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Abstract

Compositional visual reasoning methods, which translate a complex
query into a structured composition of feasible visual tasks, have exhib-
ited a strong potential in complicated multi-modal tasks. Empowered by
recent advances in large language models (LLMs), this multi-modal chal-
lenge has been brought to a new stage by treating LLMs as few-shot/zero-
shot planners, i.e., vision-language (VL) programming (Gupta & Kemb-
havi, 2023). Such methods, despite their numerous merits, suffer from
challenges due to LLM planning mistakes or inaccuracy of visual execu-
tion modules, lagging behind the non-compositional models. In this work,
we devise a “plug-and-play” method, EXOVIP, to correct errors in both
the planning and execution stages through introspective verification. We
employ verification modules as “exoskeletons” to enhance current VL pro-
gramming schemes. Specifically, our proposed verification module utilizes
a mixture of three sub-verifiers to validate predictions after each reasoning
step, subsequently calibrating the visual module predictions and refining
the reasoning trace planned by LLMs. Experimental results on two repre-
sentative VL programming methods showcase consistent improvements
on five compositional reasoning tasks on standard benchmarks. In light of
this, we believe that EXOVIP can foster better performance and general-
ization on open-domain multi-modal challenges.

§ Code https://github.com/bigai-nlco/ExoViP

1 Introduction

Compositional visual reasoning methods, due to their interpretability and generalization
over complex vision-language (VL) challenges that demand intricate, multi-step visual rea-
soning guided by linguistic input, have long been the focus for many researchers. Tradi-
tional compositional techniques, exemplified by neural modular networks (Andreas et al.,
2015; Hu et al., 2017; Johnson et al., 2017; Hu et al., 2018; Le et al., 2022; Qian et al., 2022),
have shown success in breaking down intricate language instructions into manageable vi-
sual tasks. However, they tend to falter when confronted with the need for broader gen-
eralization across diverse domains. Furthermore, the limitations of these approaches man-
ifest in their inability to enhance the interaction and attention between neural modules
through supervision or feedback mechanisms, thereby constraining performance to end-
to-end training paradigms. Recent advances in large language models (LLM) (Radford &
Narasimhan, 2018; Radford et al., 2019; Brown et al., 2020; OpenAI, 2023; Chowdhery et al.,
2022) have led to novel methods that harness LLM as zero-shot or few-shot planners to ad-
dress visual reasoning tasks, notably vision-language programming (VISPROG) (Gupta &
Kembhavi, 2023) and ViperGPT (Dı́dac et al., 2023). These approaches make use of read-
ily available pretrained vision models and systematically assemble them, guided by the
reasoning trace provided by LLMs, resulting in interpretable intermediary outcomes and
highly adaptable reasoning capabilities.

� Corresponding authors.
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Figure 1: An overview of EXOVIP. The prediction after each step is verified by the pro-
posed “exoskeleton” verification modules, which contain a mix of three sub-verifiers. The
verified scores help correct the errors in the vision module predictions or refine the reason-
ing programs planned by LLM.

Despite their merits, current visual programming approaches encounter persistent chal-
lenges, often resulting from shortcomings in the planning processes of LLMs or the capa-
bilities of visual modules. More precisely, they often fall short of the performance achieved
by non-compositional models; refer to Fig. 1 for exemplar error cases. To investigate these
limitations, a manual examination of 100 randomly selected failure cases (Section 4.5.1)
of VISPROG (Gupta & Kembhavi, 2023) on the GQA dataset (Hudson & Manning, 2019)
for visual question answering was conducted. The analysis revealed two primary failure
categories: Firstly, approximately 30% of these failures were attributed to planning errors,
where the LLM failed to parse the language query into programs correctly, preventing the
formulation of a solvable program. Secondly, over 40% of the failures were attributed to
module errors, as the visual modules were incapable of executing the program accurately.
The remaining failure cases (less than 30%) stemmed from issues like synonym usage (e.g.,
“woman” vs. “lady”) or question ambiguity.

Motivated by these failure modes, in this work, we introduce EXOVIP, a “plug-and-play”
method that uses “exoskeleton” verification modules to verify the reasoning results step by
step, thus correcting the module errors and refining the LLM planning traces. As depicted
in Fig. 1, EXOVIP effectively rectifies both types of errors: the verification module con-
tains a mixture of three sub-verifiers, including an image-text matching verifier, an image
captioning verifier, and a visual question answering (VQA) verifier. These sub-verifiers
meticulously validate the accuracy of the predictions generated by the visual modules,
thereby correcting module errors. For refining the planning traces, a reasoning trace tree
is constructed based on the verification scores, along with the self-correctness score (Pan
et al., 2023) obtained from LLMs. The methodology involves searching through the tree to
identify the optimal trace with the highest score.

To demonstrate the effectiveness of EXOVIP, we apply our method to two recent visual
programming methods: self-defined programs, i.e., VISPROG (Gupta & Kembhavi, 2023)
and Python code programs, i.e., ViperGPT (Dı́dac et al., 2023). Our experiments encom-
pass six compositional visual reasoning tasks, including compositional image question an-
swering, referring expression understanding, natural language for visual reasoning, visual
abstract reasoning, language-guided image editing, and spatial-temporal reasoning. The
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experimental results consistently indicate notable improvements in performance for both
models. In light of this, we believe EXOVIP can foster better performance on open-world
compositional reasoning tasks.

In summary, our main contributions are as follows:

• We introduce “exoskeleton” verification modules tailored for module error and plan
error in existing compositional visual reasoning methods, which systematically validate
the accuracy of vision module predictions in a step-by-step manner.

• We illustrate the synergistic integration of our proposed verification modules with a tree-
based search algorithm, enhanced by the self-correcting capabilities of the LLM. This
collaborative design effectively tackles both the module error and plan error. The tree-
based search is informed by a verification score, which serves as a measure of confidence
in the search process. Concurrently, this verification score is dynamically refined as the
search progresses, ensuring a more accurate and reliable verification process.

