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Abstract

We present a novel set of rigorous and computationally efficient topology-based
complexity notions that exhibit a strong correlation with the generalization gap
in modern deep neural networks (DNNs). DNNs show remarkable generalization
properties, yet the source of these capabilities remains elusive, defying the estab-
lished statistical learning theory. Recent studies have revealed that properties of
training trajectories can be indicative of generalization. Building on this insight,
state-of-the-art methods have leveraged the topology of these trajectories, partic-
ularly their fractal dimension, to quantify generalization. Most existing works
compute this quantity by assuming continuous- or infinite-time training dynam-
ics, complicating the development of practical estimators capable of accurately
predicting generalization without access to test data. In this paper, we respect the
discrete-time nature of training trajectories and investigate the underlying topologi-
cal quantities that can be amenable to topological data analysis tools. This leads
to a new family of reliable topological complexity measures that provably bound
the generalization error, eliminating the need for restrictive geometric assumptions.
These measures are computationally friendly, enabling us to propose simple yet
effective algorithms for computing generalization indices. Moreover, our flexible
framework can be extended to different domains, tasks, and architectures. Our ex-
perimental results demonstrate that our new complexity measures correlate highly
with generalization error in industry-standards architectures such as transformers
and deep graph networks. Our approach consistently outperforms existing topolog-
ical bounds across a wide range of datasets, models, and optimizers, highlighting
the practical relevance and effectiveness of our complexity measures.

1 Introduction

Generalization, a hallmark of model efficacy, is one of the most fundamental attributes for certifying
any machine learning model. Modern deep neural networks (DNN) display remarkable generalization
abilities that defy the current wisdom of machine learning (ML) theory [85, 86]. The notion can be
formalized through the risk minimization problem, which consists of minimizing the function:

R(w) := Ez∼µz
[ℓ(w, z)] , (1)
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Figure 1: We devise a novel class of complexity measures that capture the topological properties of
discrete training trajectories. These generalization bounds correlate highly with the test performance
for a variety of deep networks, data domains and datasets. Figure shows different trajectories (a)
embedded using multi-dimensional scaling based on the distance-matrices (b) computed using either
the Euclidean distance (∥ · ∥2) between weights as in [10] or via the loss-induced pseudo-metric (ρS)
as in [21]. (c) plots the average granulated Kendall coefficients for two of our generalization measures
(Eα and PMag(

√
n)) in comparison to the state-of-the-art persistent homology dimensions [10, 21]

for a range of models, datasets, and domains, revealing significant gains and practical relevance.

where z ∈ Z := X ×Y denotes the data, distributed according to a probability distribution µz on the
data space Z . In practice, as µz is unknown, ML algorithms focus on minimizing the empirical risk,

R̂S(w) =
1

n

n∑
i=1

ℓ(w, zi), (2)

where S := (z1, . . . , zn) ∼ µ⊗n
z := µz ⊗ · · · ⊗ µz , which means that (z1, . . . , zn) are independent

samples from µz . In many applications, the minimization of (2) is achieved by discrete stochastic
optimization algorithms, such as stochastic gradient descent (SGD) or the ADAM [40] method. Such
algorithms generate a sequence of iterates in Rd, denoted WS := {wk}k≥0, which depends on the
data S, the initialization w0 ∈ Rd, and some additional randomness U , e.g., the random batch indices
in SGD. The generalization error characterizing the model’s performance is then defined as:

GS(wk) := R(wk)− R̂S(wk). (3)

The empirical risk (2) typically has numerous local minima, which raises the question of how to
characterize their generalization properties. Recently, training trajectories (cf., Figure 1a) have been
shown to be paramount to answer this question [84, 28]. Indeed, these trajectories can quantify the
quality of a local minimum in a compact way, because they depend simultaneously on the algorithm,
the hyperparameters, and the data, which is crucial for obtaining satisfactory bounds [37]. A wide
family of trajectory-dependent bounds has been developed [84, 28, 50, 4, 36]. For instance, several
results on stochastic gradient Langevin dynamics [57, 64, 49], continuous Langevin dynamics [57]
and SGD [59] take into account the impact of the whole trajectory on the generalization error.

Parallel to these developments, several studies have brought to light the empirical links between
topological properties of DNNs and their generalization performance [58, 52, 66, 70, 83], hereby
making new connections with topological data analysis (TDA) tools [2]. These studies focus on
the structural changes across the different layers of the network [51] or on the final trained network
[66, 70, 83], and are almost exclusively empirical. This partially inspired a new class of trajectory-
dependent bounds focusing on topological properties of the trajectories. In particular, recent studies
[78, 21, 35, 22, 10, 3] have proposed to relate the generalization error to various kinds of intrinsic
fractal dimensions [26, 53] that characterize the learning trajectory. Informally, these bounds provide
the guarantee that with probability at least 1− ζ, we have:1

sup
w∈WS

GS(w) ≲

√
dim(WS) + IT + log(1/ζ)

n
, (4)

where dim(WS) denotes various equivalent fractal dimensions, in particular the persistent homology
dimension (PH-dim) [10, 21] and the magnitude dimension [3]. The term IT is an information-
theoretic quantity that takes different forms among different studies. Despite providing rigorous links

1We use ≲ in informal statements to indicate that absolute constants and/or small terms are missing.
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between the topology of the trajectory and generalization, these bounds have major drawbacks. First
and foremost, as noted in [75, 76, 13], fractal-trajectory bounds, such as Equation (4), do not apply to
discrete-time algorithms. This creates a discrepancy between these theoretical results and the TDA-
inspired methods to numerically evaluate them on commonly used discrete algorithms [10, 21, 3].
Additionally, existing bounds rely on intricate geometric assumptions, such as Ahlfors-regularity
[78, 35] or geometric stability [21], that are not realistic in a practical, discrete setting.

Previous attempts were made to address this discretization issue. Specifically, under the assumption
that the training dynamics possess a stationary measure µ∞

w|S for T → ∞ (T is the number of
iterations), it was shown in [13] that with probability 1− ζ over S ∼ µ⊗n

z and w ∼ µ∞
w|S , we have:

GS(w) ≲

√
dim(µw|S) + IT + log(1/ζ)

n
, (5)

where dim(µw|S) corresponds to the fractal dimension of the measure µw (see [67] for formal
definitions). While this was an important step, this bound only becomes practically relevant when the
number of iterations grows to infinity, which is never attained in real-life experiments. Other attempts
make use of so-called finite fractal dimensions [71] or fine properties of the Markov transition kernels
associated with the dynamics [35]. However, these studies also rely on impractical assumptions and
involve intricate quantities which make them not amenable to numerical evaluation.

Despite the theoretical limitations of existing topology-dependent generalization bounds, TDA-
inspired tools have been developed to numerically estimate the proposed intrinsic dimensions in
practical settings. Two particular methods have emerged and successfully demonstrate correlation
with the generalization error, based on persistent homology [10, 21] (PH-dim) and metric space
magnitude [3] (magnitude dimension); these two dimensions are equivalent for compact metric
spaces [3]. Because of the limitations discussed above, existing theories do not account for these
experiments, conducted with finite-time discrete algorithms. Moreover, existing empirical studies
[10, 21, 3, 78] only consider very simple models and small (image) datasets. Because of their lack of
theoretical foundations, it is not clear whether they could be extended to more practical setups.

Contributions. In this paper, we investigate the building blocks of PH and magnitude dimensions,
in order to propose new topology-inspired generalization bounds that rigorously apply to widely
used discrete-time stochastic optimization algorithms, and experimentally test our new topological
complexities2 on practically relevant DNN architectures. Our detailed contributions are as follows:

• We start by establishing the first theoretical links between generalization and a new kind of
computationally thrifty topological complexity measure, the α-weighted lifetime sums [73, 74].

• We propose and elaborate on another novel topological complexity, positive magnitude (PMag), a
slightly modified version of magnitude [46, 55]. We rigorously link PMag with the generalization
error, by relying on a new proof technique. Overall, our generalization bounds, rooted in TDA,
admit the following generic form:

sup
w∈WS

GS(w) ≲

√
(Topological complexity) + IT + log(1/ζ)

n
.

• We then provide a flexible computational implementation based upon dissimilarity measures
between neural nets (Figure 1b), which enables quantifying generalization across different architec-
tures and models, without the need for domain or problem-specific analysis as done in [39, 8].

• Unlike existing trajectory-based studies [10, 21] operating on small models, our experimental
evaluation is extensive. We consider several vision transformers [20] and graph neural networks
(GNN) [30] trained on multiple datasets spanning regular and irregular data domains (cf. Figure 1c).
Our results demonstrate that the novel measures we introduce correlate strongly with the test
performance across different architectures, hyperparameters and data modalities.

All the proofs of the main results are presented in the appendix, along with addi-
tional experiments. We will make our entire implementation publicly available under:
https://github.com/rorondre/TDAGeneralization.

