
Intelligent Drought Stress Monitoring on Spatio-Spectral-Temporal Drone based
Crop Imagery using Deep Networks

Tejasri N., 1 P. Rajalakshmi, 2 Balaji Naik, 3 Uday B. Desai 2

1Department of AI, IIT Hyderabad, Hyderabad, India.
2Department of Electrical Engineering, IIT Hyderabad, Hyderabad, India.

3Department of Agronomy, PJTSAU, Hyderabad, India.
ai19resch11002@iith.ac.in, raji@ee.iith.ac.in, balajinaikbanoth789@gmail.com, ubdesai@iith.ac.in

Abstract

In recent years, high-put crop monitoring methods that inte-
grate drone-based imagery and deep learning have been used
to identify crop health and diseases. However, existing meth-
ods follow manual methods to study drought stress making
it more challenging. To alleviate this problem, we propose a
deep learning-based framework to identify drought-induced
stress in maize using RGB and multispectral data. For this
study, we conducted an experiment to grow maize crop in
controlled conditions of water. A pipeline for pre-processing
UAV-based images and extracting the region of interest from
orthomosaic is explained. We used a variant of convolutional
neural network-long short-term memory (CNN-LSTM) net-
work to learn spatio-spectral-temporal patterns on drone-
captured maize for water stress classification. We employed
fine-tuned versions of pre-trained Alexnet, VGG 19, Resnet-
18, Resnet-50 and Mobilenet V2 models for feature extrac-
tion and the LSTM model for sequence prediction on RGB
data and multispectral data. It can be noted that multispectral
data performed better than RGB data on drone captured data.

Introduction
Water stress or drought is a significant threat globally to
crop production, primarily due to rapid climate changes. It
is characterised by limited water resources that affect agri-
cultural productivity. In the context of global warming, it is
expected to cause warmer and drier conditions leading to
severe droughts. In addition, drought stress will impact the
economy due to the conflict between food demand and the
growing population. Therefore, it is crucial to identify the
drought-stressed crops and optimise the agronomic inputs to
reduce the physiological damage and yield loss of crops.

High-throughput crop phenotyping with remote sensing
technologies, namely, satellite-based and Unmanned Aerial
Vehicles (UAV) based, have unravelled new possibilities for
non-destructive prediction of crop yields. UAVs/drones be-
came a new frontier among remote sensing platforms for
their low cost and efficiency. These are used to obtain high-
resolution aerial images that can provide a quick and non-
intrusive view of crop growth status and water stress and,
thus, yield prediction. Various optical sensors such as RGB,
thermal, multispectral and hyperspectral cameras can be
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mounted on drones to collect crop canopy information (Xie
and Yang 2020).

Existing crop stress classification techniques have relied
on visual features by humans, which is inefficient. This
problem can be addressed by computer vision and ma-
chine learning, which will allow for scalable, accurate high-
throughput phenotyping (Ghosal et al. 2018). Deep learning
(DL) has become one of the most efficient methods for ob-
ject recognition and classification among machine learning
methods (LeCun, Bengio, and Hinton 2015). DL methods
surpassed conventional machine learning techniques as the
former do not require handcrafted features, unlike the lat-
ter. DL methods have unlocked the prospects for interpret-
ing enormous amounts of data and have percolated into data
analytics in agriculture. Lately, multispectral data has been
of paramount importance due to its additional bands, such
as near-infrared and red-edge, with underlying information
on crop stress. Deep learning based methods are well known
to be integrated with multispectral image data. Multispectral
data is known to perform better in classification tasks com-
pared to RGB data (Wang et al. 2022) (Navarro et al. 2021).

Maize is one of the most adaptable crops that can thrive
in various climatic settings. It is a staple food around the
globe and accounts for 36% of the world’s grain production
and constitutes nearly 9% of the Indian food basket (IIMR
2020). The deficiency of water causes several physiological
changes in maize crop, such as yellowness in the leaves and
reduction in leaf area and biomass. Since there are one to two
ears per plant, drought stress affects the quality, harvesting
ability and crop yield (Zhou et al. 2020)(Liu et al. 2020).

Owing to the potential that maize occupies a significant
amount towards ensuring the food supply, especially in de-
veloping nations like India, there is an immediate need to de-
velop crop monitoring methods for accurate and early iden-
tification of drought-related stress. The present work uses
time-series DL techniques to identify water stress crops cap-
tured using the drone.