• We have implemented our methodology within two compositional methods, and the
outcome has been a uniform enhancement in performance across six diverse tasks en-
compassing both image and video modalities. This underscores the efficacy of EXOVIP
in augmenting visual reasoning skills.

2 Related work

LLMs in multi-modal tasks. LLMs have significantly enhanced multi-modal tasks
through their adaptability and extensive knowledge. There are three primary methods
for applying LLMs to multi-modal challenges. One approach involves integrating ex-
tra parameters into LLMs for multi-modal contexts and then fine-tuning with either a
fixed (Tsimpoukelli et al., 2021; Alayrac et al., 2022; Li et al., 2023b; Gao et al., 2023; Li
et al., 2023a; Dai et al., 2023; Zhang et al., 2023d) or an adjustable LLM (Hao et al., 2022;
Huang et al., 2023; Peng et al., 2023). Another strategy uses LLMs as knowledge experts,
combining them with specialists in other fields like vision and speech to tackle diverse
tasks (Zeng et al., 2023; Zhang et al., 2023c; Liu et al., 2023b). Our research concentrates on a
third method that leverages the LLM’s ability to parse complex queries and delegate tasks
to expert agents, whether through custom programs (Gupta & Kembhavi, 2023), Python
code (Dı́dac et al., 2023), or dialogue agents (Yang et al., 2023). However, the effectiveness
of these approaches is limited by the quality of the planning sequences and visual experts.

Compositional multi-modal methods. At an early stage, neural module networks
(NMN) (Andreas et al., 2015; Hu et al., 2017; Johnson et al., 2017; Hu et al., 2018; Le et al.,
2022; Qian et al., 2022; Wang et al., 2024) create end-to-end differentiable networks with
neural models, but their pre-set modules struggle with open-domain tasks, and the com-
plex embedding and attention mechanisms hinder the creation of intermediate supervision
signals. Recently, the presence of LLMs has made it possible to automatically compose var-
ious kinds of finetuned neural models (Zeng et al., 2023; Gupta & Kembhavi, 2023; Dı́dac
et al., 2023; Yang et al., 2023; Liu et al., 2023b) or external tools (Parisi et al., 2022; Khot et al.,
2023; Schick et al., 2023; Shen et al., 2023; Lu et al., 2023; Qin et al., 2023). These works allow
us to diagnose the intermedia rationales of the reasoning process. However, human anno-
tation of these intermedia results can be rather time-consuming. In this work, we make
ways to correct errors in the intermedia results without any human intervention.

Self-correction in LLMs. Although LLMs achieve great success in various tasks, there are
many errors in LLM-based system (Pan et al., 2023): hallucination (Li et al., 2023c; Zhang
et al., 2023b), unfaithful reasoning (Golovneva et al., 2022; Ribeiro et al., 2023; LYU et al.,
2023), toxic, biased and harmful contents (Shaikh et al., 2022), flawed code. One way to fix
these errors is to use LLMs themselves (Madaan et al., 2023; Shinn et al., 2023; Ye et al.,
2023; Yan et al., 2023) to obtain feedback to correct the errors. Incorporating self-correction
strategies from LLMs, researchers aim to streamline reasoning in multi-modal systems.
IPVR (Chen et al., 2023) employs LLMs for rationale generation and cross-modality valida-
tion to ensure consistent inference. IdeaGPT (You et al., 2023) uses an LLM to summarize
and iteratively refine the output of visual experts. To overcome the inherent limitations of
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LLM self-correction, our approach merges LLM feedback with insights from visual experts
to authenticate intermediate results and the reasoning process.

3 EXOVIP

To address the aforementioned shortcomings, we propose EXOVIP. This framework adopts
exoskeleton verification modules to calibrate the prediction of the execution modules and
refine the reasoning path with tree searching. In this section, we will first introduce the
preliminaries, including our task definition and visual programming. Then we will show
the verification modules, and describe how the verification results are applied to correct the
results of execution modules and to search for the reasoning trace. Additionally, we will
introduce two mechanisms – negative sampling and post-hoc self-correction to alleviate
extra errors introduced by verification modules.

3.1 Preliminaries

Task definition. Our work focuses on Visual Compositional Reasoning (VCR) tasks.
These VCR tasks require reasoning on a series of steps about an image input I and a text
input T, and predict the output, e.g. answer to a given question, edited images given a
language instruction, etc.

Visual programming (VISPROG). VISPROG (Gupta & Kembhavi, 2023) is a zero-shot
VCR model that leverages LLMs and pretrained vision models. It transforms complex text
into a program of operations (P = {o1, . . . , on}) using LLMs, which are then executed by
various vision models (e.g., object detectors, VQA models). Each operation oi yields an
output ai, where ai serves as the input for the next operation. The final prediction is made
after all operations are executed. However, this approach highlights two key shortcomings
of existing approaches: i) module error, the operation models can not predict the answer
correctly; ii) planning error, the LLM might generate unfaithful reasoning.

Framework overview Fig. 1 depicts the overall framework. For each operation oi, we get
a set of candidate answers {ai

1, . . . , ai
k}, with probabilities {pi

1, . . . , pi
k}. Unlike VISPROG,

which directly takes the top answer, we use additional verification modules to verify each
candidate answer, thus producing verification scores {si

1, . . . , si
k}. Then we take the verifi-

cation score s to calibrate the original scores. Additionally, we use the verification scores to
search for a program with high verification scores, in order to refine the execution program
P by tree-searching.

3.2 Verification modules

The verification modules aims to verify the candidate answers {ai
1, . . . , ai

k} given an oper-
ation oi. For example, the LOC(nightstand) operation returns a set of candidate bounding
boxes containing a nightstand, then the verification module verifies whether each of the
returned boxes contains a nightstand and produces verification scores. Our verification
module is a mixture of three off-the-shelf sub-verifiers. The output scores of the three ver-
ifiers are combined as the final verification score. It is important to emphasize that the
verification model does not incorporate any extra pre-trained models; instead, it utilizes
the verifiers that are integral to the execution modules of VISPROG. To ensure equitable
comparisons between modules, we have deliberately chosen these specific sub-verifiers.