2Our term “topological complexity” should not be confused with the homonym topological invariant.
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2 Technical Background

Our generalization indicators will be based upon α-weighted lifetime sums and magnitude, capturing
different topological features, as we shortly dicsuss below. Let (X, ρ) be a finite pseudometric space.

α-weighted lifetime sums. Persistent homology (PH) is an important concept in the analysis of
geometric complexes [11]. We focus on the persistent homology of degree 0 (PH0). Informally, it
consists in tracking the “connected components” of a finite set at different scales. We provide in
Sections A.3 and A.4 exact definitions of this notion. For simplicity, we present here an equivalent
formulation of the α-weighted lifetime sums based on minimum spanning trees (MST) [42, 73].

A tree over X is a connected acyclic undirected graph (a set of edges) whose vertices are the points in
X . Given an edge e linking the points a and b, we define its cost as |e| := ρ(a, b). An MST T on X
is a tree minimizing the total cost

∑
e∈T |e|. The α-weighted lifetime sums Eρ

α are then written as:

∀α ≥ 0, Eρ
α(X) :=

∑
e∈T

|e|α.

The celebrated persistent homology dimension (PH-dim) [1], of a compact pseudometric space (A, ρ)
is then defined as dimρ

PH(A) = infα≥0 {∃C > 0,∀Y ⊂ A finite, Eα(Y ) ≤ C}. The PH-dim has
been proven to be related to generalization error for different pseudometrics ρ [10, 21].

Magnitude. Magnitude is a recently introduced topological invariant [46] which encodes many impor-
tant invariants from geometric measure theory and integral geometry [46, 55, 56]. Magnitude can be
interpreted as the effective number of distinct points in a space [46]. For s > 0, we define a weighting
of the modified space (X, sρ) as a map β : X → R, such that ∀a ∈ X,

∑
b∈X e−sρ(a,b)β(b) = 1.

Given such a weighting β, the magnitude function of (X, sρ) is defined as

Magρ(sX) :=
∑

a∈X
β(a). (6)

The parameter s > 0 should be interpreted as a “scale” through which we look at the set (X, ρ). We
present in Appendix A.5 additional properties of this function. Note that magnitude is usually defined
in metric spaces; we show in Appendix B.2 that we can seamlessly extend it to the pseudometric
setting. Magnitude can be extended to (infinite) compact spaces [46, 55] and, as for PH, an intrinsic
dimension, the magnitude dimension, can be defined from magnitude by the formula dimρ

Mag(A) =

lims→∞
logMag(sA)

log(s) . It is known that dimρ
PH and dimρ

Mag coincide for compact metric spaces
[56, 73, 3]. As a result, dimρ

Mag has also been proposed as a topological generalization indicator [3].

Total mutual information. Prior intrinsic dimension-based studies relied on “mixing” assumptions
([78, Assumption H5], [10, Assumption H1], [76, 13]) or various mutual information terms [35, 21]
to take into account the statistical dependence between the data and the training trajectory. Recently,
a new framework was proposed in [22] to unify these approaches by proving data-dependent uniform
generalization bounds using simpler and smaller information-theoretic (IT) terms. By leveraging these
methods, we derive new generalization bounds involving the same IT terms for all our introduced
topological complexities. More precisely, they take the form of a total mutual information between the
data S and the training trajectory WS . This term is denoted I∞(S,WS) and measures the dependence
between S and W . We refer to Appendix A.1 and [35, 81] for exact definitions.

3 Main Theoretical Results
We now introduce our learning-theoretic setup (section 3.1) before delving into our main theoretical
results in Sections 3.2 and 3.3.

3.1 Mathematical setup

Random trajectories. The primary goal of our theory is to prove uniform3 generalization bounds
over the training trajectory {wk, k ≥ 0}. We are mostly interested in the behavior near local minima
of R̂S . To this end, we observe the trajectory between iterations t0 and T , where t0 ∈ N is the number
of iterations before reaching (near) a local minimum and T ≥ t0 is the total number of iterations.

3By “uniform”, we mean the worst error over a set; it should not be confused with uniform convergence.
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Therefore, we consider the set Wt0→T := {wi, t0 ≤ i ≤ T}, which we call the random trajectory.
Note that Wt0→T is a set, i.e., it does not contain any information about the time-dependence.
Moreover, our setup allows the random times t0 and T to depend on the data S through the choice of
a stopping criterion as opposed to being fixed predetermined times.

General Lipschitz conditions. The topological quantities described in section 2, as well as the
intrinsic dimensions introduced in prior works [78, 10, 3, 21, 22], require a notion of distance between
parameters (inRd) to be computed. In the case of fractal-based generalization bounds, two cases have
already been considered: the Euclidean distance [78] and the data-dependent pseudometric defined in
[21]. In our work, we emphasize that both examples are particular cases of a more general family of
pseudometrics on the parameter space Rd. In order to fully characterize this family of pseudometrics,
we define the data-dependent map LS : Rd −→ Rn by LS(w) = (ℓ(w, z1), . . . , ℓ(w, zn)). To fit
into our framework, a pseudometric must satisfy the following general Lipschitz condition.
Definition 3.1 ((q, L, ρ)-Lipschitz continuity). For any pseudo-metric ρ on Rd and q ≥ 1, we will
say that ℓ is (q, L, ρ)-Lipschitz in w when ∀w,w′ ∈ Rd, ∥LS(w)−LS(w

′)∥q ≤ Ln1/qρ(w,w′).

A wide variety of distances have been proposed to compare the weights of two DNNs [19]. The above
condition restricts our analysis to a family of pseudometrics containing the following examples.
Example 3.2 (Data-dependent pseudometrics). For any p ≥ 1, we define the pseudometrics
ρ
(p)
S (w,w′) := n−1/p ∥LS(w)−LS(w

′)∥p. The case ρ(1)S corresponds to the “data-dependent

pseudometric” used in [21]; we will denote it ρS := ρ
(1)
S .

Example 3.3 (Euclidean distance). If ℓ(w, z) is L-Lipschitz continuous in w, i.e., |ℓ(w, z) −
ℓ(w′, z)| ≤ L∥w − w′∥ for all z, then ℓ is (p, L, ∥·∥2)-Lipschitz continuous for every p ≥ 1.

Assumptions. Given an (q, L, ρ)-Lipschitz continuous (pseudo-)metric, our approach relies only on
a single assumption of a bounded loss function. For the case of the pseudometric ρS (Example 3.2),
this assumption is already made in [21, 22].
Assumption 1. We assume that the loss ℓ is bounded in [0, B], with B > 0 a constant.

The boundedness of ℓ is classically assumed in the fractal / TDA literature [21, 35, 22]. In particular,
this assumption is valid for the usual 0− 1 loss. In [21], it is shown that the proposed theory seems
to be experimentally valid even for unbounded losses. Our experimental findings suggest that this
observation also applies to our work.

3.2 Persistent homology related generalization bounds

In contrast to all existing fractal dimension-based bounds [78, 10, 13, 21], we propose new general-
ization bounds that apply to practical discrete stochastic optimizers with a finite number of iterations.
To this end, our key idea involves replacing the intrinsic dimension with intermediary quantities that
are used to compute them numerically. Following [10, 3], this points us towards the two quantities,
Eα and Mag, defined in section 2. We are now ready to state the first generalization bound in terms
of the α-weighted lifetime sums, where we denote Eρ

α for Eρ
α(Wt0→T ).

Theorem 3.4. Let ρ be a pseudometric on Rd. Supposes that Assumption 1 holds and that ℓ is
(q, L, ρ)-Lipschitz, for q ≥ 1. Then, for all α ∈ [0, 1], with probability at least 1− ζ, we have:

sup
t0≤i≤T

GS(wi) ≤ 2B

√
2 log (1 +Kn,αE

ρ
α)

n
+

2B√
n
+ 3B

√
I∞(S,Wt0→T ) + log(1/ζ)

2n
,

with Kn,α := 2 (2L
√
n/B)

α.

The term I∞(S,Wt0→T ) is the total mutual information (MI) term that is defined in Sections 2 and
A.1. It measures the statistical dependence between the random set Wt0→T and the data S ∼ µ⊗n

z .
Such MI terms appear in previous works related to fractal-based generalization bounds [78, 13, 21, 35].
Our proof technique, presented in Appendix B.5, makes use of a recently introduced PAC-Bayesian
framework for random sets [22] to introduce this MI term. It is also shown in [22] that the MI term
I∞(S,Wt0→T ) is tighter than those appearing in the aforementioned works.

We highlight the fact that Theorem 3.4 is fundamentally different from the persistent homology
dimension (PH-dim) based bounds studied in [10, 21]. Indeed, while the growth ofEα for increasing
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Figure 2: Left: Comparison of Mag and PMag (for s =
√
n), for different (pseudo)metrics (ViT

on CIFAR10). Right: relative variation of the quantities Eα(Wt0→T ) and Mag(
√
nWt0→T ), with

respect to the proportion of the data used to estimated ρ(1)S (ViT on CIFAR10).

finite subsets of the trajectory are used in [10] to estimate the PH-dim, it does not provide any formal
link between the generalization error and the value ofEα. Therefore, the above theorem could not be
cast as a corollary of these previous studies. Another important characteristic of the above theorem
(as well as the results of section 3.3) is to be non-asymptotic, i.e., it is true for every n ∈ N∗. This is
an improvement over the fractal dimensions-based bounds presented in [78, 10, 21, 22].

