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Abstract
IncompleteMulti-View Clustering (IMVC) is crucial for multi-media

data analysis. While graph learning-based IMVC methods have

shown promise, they still have limitations. The prevalent first-order

affinity graph often misclassifies out-neighborhood intra-cluster

and in-neighbor inter-cluster samples, worsened by data incom-

pleteness. These inaccuracies, combined with high computational

demands, restrict their suitability for large-scale IMVC tasks. To

address these issues, we propose a novel Fast and Scalable IMVC

with duality Optimal graph Filtering (FSIMVC-OF). Specifically, we

refine the clustering-friendly structure of the bipartite graph by

learning an optimal filter within a consensus clustering framework.

Instead of learning a sample-side filter, we optimize an anchor-side

graph filter and apply it to the anchor side, ensuring computational

efficiency with linear complexity, supported by the provable equiv-

alence between these two types of graph filters. We present an

alternative optimization algorithm with linear complexity. Exten-

sive experimental analysis demonstrates the superior performance

of FSIMVC-OF over current IMVCmethods. The codes of this article

are released in https://github.com/sroytik/FSIMVC-OF.

CCS Concepts
• Information systems→ Clustering; • Computing method-
ologies → Cluster analysis.
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1 Introduction
Multi-view clustering (MVC) plays a crucial role in unsupervised

learning, seamlessly integrating diverse data types like images,

audio, and text found in multimedia content [3, 7, 47]. Despite its

importance, real-world applications often grapple with incomplete

data, compromising the effectiveness of MVC methods that rely on

complete datasets. This has spurred increasing attention on IMVC

settings [34, 39], tackling the widespread challenge of missing data

in open environments. IMVC methods encompass matrix learning-

based [13, 14, 17, 20, 21, 23, 24, 53], graph learning-based [16, 18,

22, 36, 37], and deep learning-based techniques [19, 44, 45].

Among them, graph based methods have demonstrated notable

potential in tackling data incompleteness in IMVC by harnessing

inter-point relationships to bolster clustering efficacy. They con-

struct affinity graphs that reflect the pairwise similarities among

data samples, guiding the clustering process. These graphs leverage

connectivity and structural insights to infer and fill in missing data

effectively. Moreover, these methods enhance the affinity graph by

integrating ancillary data or constraints, which improves cluster-

ing outcomes. Techniques such as incorporating global insights or

domain-specific knowledge result in more robust graphs that are

less affected by incomplete data.

While graph learning-based methods have made strides in vari-

ous applications, they still encounter significant hurdles in large-

scale IMVC. Firstly, the accuracy of the first-order affinity graph is

inherently limited. The first-order sample-sample or sample-anchor

[16, 22, 36] affinity graph is a cornerstone of many graph-based clus-

tering methods, but its accuracy is inherently constrained. This lim-

itation often caused in the misclassification of out-of-neighborhood

intra-cluster samples as negatives and in-neighborhood inter-cluster

samples as positives [25]. The degradation of the graph is further

exacerbated by data incompleteness. Meanwhile, accurately im-

puting missing data for such inaccurate graphs without bringing

additional noise and errors also poses significant difficulty [18]. Sec-

ondly, the computational cost becomes prohibitive, especially when

performing operations like eigen-decomposition or matrix inver-

sion on large datasets. On the one hand, there is an expectation to

carefully explore the underlying clustering-friendly structure from
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incomplete information to improve the quality of affinity graphs,

even though this inevitably increases computational complexity. On

the other hand, there is a necessity to keep computational costs at a

moderate or consistent level. In light of these challenges, there is a

imperative demand for the development of innovative approaches

capable of simultaneously addressing these conflicting objectives,

particularly within the context of large-scale IMVC scenarios.

In response to these challenges, we present the Fast and Scal-

able Incomplete Multi-View Clustering method with duality Opti-

mal graph Filtering (FSIMVC-OF). We begin by constructing view-

independent bipartite graphs to capture the first order affinity be-

tween samples and anchors. Next, we introduce a novel sample-

sample graph filter derived from these bipartite graphs, capable

of capturing higher-order interactions between sample-anchor-

samples. Crucially, our method dynamically learns the optimal coef-

ficients of different orders during the clustering procedure. We then

apply this sample-sample graph filter to the original bipartite graph,

enhancing clustering structure clarity through its low-pass prop-

erties. To reduce the computational burden of sample-side graph

filtering, we rigorously establish the equivalence between sample-

sample and anchor-side filtering, simplifying optimization with the

linear complexity. Additionally, we propose a unified framework

to learn a consensus clustering representation from these filtered

signals. We offer a convergence-guaranteed optimization algorithm

for practical applicability.With a computational complexity of𝑂 (𝑛),
our method is ideal for large-scale datasets. Extensive experiments

across various benchmarks demonstrate the superiority of FSIMVC-

OF over state-of-the-art IMVC methods.

• We propose a novel method to improve the quality of first

order bipartite graph by the duality optimal graph filtering. It

leverages optimal graph filter learning on the sample-side to

encapsulate higher-order interactions, guiding the enhance-

ment of clustering-friendly structures for the first-order bi-

partite graphs. Meanwhile, it maintains adaptive filter learn-

ing on the anchor-side, ensuring computational efficiency

with linear complexity, based on the provable equivalence

between these two types of graph filters.

• We propose the learning of a unified consensus clustering

representation from these advanced graph signals, supported

by a fast optimization algorithm guaranteeing convergence,

thus setting our approach apart in scalability and efficacy.

• Extensive experiments comparing with ten state-of-the-art

IMVC methods on nine datasets show that FSIMVC-OF out-

performs other leading IMVC methods, underscoring its ef-

fectiveness and superiority in the field.

2 Related Work
To tackle the IMVC problem, several approaches have been de-

veloped [34, 39]. These approaches can be categorized into three

groups based on differences of learning frameworks: matrix learning-

based IMVC [13, 14, 17, 20, 21, 23, 24, 53], graph learning-based

IMVC [16, 18, 22, 36, 37], and deep learning-based IMVC [19, 44, 45].

Matrix learning-based IMVC methods interpolate missing terms

in partial matrices and fall into three sub-categories: (1) kernel

learning-based methods [17, 23, 24], which handle incomplete ker-

nels using imputation and kernel-based techniques; (2) subspace

learning basedmethods [20, 53], which project multi-view data onto

low-dimensional spaces; and (3) non-negative matrix factorization

based methods [13, 14, 21], aiming to minimize reconstruction error

between existing data and factorized matrices.