Image-text matching verifier calculates the similarity between the whole images and all
candidate sentences, which returns the semantic representation of the image-sentence pair.
We construct the candidate sentences Tans by filling the template “a photo of” with candi-
date answers. In this work, we select CLIP (Radford et al., 2021) to calculate the similarity
between images and sentences, i.e., sitm

ans = ITM(Tans, img).

Image captioning verifier leverages natural language to describe the visual details of the
image. We first get the caption of the image Cimg by BLIP (Li et al., 2022b). We then construct
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the descriptions of candidate answers Cans with the template ”the image describe”. Specif-
ically, for candidate question-answer pairs, we initially transform the pair into a sentence
before inserting it into the template. After that, we calculate the sentence semantic similar-
ity (Reimers & Gurevych, 2019) between the captions and the constructed descriptions as
the verification score, i.e., scap

ans = sim(Cans, Cimg) .

Visual question-answering (VQA) verifier is more flexible than others, which offers us
more opportunities to evaluate the advanced relationships between image and language,
such as entailment and factual consistency. Slightly different from the other two types of
models, for the VQA verifier, we design templates w.r.t. the neural modules. For example,
we use “Is there any object in the image?” for the object detection model, and use
“Does this part look like object ?” for the classification model used in the abstract reason-
ing task. We determine the verification score by BLIP (Li et al., 2022b) by calculating the
difference in answer probabilities Qans between “yes” and “no”

svqa
ans = VQA(Qans, True)−VQA(Qans, False) (1)

Verification score After obtaining the scores from each individual verification mod-
ule, the verification score is averaged over all scores for each given answer, i.e., sans =

avg(sitm
ans, scap

ans, svqa
ans)

Negative sampling. Empirically, we find that directly applying this verification score does
not work well, because the score scales for different kinds of candidates are not well-
calibrated. Motivated by recent works in truthfulness (Li et al., 2022a), commonsense (Ye
et al., 2022), and bias (Ruggeri & Nozza, 2023), we propose to take the difference of a can-
didate answer aj with its semantic opposites nj as the final verification score. More specif-
ically, the semantic opposite nj is selected based on the text embeddings from CLIP Rad-
ford et al. (2021), i.e. the word of lowest embedding similarity is selected. For example, the
semantic opposite of “nightstand” is “stocking”. We then compute the difference of the
verification scores of the candidate answer and its semantic opposites, and get the final
verification score. Mathematically, given a candidate answer aj, the final verification score
is sj = saj − snj .

Calibration using verification scores After obtaining the verification scores of all candi-
date answers S = {s1, . . . , sk}, we normalize them as weights and calibrate the candidate
predictions, p′j = wj ∗ pj, where wj is the normalized verification score. More specifically,

the verification score sj is re-scaled to wj =
sj−smin

smax−smin
· (τ − 1

τ ) +
1
τ , where τ is a hyper-

parameter controlling the scaling factor smin, smax are the minimum or maximum of all the
candidate scores.

3.3 Exploration with reasoning trace
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Figure 2: Search of the reasoning trace. We
beam search through the program tree, based
on the verification scores as well as the LLM
self-correctness.

To mitigate the planning errors, we further
apply the verification scores to refine the
reasoning trace predicted by LLMs. Mo-
tivated by the recent works showing that
searching through a compositional prob-
lem space can greatly improve the per-
formance of LLMs for complex tasks (Yao
et al., 2023; Khalifa et al., 2023; Hao et al.,
2023), we introduce our dynamic reason-
ing trace searching procedure, which takes
advantage of both the LLM self-correctness
potential and our verification modules. In
Appendix A, we show the complete algo-
rithm of EXOVIP.

Tree-based reasoning trace searching (TRS) The reasoning trace searching procedure is
represented as a tree structure, where each node is a reasoning operation. To get a better
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reasoning trace, we search from the tree using the beam search algorithm (Graves, 2012;
Boulanger-Lewandowski et al., 2013; Sutskever et al., 2014), which has long been proven
to be effective in sequence-to-sequence problems.

More specifically, our trace searching procedure contains two steps. First, in order to gen-
erate more diverse reasoning traces to search from, we randomly perturb the in-context ex-
amples in the prompt for LLM. Second, after we get the result of candidate neural modules,
we sort them according to the verification scores and select the top K candidate reasoning
traces.

Post-hoc self-correction (PSC) In some cases, the verification scores can be very close for
the top-rated K traces, which could result in suboptimal. Inspired by the zero-shot ranking
ability of LLM Hou et al. (2023), we further use the self-correctness ability of LLMs to rank
the K traces and select the top P from them (P < K). More details of the prompts used for
LLM self-correction are included in Sec. E.2.

4 Experiments

In this section, we apply the EXOVIP to VISPROG, demonstrating the effectiveness of our
approach through results and anlysis derived from six distinct tasks, including visual ques-
tion answering, referring expression understanding, visual reasoning using natural lan-
guage, abstract reasoning, language-guided image editing, video question answering. Sub-
sequent to this, we delve into an exploration of potential future projections in Sec. 4.5. For
additional information regarding the implementation and experiment setups and selection
of baselines, please refer to Appendix E.