3.3 Positive magnitude (PMag) and related generalization bounds

Recent preliminary experimental results displayed a correlation between the generalization error of
DNNs and magnitude [3]. To provide a theoretical justification for this behavior, it would be tempting
to mimic the proof of Theorem 3.4 and build on existing covering arguments. However, while lower
bounds of magnitude in terms of covering numbers have been derived in [56], they appear to be
impractical in our case. Another possibility would be to use the magnitude dimension bounds of
[3]. Yet, this could not apply to our finite and discrete setting where the dimension is 0. Hence, we
identify a new quantity, closely related to magnitude, while being more relevant to learning theory.
With the notations of section 2, we fix a finite metric space (X, ρ) and a weighting βs : X −→ R of
(X, sρ), where s > 0 is a “scale” parameter. We define the positive magnitude as

∀s > 0, PMagρ(sX) :=
∑

a∈X
βs(a)+, (7)

where x+ := max(x, 0) denotes the positive part of x. To avoid harming the readability of the
paper, we refer to Appendix B.3 for the extension of PMag to the pseudometric case. Based on
a new theoretical approach, we prove that the positive magnitude can be used to upper bound the
generalization error (see the proof in Appendix B.7). This leads to the following theorem:
Theorem 3.5. Let ρ be a pseudometric such that (W, λρ) admits a positive magnitude (according to
Definition B.5) for every λ > 0. We assume that ℓ is (q, L, ρ)-Lipschitz continuous with q ≥ 1. Then,
for any s > 0, we have with probability at least 1− ζ that

sup
t0≤i≤T

GS(wi) ≤
2

s
logPMagρ (LsWt0→T ) + s

B2

n
+ 3B

√
I∞(S,Wt0→T ) + log(1/ζ)

2n
.

We now present a quick sketch of the proof of Theorem 3.5, in order to highlight its key elements.

Proof. (Sketch) Let W be a data-dependent random compact set (e.g., Wt0→T ). The proof is based on
two technical elements. The first is a framework recently proposed in [22] for uniform generalization
bounds for random sets. These results give that with high probability we have a bound of the form:

sup
w∈W

GS(w) ≲ Rad(ℓ,Wt0→T ) +

√
I∞(S,Wt0→T ) + log(1/ζ)

n
,

where Rad(ℓ,Wt0→T ) is the celebrated Rademacher complexity [5], whose definition is given in
Appendix A.2. The second technical element is a new link between the Rademacher complexity of a
compact set and its positive magnitude. This result is discussed in Appendix B.7.
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MODEL-DATASET VIT-CIFAR10 SWIN-CIFAR100 GRAPHSAGE-MNIST GATEDGCN-MNIST

COMPL.-METRIC ψLR ψBS Ψ τ ψLR ψBS Ψ τ ψLR ψBS Ψ τ ψLR ψBS Ψ τ

dimPH - ρS [21] 0.93 -0.67 0.13 0.61 0.69 -0.47 0.11 0.50 -0.28 -0.26 -0.27 -0.35 0.15 0.07 0.11 -0.06
Mag(

√
n) - ρS 0.68 0.62 0.65 0.64 0.56 0.47 0.51 0.53 0.69 0.71 0.70 0.79 0.85 0.97 0.91 0.88

Mag(0.01) - ρS 0.41 0.58 0.50 0.47 0.31 0.47 0.39 0.33 0.24 0.10 0.17 0.36 0.35 0.35 0.35 0.49
PMag(

√
n) - ρS 0.91 0.67 0.79 0.85 0.69 0.47 0.58 0.62 0.59 0.46 0.53 0.59 0.73 0.97 0.85 0.84

PMag(0.01) - ρS 0.86 0.40 0.50 0.80 0.71 0.58 0.64 0.68 0.24 0.10 0.17 0.36 0.35 0.35 0.35 0.49
Eα - ρS 0.95 0.67 0.81 0.86 0.69 0.47 0.58 0.62 0.67 0.74 0.70 0.77 0.48 0.97 0.72 0.74

dimPH - ∥·∥2 [10] 0.93 -0.67 0.13 0.61 0.69 -0.47 0.34 0.51 0.32 0.81 0.56 0.51 -0.12 0.70 0.29 0.33
Mag(

√
n) - ∥·∥2 [3] 0.95 -0.59 0.13 0.73 0.71 -0.57 0.07 0.53 0.75 0.77 0.76 0.61 0.77 0.76 0.77 0.52

Mag(0.01) - ∥·∥2 [3] 0.95 -0.60 0.17 0.72 0.69 -0.44 0.12 0.53 0.75 0.74 0.74 0.60 0.77 0.42 0.60 0.47
PMag(

√
n) - ∥·∥2 0.95 -0.59 0.18 0.73 0.71 -0.57 0.07 0.53 0.75 0.74 0.74 0.60 0.77 0.93 0.85 0.54

PMag(0.01) - ∥·∥2 0.55 0.71 0.63 0.58 0.64 0.51 0.58 0.46 0.75 -0.05 0.35 0.51 0.60 -0.47 0.06 0.26
Eα - ∥·∥2 0.95 -0.31 0.32 0.76 0.63 0.75 0.74 0.74 0.75 0.74 0.74 0.60 0.77 0.93 0.84 0.54

dimPH - 01 [21] 0.95 -0.20 0.37 0.72 0.64 0.04 0.34 0.51 0.0 -0.13 -0.07 0.0 0.14 0.00 0.07 0.00
Mag(

√
n) - 01 0.95 0.67 0.81 0.88 0.69 0.47 0.58 0.62 0.64 0.68 0.66 0.75 0.78 0.85 0.82 0.82

Mag(0.01) - 01 0.84 0.33 0.59 0.75 0.61 0.27 0.44 0.50 0.13 0.11 0.12 0.26 0.10 0.10 0.10 0.25
PMag(

√
n) - 01 0.95 0.64 0.80 0.89 0.69 0.47 0.58 0.62 0.63 0.65 0.64 0.74 0.76 0.83 0.79 0.80

PMag(0.01) - 01 0.84 0.36 0.60 0.76 0.65 0.49 0.57 0.54 0.13 0.11 0.12 0.26 0.10 0.10 0.10 0.25
Eα - 01 0.95 0.67 0.81 0.87 0.69 0.47 0.58 0.61 0.63 0.68 0.66 0.74 0.78 0.85 0.82 0.82

Table 1: Correlation coefficients associated with the different topological complexities.

The IT term (I∞) in the above result is the same as in Theorem 3.4. Given a fixed (finite) set W
and a big enough s, we establish Mag(sW) = PMag(sW). Moreover, we present in Figure 2a an
empirical comparison of Mag and PMag, showing a small and almost monotonic relation between
both quantities. Therefore, Theorem 3.5 may be seen as the first theoretical justification of the
empirical relationship between magnitude and the generalization error observed in [3].

A natural choice for the scale s would be s ≈ √
n, ensuring a convergence rate in n−1/2. However,

our empirical evaluations (see section 5, in particular, Table 1) revealed that small values of s (we
typically use s = 10−2) can also provide good correlation with the generalization error. This could
be explained by the fact that PMag(sW) → 1 as s → 0, i.e., the bound may not diverge when
s→ 0. For our topological complexities to be computationally efficient, we focus our experiments
on fixed values of s (in

{√
n, 10−2

}
). We further analyze the sensitivity of part of our experiments

to the value of s in Appendix D.2.2. We will omit the trajectory and denote Mag(s) and PMag(s).
Remark 3.6. As it is explained in Appendix B.7, a key element in the proof of Theorem 3.5 is a newly
discovered link between the celebrated Rademacher complexity [5] and positive magnitude. This
is an additional contribution of our work, which might be of independent interest. Moreover, this
relation extends beyond the case of finite sets and applies in particular to compact trajectories (or
hypothesis sets) W . We refer the reader to Remark B.15 and lemma B.16 for more details.

4 Computational Considerations

We now detail the numerical estimation of the topological complexities mentioned above.

Computation of Eα. We compute Eα by using the giotto-ph library introduced in [65, 7]. This
setup is inspired by PH frameworks used in [10, 21]. This technique uses the equivalent formulation
of Eα in terms of PH (see Appendix A.3 for details). Theorem 3.4, and its proof (presented in
Appendix B.6) suggest that the relevant value of α is 1; similar to [10], this is what we used in our
experiments.

Computation of Mag and PMag. Different methods exist to evaluate magnitude [47]. We use the
Krylov approximation method [72], which is based on pre-conditioned conjugate gradient iteration,
implemented in the Python library krypy.linsys.Cg to solve for the magnitude weights. We then
sum over the weights to compute Mag, and sum over the positive weights to obtain PMag.