Graph learning-based IMVC represent data using graph struc-

tures tomine relationships between views and learn low-dimensional

representations from diverse graphs, elucidating relationships among

multiple views [38]. Based on the approach used to integrate graph

information, graph learning-based IMVC can be categorized into

two categories: (1) spectral learning-based methods [37, 40]. These

techniques fuse nearest neighbor graph structure and graph regu-

larization into incomplete graph learning, enhancing information

exploration. For example,Wen et al. [37] proposed confidence graph

learning, inferring missing edges from shared similar-nearest neigh-

bors. (2) adaptive graph learning-based methods [12, 16, 18, 22, 36,

49]. These methods enhance clustering by optimizing graph struc-

tures and integrating multi-view information, addressing missing

data and learning low-dimensional representations [43]. Through

weighting and anchor points strategy, these methods considers

the contribution of each view to clustering and reduces the size

of data and complexity. For example, Wang et al. [36] constructed

individual incomplete bipartite graphs for each view, and treating

incomplete samples as unconnected to anchors within the graph.

However, despite the advancements in graph-based methods, sig-

nificant challenges persist in large-scale IMVC. Firstly, the inherent

limitation of the first-order affinity graph accuracy leads to mis-

classification of intra-cluster and inter-cluster samples. Moreover,

data incompleteness exacerbates the degradation of the graph, mak-

ing accurate imputation challenging. Secondly, the computational

cost becomes prohibitive, particularly during operations like eigen-

decomposition or matrix inversion on large datasets.

Deep learning-based IMVCutilizes a deep learningmodel to learn

feature representations and is better able to handle missing data. For

example, Xu et al. [44] acquired view-specific features through indi-

vidual auto-encoders and employed a feature projection technique

to explore the consensus information among multiple views.

3 The Proposed Method
3.1 Notations
Given the incomplete data matrices {X𝑟 }𝑣

𝑟=1
∈ R𝑛×𝑑

𝑟
, where 𝑣 and

𝑛 is the number of all views and all samples, and 𝑑𝑟 is the number of

feature dimension of the 𝑟 -th view. Since the incomplete multi-view

data [46] under discussion is the missing of random samples in

each view of multiple views, and each sample is guaranteed to be

observable in at least one view, we can divide the data matrix for

each view into observed and missing parts, i.e., X𝑟 = {X𝑟𝑜 ,X𝑟𝑚},
where X𝑟𝑜 ∈ R𝑛

𝑟 ×𝑑𝑟
and X𝑟𝑚 ∈ R(𝑛−𝑛𝑟 )×𝑑𝑟

, and 𝑛𝑟 denote the

number of observed samples of the 𝑟 -th view.

3.2 View Independent Bipartite Graph
Construction

To leverage the benefits of bipartite graph-based methods for large

scale IMVC, we incorporate bipartite graphs to capture the first-

order sample-anchor affinities within the FSIMVC-OF model. This
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generally involves two subsequent steps: anchor selection and

graph construction.

Considering that constructing multiple anchor graphs through

diversification mechanisms can enhance the performance of sub-

sequent clustering [48], we adopt a view-independent anchor se-

lection strategy in this paper. Specifically, we employ the cluster

centers obtained from k-means applied to complete samples X𝑟𝑜
in each incomplete view to form the anchor matrix A𝑟 ∈ R𝑚

𝑟 ×𝑑𝑟
,

where𝑚𝑟 represents the number of anchors in the 𝑟 -th view. This

strategy aims to handle the incompleteness in data across different

views while enabling independent anchor selection for each view.

With the obtained anchor matrix A𝑟 , the bipartite graph B𝑟 ∈
R𝑛

𝑟 ×𝑚𝑟
between observed samples and anchors can be learned by

solving the following optimization problem,

min

b𝑟
𝑖

1=1,b𝑟
𝑖
≥0

𝑚𝑟∑︁
𝑗=1

ℎ

(
x𝑟𝑖 , a

𝑟
𝑗

)
𝑏𝑟𝑖 𝑗 + 𝛾

𝑚𝑟∑︁
𝑗=1

(
𝑏𝑟𝑖 𝑗

)
2

, (1)

where 𝒃𝑟𝑖 represents the 𝑖-th row of B𝑟 , and ℎ
(
x𝑟
𝑖
, a𝑟
𝑗

)
signifies the

Euclidean distance between the 𝑖-th sample and the 𝑗-th anchor,

𝛾 = 𝑘
2
ℎ(x𝑟

𝑖
, a𝑟(𝑘+1) ) −

1

2

∑𝑘
𝑗=1

ℎ(x𝑟
𝑖
, a𝑟
𝑗
) is the trade off parameter. To

ensure sparsity in the bipartite graph B𝑟 and avoid the search of 𝛾 ,

we limit each row to retain only 𝑘 non-zero elements, which is set

to 𝑘 = 5 in this paper. The closed-form solution is given by [29]:

𝑏𝑟𝑖 𝑗 =


ℎ (x𝑟

𝑖
,a𝑟(𝑘+1) )−ℎ (x

𝑟
𝑖
,a𝑟
𝑗
)

𝑘ℎ (x𝑟
𝑖
,a𝑟(𝑘+1) )−

∑𝑘
𝑘′=1

ℎ (x𝑟
𝑖
,a𝑟
𝑘′ )
, 𝑗 ≤ 𝑘,

0, 𝑗 > 𝑘.

(2)

It is widely acknowledged that such affinity graphs may still in-

correctly assign a zero affinity (𝑏𝑟
𝑖 𝑗

= 0) to out-of-neighborhood

samples within the same cluster, while neighboring inter-cluster

samples may be mistakenly treated as positive [26].

3.3 Enhancement via Duality Optimal Graph
Filtering

To address the inaccuracies of first-order affinities between samples

and anchors, we utilize sample-anchor-sample similarities to cap-

ture higher-order interactions among sample-sample. Specifically,

given the acquired sample-anchor bipartite graph B𝑟 ∈ R𝑛
𝑟 ×𝑚𝑟

, we

first introduce a diagonal matrix △𝑟 ∈ R𝑚
𝑟 ×𝑚𝑟

, where its 𝑗-th diag-

onal element △𝑟
𝑗 𝑗

=
∑𝑛𝑟
𝑖=1

𝑏𝑟
𝑖 𝑗
. Next, we obtain a column-normalized

affinity graph P𝑟 = B𝑟 (△𝑟 )−
1

2 , and then the affinity graph between

sample-anchor-sample can be derived as S𝑟 = B𝑟△−1B𝑟𝑇 = P𝑟P𝑟𝑇 ,
where S𝑟 ∈ R𝑛

𝑟 ×𝑛𝑟
. It can be verified that S𝑟 is a doubly stochastic

matrix, i.e.,

(
P𝑟P𝑟𝑇

)
1𝑛𝑟 = 1𝑛𝑟 , 1𝑇

𝑛𝑟

(
P𝑟P𝑟𝑇

)
= 1𝑇

𝑛𝑟
.