4.1 Compositional Visual Question Answering

4.1.1 Main Results and Analysis

Methods Accuracy

BLIP2-xxl (Li et al., 2023b) 49.20
InstructBLIP-flant5-xl (Dai et al., 2023) 55.39
Llava-1.5-13b* (Liu et al., 2023a) 74.56

0 VISPROG (Gupta & Kembhavi, 2023) 57.41

1 EXOVIP w/o self-correctness & negative
sampling & search

57.11

2 EXOVIP w/o self-correctness & search 58.53
3 EXOVIP w/o self-correctness (TRS) 60.57
4 EXOVIP w/o verification (PSC) 60.16
5 EXOVIP 61.49

Table 1: Results of compositional visual question
answering on GQA. Llava-1.5-13b* is tuned on
GQA training corpora, and evaluated with additional
prompt.

We evaluate the efficacy of
EXOVIP on a compositional
visual question answering task
GQA (Hudson & Manning,
2019), and benchmark against
top vision-language models,
including BLIP2-flant5-xxl (Li
et al., 2023b), InstructBLIP-flan-
t5-xl (Dai et al., 2023), and use
LLaVA-1.5-13B (Liu et al., 2023a)
as a reference point. Our method
boosts VISPROG’s score from
57.41 to 61.49, surpassing BLIP2
and InstructBLIP, as detailed in
Tab. 1. It’s important to note that
our method does not incorpo-
rate any additional modules or
knowledge compared to VIS-
PROG. The verification modules
that we use are inherent to VISPROG itself. To verify the effectiveness of each component
in our method, we run a series of ablation studies on our framework (also in Tab. 1). We
have the following observations:

Negative sampling enhances the robustness of EXOVIP Merely adding verification
modules to a system (Line-1) is not sufficient for achieving better results; it may actu-
ally lead to decreased performance. On the other hand, when we implement a negative
sampling technique that utilizes semantic opposites in these verification modules (Line-2),
there is a marked enhancement in the system’s performance. We posit that this approach
could be instrumental in reducing the likelihood of new errors being introduced.
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TRS effectively utilizes the verification score Empirical evidence shows that imple-
menting TRS can increase accuracy from an initial 58.53 to a subsequent 60.57 (Line-3). This
improvement in precision underscores the effectiveness of our verification-based search
strategy, which has the potential to resolve numerous planning errors.

Verification mechanism enhance LLM self-correction In Line-4, we exclusively utilize
the post-hoc self-correction (PSC) of the LLM during the process of trace searching, eschew-
ing the use of verification scores. The findings demonstrate an enhancement in accuracy of
2.75 when compared to the original VISPROG. However, the implementation of both ver-
ification scores and LLM self-correctness concurrently results in a superior performance
enhancement.

4.1.2 Analysis Experiments

We experiment to explore how the tree-based search algorithm and verification scores inter-
act to improve our approach. The algorithm uses scores to guide branching, while insights
from the search enhance score contrasts, refining path differentiation and aiding in finding
the best solution. All experiment settings are aligned with the Appendix B.

Methods Accuracy

Base 58.14

Image-text Matching 59.26
Image Caption 59.22
Visual QA 59.35

All 60.03

Table 2: Analysis on the sub-
verifiers.

Mixture of Sub-verifers. We evaluate the effects
of different types of verification modules with the
setting of the best demonstration setting. As is illus-
trated in Tab. 2, Different verification modules share
similar boost gain, but a mixture of these modules
can benefit more.

Enhanced Verification through TRS. Our analy-
sis, illustrated in Fig. 6, shows that implementing
our trace-searching strategy significantly improved
verification scores. Additionally, the increased vari-
ance in scores suggests our method could further re-
fine the effectiveness of reasoning traces.

Enhanced Planning Efficacy In our comparative
analysis of the GQA task, we observed that our method, EXOVIP, significantly outper-
forms the baseline, VISPROG, in terms of planning efficiency and accuracy. The average
number of planning steps required by EXOVIP decreased from 5.92 to 4.77, indicating that
the TRS strategy employed by our method streamlines the planning process, allowing for
a more direct path to the final plan. We also compute the average inference time, which
is shown on Appendix D. Furthermore, we noted a reduction in the error rate, with the
percentage of unexecutable plans dropping from 5.84% to 3.82%. This demonstrates that
EXOVIP not only reduces the complexity of the planning process but also enhances the reli-
ability of the generated plans, predicting a higher number of executable routines compared
to the baseline.

4.2 Abstract Visual Reasoning

We tested model performance on the KILOGRAM (Ji et al., 2022) dataset’s text-to-image
retrieval task, involving 1,251 tangram puzzles with abstract shape recognition. Accuracy
was the main evaluation metric. The CLIP-large model (Radford et al., 2021) served as our
baseline for the text-to-image retrieval task. As is illustrated in Fig. 18, in our approach,
we leverage the LLM to identify potential semantic components of a given description.
Simultaneously, we segment the image into distinct visual parts. Following this, we align
the identified semantic parts with their corresponding visual counterparts to optimize the
matching process. Tab. 4 illustrates how our method effectively utilizes conceptual com-
ponents to enhance abstract image understanding. However, a performance gap is still
noticeable when compared to CLIP. Despite our method narrowing this gap, it is still un-
able to reach SOTA performance levels. The importance of part identification in human
abstraction has been well-established in prior research (Tversky & Hemenway, 1984). We
posit that the efficacy of our approach could be significantly improved by integrating a
more advanced scene segmentation model.
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Table 3: Visual referring expression on Ref-
COCO, RefCOCO+, and RefCOCOg.

Methods IoU

Qwen-vl-chat-7b (Bai et al., 2023) 32.54
VISPROG (Gupta & Kembhavi, 2023) 27.28
EXOVIP 31.50

Table 4: Abstract reasoning on KILO-
GRAM.

Methods Accuracy

CLIP-large (Radford et al., 2021) 27.26
VISPROG (Gupta & Kembhavi, 2023) 24.46
EXOVIP 26.22

Table 5: Visual reasoning on NLVR2.

Methods Accuracy

OFA-large (Wang et al., 2022) 58.38
VISPROG (Gupta & Kembhavi, 2023) 67.66
EXOVIP 67.96

Table 6: Image editing on MagicBrush.