Distance matrix estimation.. Given a finite set (i.e., a trajectory) W ⊂ Rd, the calculation of our
topological complexities requires computing the distance matrix Dρ := (ρ(w,w′))w,w′∈W . For large
DNNs, this may become challenging. Depending on ρ, we propose the following solutions.

• Case 1: If ρ is the Euclidean distance, for large DNNs (in our case for the transformer experiments)
storing the whole trajectory is challenging. In that case, we use sparse random projections inspired
by the Johnson-Lindenstrauss lemma [82] to project the trajectories onto a lower-dimensional
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subspace. We use the implementation in scikit-learn [63] so that, with high probability, the
relative variation of the distance matrices is at most 5%, see Appendix A.7 for details.

• Case 2: If ρ is of the form ρ
(q)
S as in Example 3.2, then the computation of Dρ requires the

evaluation of the model on the entire dataset at each iteration, which becomes intractable for large
DNNs. In [21, Figure 3], the authors show that the PH-dim based on the pseudometric ρS = ρ

(1)
S

is very robust to a random subsampling of a training dataset, i.e. when ρS is replaced by ρB with
B ⊆ S and |B|/|S| ≪ 1. Figure 2b shows that Eα and positive magnitude are also robust to this
subsampling. We mainly used |B|/|S| = 10%. We refer the reader to Appendix C.2 for details.

Generalization error. Our theory, like many trajectory-based studies [78, 10, 21, 3] predicts upper
bounds on the worst-case generalization error over the trajectory Wt0→T . Yet, experiments in
previous works mainly reported the error at the last iteration. To estimate the worst-case error in
a computationally feasible way, we periodically evaluated the test risk between times t0 and T
(every 100 iterations) and reported (worst test risk - final train risk) as the error in our
experiments. This is consistent as we start the trajectory Wt0→T from a weight wt0 already in a
local minimum. Our main conclusions are still valid if the final generalization gap is used. This
observation, which is to the best of our knowledge new, is briefly discussed in Appendix D.2.1.

5 Empirical Analysis
In what follows, we study our bounds on a variety of datasets and model architectures. We first
explain the setup and the evaluation metrics before delving into the results and analysis.

Setup. Given a DNN and a dataset, we start from a pre-trained weight vector wt0 , yielding high
training accuracy on classification tasks. By varying the learning rate (η) and the batch size (b), we
define a grid of 6 × 6 hyperparameters. For each pair (η, b), we compute the training trajectory
Wt0→T for 5×103 iterations. Unless specified, we use the ADAM optimizer [40]. Based on Wt0→T ,
we estimate distance matrices as described in section 4. For the sake of clarity, we focus on 3 relevant
pseudometrics: (i) the Euclidean distance ∥·∥2 as in [10], (ii) the data-dependent pseudometric ρS ,
used in [21, 3], and (iii) the 01-loss distance. For (ii), ρS is computed based on the surrogate loss
used in training (e.g., the cross-entropy loss), while the reported generalization error is always based
on accuracy gap (01-loss), which is of interest in most applications (see section 4). For the last one
(iii) ρ is defined as in Example 3.2, but with ℓ being the 01-loss; we call it 01-pseudometric and
denote it by 01 in the tables. This last setup matches exactly our theoretical requirements.

In terms of DNN architectures, we focus on practically relevant models, while previous studies mainly
considered small networks [10, 35, 21, 76]. We examine two different families of architectures. The
first family consists of vision transformers (ViT [79], CaiT [80], Swin [48], see Table 2), each
evaluated on both the CIFAR10 [44] and CIFAR100 [43] datasets. Moreover, we also tested our
theory on graph neural networks (GNN) architectures, namely GatedGCN [12] and GraphSage [32]
trained on the Super-pixel MNIST dataset [23]. To the best of our knowledge, this is the first time
these kinds of topological complexities have been evaluated on transformers and GNNs. We ran the
experiments on 18 NVIDIA 2080Ti (11 GB) GPUs.

Granulated Kendall’s coefficients.. We assess the correlation between our complexities and the
generalization error by using the granulated Kendall’s coefficients (GKC) [37]. While the classical
Kendall’s coefficients (KC) [38] (denoted τ ) measures the correlation between two quantities, it
may fail to capture their causal relationship. Instead, one “granulated” coefficient is defined in [37]
for each hyperparameter (i.e., ψLR for η and ψBS for b); it measures the correlation when only
this hyperparameter is varying. In Table 1, we report τ , ψLR and ψBS, and the averaged GKC,
Ψ := (ψLR +ψBS)/2, for several models, datasets and topological complexities. In Figures 4a and
4b, we represent our topological complexities in the plane (ψBS,ψLR); the red square indicates the
region of best correlation (the coefficients are in [−1, 1], their sign is the sign of the correlation). It
should be noted that a scaling of this constant B, coming from Assumption 1, would not impact the
correlation between generalization and topological complexities that is observed in our experiments.

5.1 Analysis
As explained above, we focus our main experiments on the quantities E1, Mag(

√
n), PMag(

√
n),

Mag(10−2) and PMag(10−2), each computed for the 3 pseudometrics discussed above (∥·∥2, ρS ,
01). In the interest of comparison, we also compute the PH-dim (proposed in [10] for the ∥·∥2 and in
[21] for ρS), which is thus tested for the first time on transformers and GNNs.
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Figure 3: ρS-based complexity measures vs. generalization gap for a ViT trained on CIFAR10:
dimPH (left), PMag(

√
n) (middle), and E1 (right).

Performance on vision transformers. We see in Table 1 and Figure 3 (additional graphical
representation is given in Appendix D.1) that our proposed topological complexities consistently
outperform the PH dimensions across several vision transformer models and datasets. This suggests
that PH-dim, previously tested only on small architectures, is less scalable to industry-standards
models with more parameters. Figure 4a, including all (model, dataset) pairs for the pseudometric
ρS , reveals important observations. First, we notice that the GKC of our topological complexities
are both positive and close to 1, indicating that they are indeed good measures of generalization. We
note that for most models and datasets, dimPH has a small or negative ψBS, indicating that it has less
ability to explain generalization for varying batch-sizes. As it was observed in [21] for PH-dim, our
complexities computed from the pseudometric ρS correlate very well with the generalization gap
while this gap is based on the 01 loss.

Performance on GNNs. An important aspect of our framework is the ability to seamlessly encapsu-
late different data domains. In particular, the possibility of using different pseudometrics can help
define topological complexities that naturally take into account the internal symmetries of GNNs,
without any model-specific analysis [39, 8]. The results of Table 1 and Figure 4a confirm that our
proposed topological complexities outperform PH-dim and correlate strongly with the generalization
error for GNNs. Additionally, it may be observed that Mag(

√
n) performs significantly well for

GNNs, and in particular better than PMag(
√
n). This points us towards the idea that further theory

would be desirable to formally relate magnitude to the generalization error in that case4.

Comparison of the topological complexities. In Table 1 and Figures 3 and 4a, it can be seen thatE1

and PMag(
√
n) perform equally well for the image and graph experiments across multiple datasets,

models, and data domains. We see in Table 1 that most topological complexities perform better with
data-dependent metrics (i.e., ρS and 01) than with the Euclidean distance, for transformer-based
experiments. This extends results obtained for PH-dim in [21], for smaller architectures. However,
the poor performance of Euclidean-based complexities may also be partially caused by the projections
applied to the Euclidean distance matrices to make them memory-wise computable (see section 4).
This is a remaining limitation of our algorithms. On the other hand, the 01 and ρS data-dependent
pseudometrics seem to yield similar performance in all experiments.

Ablations. In Figure 4b, we reveal that changing the optimizer has little effect on the observed
correlation (for the same model and dataset). Interestingly, we note that the PH-dim, computed with
pseudometric ρS and obtained from the SGD trajectories, exhibits high GKCs. This observation
agrees with the results in [21]. Figure 3 further displays the typical behavior of several topological
complexities for ViT and CIFAR10. In addition to the correlation of our proposed complexities being
stronger than for the PH-dim, we observe that Eα and PMag(

√
n) seem to better correlate with the

generalization gap for small learning rates. Finally, it is consistently observed in Table 1 and Figures
4a and 4b that using a relatively high value of the (positive) magnitude scale (s =

√
n) yields better

correlations than small values (s = 10−2). However, both cases still provide satisfying correlation,
comforting the robustness of magnitude as a generalization indicator.

Due to limited space, we present all the correlation coefficient of one transformer model ViT for
CIFAR10 and Swin for CIFAR100 in Table 1 as illustrative examples for each dataset. The remaining
results appear in the Appendix, Tables 4, 6, 3 and 5, and they all follow a similar trend. Further
empirical results and illustrations of this behavior are provided in Appendix D.

4We shall underline that, while Mag with the Euclidean distance was empirically proposed as a complexity
measure in [3], a theoretical justification for Mag results in Table 1 is still missing for moderate values of s.
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Figure 4: Granulated Kendall coefficients for several models, datasets and topological quantities.
Note that our framework is directly applicable to graph networks.