Smoother graph signals, as indicated by [4, 9, 27, 42, 52], correlate

with a clearer clustering structure. To achieve a smoother graph

[32], we solve the optimization problem:

min

P̄𝑟
| |P̄𝑟 − P𝑟 | |2 + 𝜆tr(P̄𝑟𝑇 L𝑟𝑛 P̄𝑟 ), (3)

where L𝑟𝑛 = I𝑛𝑟 − P𝑟P𝑟𝑇 ∈ R𝑛
𝑟 ×𝑛𝑟

is the normalized Laplacian

matrix, and the solution is given by:

P̄𝑟 =(I𝑛𝑟 + 𝜆L𝑟𝑛)−1P𝑟 . (4)

Compared to P𝑟 , the induced graph P̄𝑟 obtained with Eq. (4) become

more smooth by incorporating sample-sample similarities [5, 6, 50,

51]. However, the operator in Eq.(4) requires an inverse operation.

This approach is suboptimal for the downstream IMVC task and

does not leverage complementary information from other views.

To avoid the inverse operation, the above solution can be ap-

proximated through its first-order Taylor expansion, and we have,

P̄𝑟 =(I𝑛𝑟 − 𝜆L𝑟𝑛)P𝑟 . (5)

Recent studies in [30] emphasize the importance of low-frequency

bases in smooth signals. To incorporate this insight, we build the

following filtered signal

P̄𝑟 =
(

I𝑛𝑟 + P𝑟P𝑟𝑇

2

)𝑡
P𝑟 , (6)

To circumvent the need for selecting different values of 𝑡 , we design

a learnable graph filter. This filter dynamically updates during the

clustering process:

P̄𝑟 =
𝑡∑︁
𝑡=0

𝛽𝑟𝑡

(
I𝑛𝑟 + P𝑟P𝑟𝑇

2

)𝑡
P𝑟 = H(P𝑟 , 𝜷𝒓 )P𝑟 . (7)

where 𝑡 represents a positive integer that defines the extent of the

𝑡-hop neighborhood relationship within the signal. From Eq. (7), it

can be seen that the first order bipartite graph P𝑟 is smoothed by

a high-order graph filterH(P𝑟 , 𝜷𝒓 ) ∈ R𝑛
𝑟 ×𝑛𝑟

with the unknown

coefficient 𝜷𝒓
. Compared to Eq. (4), it can be conclude that Eq. (7)

leverage optimal graph filter learning on the sample side to en-

capsulate higher-order interactions, guiding the enhancement of

clustering-friendly structures for the first-order bipartite graph.

However, the computation of Eq. (7) is still intensive.

It can be further proven by Theorem 3 that the filtering on P𝑟

by sample-side graph filter can be equivalently represented by

the filtering on P𝑟𝑇 by the anchor-side graph filter. With such

equivalence, we propose the following filtering to incorporate the

clustering friendly high order sample-sample interactions via the

high order anchor-anchor interactions,

P̄𝑟 =P𝑟
𝑡∑︁
𝑡=0

𝛽𝑟𝑡

(
I𝑚𝑟 + P𝑟𝑇 P𝑟

2

)𝑡
= P𝑟H(P𝑟𝑇 , 𝜷𝒓 ). (8)

Compared with the sample-side filtering in Eq. (7), the anchor-side

filtering in Eq. (8) maintains adaptive filter learning on the anchor

side, ensuring computational efficiency with linear complexity on

the sample size, based on the provable equivalence between these

two types of graph filters.

3.4 Consensus Clustering with Smooth
Bipartite Graphs

Given multiple incomplete first-order bipartite graphs {P𝑟 }𝑣
𝑟=1

with

P𝑟 ∈ R𝑛
𝑟 ×𝑚𝑟

, we take the aforementioned anchor-side optimal

graph filter to incorporate the higher order interactions among

samples. In this subsection, we aim to learn a complete and con-

sensus clustering oriented representation Z ∈ R𝑛×𝑐 from multiple

incomplete bipartite graphs, each enhanced by view-independent

graph filters, denoted as {P𝑟H(P𝑟𝑇 , 𝜷𝒓 )}𝑣
𝑟=1

. Based on the indices

of observed and missing samples in each view of the incomplete
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data matrices {X𝑟 }𝑣
𝑟=1

, we can partition the consensus sample ma-

trix Z into two corresponding parts for each view, represented as

Z = {Z𝑜𝑟 ,Z𝑚𝑟 }. We propose to project anchor points from different

views into a common cluster latent space using projection matrices

{W𝑟 }𝑣
𝑟=1

∈ R𝑚
𝑟 ×𝑐

, where 𝑐 is the cluster number. These points

are linked with 𝑐 prototypes in the latent space using the proto-

type representation matrix C ∈ R𝑐×𝑐 . The consensus clustering
procedure with the enhanced bipartite graphs of FSIMVC-OF can

be formulated as follows:

min

𝑣∑︁
𝑟=1

(𝛼𝑟 )2

P𝑟
(
𝑡∑︁
𝑡=0

𝛽𝑟𝑡

(
I𝑚𝑟 + P𝑟𝑇 P𝑟

2

)𝑡 )
− Z𝑜𝑟 CW𝑟𝑇


2

𝐹

(9)

s.t. Z ≥ 0, 1𝑇𝑛Z = 1
𝑇
𝑐 ,W

𝑟𝑇W𝑟 = I𝑐 ,C𝑇C = I𝑐 ,

𝜶𝑇 1 = 1, 0 ≤ 𝛼𝑟 ≤ 1, 𝜷𝑟𝑇 1 = 1, 0 ≤ 𝛽𝑟𝑡 ≤ 1,

where 𝛼𝑟 is the view weight for the 𝑟 -th view, Z𝑜𝑟 represents the
similarity between 𝑐 prototypes and 𝑛𝑟 observed samples from the

𝑟 -th view. To enhance the distinctiveness of the learned prototypes

C, we apply orthogonal constraints to C. The prototype graph Z,
thus learned, must fulfill Z ≥ 0 and 1𝑇𝑛Z = 1

𝑇
𝑐 conditions.

3.5 Optimization
The problem in Eq.(9) involves five variables: W𝑟 ,C,Z, 𝜷𝑟 and 𝜶 .

We provide an alternative algorithm for optimization.