Methods CLIP-I DINO

InstructPix2Pix (Brooks et al., 2022) 84.19 69.60
VISPROG (Gupta & Kembhavi, 2023) 90.82 82.70
EXOVIP 91.27 83.40

open the lid of a toilet

have a team of sled dogs pulling the snowboarder

Source Target InstructPix2Pix VisProg ExoViP (Ours)

Query:

Query:

Figure 3: Qualitative results of text-guided image editing on MagicBrush

4.3 Language-grounded Visual Tasks

Visual Referring Expressions (VRE) Our study on VRE used a subset of the RefCOCO,
RefCOCO+, and RefCOCOg datasets (Yu et al., 2016; Kazemzadeh et al., 2014), and evalu-
ated using intersection-over-union (IoU). We benchmarked against the Qwen-vl-chat-7b (Bai
et al., 2023) model, a high-performing, pre-trained vision-language model. The results pre-
sented in Tab. 3 illustrate that, even though our approach does not reach the state-of-the-art
(SOTA) performance achieved by Qwen-vl on the RefCOCO dataset, it nonetheless narrows
the gap between VISPROG and large vision-language models. Qwen-vl is a highly complex
model, constructed on a language learning model (LLM) consisting of 7 billion parameters
and trained on a corpus of trillions of tokens. In contrast, our approach utilizes a team of
specialized experts, whose combined parameters amount to less than 1 billion. We are opti-
mistic that the performance of our method can be further enhanced by incorporating more
sophisticated experts.

Natural Language Visual Reasoning In this work, we use the NLVR2 (Suhr et al., 2019)
balanced test set for evaluation and use the OFA-large (Wang et al., 2022) as our baseline,
unlike many multi-modal language models that struggle with dual-image inputs. Tab. 5
presents our findings. While VISPROG demonstrates a strong capability for complex rea-
soning compared to the end-to-end model, our method struggles to enhance its perfor-
mance significantly. We attribute this to our sole reliance on VQA modules for solving
NLVR problems. Specifically, the efficacy of the decomposed VQA steps is intrinsically con-
strained by the performance of the VQA model itself. This limitation becomes especially
troublesome when errors accumulate over a series of VQA steps, consequently hamper-
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ing the overall performance. As a path forward, we foresee potential advancements in the
planning process, which could involve the integration of a wider array of expert inputs.

Text-guided Image Editing We use the MagicBrush dataset (Zhang et al., 2023a)for eval-
uation. Image quality is gauged using CLIP-I and DINO embeddings for similarity assess-
ment. Our baseline is the GPT3-augmented InstructPix2Pix (Brooks et al., 2022) model. The
results from both CLIP-I and DINO are presented in Tab. 6. These results illustrate the ca-
pability of our method to enhance the similarity between the edited image and the target
image, signifying the precision of our image editing technique. For a more comprehensive
evaluation of the editing quality, we have conducted a case study. Fig. 3 exhibits some
instances using MagicBrush. It is observed that non-compositional methods, i.e. Instruct-
Pix2Pix, tend to alter unrelated pixels, whereas compositional methods, i.e. VISPROG and
our model, offer more control. Furthermore, when compared to VISPROG, our method ex-
cels in two key areas: accurately pinpointing the region that requires editing, and adjusting
the image to the appropriate extent. This demonstrates the superiority of our method in
both localization and modification of the image.

4.4 Spatial-Temporal Video Reasoning

Methods Accuracy

Video-LLaVA (Lin et al., 2023) 30.38
EXOVIP w/o verification 37.88
EXOVIP 38.00

Table 7: Results of Spatial-Temporal Reason-
ing on AGQA.

We conducted experiments using the
subset of AGQA 2.0 dataset (Grunde-
McLaughlin et al., 2022). Our reference was
the Video-LLaVA (Lin et al., 2023), a top-
tier vision-language model known for its
superior performance on numerous bench-
marks. In our methodology, we address the
question by breaking it down into tempo-
ral and spatial components. For the tempo-
ral aspect, we aim to find the event or ac-
tion within a video. This is achieved by uniformly sampling frames from the video and
generating corresponding captions. We then compute the sentence similarity between these
captions and the input query. Subsequently, we identify the event by locating the video
segment with the highest similarity, utilizing a monotonic stack algorithm. By adopting
this approach, we can effectively mitigate the Out-of-Vocabulary (OOV) issue that plagues
current action classification models. Regarding the spatial component, it is predominantly
addressed by existing VQA models. The experimental outcomes, as presented in Tab. 7,
indicate that the compositional method yields strong performance. However, the benefits
brought by verification are limited. Upon further examination of the results and the un-
derlying reasoning paths, we observe that the majority of the unsuccessful cases can be
attributed to the performance of the VQA models, a trend that aligns with findings from
the NLVR task.

4.5 Discussion

4.5.1 Error analysis of VISPROG and EXOVIP

We manually analyze 100 randomly sampled failure cases on VISPROG. We find that there
are three typical reasons for the failures: (a) vision module prediction error; (b) LLM plan-
ning error; (c) others. We demonstrate the statistics of the failure cases in Fig. 4 (left). Fol-
lowing the application of our proposed framework, we reassessed the same cases in ??
(right) and were pleased to discover a reduction in module errors by 28.87%, and a de-
crease in planning errors by 42.35%. Nevertheless, our current strategy was unable to rec-
tify 69.8% of the errors. When juxtaposed with the data from Tab. 1, our method has en-
hanced VISPROG by 7.11%, which is lower than the improvement of the failure cases. This
outcome suggests that our approach may give rise to novel challenges. We further demon-
strate common errors of our method in Fig. 9 and Fig. 10. We find the majority of these
failure cases originate from the VQA module.