6 Conclusion
In this paper, we proved novel generalization bounds based on several topological complexities
coming from TDA, namely α-weighted lifetime sums and a new variant of metric space magnitude,
which we called positive magnitude. Compared to previous studies, we require fewer assumptions and
operate in a discrete setting in which our proposed quantities are fully computable. Our algorithms are
flexible enough to be seamlessly integrated with diverse data domains and tasks. These advantages
of our framework allowed us to create a computationally cheap experimental setup, as close as
possible to the theoretical setup. We thus provided a comprehensive suite of experiments with several
industry-relevant architectures across vision transformers and graph neural networks, which have not
been explored yet in this literature. We show that our proposed topological complexities correlate
well with the generalization error, outperforming the previously studied intrinsic dimensions.

Limitations & future work. The main limitation of our theory is the lack of understanding of the
IT terms, while they are still smaller than most prior works. The presence of this term renders our
bounds not fully computable in practice. Indeed, we are not aware of existing techniques to evaluate
the MI between random sets and the dimensionality of Wt0→T (billions of parameters) could make a
direct computation intractable. Nevertheless, our work focuses on improving the topological part of
the existing bounds. Our main goal is to demonstrate a correlation with the generalization error rather
than directly quantifying the generalization. Our experiments show that the introduced complexities
are important and meaningful in addition to being amplified in the first part of the bound, as the
dependence is explicit. Moreover, a better understanding of the behavior of positive magnitude for
small values of the scale factor s would be a necessary improvement. Regarding our experiments, a
refinement of the estimation techniques of the topological complexities would be beneficial. Despite
experimenting with practically relevant architectures, our future works also include scaling up our
empirical analysis to include larger models and datasets, in particular large language models, which
are still beyond the scope of this study.
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Appendix

We now provide additional technical details and proofs that are omitted from the paper, followed by
experimental evidence complementing our main paper. We organize the appendix as follows:

• Appendix A presents additional technical background related to information theory,
Rademacher complexity, and the various topological quantities that appear in our work.

• In Appendix B, we present the omitted proofs of all our theoretical results, as well as a few
additional theoretical contributions.

• In Appendix C, we show the experimental details needed to reproduce our experiments.
• Finally, Appendix D is dedicated to additional empirical results.

A Additional technical background

A.1 Information-theoretic quantities

The following definition is a precise definition of the total mutual information term that appears in our
main theoretical results. The reader may consult [81, 35, 22] for further information on this notion.
Definition A.1 (Total mutual information). Let X and Y be two random elements defined on a
probability space (Ω,F ,P) (note that the codomains of X and Y may be distinct). We define the
total mutual information between X and Y by the following formula:

I∞(X,Y ) = log

(
sup
A

PX,Y (A)

PX ⊗ PY (A)

)
.

Such a term has already been used in the fractal-based generalization literature [35, 22]. Other works
used intricate variants of this total mutual information term [21, 10, 3, 13]. We stress the fact that our
proposed bounds are simpler.

A.2 Rademacher complexity

Rademacher complexity [6, 77] is a central tool in learning theory. As part of our theory uses this
notion, we now provide its definition and introduce some notation.
Definition A.2 (Rademacher complexity on a hypothesis set). Let us fix a dataset S ∈ Zn, a set
W ⊂ Rd and ϵ = (ϵ1, . . . , ϵn) some iid Rademacher random variable.5 Whenever it is defined, we
will call Rademacher complexity of ℓ over W the following quantity:

Rad(ℓ,W, S) :=
1

n
Eϵ

[
sup
w∈W

n∑
i=1

ϵiℓ(w, zi)

]
.

Rademacher complexity has already been used in [21, Theorem 3.4] to relate the generalization error
to the so-called data-dependent fractal dimension. Part of our theory is based on a recent extension of
such arguments in the data-dependent setting [22].

A.3 Persistent homology

The goal of this short subsection is to present a few notions of persistent homology, which is necessary
for a better understanding of our contributions.

Persistent homology [24, 14, 11] is an important subfield of TDA, capable of providing myriad of
new insights for analysing data by extracting meaningful topological features. It has demonstrated its
usefulness in a very diverse set of applications from biology [60, 25], to materials science [34], finance
[45], robotics [9], sensor networks [18] and a lot more [61]. The types of datasets which are amenable
to this kind of analysis are finite metric spaces (known as point-cloud datasets), images, networks
and also level-sets of functions. More recently, several studies have brought to light empirical links
between persistent homology and DNNs [70, 17, 66]. In particular, recent studies have related the

5A Rademacher random variable is defined by P(ϵi = 1) = P(ϵi = −1) = 1/2.
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worst-case generalization error to several concept of intrinsic dimensions defined through persistent
homology [10, 21]. As mentioned in the introduction, our goal is to extend these last studies to more
practical settings.

In general, persistent homology is defined for any degree k ∈ N (denoted PHk). Intuitively, PHk

keeps track of the number of “holes of dimension k” in a set when looked at different scales. However,
in our work and as in [10, 21], we only use PH0, whose presentation is simpler. In this section, to
avoid harming the readability of the paper, we only present a high-level introduction to PH0 that is
sufficient to understand our work. The interested reader may consult [11, 15, 87] for a more in-depth
introduction to persistent homology.

We first start by introducing briefly homology, which is a classical concept in algebraic topology.
We only introduce the most essential concepts for understanding persistent homology. For a more
detailed introduction, please consult [33].
Definition A.3. A simplicial complex is a set K of finite sets closed under the subset relation: if
σ ∈ K and τ ⊂ σ, then τ ∈ K.

In the above definition, σ is a simplex (plural simplices) and τ is a face of σ, its coface.
Definition A.4. An abstract simplicial complex K is a finite collection of simplices where a face of
any simplex σ ∈ K is also a simplex in K.
Definition A.5. A simplicial k-chain is the formal sum of k-simplices,

N∑
i=1

= riσi, (8)

where each ri ∈ R, where R is a fixed commutative ring with additive identity 0 and multiplicative
identity 1, and σi ∈ K.

Kk is the set of simplicial k-chains with addition over R, which is an R-module. Then, the set of all
k-simplices of the complex K is a set of generators for Kk. For each generator σ, the boundary of σ
is the sum of all (k − 1)-faces of σ.
Definition A.6. The boundary of a k-simplex σ = (x0, . . . , xk) is the (k − 1)-chain

∂k(σ) =

k∑
i=0

(−1)i(x0, . . . , x̂i, . . . , xk), (9)

where (x0, . . . , x̂i, . . . , xk) is the (k − 1)-simplex spanned by all vertices without xi.

It is common that the coefficients for homology are considered to be restricted to Z2, which is the
field with 2 elements, 0 and 1, where 1 + 1 = 0. However, the theory extends to homoogy with
coefficeints in any field (and since every field is a ring, the definitions in terms of rings are more
general).
Definition A.7. A chain complex is a sequence of abelian groups Ak with homomorphisms (called
boundary maps) ∂k : Ak → Ak−1, such that ∂k−1 ◦ ∂k = 0 for all k.

We should note that when considering coefficients in Z2, a k-chain can be seen as a finite collection
of k-simplices.

Introduce topological invariants: simplicial homology groups and Betti numbers.
Definition A.8 (Simplicial Homology group). The n-th (simplicial) homology group of a finite
simplicial complex K is

Hn = ker ∂n/im∂n+1, (10)

where ker and im are the kernel and image respectively of the boundary operator.

In order to define the simplicial complexes of use in TDA, we need to first understand what a nerve is.
Definition A.9 (Nerve). A simplicial complex associated to a collection of sets is called a nerve.
The sets are the vertices of the complex, and a simplex belongs to a complex iff its vertices have a
non-empty intersection, Nrv = {α ⊆ S | ∩A∈αA ̸= ∅}.
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Definition A.10 (Čech complex). The Čech complex ofX for radius r is Čechr(X) = Nrv{B(x, r) |
x ∈ X}, where B(x, r) is the closed ball of radius r ≥ 0, centered at x.

In other words, the Čech complex is the nerve of the ball neighbourhoods of a set of points X ⊆ Rn.
The Čech complex faithfully captures the topology of the space, but it is not computed in practice
due to its high computational cost. Instead, a different complex called Vietoris-Rips (VR) is used due
to ease of construction for higher dimensions. It can be shown that the VR complex is not always
homotopy equivalent to the Čech complex, and therefore it can be seen as an approximation.

We first need to introduce the notion of a clique complex to explain what the VR is.
Definition A.11 (Clique complex). The clique complex for a graph G = (V,E) consists of all cliques
of G, which are all simplices α ⊆ V for which E contains all edges of α.

Now we have explicitly states all the necessary components in order to define the main complex used
in TDA, the Vietoris-Rips complex.
Definition A.12 (Vietoris-Rips complex). The Vietoris-Rips complex of X for radius r is the clique
complex of the 1-skeleton of the Čech complex of X and r, Ripsr(X) = {α ∈ X | ||u− v|| ≤ 2r}
for all u, v ∈ α.

