K). Results are shown in Fig. 16.
We observe the replacement method can sometimes produce coherent samples as a continuation of the
conditioning information, but more often it attempts to produce incoherent digits. SMCDiff on the
other hand tends to produce digits that compliment the conditioning information. For more difficult
occlusions, such as 5 and 0, SMCDiff can still fail although increasing the number of particles
(K = 64) tends to produce samples that are more visually coherent.

It is important to note SMCDiff has additional computation overhead based on the number of particles.
It can be more expensive than replacement method but result in higher quality samples. Investigating
SMCDiff in more difficult datasets with improved architectures is a direction of future research.

Figure 16: MNIST inpainting results for replacement and SMCDiff. See text for explanation.
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