3.5.1 Update W𝑟 . When other variables are fixed, the problem for

W𝑟
becomes:

min

W𝑟

P𝑟
(
𝑡∑︁
𝑡=0

𝛽𝑟𝑡 Q𝑟𝑡

)
− Z𝑜𝑟 CW𝑟𝑇


2

𝐹

, s.t. W𝑟𝑇W𝑟 = I𝑐 ,

(10)

where Q𝑟𝑡 =
(

I𝑚𝑟 +P𝑟𝑇 P𝑟
2

)𝑡
, which can be further simplified as

max

W𝑟
tr(W𝑟𝑇 E𝑟 ), s.t. W𝑟𝑇W𝑟 = I𝑐 , (11)

where E𝑟 = F𝑟𝑇 P𝑟𝑇Z𝑜𝑟 C, and F𝑟 =
∑𝑡
𝑡=0

𝛽𝑟𝑡 Q𝑟𝑡 . The optimal W𝑟

can be obtained by Singular Value Decomposition (SVD) on E𝑟 [34].

3.5.2 Update C. Similar to Eq. (11), we seek to optimize C via:

max

C
tr(C𝑇R), s.t. C𝑇C = I𝑐 , (12)

where R =
∑𝑣
𝑟=1

(𝛼𝑟 )2Z𝑇
𝑜𝑟

P𝑟F𝑟W𝑟
. Similar to the update of W𝑟

, the

optimization of C can also be performed by the SVD on R.

3.5.3 Update Z. To address the sub-problem of Z, we begin by

introducing

H𝑜𝑟 =

(
(𝛼𝑟 )2P𝑟F𝑟W𝑟C

)
/
𝑣∑︁
𝑟=1

(𝛼𝑟 )2, (13)

where H𝑜𝑟 ∈ R𝑛
𝑟 ×𝑐

, and H ∈ R𝑛×𝑐 can be obtained by aggregating

all {H𝑜𝑟 }𝑣𝑟=1
at the corresponding sample index. Consequently, the

optimization problem related to Z can be decomposed row-wise.

For the 𝑖-th sample, it is formulated as:

min

z𝑖
∥z𝑖 − h𝑖 ∥2

𝐹 s.t. 1𝑇𝑛 z𝑖 = 1, z𝑖 ≥ 0. (14)

The above problem in Eq. (14) can be efficiently solved using the

Euclidean projection onto the simplex [28].

3.5.4 Update 𝜷𝑟 . The rest problem w.r.t. 𝜷𝑟 ∈ R𝑡×1
can be written

as:

min

𝜷𝑟
𝜷𝑟𝑇M𝑟𝜷𝑟 − 2𝜷𝑟𝑇 s𝑟 s.t. 𝜷𝑟𝑇 1 = 1, 0 ≤ 𝛽𝑟𝑡 ≤ 1, (15)

where M𝑟 ∈ R𝑡×𝑡 with M𝑟
𝑖 𝑗

= tr(Q𝑟
𝑖
P𝑟𝑇 P𝑟Q𝑟

𝑗
), and s𝑟 ∈ R𝑡×1

with 𝑠𝑟𝑡 = tr(Q𝑟𝑡 P𝑟𝑇Z𝑜𝑟 CW𝑟𝑇 ). Eq. (15) can be readily solved by

off-the-shelf quadratic programming solvers.

3.5.5 Update 𝜶 . The optimization problem for 𝜶 can be formu-

lated as follows:

min

𝜶

𝑣∑︁
𝑟=1

(𝛼𝑟 )2𝑢𝑟 , s.t. 𝜶𝑇 1 = 1, 0 ≤ 𝛼𝑟 ≤ 1, (16)

where 𝑢𝑟 =

P𝑟 (∑𝑡𝑡=0
𝛽𝑟𝑡 Q𝑟𝑡 ) − Z𝑜𝑟 CW𝑟𝑇

2

𝐹
. The values for 𝜶 can

be determined using the Cauchy-Schwarz inequality:

𝛼𝑟 =
1/𝑢𝑟∑𝑣

𝑟 ′=1
(1/𝑢𝑟 ′ )

. (17)

The procedure of FSIMVC-OF is encapsulated within Algorithm 1.

Algorithm 1 Algorithm for FSIMVC-OF.

Input: Incomplete dataset {X𝑟 }𝑣
𝑟=1

∈ R𝑛
𝑟 ×𝑑𝑟

, the anchor numbers

of each views {𝑚𝑟 }𝑣
𝑟=1

, and the cluster number 𝑐 .

1: Generating anchors {A𝑟 }𝑣
𝑟=1

for all views by k-means;

2: Constructing bipartite graphs {B𝑟 }𝑣
𝑟=1

for all views by Eq. (2);

3: Calculate the high-order graphs {Q𝑟𝑡 }
𝑣,𝑡
𝑟=1,𝑡=0

for all views;

4: Initialization: {W𝑟 }𝑣
𝑟=1

,C,Z,𝜶 , {𝜷𝒓 }𝑣
𝑟=1

;

5: repeat
6: Update {W𝑟 }𝑣

𝑟=1
by solving Eq. (11);

7: Update C by solving Eq. (12);

8: Update Z by solving Eq. (14);

9: Update {𝜷𝑟 }𝑣
𝑟=1

by solving Eq. (15);

10: Update 𝜶 by Eq. (17);

11: until Converges
Output: Obtain clustering result from Z.

3.6 Convergence and Complexity
The objective function of FSIMVC-OF has a lower bound of zero.

Through decomposing Eq. (9) into convex sub-problems, each with

a globally optimal solution, the alternating optimization strategies

ensure a monotonic decrease in its objective function value until

convergence, in accordance with principles outlined in [2].

The computational complexity of FSIMVC-OF encompasses four

aspects, as previously mentioned. Generating anchors and con-

structing bipartite graphs have complexities of O(𝑡1
∑𝑣
𝑟=1

𝑛𝑟𝑚𝑟𝑑𝑟 )
and O(𝑘∑𝑣

𝑟=1
𝑛𝑟𝑚𝑟 ) respectively. Computing the high-order graph

filter requires O(∑𝑣
𝑟=1

(𝑛𝑟 (𝑚𝑟 )2) + 𝑡 (𝑚𝑟 )3) time. Updating all vari-

ables entails a complexity of O(𝑡2𝑐2
∑𝑣
𝑟=1

𝑛𝑟𝑚𝑟 ). Here, 𝑡1 and 𝑡2
denote the numbers of iterations for anchor generation and vari-

able updates. Considering 𝑡1, 𝑡2, 𝑡,𝑚
𝑟 , 𝑐 ≪ 𝑛𝑟 < 𝑛, the overall com-

putational complexity of FSIMVC-OF remains O(𝑛). Thereby, our
method efficiently attains IMVC through linear complexity.
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4 Theoretical Analysis
In this section, we delve into the theoretical underpinnings of how

the sample-side optimal graph filter H(P𝑟 , 𝜷𝑟 ) and anchor-side

optimal graph filterH(P𝑟𝑇 , 𝜷𝑟 ) contribute to enhancing clustering
performance and prove the equivalence between them.