Now that we have defined the most important complex in TDA, we proceed to explain how we can
derive important topological information at multiple scales by introducing the concept of a filtration.
Definition A.13. Given a simplicial complex K, a filtration is a totally ordered set of subcomplexes
Ki of K, indexed by nonnegative integers, such that for i ≤ j, Ki ⊆ Kj .
Definition A.14 (Filtered simplicial complex). A simplicial complex, K, together with a filtration
(function f : K → R such that f(σ) ≤ f(τ) whenever σ is a face of τ ). The sublevel set at a value
r ∈ R is f−1(−∞, r], which is a subxomplex of K. Let r0 < r1 < · · · < rm be the values of the
simplices, and Ki = f−1(−∞, ri], then we call K0 ⊆ K1 ⊆ · · · ⊆ Km the sublevel set filtration of
f .

When you start with a simplicial complex K and you filter it according to a filtration f , it is clear
that the homology of Kr evolves as the radius r increases. For example, new connected components
can be formed, loops can appear or disapper, cavities can form. What persistent homology does, and
where the importance of the filtering comes in is that now we have the tools to track the topological
changes associated with the different stages of the filtering process, and to associate a lifetime to
them (track when a topological feature has first appeared and at which stage of the filtration it will
disappear). This essential topological information is recorded in a set of intervals known as barcodes,
which can be represented as a multiset of points in R2, where the coordinates correspond to the birth
and death points of each interval.

A.3.1 Persistent homology of degree 0 (alternative approach)

For the rest of the this section, we only focus on homology in dimension 0, and provide an alternative
and perhaps easier to understand interpretation. Please note that the following definition is a simplified
and non-standard (though equivalent) definition of PH0.

Definition A.15 (Persistent homology of degree 0 (PH0)). Let (X, ρ) be a finite metric space and N
its cardinality. For each time6 t ≥ 0, we construct an undirected graph Gt, whose edges are given by:

∀x, y ∈ X, {x, y} ∈ Gt ⇐⇒ ρ(x, y) ≤ δ.

There exists a finite set of times 0 < t1 · · · < tk < +∞ such that the number of connected
components inGti changes compared toGt for t < ti. Let ci be the number of connected components
in Gti . By convention we set c0 = N and t0 = 0 and define ni := ci − ci−1. PH0 is then defined as
the following multiset (the notation {{·}} denotes multisets):

PH0 :=


t1, . . . , t1︸ ︷︷ ︸

n1 times

, t2, . . . , tk, . . . , tk︸ ︷︷ ︸
nk times


 .

6We use the term time for the scalar t, as it is classically done in the study of persistent homology. Note that
this has nothing to do with the number of iterations appearing in the rest of the paper.
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Remark A.16 (Vietoris-Rips filtration). The above is a simplified high-level definition of PH0. More
formally, the construction of the family of graphs Gt corresponds to the construction of the so-called
Vietoris-Rips filtration of X , of which we only kept the simplices of dimension 1, see [11] for more
details.

We now use PH0 to give the definitions of the quantities of interest in our work. The following is a
definition of the quantity Eα already mentioned in section 2, but seen through the lens of persistent
homology. As it will be explained in Appendix A.4, these definitions are equivalent.
Definition A.17 (α-weighted lifetime sums). With the same notations as in Definition A.15, we
define the α-weighted lifetime sums as:

∀α ≥ 0, Eρ
α(X) :=

∑
t∈PH0

tα.

Remark A.18 (“birth” and “death” times). PHk is usually defined as a multiset of birth and death
times, tracking the appearance and disappearance of “holes of dimension k” during the construction
of the Vietoris-Rips filtration of X . In the particular case of PH0, all birth times are 0 and the times
that we constructed correspond to the death times.

We end this section by giving the definition of the PH dimension, which has been shown to be
theoretically and empirically related to the generalization error of neural networks in prior works
[10, 21].
Definition A.19 (Persistent homology dimension of degree 0). Given a compact metric space (X, ρ),
we define the PH dimension of degree 0 by:

dimρ
PH(X) := inf {α ≥ 0, ∃C > 0,∀A ⊆ X finite, Eα(A) ≤ C} .

It has been shown in [42, 73] that for any compact metric space, the PH dimension defined above is
equal to the celebrated upper box-counting dimension [26, 54].

A.4 Minimum spanning tree

The persistent homology dimension used in existing generalization bounds [10, 21] is closely related
to another notion of intrinsic dimension, called minimum spanning tree (MST) dimension [42], in the
sense that the PH and MST dimensions of bounded metric spaces are identical. The link between
persistent homology and MST is even deeper than the equality between the induced dimensions, as
noted by [73]. In this section, we define quantities related to MSTs which will play an important role
in our proofs.

In this section let us fix a finite metric space (X, ρ). Let us first specify our notations for trees. A
tree T on X is a connected undirected graph. We represent T by its set of edges, which are denoted
a→ b (or equivalently b→ a as the graph is undirected). For an edge e of the form a→ b, we define
its length by |e| = ρ(a, b).
Definition A.20 (Minimum spanning tree). Let us define the cost of a tree by the sum of the length
of its edges, i.e.,

EMST
1 (T ) :=

∑
e∈T

|e|.

An MST of X is defined as a tree with minimal cost. A consequence of the greedy algorithm to find
such an MST [16] is that an MST T is also minimal for any of the following costs:

EMST
α (T ) :=

∑
e∈T

|e|α,

with α ≥ 0.

Our interest in this notion comes from several results that are summed up in the following theorem.
The reader can refer to [1, 73, 11] for more details.
Theorem A.21 (Link between MST and persistent homology). There is a bijection between the two
following multisets:
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• The multiset of the lifetimes in the persistent homology of degree 0 of the Vietoris-Rips
complex of X .

• The multiset of the length of the edges of an MST of X .

Therefore, if we fix some α ≥ 0, the weighted α-sum associated to the persistent homology of degree
0 of the Vietoris-Rips complex of X is equal to the cost Eα of an MST of X , ie:

EMST
α (T ) = Eα(X).

In all the following, we will use the notation Eα to denote both quantities.

A.5 Magnitude

Let us restate formally a few standard definitions. The reader may refer to [46, 55, 56] for more
details on the notions of magnitude, weighting, and positive definite metric spaces. In this section, we
fix a finite metric space (X, ρ). Some of the presented concepts will be later extended to pseudometric
spaces in Appendix B.2.

As before, the similarity matrix [46] of X is defined by M(a, b) = e−ρ(a,b), for a, b ∈ X . We now
define weightings and magnitude of X , according to [46, Section 2.1].
Definition A.22 (Weighting and magnitude). A weighting of X is a function β : X −→ R such that

∀a ∈ X,
∑
b∈X

e−ρ(a,b)β(b) = 1.

If such a weighting exists, the magnitude of X is defined by:

Mag(X) :=
∑
b∈X

β(b).

It is easily seen that this definition is independent of the choice of weighting β. When a weighting
exists, we say that X “has magnitude”.

Based on such a definition, it is natural to inquire, whether such a weighting exists. This question
has been studied by several authors [46, 55, 56]. This question appears to be related to the notion of
positive definite space, which we now define, according to [46].
Definition A.23 (Positive definite space). X is positive definite if the similarity matrix M is positive
definite.

It is clear that positive definite spaces have magnitude. More interestingly, we have the following
result, which ensures that most metric spaces considered in this study are positive definite.
Theorem A.24 ([46, 55]). Let p ∈ [1, 2] and d ≥ 1, every finite subset of (Rd, ∥·∥p) is positive
definite.

A.6 Covering and packing numbers

In this section, we fix a compact pseudometric space (X, ρ) and give definitions of covering and
packing numbers. These quantities have long been of primary interest in learning theory, in particular
through the classical covering arguments for Rademacher complexity [77, 69]. More recently, limits
of covering arguments have been leveraged by several authors to derive uniform generalization
bounds in terms of fractal dimensions [78, 35, 13, 21, 22], which we aim to improve in this study.

For x ∈ X and r > 0, we denote the closed ball centered at x and or radius r by B̄r(x) :=
{y ∈ X , ρ(x, y) ≤ r}. We can now define covering and packing.
Definition A.25 (Covering number). Let δ > 0, the covering number Nρ

δ (X) is the cardinality of a
minimal set of points N such that:

X ⊆
⋃
x∈N

B̄δ(x).

Remark A.26. There exist several conventions for the definition of such numbers [26, 53, 82], all of
which are equivalent up to absolute constants and in particular induce the same fractal dimensions on
X (see [26]).
Definition A.27 (Packing number). Let δ > 0, the covering number Nρ

δ (X) is the cardinality of a
maximal set of disjoint closed balls with centers in X .
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A.7 About Johnson-Lindenstrauss lemma

In our implementation of Euclidean-based topological quantities, we use sparse random projections
to project the weight vectors from Rd to a lower dimensional subspace. This is necessary because
of memory constraints. Indeed, storing the full trajectory Wt0→T ⊂ Rd (in our experiments
T − t0 = 5× 103) can become intractable for large models.