Additional error analysis Our methodology acknowledges the possibility that the inclu-
sion of verifiers might inadvertently increase the error rate. To counteract this, we have
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30.7%

44.0%

25.3%
17.7%

31.3%

20.8%

30.2%

Plan Error Module Error Other Error Correct Prediction

Figure 4: Distribution of the failure cases of original VISPROG (left), and distribution of the
failure cases of EXOVIP (right)

adopted a negative sampling approach, and we have integrated with a verification score
and the inherent self-corrective feature of LLMs. The efficacy of these combined strate-
gies in reducing the incidence of additional errors is evidenced by the results displayed in
Tab. 2. Nonetheless, while our approach successfully diminishes errors related to planning
and module execution, it can occasionally lead to the introduction of new errors. Moving
forward, we aim to enhance our system by incorporating a greater number of verifiers to
more effectively resolve these issues.

4.5.2 Method generalizability

Methods Accuracy

ViperGPT (Dı́dac et al., 2023) 45.47
ViperGPT+ExoViP 46.84

Table 8: Results for ViperGPT on GQA.

To validate the generalizability of our
method, we applied it to ViperGPT, which
composes available modules by generating
Python codes. We equip ViperGPT with
our method and test its performance on
the GQA dataset. The results, presented
in Tab. 8, reveal a less significant perfor-
mance boost compared to VISPROG. We at-
tribute this to ViperGPT providing only a
few demonstration examples and adjusting the parameters of the code-generation model
to deterministically generate subroutines. We believe this could be improved by introduc-
ing diverse demonstrations, similar to VISPROG.

5 Conclusion

In this work, we identify two key types of errors in existing compositional methods: plan-
ning errors and module errors. To address these errors, we introduce an innovative verifica-
tion framework EXOVIP. This framework verifies the correctness of vision module predic-
tions. It corrects module errors by calibration and refines the planning process through tree
searching. During this process, it considers both verification scores and the self-correctness
of LLM. Applying the EXOVIP to two existing models, we achieve performance improve-
ments across five different tasks. The results reinforce the promise and potential of EXOVIP
on various open-world compositional reasoning tasks, marking an important milestone in
the realm of multi-modal tasks involving complex reasoning.
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A Exoskeleton Algorithm

We demonstrate the overall algorithm of our method in Algorithm 1. There are mainly
two parts: step-by-step verification and exploration with reasoning trace. To be more spe-
cific, we fuse the self-correctness ability of LLM into the procedure of tree-based reasoning
trace searching, which has shown potential in calibrating the effectiveness of the searching
algorithm.

B Proof-of-concept Pilot Experiments

To evaluate the effectiveness of the verification modules, we try to find the relationship
between verification scores and accuracy. All experiments are applied to the GQA dataset.
We first disturb the examples in the demonstrations to get different plan results and cor-
responding verification scores. Specifically, we change the order of examples and select
different portions of examples with four settings. After evaluation, we calculate the mean
of verification scores of all steps. As is shown in Fig. 5, we are delighted to find the verifica-
tion scores positively contribute to final accuracy. However, the trend is decreasing, which
means when the verification scores increase to a certain extent, higher verification scores
do little contribution to the final accuracy.
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Algorithm 1: Exoskeleton Algorithm
Input: start step (e0), goal node (g), scaling factor (τ), verification size (K), rank size (P)
Output: Verified reasoning trace and intermedia results
openList← e0
closedList← empty list
path← empty list
while open list is not empty do

sort(openList, key = es)
Select top K steps from openList and put it in closedList and empty openList
rank(closedList, key = LLM(e))
Select top P steps to update closedList
for e in closedList do

if e is g then
path.add(e)
return path

else
openList.add(e.next)

end
end
for e in openList do

es = avg(eitem
s − eitem

n , ecap
s − ecap

n , evqa
s − evqa

n )
e← Veri f y(NORM(es, τ), e)

end
end
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Figure 5: Accuracy on GQA positively correlates with the verification scores.
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C Enhanced Verification through TRS
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Figure 6: Distribution of verification scores w. and w/o trace searching.

In 6, we present a graphical representation illustrating the relationship between the trace-
searching strategy and the verification score. The x-axis quantifies the verification score
associated with each trace, while the y-axis denotes the number of traces corresponding to
each score.

Q: Is the keyboard to the left or to the right of the book?

BOX0=LOC(image=IMG, object=“book”)
IMAGE0=CROP(bbox=BOX0)
BOX1=LOC(image= IMAGE0, object=“keyboard”)
# there is no keyboard in IMAGE0
# after verification, the program is corrected: 
# CROP ⟶ CROP_RIGHT
ANSWER0=COUNT(bbox= BOX1)
ANSWER1=EVAL(expression=“‘left’ 

if ANSWER0 > 0  else ‘right’”)

Q: What's the woman holding?

BOX0=LOC(image=IMG, object=“woman”) = NONE
# no box is returned, but there should be one
# after verification, this error is corrected
IMAGE0=CROP(bbox=BOX0)
ANSWER0=VQA(image=IMAGE0,

question=“what is the woman holding?”)

(a) module error (b) planning error

Figure 7: Existing methods suffer from two types of errors: (a) vision module prediction
error and (b) LLM planning error. Our verification modules help correct the errors.

Q: Are the clouds in the sky light and white?

BOX0=LOC(image=IMG, object=“sky”)
IMAGE0=CROP(bbox=BOX0)
ANSWER0=VQA(image=IMAGE0,
question=“What color are the clouds?”)
ANSWER1=EVAL(expression=“‘yes’ if ANSWER0 
== ‘light’ and ANSWER0 == ‘white’ else ‘no’”)
# This expression only returns ‘no’
# after verification, the program is corrected:
# ANSWER1=VQA(image=IMAGE0, 
question=“Are the clouds light?”)
# ANSWER2=EVAL(expression=“‘ yes’ if 
ANSWER0==‘white’ and ANSWER1 == ‘yes’ else 
‘no’”)

Q: Is the gray door made out of metal?