Related works
Multispectral data give decent information about plant stress
indicated by chlorophyll content changes (Zarco-Tejada,
González-Dugo, and Berni 2012). RGB data is crucial for
classifying drought affected crops due to its rich properties
of colour and texture. However, its quality is particularly



Treatment Detail
N1 High Nitrogen stress
N2 Optimum nitrogen
N3 Overdose nitrogen
I1 High water stress
I2 Moderate water stress
I3 No water stress

Table 1: Treatment information of the field

light-sensitive and can only provide details from the visible
spectrum. The ability to capture information from the in-
visible spectrum using multispectral data greatly aids in the
detection of drought stress in the crops (Wang et al. 2022).

According to previous studies, drones equipped with op-
tical sensors like RGB and multispectral can detect water
and other sorts of crop stress (Calderón et al. 2013; Zhou
et al. 2021). Multispectral sensing and machine learning to-
gether hold potential for the shift to data-driven agriculture.
Various studies used spectral monitoring and machine learn-
ing to detect drought stress in crops (Virnodkar et al. 2020;
Singh et al. 2016; Barradas et al. 2021; Spišić et al. 2022).

Data Acquisition & Pre-Processing
Experimental Site
The experimental study was conducted during the Rabi
(post-monsoon) season in 2018-19 in a semi-arid zone of
Hyderabad, Telangana, India. Maize crop (Zea mays L.) of
variety ‘Cargil 900 m gold’ was selected for the research.
The farm was maintained by Agro Climate Research Cen-
ter, Professor Jayashankar Telangana State Agriculture Uni-
versity (PJTSAU), Hyderabad, India shown in the Appendix
Figure 6(B). The experiment field was designed in a split
mode with three nitrogen supply levels, and three irriga-
tion levels based on a climatic approach (Halagalimath et al.
2017).

The experimental field consists of 30 subplots, each plot
of size 4.2 m × 4.8 m. The field is supplied with water and
nitrogen according to irrigation and cumulative pan evapo-
ration ratio. Three nitrogen fertilisation levels and three irri-
gation levels resulted in nine distinct plots. For every water
stress treatment, three replicates were grown, resulting in 27
subplots, as shown the Appendix Figure 6 (B) and 6 (C),
while the remaining three subplots are dummy. Each plot
was supplied with one of the nine treatments of water and
nitrogen subjected to various stress conditions as shared in
Table 1.

Data Acquisition
For geo-referenced data acquisition, Nine ground control
points (GCPs) surveyed with Trimble R10 GNSS Receiver
were deployed on the field. The images were acquired by
flying DJI Inspire-1 Pro equipped with Micasense Rededge
multispectral camera. The drone was flown at the predeter-
mined flight plan using Mission Planner software at 10m
altitude with a speed of 4 km/hr, and 80% overlap is main-
tained between two consecutive images in the X and Y di-
rection. It collects data in five spectral bands, namely, blue,

Bands Wavelength [nm]
Blue 475
Green 560
Red 668
Red Edge 717
Near Infrared 842

Table 2: Wavelength Information of bands of Micasense
Rededge Camera [nm]

green, red, red-edge and NIR regions with dimensions of
1296 × 960 pixels keeping a pixel size of 1 cm displayed
in Table 2. Sensor calibration was carried out using the re-
flectance panel depicted in Appendix Figure 1, and panel
images were taken during the data-collecting procedure.

Preprocessing of UAV images
Calibration is necessary to account for the illumination at
the time of image capture as accurate reflectance values indi-
cate crop health status and for comparing imagery from day
to day or season to season. The panel images captured dur-
ing flight were loaded along with a calibration target values
provided by the manufacturer of Micasense Rededge was
recorded to perform radiometric calibration on Metashape
Agisoft Photoscan photogrammetry software. To obtain a
complete field perspective, the raw photos were also aligned,
geo-rectified and stitched based on similar characteristics
in the images. Following alignment, the high-quality and
mild filter mode options were used to create the Dense Point
Cloud. A digital elevation model (DEM) and an orthomo-
saic — a panoramic picture stitched together and geomet-
rically corrected — of the region covered by all of the raw
images were exported. It uses bilinear interpolation in the
creation process of orthomosaic. Orthomosaic is further split
into plot-wise images by running the QGIS tool using shape
files and R software as shown in the Appendix Figure 4.

Methodology
In this work, drought-stress analysis in maize crop is stud-
ied. Maize crop when subjected to water-stressed treatment
results in the reduction of leaf water evaporation process
thus, surface area of the leaf decreases thereby twisting
and rolling of the leaf occurs and the cholorophyll con-
tent is reduced. We further analyse how CNN and LSTM
based deep networks used for water-stress identification us-
ing time-series RGB and multispectral data.

Multispectral Image Feature Analysis
For decades, vegetation indices calculated by integrating
data from the visible red and near-infrared bands have been
used to identify these crop health concerns. It gives infor-
mation about revealing plant stress indicated by chlorophyll
content changes. Adding red-edge band information to the
existing vegetation indices allowed users to identify abnor-
mal crop health in the early crop growth stages.