Given a finite set of points W ⊂ Rd and ϵ > 0. Let N ≥ O
(

log |W|
ϵ2

)
, Johnson-Lindenstrauss

lemma [82, 27] ensures the existence of a linear map P : Rd −→ RN such that:

∀w,w′ ∈ W, (1− ϵ) ∥w − w′∥2 ≤ ∥Pw − Pw′∥2 ≤ (1 + ϵ) ∥w − w′∥2 .

In practice, the linear maps suggested by this result can be obtained through subgaussian random
projections [82, Section 9.3].

In our work, as the purpose of Johnson-Lindenstrauss embeddings is mainly memory optimization,
we have to rely on sparse random projections. We use the implementation provided in scikit-learn
[63]. More precisely, we used a relative variation ϵ of 5%.

Finally, it should be noted that these projection techniques were only used for the vision transformer
experiments, as the GNNs that we used have a small enough number of parameters to avoid the use
of random projections.

A.8 A note on the connection to Topological Deep Learning

Topological deep learning (TDL) is a rapidly evolving field that uses topological features to understand
and design deep learning models [62, 31]. Our topological complexity measures can be seen as a
direction towards addressing the Open Problem 7 mentioned in [62] concerning the discovery of
topological properties of internal representations that are linked to generalization.

B Omitted proofs of the theoretical results

In this section, we present the proofs of our main theoretical contributions. We divide our proofs into
two groups of subsections:

• Sections B.1,B.2 and B.3 focus on the extension (in a very natural way) of the quantities
appearing in our bounds in pseudometric spaces. The main outcome of this analysis is the
definition of positive magnitude in the pseudometric case. Note that Appendix B.1 is not
a contribution of this paper. We placed it in this section to improve the readability of the
paper.

• In sections B.4, B.5, B.6 and B.7, we present the proof of our main theoretical results.

Before, proving our main results, we define the notion of metric identification, which will be used in
several of the following subsections. This is the same setting that was used in [21] to naturally extend
the persistent homology dimension to pseudometric spaces.
Definition B.1 (Metric identification). Let (X, ρ) be a pseudometric space. We can define an
equivalence relation on X by a ∼ b ⇐⇒ ρ(a, b) = 0. The associated quotient space, which is
denoted X/∼ is a metric space for the naturally induced metric, which we still denote ρ.7 We will
also use the canonical projection,

π : X −→ X/∼.

These notations will be used throughout the text.

B.1 Persistent homology and MST in pseudometric spaces

In this short subsection, we first restate results proven in [21], regarding persistent homology in
pseudometric spaces. The main result is the following proposition, which has been proven inside the
proof of [21, Lemma B.9].

7Indeed, if a ∼ b, then we have ∀c ∈ X, ρ(a, c) = ρ(b, c).
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Proposition B.2 ([22]). Let (X, ρ) be a finite pseudometric space and α ≥ 0, then we have:

Eα(X) = Eα (X/∼)

where the pseudometric ρ (and its metric identification) have been omitted from the notation.

Based on Theorem A.21, the above result is also true when Eα represents the cost of a MST of X .

B.2 Magnitude in pseudometric spaces

In this section, we fix (X, ρ) a finite pseudometric space. We denote by X/∼ its metric identification
and by π : X −→ X/∼ the canonical projection.

We directly extend Definition A.22 to the pseudometric case. In order for this definition to make
sense in our context, we first need to verify that it provides a well-posed definition of magnitude.
This follows from the following lemma.

Lemma B.3. We assume that the finite pseudometric space (X, ρ) has magnitude. Then magnitude
is independent of the choice of weighting.

Proof. The proof is straightforward and identical to the metric case. Let β, β′ be two weightings, we
have: ∑

a∈X

β(a) =
∑
a∈X

∑
b∈X

e−ρ(a,b)β′(b)β(a) =
∑
b∈X

β′(b)
∑
a∈X

e−ρ(a,b)β(a) =
∑
b∈X

β′(b).

In the following theorem, we show that magnitude is invariant through metric identification.

Theorem B.4 (Invariance of magnitude through metric identification). X has magnitude if and only
if X/∼ has magnitude, in which case we have:

Mag(X) = Mag (X/∼) .

Proof. We decompose X into equivalence classes as:

X =
∐

ā∈X/∼

ā =:
∐
i∈I

āi,

where
∐

denotes disjoint union and the points (ai)i∈I ∈ XI represent each equivalence class. We
denote by ā the equivalence class of a ∈ X .

Let β : X −→ R be any function. We have:

∀a ∈ X,
∑
b∈X

e−ρ(a,b)β(b) =
∑
i∈I

e−ρ(ā,āi)
∑
b∈āi

β(b). (11)

=⇒ : If X has magnitude, then we take β to be a weighting of X , we define:

∀ā ∈ X/∼, β̄(ā) :=
∑
b∈ā

β(b).

By Equation (11), β̄ is a weighting of X/∼.

⇐= : if β̄ is a weighting of X/∼, then we define:

∀a ∈ X, β(a) :=
1

|ā| β̄(ā),

where |ā| denotes the cardinality of ā. By Equation (11), β is a weighting of X .
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B.3 Definition of positive magnitude in the pseudometric case

Let us extend our new notion of positive magnitude in finite pseudometric spaces. This is a rather
complicated task. Indeed we need to ensure that the positive magnitude is independent of the choice
of weighting, which is not true in general. For this reason, we restrict our definition to pseudometric
spaces whose metric identification is positive definite and we choose one particular weighting.
Definition B.5 (Positive magnitude in finite pseudometric spaces). Let (X, ρ) be a finite pseudometric
space whose metric identification X/∼ is positive definite. Let β̄ : X/∼ −→ R be a weighting of X/∼,
then we define the positive magnitude of X , denoted PMag, by:

PMag(X) =
∑

x̄∈X/∼

β̄(x̄)+,

where x+ := max(x, 0) denotes the positive part of x. We will say that X admits a positive
magnitude if its metric identification X/∼ is positive definite.

Note that X/∼ admits a unique weighting because it is positive definite. However, X still admits
several weightings in general. The above definition ensures that the definition of positive magnitude
is independent of any choice of weighting. For the need of our proofs, we will need to introduce
weightings in pseudometric spaces, whose sums of positive parts yield the positive magnitude. This
is possible by using the following definition, which corresponds to a “good” choice of weighting in
finite pseudometric spaces.
Definition B.6 (Canonical weighting). Let (X, ρ) be a finite pseudometric space whose metric
identification X/∼ is positive definite. Let β̄ : X/∼ −→ R be a weighting of X/∼, we define the
canonical weighting β0 : X −→ R on X by:

∀a ∈ X, β0(a) :=
1

|π(a)| β̄(π(a)),

where π : X −→ X/∼ is the canonical surjection.

The following lemma is then obvious but crucial to some of our theoretical results.
Lemma B.7. With the notation of the previous definition, we have:

PMag(X) =
∑
x∈X

β0(x)+.

The next proposition is a consequence of Theorem A.24, it shows that the pseudometrics considered
in practice in our work (and in our experiments) admit a positive magnitude.

Proposition B.8. Let p ∈ [1, 2] and S ∈ Zn, then every finite subset of (Rd, ρ
(p)
S ) admits a positive

magnitude, and therefore it also has a canonical weighting.

Proof. Let W := {w1, . . . , wN} be a finite set in Rd. We have

∥LS(w)−LS(w
′)∥p = n1/pρ

(p)
S (w,w′).

Therefore, if we denote by w̄ the equivalence class of w in the metric identification, it is clear that
w̄ = w̄′ ⇐⇒ LS(w) = LS(w

′). Hence, the map φS := n−1/pLS naturally extends to an isometry
between metric spaces:

W/∼
∼−→ φS(W) ⊂

finite
Rn.

By Theorem A.24, the finite set φS(W) is positive definite, hence it is also the case of W/∼. Therefore
W admits a positive magnitude by definition.

B.4 Warm-up: covering bounds

The following is deduced from the transcription of the results of [22] to our setting. It is the starting
point of our persistent homology-based analysis.
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Theorem B.9. Let ρ be a pseudometric on Rd. Suppose that Assumption 1 holds and that ℓ is
(q, L, ρ)-Lipschitz, for q ≥ 1. Then, for all δ > 0, with probability at least 1− ζ over µ⊗n

z ⊗ µ⊗∞
u ,

sup
t0≤i≤T

GS(wi) ≤ 2Lδ + 2B

√
2 logNρ

δ (Wt0→T )

n
+ 3B

√
I∞(S,Wt0→T ) + log(1/ζ)

2n
.

The proof of this theorem will be given in the next subsection. Before discussing this proof, a few
remarks are in order.