BOX0=LOC(image=IMG, object=“gray door”)
IMAGE0=CROP(bbox=BOX0)
ANSWER0=VQA(image= IMAGE0,
question=“What material is the gray door 
made of?”) = wood
# The door is actually made of metal
# after verification, this error is corrected
ANSWER1=EVAL(expression=“‘yes’ if 
ANSWER0 == ‘metal’  else ‘no’”)

(a) planning error (b) module error

IMAGE0

Figure 8: More examples of the two types of errors: (a) vision module prediction error and
(b) LLM planning error.

In Figs. 7 and 8, we show examples of failure cases of the original VISPROG.
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Q: Are both the shoe and the cloud the same color? 

BOX0=LOC(image=IMAGE, object=“shoe”)
IMAGE0=CROP(image=IMAGE, bbox=BOX0)
BOX1=LOC(image= IMAGE, object=“cloud”)
IMAGE1=CROP(image= IMAGE, bbox=BOX1)
ANSWER0=VQA(image=IMAGE0, question=“What color is the shoe?”)
# the result is wrongly predicted as white, current VQA model make a lot of errors on color 
recognition tasks. 
ANSWER1=VQA(image=IMAGE1, question=“What color is the cloud?”)
ANSWER1=EVAL(expression=“‘yes’ if ANSWER0 == ANSWER1 else ‘no’”) = yes

Figure 9: Common failure cases: some modules perform badly on certain tasks, e.g. the
VQA module performs poorly on color recognition tasks.

Q: Which place is it ?

ANSWER0=VQA(image=IMAGE0, question=“Which place is it?”) = zoo
# The reference answer is forest

Figure 10: Common failure cases: some queries can not be decomposed into sub-tasks. Our
method helps little with these non-decomposable queries.

D Efficiency Analysis

We present the average inference time on the GQA dataset. Generally, the temporal ex-
penditure of our tree-based search method significantly surpasses that of VisProg. How-
ever, the majority of the time is consumed by the call of the OPENAI API, an issue we
posit is intrinsic to analogous works Yao et al. (2023); Feng et al. (2023); Zhou et al. (2023).
When compared to Depth First Search/ Breadth First Search Yao et al. (2023) or Monte
Carlo Tree Search Feng et al. (2023); Zhou et al. (2023), we assert that our beam search-
based method can achieve an optimal equilibrium between efficiency and effectiveness.
In addition, when comparing with End-to-End model, we find that the most significant
contributor to the overall time cost is the Planning Time. We have determined that this de-
lay is largely attributable to Internet latency, as our system utilizes the GPT-3.5-turbo API.
We are confident that this latency can be mitigated by deploying the LLM locally, which
would reduce the dependency on network response times. Additionally, we are exploring
ways to enhance the parallelism of our system’s submodules, which we believe will further
improve efficiency.

Table 9: Average Inference Time on the GQA Dataset

Methods Total Infer. Time (s) Planning Time (s) Module Infer. Time (s)

BLIP2-Flant5-xxl 0.17 - 0.17
LLaVA-1.5-7B 0.45 - 0.45
VISPROG 1.59 1.10 0.49
EXOVIP 4.32 3.64 0.68
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E Implementation details

E.1 Visual modules.

COUNTLOC VQA EVAL

CROP CROPLEFT CROPRIGHT CROPABOVE

OWL-ViT BLIP len() eval()

PIL.crop() PIL.crop() PIL.crop() PIL.crop()

CROPBELOW

PIL.crop()

TAGLOC FILTER

OWL-ViT CLIP PIL.rectangle()

VQA EVAL

BLIP eval()

PART SEG

ChatGPT Maskformer

ALIGN

CLIP

SEG SELECT

Maskformer CLIP

REPLACE

Stable
Diffusion

SIM CAP

CLIP BLIP

FILTER

CLIP

VQA

BLIP

SIM

CLIP

CAP

BLIP

VQA

BLIP

SIM

CLIP

SIM

CLIP

Task Operation Modules Verification Modules

Compositional 
Image QA

Visual Grounding

Natural Language 
for Visual 
Reasoning

Abstract 
Reasoning

Text-guided Image 
Editing

SELECT

CLIP

Figure 11: The neural modules (green) and symbolic modules (pink) used in our experi-
ments.

We summarize the operation modules and the verification modules of different tasks in
Fig. 11. In practice, the candidate neural modules include OWL-ViT (Minderer et al., 2022),
CLIP (Radford et al., 2021), BLIP (Li et al., 2022b), ChatGPT, MaskFormer (Cheng et al.,
2021), Stable Diffusion (Rombach et al., 2022). In order to validate the effectiveness of our
method and eliminate the benefits of external knowledge such as more advanced vision-
language models which are trained on larger datasets. Both operation modules and verifi-
cation modules are selected from the same candidate neural module sets. In other words,
not all modules are verified on the mixture of all three types of modules.

E.2 LLM Prompts

We demonstrate the prompt for self-correctness of all five tasks.

Figure 12: Self-correctness prompt of compositional question answering.
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Figure 13: Self-correctness prompt of visual grounding.

Figure 14: Self-correctness prompt of natural language for visual reasoning.

Figure 15: Self-correctness prompt of text-guided image editing.

Figure 16: Self-correctness prompt of visual abstract reasoning.
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E.3 Details of Visual Abstract Reasoning

Images:

Parts:

'hull’
'periscope’
'propeller’
'torpedo tubes’
'ballast tanks’
'sonar equipment’
'conning tower'

PART
“submarine”

SEG

Image

Segments:

Query:

“submarine”

ALIGN
Parts, Segments

'conning tower’

'hull’

…

SELECT
“submarine”, Images

Figure 17: Implementation of abstract reasoning.

In Fig. 17, we demonstrate our implementation of compositional methods on KILOGRAM
dataset. Given an image, we segment it into several parts. At the same time, we adopt
LLM to parse the query to several components. After that, we match the visual and textual
components by their semantic similarity. Finally, we take the alignment score to retrieve
the best matched image.