As elucidated in [10], the eigenvalues of a graph Laplacian matrix

are indicative of its structural properties: low eigenvalues corre-

spond to overarching features like clusters, while high eigenvalues

capture finer details and noise. Thus, for optimal clustering, it is es-

sential to employ a low-pass graph filter capable of attenuating high

eigenvalues while preserving the low ones. Consider a graph with

a Laplacian matrix L possessing 𝑛 eigenvalues 𝜆1 ≤ 𝜆2 ≤ . . . ≤ 𝜆𝑛 .

Let H(·) : R𝑛×𝑛 → R𝑛×𝑛 denote a transformation applied to the

Laplacian matrix, resulting in eigenvalues ℎ(𝜆1), . . . , ℎ(𝜆𝑛), where
ℎ(·) represents the transformation function. Wai et al. provide the

following definition of a low-pass graph filter [35]:

Definition 1. [35] (Low-pass graph filter)H(L) is deemed a (𝐾,𝜂)
low-pass graph filter if:

𝜂 :=
max( |ℎ(𝜆𝐾+1) | , |ℎ(𝜆𝐾+2) | , · · · , |ℎ(𝜆𝑛) |)

min( |ℎ(𝜆1) | , |ℎ(𝜆2) | , · · · , |ℎ(𝜆𝐾 ) |)
∈ [0, 1), (18)

Here, 𝜂 acts as the low-pass coefficient, indicating that for a graph

filter H(L), if there exists an integer 1 ≤ 𝐾 < 𝑛 and a coefficient

𝜂 < 1, H(L) is considered a low-pass graph filter.

Now, we demonstrate that the sample-side graph filterH(P𝑟 , 𝜷𝑟 )
in Eq. (7) is a low-pass graph filter, as proven in Theorem 1.

Theorem 1. The sample-side optimal graph filter H(P𝑟 , 𝜷𝑟 ) =∑𝑡
𝑡=0

𝛽𝑟𝑡

(
I𝑛𝑟 +P𝑟 P𝑟𝑇

2

)𝑡
with 𝜷𝑟𝑇 1 = 1 and 0 ≤ 𝛽𝑟𝑡 ≤ 1 is a (𝐾,𝜂)

low-pass graph filter for 1 < 𝐾 ≤ 𝑚𝑟 .

Proof. Let P𝑟 ∈ R𝑛
𝑟 ×𝑚𝑟

be the bipartite graph with𝑚𝑟 < 𝑛𝑟 .

The singular values of P𝑟 are 1 ≥ 𝜎1 ≥ 𝜎2 ≥ . . . ≥ 𝜎𝑚𝑟 , and

the top-𝑚𝑟 largest eigenvalues of

(
P𝑟P𝑟𝑇

)
are 1 ≥ 𝜎2

1
≥ 𝜎2

2
≥

. . . ≥ 𝜎2

𝑚𝑟
. Thus, the eigenvalues of L𝑟 = I𝑛𝑟 − P𝑟P𝑟𝑇 are 0 ≤

(1 − 𝜎2

1
) ≤ (1 − 𝜎2

2
) ≤ . . . ≤ (1 − 𝜎2

𝑚𝑟
) ≤ 1 = . . . = 1, denoted as

{𝜆1, 𝜆2, . . . , 𝜆𝑛𝑟 }, satisfying 0 = 𝜆1 ≤ 𝜆2 ≤ . . . ≤ 𝜆𝑛𝑟 ≤ 1. Then, the

singular values of P𝑟 are

{√
1 − 𝜆1,

√
1 − 𝜆2, . . . ,

√
1 − 𝜆𝑚𝑟

}
. Sim-

ilarly, the eigenvalues of H(P𝑟 , 𝜷𝑟 ) =
∑𝑡
𝑡=0

𝛽𝑟𝑡

(
I𝑛𝑟 +P𝑟 P𝑟𝑇

2

)𝑡
are{∑𝑡

𝑡=0
𝛽𝑟𝑡 (

2−𝜆1

2
)𝑡 ,∑𝑡𝑡=0

𝛽𝑟𝑡 (
2−𝜆2

2
)𝑡 , . . . ,∑𝑡𝑡=0

𝛽𝑟𝑡 (
2−𝜆𝑛𝑟

2
)𝑡

}
. Hence, we

compute its low-pass coefficient 𝜂 as defined in Definition 1:

𝜂 =

max

(���∑𝑡𝑡=0
𝛽𝑟𝑡 (

2−𝜆𝐾+1

2
)𝑡

��� , · · · , ���∑𝑡𝑡=0
𝛽𝑟𝑡 (

2−𝜆𝑛𝑟
2

)𝑡
���)

min

(���∑𝑡𝑡=0
𝛽𝑟𝑡 (

2−𝜆1

2
)𝑡

��� , · · · , ���∑𝑡𝑡=0
𝛽𝑟𝑡 (

2−𝜆𝐾
2

)𝑡
���) (19)

=

∑𝑡
𝑡=0

𝛽𝑟𝑡 (
2−𝜆𝐾+1

2
)𝑡∑𝑡

𝑡=0
𝛽𝑟𝑡 (

2−𝜆𝐾
2

)𝑡
.

Given the non-zero singular values of P𝑟 , denoted by 𝜎𝐾 ≥ 0,

the corresponding eigenvalues of the matrix L𝑟 are ordered that

𝜆𝐾 < 𝜆𝐾+1. This ordering implies that for any positive integer

𝑡 , the inequality 0 < ( 2−𝜆𝐾+1

2
)𝑡 < ( 2−𝜆𝐾

2
)𝑡 holds. By analyzing

the vector 𝜷𝑟 with 𝜷𝑟𝑇 1 = 1 and 0 ≤ 𝛽𝑟𝑡 ≤ 1, we can observe

that:

∑𝑡
𝑡=0

𝛽𝑟𝑡

(
2−𝜆𝐾+1

2

)𝑡
<

∑𝑡
𝑡=0

𝛽𝑟𝑡

(
2−𝜆𝐾

2

)𝑡
, which implies 𝜂 < 1.