With the advent of the multispectral sensor, we can cap-
ture RGB, NIR and Rededge data simultaneously. RGB im-
ages provide rich colour information, whereas NIR, located



in the electromagnetic spectrum between the visible and
mid-infrared bands, provides more edge information even in
low light conditions. The Rededge band, which lies between
the Visible Red and Near Infrared bands, ranges approxi-
mately from 670 to 760 nanometers. It is the region where
green vegetation’s spectral reflectance fluctuates quickly,
thus an excellent indicator of vegetative health (Xie et al.
2018). Appendix Figure 5 shows multispectral image sam-
ples captured by the drone. It is observed that all the bands
reflect different characteristics of the same target.

Data Preparation
We consider three class water-stress classification, namely
highly water-stressed, moderately water-stressed and unaf-
fected, keeping optimum nitrogen from the treatments I1N2,
I2N2 and I3N2, respectively. The crop images containing the
region of interest are extracted from the net area of the plot.
Multispectral data image channels are loaded using a custom
data loader function. Each plot is further split into patches
of 145 x 145. The images are loaded into a sequence of the
length of the days on which the data is captured. Hence, each
input data sequence contains thirteen images corresponding
to the data collection date. The data is divided into 80%
training data, and 20% testing data using the scikit learn train
test split function.

Mathematically, an image of an input sequence it defined
at timestep t, t ∈ Rm×m, where m = 145 due to image di-
mension. An image sequence can be defined as given in the
equation 1.

I =
{
it | t, t ∈ N, 1 ≤ t ≤ 13, it ∈ Rm×m

}
(1)

Model Training
CNN Feature Extractor: CNN-based deep neural networks
such as Alexnet, VGG-19, Resnet-18, Resnet-50 and Mo-
bilenet V2 models are used for the feature extraction pro-
cess. In case of RGB data, pre-trained models are fine-tuned
on our maize data and the models are trained from scratch in
case of multispectral data.

LSTM Predictor: The number of sequentially connected
units is equal to the days the data is captured. In our work,
the data was collected from the 25th Day of Sowing to the
flowering stage of maize. We consider thirteen days of se-
quential data in our work. The output of the LSTM network
is given to two dense layers followed by a softmax output
layer of size three since there are three categories to be pre-
dicted. CNN- based models were used to extract features
from images of a sequence such that its weights remain the
same for all the timesteps in the LSTM network. Output se-
quence can be defined as given in the equation 2.

X =
{
xt | t, t ∈ N, 1 ≤ t ≤ 13, xt ∈ Rd

}
(2)

where xt denotes Feature at timestep t.
This output feature is fed to LSTM network. This hidden

vector ht of LSTM is fed to the dense layer and softmax
function for further classification. The softmax function is
responsible for obtaining class-wise probability.

Model Train Accu. Val. Acc.
Alexnet-LSTM 86.444 85.455
VGG-19-LSTM 87.764 86.182
Resnet-18-LSTM 89.202 85.455
Resnet-50-LSTM 92.506 86.727
MobileNetV2-LSTM 94.944 86.455

Table 3: Accuracy results on RGB data.

Model Train Loss Val Loss
Alexnet-LSTM 0.599 0.593
VGG-19-LSTM 0.656 0.620
Resnet-18-LSTM 0.208 0.147
Resnet-50-LSTM 0.596 0.572
MobileNetV2-LSTM 0.603 0.593

Table 4: Loss Information on RGB data.

Softmax (pi) =
exppi∑C
j=1 exp

pj

(3)

Comparison of Methods
The performance of CNN-LSTM based deep networks in
case of RGB data and multispectral data is compared. The
training was performed for 50 epochs with batch size of 12.
Adam optimizer was used as a cross-entropy loss function.
For the performance analysis of the proposed model, the
performance metrics such as Precision, Recall and F1-score
were used.

Recall =
TP

(TP + FN)
(4)

Precision =
TP

(TP + FP )
(5)

F1− score =
(2×Recall × Precision)

(Recall + Precision)
(6)

Results & Discussion
The performance results of models used for both RGB data
and multispectral data are listed in the Tables 3, 4, 5, 6, 7,
8 respectively. It is observed that Mobilenet V2, Resnet 50
performed well with high training and validation accuracy
in case of multi spectral data compared to that of results
on RGB data. This may be due to the addition of spectral
component in addition to their rich model complexity and
feedback mechanisms that can capture the visual changes
in drought-stressed plants. The validation loss values can be
further reduced by increasing the dataset size and using var-
ious data augmentation techniques to make the model robust
enough to test on field scenarios.