Answer:Query:
man in hat
and robe

Images: Program:

PART

man in hat and robe

SEGS
man, hat, robe, head, 

arms, legs, feet

ALIGN

PARTS0, OBJ0
“man in hat and role”

PARTS0

OBJ0

Verify:

Image-Text Matching

hat, robe, head…

:

:

hat:0.6 robe:0.5 

hat:0.55 robe:0.4 

Figure 18: Implementation of EXOVIP on abstract reasoning.
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E.4 Implementation details

In practice, for the verification modules, we set the τ as 2.0 for LOC module, 1.5 for SELECT
module, and ALIGN module, 1.2 for other modules. For the negative sampling strategy,
we select words sharing semantic similarity less than 0.5 to construct the semantic opposite
vocabulary and randomly sample one semantic opposite for each answer. In the searching
process, we set up K as 4, and P as 2. To improve the efficiency of our search algorithm,
we set the branching factor as 3. To make the comparison fair, we use the same or fewer
examples in the prompts for our methods, and select the verification modules from the
operation modules. We apply our experiments on NVIDIA A100 GPU and NVIDIA 3090Ti
GPU.

F Qualitative study.

F.1 Qualitative examples

We additionally exhibit more examples that can be improved by our method. As is shown
in these examples, all five types of tasks could be further improved by our framework.

Q: What material is the cup to the left of the laptop, plastic or glass? 

BOX0=LOC(image=IMAGE, object=“laptop”)
IMAGE0=CROP(image=IMAGE, bbox=BOX0)
BOX1=LOC(image= IMAGE0, object=“cup”)
IMAGE1=CROP(image= IMAGE1, bbox=BOX1)
ANSWER0=VQA(image=IMAGE1,
question=“What material is the cup?”)
# the result is correctly predicted as plastic after 
verification
ANSWER1=EVAL(expression=“‘plastic’ if 
ANSWER0 == ‘plastic’ else ‘glass’”) = plastic

(b) ExoViP

BOX0=LOC(image=IMAGE, object=“laptop”)
IMAGE0=CROP(image=IMAGE, bbox=BOX0)
BOX1=LOC(image= IMAGE0, object=“cup”)
IMAGE1=CROP(image= IMAGE1, bbox=BOX1)
ANSWER0=VQA(image=IMAGE1,
question=“What material is the cup?”)
# the result is wrongly predicted as glass
ANSWER1=EVAL(expression=“‘plastic’ if 
ANSWER0 == ‘plastic’ else ‘glass’”) = glass

(a) VisProg

Figure 19: Qualitative study for GQA.

PARTS0=PART(query=“man in hat and robe”)
# man, hat, robe, head, arms, legs, feet
OBJ0=SEGS(image=IMAGE)
IMAGE0=ALIGN(image=IMAGE, object=
OBJ0,part=PARTS0 , bbox=“man in hat and robe”)
# the the ALIGN can not exactly match parts  

Q: man in hat and robe

(a) VisProg

PARTS0=PART(query=“man in hat and robe”)
# man, hat, robe, head, arms, legs, feet
OBJ0=SEGS(image=IMAGE)
IMAGE0=ALIGN(image=IMAGE, object=
OBJ0,part=PARTS0 , bbox=“man in hat and robe”)
# the the ALIGN can better match parts after 
verification

(b) ExoViP

Figure 20: Qualitative study for KILOGRAM.
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OBJ0=LOC(image=IMAGE, object=“zebra”)
OBJ1=FILTER(image=IMAGE, obejct=OBJ0,
query=“LEFT”)
OBJ1=FILTER(image=IMAGE, obejct=OBJ0,
query=“zebra”)
# redundant step
IMAGE0=TAG(image= IMAGE0, object= OBJ1)

Q: Tag the left zebra

OBJ0=LOC(image=IMAGE, object=“zebra”)
OBJ1=FILTER(image=IMAGE, obejct=OBJ0,
query=“LEFT”)
# remove redundant step after verification
IMAGE0=TAG(image= IMAGE0, object= OBJ1)

(a) VisProg (b) ExoViP

Figure 21: Qualitative study for RefCOCO.

ANSWER0=VQA(image =LEFT, question=“How 
many fur-trimmed fingerless mittens are in the 
image?”)
ANSWER1=VQA(image =RIGHT, question=“How 
many fur-trimmed half-mitts are in the image?”)
ANSWER2=VQA(image =LEFT, question=“Are 
there small embellishments dotting the front of 
the mitten?”)
ANSWER3=VQA(image =RIGHT, question=“Is the 
thumb part showing on the half-mitts?”)
ANSWER4=EVAL(expression= ANSWER0 == 1 
and not ANSWER1 and ANSWER2)
ANSWER5=EVAL(expression= not ANSWER0  
and ANSWER1 == 1 and not ANSWER3)
ANSWER6=EVAL(expression= ANSWER4 xor
ANSWER5)
# logic error

Q: The left image features a single fur-trimmed fingerless mitten with small embellishments dotting its front, and the 
right image shows a pair of fur-trimmed half-mitts with no thumb part showing.

ANSWER0=VQA(image =LEFT, question=“How 
many fur-trimmed fingerless mittens are in the 
image?”)
ANSWER1=VQA(image =RIGHT, question=“How 
many fur-trimmed half-mitts are in the image?”)
ANSWER2=VQA(image =LEFT, question=“Are 
there small embellishments dotting the front of 
the mitten?”)
ANSWER3=VQA(image =RIGHT, question=“Is 
there no thumb part showing on the mittens?”)
ANSWER4=EVAL(expression= ANSWER0 == 1 
and ANSWER2)
ANSWER5=EVAL(expression= ANSWER1 == 2 
and ANSWER3)
ANSWER6=EVAL(expression= ANSWER4 and 
ANSWER5)

(a) VisProg (a) ExoViP

Figure 22: Qualitative study for NLVR2.
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