According to Definition 1, the learned graph filter H(P𝑟 , 𝜷𝑟 ) =∑𝑡
𝑡=0

𝛽𝑟𝑡

(
I𝑛𝑟 +P𝑟 P𝑟𝑇

2

)𝑡
can be classified as a low-pass graph filter. □

Next, we further show that the anchor-side optimal graph filter

H(P𝑟𝑇 , 𝜷𝑟 ) in Eq. (8) is also a low-pass graph filter by Theorem 2.

Theorem 2. The anchor-side optimal graph filter H(P𝑟𝑇 , 𝜷𝑟 ) =∑𝑡
𝑡=0

𝛽𝑟𝑡

(
I𝑚𝑟 +P𝑟𝑇 P𝑟

2

)𝑡
with 𝜷𝑟𝑇 1 = 1 and 0 ≤ 𝛽𝑟𝑡 ≤ 1 is also a

low-pass graph filter.

Proof. Similar to the sample-side graph filter learning, utilizing

the anchor-side Laplacian matrix L̄ = I𝑚𝑟 −P𝑟𝑇 P𝑟 , we establish that

the anchor-side graph filter H(P𝑟𝑇 , 𝜷𝑟 ) =
∑𝑡
𝑡=0

𝛽𝑟𝑡

(
I𝑚𝑟 +P𝑟𝑇 P𝑟

2

)𝑡
with 𝜷𝑟𝑇 1 = 1 and 0 ≤ 𝛽𝑟𝑡 ≤ 1 is also a low-pass graph filter.

Detailed proof is omitted due to space constraints. □

Subsequently, we establish the equivalence between the sample-

side graph filter H(P𝑟𝑇 , 𝜷𝑟 ) applied to the sample-side of bipartite

graph P𝑟 and the anchor-side graph filter H(P𝑟𝑇 , 𝜷𝑟 ) operated on

the anchor-side of P𝑟 in Theorem 3.

Theorem 3. The process of filtering the graph through sample-

side graph filtering, denoted byH(P𝑟 , 𝜷𝑟 )P𝑟 , yields an equivalent

result to that of filtering by anchor-side graph filtering, represented

as P𝑟H(P𝑟𝑇 , 𝜷𝑟 ). This equivalence is formally expressed as:

H(P𝑟 , 𝜷𝑟 )P𝑟 = P𝑟H(P𝑟𝑇 , 𝜷𝑟 ). (20)

Proof. Let the SVD decomposition of P𝑟 be P𝑟 = U𝑟𝚺𝑟V𝑟𝑇 ,
where U𝑟 ∈ R𝑛

𝑟 ×𝑛𝑟
, 𝚺

𝑟 ∈ R𝑛
𝑟 ×𝑚𝑟

, and V𝑟 ∈ R𝑚
𝑟 ×𝑚𝑟

. In terms

of the Graph Fourier Transform (GFT), the sample-side graph fil-

ter H(P𝑟 , 𝜷𝑟 ) =
∑𝑡
𝑡=0

𝛽𝑟𝑡

(
I𝑛𝑟 +P𝑟 P𝑟𝑇

2

)𝑡
transforms a sample-side

graph signal on 𝑛𝑟 vertices using the projection matrix U𝑟 , with
the corresponding frequency response function given by ℎ(𝜆𝐾 ) =∑𝑡
𝑡=0

𝛽𝑟𝑡

(
2−𝜆𝐾

2

)𝑡
. Notably, ℎ(𝜆𝐾 ) =

∑𝑡
𝑡=0

𝛽𝑟𝑡 (
1+𝜎2

𝐾

2
)𝑡 = ℎ(𝜎𝐾 ) for

the top-𝑚𝑟 singular values. Similarly, the anchor-side graph fil-

terH(P𝑟𝑇 , 𝜷𝑟 ) = ∑𝑡
𝑡=0

𝛽𝑟𝑡

(
I𝑚𝑟 +P𝑟𝑇 P𝑟

2

)𝑡
transforms an anchor-side

graph signal on𝑚𝑟 vertices using the projection matrix V𝑟 , with the

frequency response function given by ℎ(𝜎𝐾 ) =
∑𝑡
𝑡=0

𝛽𝑟𝑡

(
1+𝜎2

𝐾

2

)𝑡
.

From the above analysis, the following equation holds:

H(P𝑟 , 𝜷𝑟 )P𝑟 (21)

=U𝑟



ℎ (𝜎1 )
. . .
ℎ (𝜎𝑚𝑟 )

ℎ (𝜆𝑚𝑟 +1 )
. . .
ℎ (𝜆𝑛𝑟 )


U𝑟𝑇U𝑟



𝜎1

. . .
𝜎𝑚𝑟

0 · · · 0

.

.

.
.
.
.

0 · · · 0


V𝑟𝑇

=U𝑟



ℎ (𝜎1 )𝜎1

. . .
ℎ (𝜎𝑚𝑟 )𝜎𝑚𝑟

0 · · · 0

.

.

.
.
.
.

0 · · · 0


V𝑟𝑇 = U𝑟𝚺𝑟V𝑟𝑇 V𝑟


ℎ (𝜎1 )

. . .
ℎ (𝜎𝑚𝑟 )

 V𝑟𝑇

=P𝑟H(P𝑟𝑇 , 𝜷𝑟 ) .
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□

This equation emphasizes the symmetry in filtering, suggesting

that filtering through either the sample side or the anchor side

produces the same result.

5 Experiments
5.1 Benchmark Datasets
Nine prevalent multi-view benchmark datasets were utilized in our

experiments, comprising COIL20, Handwritten [1], BDGP, Scene-15

[8], MNIST-10K [15], ALOI-100 [11], Reuters, YTF-10 and FMNIST.

YTF-10 is a subset of face videos obtained from YouTube. Table 1

provides a summary of these datasets.

Table 1: Summary of the datasets.

ID Dataset View Size Class Feature

D1 COIL20 4 1440 20 1024/944/4096/576

D2Handwritten 6 2000 10 240/76/216/47/64/6

D3 BDGP 3 2500 5 1000/500/250

D4 Scene-15 3 4485 15 20/59/40

D5 MNIST-10K 3 10000 10 30/9/30

D6 ALOI-100 4 10800 100 77/13/64/125

D7 Reuters 5 18758 6 21531/24892/34251/15506/11547

D8 YTF-10 4 38654 10 944/576/512/640

D9 FMNIST 3 60000 10 512/512/1280

5.2 Compared Methods and Settings
To demonstrate the superiority of FSIMVC-OF, we compare it with

ten state-of-the-art IMVC algorithms including DAIMC [14], SRLC

[53], LF-IMVC [24], EE-R-IMVC [23], IMVC-CBG [36], SAGF-IMC

[18], SGC-IMVC [20], LI-MKKM-MR [17], PSIMVC-PG [16] and

FIMVC-VIA [22]. These methods include NMF-based methods, bi-

partite graph-based methods, kernel-based methods, graph filter-

based methods and so on [39].