The accuracies may be affected due to bilinear interpo-
lation used in AgiSoft software for drone data processing.
Considering raw images and extracting the region of interest
from the plots can be done for effective classification results.



Model Precision Recall F1-Score
Alexnet-LSTM 0.9523 0.9487 0.9505
VGG-19-LSTM 0.9333 0.9230 0.9281
Resnet-18-LSTM 0.9523 0.9487 0.9505
Resnet-50-LSTM 0.9743 0.9743 0.9743
MobileNetV2-LSTM 0.9523 0.9487 0.9505

Table 5: Classification Results on RGB data

Model Train Accu. Val. Acc.
Alexnet-LSTM 82.1 85.348
VGG-19-LSTM 85.3 84.483
Resnet-18-LSTM 88.4 86.552
Resnet-50-LSTM 97.6 87.034
MobileNetV2-LSTM 95.4 92.924

Table 6: Accuracy results on Multispectral data.

Next Steps and Future Work
We found from our data that RGB images contain rich fea-
tures of color, texture and profile that are essential for classi-
fying drought affected crops. However, the quality of RGB
images is very sensitive to light and can only present in-
formation in the visible spectrum. Near-Infrared band high-
lights the edges and these egde data can distinguish unaf-
fected and stresssed crops as stressed crops have leaf-rolling
and leaf area decreases. Red-edge band is known to show
vegetative stress at first. Thus, these bands allow to capture
the information underlying in invisible spectrum thereby
significantly helps with the detection of early crop deficits.

Therefore, considering that the spatial and spectral image
features may have different influences on the measurement
results, we propose to develop a novel method of weighted
feature fusion. Before feeding the output features of the two
feature layers into the classification layer, the weighted fea-
ture fusion is carried out first. The weights are multiplied
by the output feature vectors of the two CNNs, and then the
two feature vectors are concatenated. The formula of feature
fusion is shown in Equation 7.

feat = λ1 ∗ feata ⊕ λ2 ∗ featb (7)

where λ1 and λ2 are learnable weight values of spatial and
spectral networks respectively; ⊕ represents concatenate op-
eration; feata and featb are feature vectors extracted by
spatial and spectral networks respectively; feat is global
features after feature fusion.

As an improvement of artificially assigning feature
weights, we propose a self-learning method for feature
weights, in which the fusion weights also are calculated by
learning with training. In the initial stage, two weights λ1

and λ2 can be set to 0.5 by adopting the strategy of balanc-
ing weights. Also, on each day of capture, classification test
is performed to identify the crops that are drought affected
at early stages.

Lossw = [1− (λ1 + λ2)]
2 (8)

Model Train Loss Val Loss
Alexnet-LSTM 0.483 0.5714
VGG-19-LSTM 0.513 0.657
Resnet-18-LSTM 0.428 0.364
Resnet-50-LSTM 0.511 0.521
MobileNetV2-LSTM 0.521 0.572

Table 7: Loss Information on Multispectral data.

Model Precision Recall F1-Score
Alexnet-LSTM 0.8821 0.7858 0.8311
VGG-19-LSTM 0.9265 0.8954 0.9106
Resnet-18-LSTM 0.9765 0.9457 0.9608
Resnet-50-LSTM 0.9642 0.8975 0.9296
MobileNetV2-LSTM 0.9143 0.9456 0. 9296

Table 8: Classification Results on Multispectral data

Conclusion
In this paper, we addressed how to identify drought-stressed
crops by using sequential based deep learning methods. This
work is an effort to automate the problem of water stress
identification task. RGB and multispectral data acquired
by the drone are used and compared by employing CNN-
LSTM-based models. It is observed that multispectral data
include add NIR and Rededge bands in addition to visible
spectrum that provide better results than RGB data. Further,
we are developing a novel model that captures spectral, spa-
tial and temporal information to identify the drought stress
at early crop growth stages. Thus, this work would aid agri-
cultural scientists in their analysis for developing new crop
varieties that can sustain the climatic changes and require
less agronomic inputs.
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Appendix
A: Supplementary Figures

Figure 1: Calibrated reflectance panel which was used for
data multispectral data acquisition.

Figure 2: Drone flying in the field

Figure 3: Drone equipped with multispectral camera

Figure 4: Orthomosaic and plot segmentation of maize crop



Figure 5: Band Images of Multispectral data of Maize. (a) Blue (b) Green (c) Red (d) Near-Infrared (e) Rededge.

Figure 6: (A) Experiment field highlighted in the Indian map (B) Top-view of the field captured by the drone (C) Field layout of
treatments of each plot of size 4.2m× 4.8m where I1, I2, I3 represent low, moderate and high treatments of water respectively.



Figure 7: Pipeline of DL drought stress classification model for drone based maize crop patches. RGB image shown for visual
representation.