For each dataset, we generate incomplete versions with missing

ratio 𝜀 =
𝑛−𝑛𝑝
𝑛 varying as [0.1 : 0.2 : 0.9] according to IMVC-

CBG [36]. To ensure consistent and fair evaluation, we employ the

original code provided by the authors and rigorously follow the

suggested settings and parameter search methods for all baseline

approaches. Specifically, for each dataset, we generate 10 unique

sets of incomplete data corresponding to each defined missing ratio.

We then apply each clustering method to these predefined sets.

The effectiveness of these methods is assessed by computing the

average clustering performance across these 10 sets.

To evaluate the clustering performances of different IMVC meth-

ods, we employ four well-established evaluation metrics: accuracy

(ACC) [41], Normalized Mutual Information (NMI) [33] and Purity

[31]. For all the aforementioned evaluation metrics, higher values

indicate better clustering performance.

For FSIMVC-OF, the 𝑘-nearest neighbor parameter 𝑘 is fixed to

5 in the entire experiments. The order of graph filter 𝑡 is fixed to 6,

and for comparison purposes, the number of anchors for different

views are set as𝑚1 = 𝑚2 = ... = 𝑚𝑣 = 𝑚, where𝑚 is searched in

{2𝑐, 4𝑐, 6𝑐, 8𝑐}.

5.3 Experimental Results
The comparative analysis in Table 2 reveals the average cluster-

ing performance across different missing data ratios. It presents

the mean and standard deviation (std) for each method across all

datasets and missing ratios, with the top performers marked in red

and the runners-up in blue. Methods exceeding a 24-hour computa-

tion time are marked with "-", and out-of-memory (OOM) instances

are also indicated.

Key observations from the results include: (1) FSIMVC-OF stands

out, consistently outperforming other methods in ACC, NMI and

Purity metrics for most datasets, with a particularly strong showing

on dataset D9, where it significantly outperformed the next best

results by 69.92% in ACC, underscoring its strength in large-scale

scenarios. (2) Despite being designed for large-scale clustering, bi-

partite graph-based methods like FIMVC-VIA, PSIMVC-PG, and

IMVC-CBG show limited performance, possibly due to their strug-

gle with capturing higher-order data information, an area where

FSIMVC-OF excels. (3) While SGC-IMVC demonstrates modest im-

provements in clustering performance through the application of

graph filters on sample-sample graphs, its computational intensity

renders it is not suitable for large-scale IMVC tasks. (4) As shown

in Figure 1, the superior performance of FSIMVC-OF is consistent

across all missing ratios, demonstrating the method’s robustness

and reliability..

5.4 Running Time Comparison
In order to evaluate the computational efficiency of the proposed

methods, we recorded the average running times of the baseline

algorithms on all benchmark datasets with various missing ratios

and report them in Figure 2. The outcomes of certain baseline algo-

rithms on large-scale datasets remain undisclosed due to memory

overflow issues. The results suggest that FSIMVC-OF demonstrates

the shortest execution running time among all benchmark algo-

rithms across all benchmark datasets, underscoring its superior

computational efficiency.

5.5 Parameter Sensitivity Analysis
In this section, we delve into the analysis of parameter𝑚. Figure

3 showcases the ACC metric of FSIMVC-OF on datasets D2 and

D5 with different value of𝑚, with a missing ratio of 0.5. Insights

gleaned from Fig. 3 reveal that varying values of𝑚 demonstrate a

limited effect on clustering performance. And with the increase of

anchor number, clustering performance shows an upward trend as

a whole. Collectively, these findings underscore the reliability and

efficacy of FSIMVC-OF across diverse parameter settings.

5.6 Convergence Study
Experiments were conducted on datasets D2 and D5 to assess the

convergence behavior of our proposed method. The experimen-

tal results in terms of the objective function value and ACC of

FSIMVC-OF across these datasets are depicted in Fig. 4. We set the

algorithm to iterate 30 times, with a fixed missing ratio of 0.1. As

illustrated in Fig. 4, the convergence behavior of our algorithm

unfolds in a distinct pattern. Initially, the algorithm demonstrates

a convergence trend, characterized by a gradual decrease in the

objective function value. This is followed by a synchronized pattern
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Table 2: Average clustering performance and comparison (mean±std) of FSIMVC-OF with ten baseline methods on nine datasets.

Methods DAIMC SRLC LF-IMVC EE-R-IMVC IMVC-CBG SAGF-IMC SGC-IMVC LI-MKKM-MR PSIMVC-PG FIMVC-VIA FSIMVC-OF

ACC(%)

D1 71.59±2.54 74.86±1.09 74.58±2.07 75.96±1.66 64.15±3.48 67.54±3.19 71.93±7.68 68.88±1.71 62.10±3.08 76.41±2.69 80.10±1.64
D2 79.82±4.26 91.03±1.05 85.57±3.28 88.03±1.71 67.11±3.14 83.79±1.44 79.50±2.88 85.83±0.52 29.68±2.49 78.71±1.32 92.67±1.30
D3 37.69±2.56 40.42±3.74 41.81±2.87 40.00±2.85 37.83±3.52 22.24±2.24 25.77±3.58 OOM 43.19±2.21 39.70±2.44 41.46±5.24
D4 32.85±1.83 33.60±1.48 34.81±1.50 37.08±1.16 26.34±1.00 36.68±1.89 39.44±1.69 OOM 28.51±2.07 30.34±1.24 39.96±1.62
D5 17.65±5.57 71.03±3.17 66.71±3.36 70.74±1.63 66.26±2.01 72.74±2.35 - OOM 65.59±1.96 72.98±2.05 79.97±0.43
D6 29.58±2.26 68.44±0.76 70.41±1.03 68.33±1.41 28.29±0.98 56.34±1.24 - OOM 6.44±0.26 45.76±1.25 71.81±1.52
D7 OOM 21.67±1.57 37.47±1.36 37.16±1.15 44.33±1.87 OOM - OOM 46.75±0.55 48.31±0.72 50.05±3.67
D8 76.19±5.57 55.05±3.17 78.50±3.36 79.28±1.63 71.14±2.01 OOM - OOM 71.81±1.96 78.91±2.05 81.14±4.24
D9 OOM OOM OOM OOM 23.24±1.03 OOM OOM OOM 22.15±0.58 21.26±1.11 39.49±4.06

NMI(%)

D1 79.55±1.26 81.85±0.91 81.10±1.27 82.17±1.07 73.61±2.38 79.08±1.68 87.24±3.23 75.88±0.90 73.64±1.49 82.79±1.24 86.20±0.87
D2 70.46±3.30 83.21±1.98 76.29±2.23 78.49±1.74 59.29±2.03 85.04±0.97 81.57±1.61 75.56±0.75 26.72±3.21 69.04±1.39 86.12±1.78
D3 13.16±2.93 16.59±2.62 16.17±2.59 16.94±0.77 13.99±3.11 0.75±0.66 2.85±2.87 OOM 18.98±1.53 15.45±1.88 19.18±4.44
D4 28.69±1.52 29.78±0.96 29.02±0.91 32.51±0.80 21.51±0.82 34.09±1.39 34.92±0.96 OOM 26.18±1.77 27.02±1.07 36.18±0.86
D5 7.81±6.24 65.47±1.73 54.24±1.04 58.49±0.32 54.98±1.05 69.66±1.04 - OOM 54.52±1.33 59.52±0.62 67.19±0.59
D6 46.43±2.22 72.98±0.42 76.80±0.35 76.77±0.49 40.70±1.15 66.55±1.10 - OOM 11.93±0.31 62.53±0.43 78.57±1.04
D7 OOM 1.49±0.45 16.01±1.21 17.77±1.35 26.14±3.59 OOM - OOM 29.44±1.13 30.42±0.90 34.47±3.49
D8 78.01±6.24 58.12±1.73 79.70±1.04 79.44±0.32 73.11±1.05 OOM - OOM 73.35±1.33 80.31±0.62 83.00±2.82
D9 OOM OOM OOM OOM 5.86±0.47 OOM OOM OOM 3.08±0.19 4.63±0.61 17.18±2.93

Purity(%)

D1 74.07±2.22 77.45±1.19 75.78±1.78 77.21±1.83 66.52±3.29 70.79±2.57 77.68±6.04 71.28±1.32 65.75±2.48 77.63±2.51 83.58±1.42
D2 79.93±4.12 91.03±1.05 85.73±2.77 88.03±1.71 69.10±2.41 85.91±1.15 80.95±2.47 85.83±0.52 30.40±2.55 78.71±1.32 92.83±1.56
D3 38.31±2.52 43.35±3.73 44.02±3.19 42.12±2.69 38.73±3.12 22.38±2.28 26.45±3.91 OOM 44.87±1.85 40.80±2.05 56.79±9.36
D4 35.63±1.77 37.90±1.46 37.25±1.37 39.70±1.21 27.58±0.89 39.84±1.79 43.22±1.32 OOM 31.36±2.06 32.11±1.26 42.23±1.40
D5 17.89±5.89 73.78±2.17 68.19±1.96 72.21±1.07 67.94±1.52 76.61±1.64 - OOM 67.06±1.90 73.26±1.50 79.97±0.43
D6 31.43±2.15 69.91±0.65 71.60±0.94 69.70±1.15 30.90±1.01 59.92±0.97 - OOM 7.09±0.24 47.79±1.04 81.68±0.60
D7 OOM 31.74±1.25 47.70±1.47 49.06±1.02 51.57±2.15 OOM - OOM 54.22±0.64 55.24±1.12 53.90±3.93
D8 79.12±5.89 58.54±2.17 82.96±1.96 82.60±1.07 75.79±1.52 OOM - OOM 76.18±1.90 80.87±1.50 84.41±3.00
D9 OOM OOM OOM OOM 23.38±0.91 OOM OOM OOM 22.20±0.50 21.97±1.08 40.63±3.58
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Figure 1: The clustering results of ACC on all datasets with different missing ratios.
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Figure 2: Average running time comparison of different IMVC methods on nine datasets.
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Figure 3: ACC on different values of𝑚 over two datasets.

between the convergence process and the improvement in ACC

values. Remarkably, across various datasets, our method consis-

tently achieves convergence within approximately five iterations,

underscoring the remarkable time efficiency of FSIMVC-OF.
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Figure 4: The objective function value and ACC versus the
number of iterations of the proposed method.

5.7 Ablation Study
We evaluate the efficacy of adaptive graph filters in FSIMVC-OF

through ablation experiments across various datasets. Comparing

against two variants: 1) FSIMVC, where adaptive graph filters are

removed, and clustering is based on bipartite graphs {B𝑟 }𝑣
𝑟=1

, and

2) FSIMVC-GD, applying view independent graph filter as Eq. (4)

on each bipartite graph. The fixed parameter 𝜆 = 1

2
aligns with the

Table 3: Ablation result of FSIMVC-OF on five datasets.

Dataset Method FSIMVC FSIMVC-GD FSIMVC-OF

D1

ACC 75.35±2.33 77.85±2.44 80.10±1.64
NMI 82.76±1.91 84.71±1.33 86.20±0.87

D2

ACC 91.91±1.00 92.40±1.23 92.67±1.30
NMI 84.85±1.38 85.92±1.18 86.12±1.78

D3

ACC 31.62±2.88 33.54±4.02 41.46±5.24
NMI 7.17±2.36 8.94±4.01 19.18±4.44

D8

ACC 79.56±3.94 79.71±3.90 81.14±4.24
NMI 81.44±3.05 82.09±2.22 83.00±2.82

D9

ACC 32.71±3.45 33.00±3.53 39.49±4.06
NMI 10.53±2.27 10.92±2.20 17.18±2.93

primary experiment. Results in Table 3 highlight the full model’s su-

perior clustering efficacy, emphasizing the importance of adaptive

graph filters in addressing incomplete multi-view clustering. No-

tably, FSIMVC-GD outperforms FSIMVC, showcasing the benefits

of leveraging higher-order information. However, isolated graph

filtering lacks adaptability, particularly evident in datasets D3 and

D9, further supporting the superiority of FSIMVC-OF.

6 Conclusion
In conclusion, FSIMVC-OF leverages duality optimal graph filter-

ing to enhance clustering in incomplete multi-view datasets with

linear computational efficiency. We introduce a unified consensus

clustering framework, supported by a fast optimization algorithm.

Comparative experiments on nine datasets show the superiority

of FSIMVC-OF over ten leading IMVC methods, underscoring its

scalability and efficacy for large-scale IMVC tasks.
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