Covering bounds, such as B.9 have been used in [78, 13, 10, 21] to introduce fractal dimensions
(more precisely through the notion of upper box-counting dimension) into the generalization bounds.
This is done via the following definition of the aforementioned upper box-counting dimension:

dim
ρ

B(X) := lim sup
δ→0

logNρ
δ (X)

log(1/δ)
.

By using a similar procedure, we see that our framework could be used to introduce intrinsic
dimensions associated to a wide range of pseudometrics, as soon as they satisfy a (q, L, ρ)-Lipschitz
continuity assumption.

However, arguments based on these intrinsic dimensions only make sense in the limit T → ∞,
which makes little sense in practical settings. To address this issue, we take inspiration from two
other notions that are equal to the upper box-counting dimension (and therefore lay the ground of
the numerical approximation of this dimension), namely the PH-dimension [42, 73, 10, 21] and the
magnitude dimension [55, 3]. Our approach is to replace the intrinsic dimensions by the “intermediary
quantities” used to define them. This leads to the results presented in the next two subsection.

B.5 Proof of Theorem B.9

Before going to the proof of Theorem B.9, we specify our theoretical setup, which is the one
introduced in [22]. In this section, we prove our results in the case T < +∞. However, note that one
could consider T = +∞ without much technical difficulties.

The setup is the following: let (F (Rd), T ) denote the set of all finite subsets of Rd, endowed with a
σ-algebra T .

We consider the following probability distribution on F (Rd):

∀A ∈ T , π(A) :=
∫
Zn

ρS(A)dµ
⊗n
z (S). (12)

As it is discussed in [22, Section 5.4], we make the following technical measure-theoretic assumption.
Assumption 2. The probability measure µ⊗n

z is a strictly positive Borel measure. Moreover, for
every A ∈ T , the map S 7→ ρS(A) is continuous.

The following example highlights the fact this is a very mild assumption.
Example B.10. If the data space Z is countable and the data distribution µz has no null mass, then
the above assumption is automatically satisfied with respect to the discrete topology.
Theorem B.9. Let ρ be a pseudometric on Rd. Suppose that Assumption 1 holds and that ℓ is
(q, L, ρ)-Lipschitz, for q ≥ 1. Then, for all δ > 0, with probability at least 1− ζ over µ⊗n

z ⊗ µ⊗∞
u ,

sup
t0≤i≤T

GS(wi) ≤ 2Lδ + 2B

√
2 logNρ

δ (Wt0→T )

n
+ 3B

√
I∞(S,Wt0→T ) + log(1/ζ)

2n
.

Proof. Let us fix some ζ ∈ (0, 1). First note that thanks to Assumption 2, we have that ρS is
absolutely continuous with respect to π, µ⊗n

z -almost surely. Therefore, we can introduce its Radon-
Nykodym derivative, denoted by dρS/dπ.

Thanks to the above notation, we can apply the data-dependent Rademacher complexity bound of
[22, Theorem 10] to obtain that with probability at least 1− ζ, we have, for any λ > 0:

sup
t0≤i≤T

(
R(wi)− R̂S(wi)

)
≤ 2Rad(ℓ,Wt0→T , S) +

1

λ

(
dρS
dπ

(Wt0→T ) + log(1/ζ)

)
+ λ

9B2

8n
,
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with Rad(ℓ,Wt0→T , S) a Rademacher complexity term, defined by:

Rad(ℓ,Wt0→T , S) := Eϵ

[
sup

w∈Wt0→T

1

n

n∑
i=1

ϵiℓ(w, zi)

]
,

where ϵ := (ϵ1, . . . , ϵn) is a vector of independent centered Bernoulli random variables.

By [22, Lemma 16], we have almost surely that:

dρS
dπ

(Wt0→T ) ≤ I∞(Wt0→T , S).

Therefore, by optimizing the choice of the parameter λ in the above equation, we have that:

sup
t0≤i≤T

(
R(wi)− R̂S(wi)

)
≤ 2Rad(ℓ,Wt0→T , S) + 3B

√
I∞(S,Wt0→T ) + log(1/ζ)

2n
. (13)

We now perform a covering argument very similar to classical covering arguments for Rademacher
complexity[77]. Let us fix some δ > 0 and introduce (x1, . . . , xNρ

δ (Wt0→T )) the centers of a minimal
δ-covering of Wt0→T for pseudometric ρ. For anyw ∈ Wt0→T , there exists j such that ρ(w, xj) ≤ δ.
Therefore we have:

sup
w∈Wt0→T

1

n

n∑
i=1

ϵiℓ(w, zi) ≤ sup
1≤j≤Nρ

δ (Wt0→T )

1

n

n∑
i=1

ϵiℓ(xj , zi) +
1

n

n∑
i=1

ϵi(ℓ(w, zi)− ℓ(xj , zi))

≤ sup
1≤j≤Nρ

δ (Wt0→T )

1

n

n∑
i=1

ϵiℓ(xj , zi) +
1

n

n∑
i=1

|ℓ(w, zi)− ℓ(xj , zi)|

≤ sup
1≤j≤Nρ

δ (Wt0→T )

1

n

n∑
i=1

ϵiℓ(xj , zi) + n−1/q ∥LS(w)−LS(xj)∥q ,

where the last line comes from Hölder’s inequality.

We can now apply Massart’s lemma on the first term and the (q, L, ρ)-Lipschitz continuity of ℓ on
the second term, this gives us:

Rad(ℓ,Wt0→T , S) ≤ Lδ +B

√
2 logNρ

δ (Wt0→T )

n
,

which concludes the proof.

B.6 Persistent homology bounds

We now present the proofs of our persistent homology-based bounds, ie, the results of section 3.2.

The following lemma is a pseudometric version of a classical result of fractal geometry [26].
Lemma B.11 (Covering and packing in pseudometric spaces). Let (X, ρ) be a pseudometric space,
δ > 0, and

{
x1, . . . , xPδ(X)

}
a maximal δ-packing of X for pseudometric ρ. Then we have:

Nρ
2δ(X) ≤ P ρ

δ (X).

Proof. Let us fix δ > 0 and let (x1, . . . , xPρ
δ (X)) be centers of a maximal packing of X with closed

δ-balls. Let us assume that:

X\
⋃

1≤i≤Pρ
δ (X)

B̄2δ(xi) ̸= ∅,

so that we can take some x0 belonging to the above non-empty set. Now let us fix i ∈ {1, . . . , P ρ
δ (X)}

and w ∈ B̄δ(xi). By the triangle inequality and the definition of w and x0, we have:

ρ(x0, xi)︸ ︷︷ ︸
>2δ

≤ ρ(x0, w) + ρ(w, xi)︸ ︷︷ ︸
≤δ

.
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Therefore, we have ρ(x0, w) > δ, and hence B̄δ(xi) ∩ B̄δ(x0), so that we construct a bigger
δ-packing, by adding x0 to (x1, . . . , xPρ

δ (X)), which is absurd.

Therefore, we have X\⋃1≤i≤Pρ
δ (X) B̄2δ(xi) = ∅, hence the result.

The next lemma asserts that Eα is increasing (with respect to the inclusion of sets), if and only if
α ≤ 1. This is the reason why we require α ∈ [0, 1] in Theorem 3.4.
Lemma B.12. Let (X, ρ) be a non-empty finite pseudometric space, α ∈ [0, 1] and δ > 0. Then we
have:

Eρ
α(X) ≥ P ρ

δ (X)

2
δα

Proof. We refer to Figure 5 for a graphical illustration of the main technical elements of this proof.

In the case where P ρ
δ (X) = 1, the result is obvious. In the rest of the proof we assume that

P ρ
δ (X) ≥ 2

In all the following, we fix α ∈ [0, 1] and δ > 0. We also denote P := P ρ
δ (X). Without loss of

generality, we can assume P ≥ 2.

We fix T an MST of X , represented by a set of edges denoted x→ y, with x, y ∈ X2 (note that we
identify x→ y and y → x). It is a classical result that there are |X| − 1 edges. For an edge e of the
form a→ b, we denote its length by |e| := ρ(a, b).

For a, b ∈ X , with a ̸= b, we denote by {a→ b} the shortest path between a and b. More precisely,
we represent it as a list of edges, denoted a = a0 → a1 · · · → aK = b, for some K. When the
context is clear, we identify {a→ b} to the set of its edges a→ b.

Let us introduce (x1, . . . , xP ) a maximal δ-packing of X by closed.

For every i ∈ {1, . . . , P}, as T is connected, there exists yi ∈ X such that yi /∈ B̄δ(xi) and yi is the
only point in the path {xi → yi} that does not belong to the ball B̄δ(xi).

For each i, we denote ei the only edge in {xi → yi} to which yi belongs, i.e. ei is of the form
zi → yi, with zi ∈ B̄δ(xi). By construction, those edges ei are the only ones that can be shared by
several paths {xi → yi}.

Let us introduce the following set of indices:

I := {i ∈ {1, . . . , P} , ∀j ̸= i, ei /∈ {xj → yj}} , K := {1, . . . , P} \I.

Let us consider i ∈ K. Let us assume that we have j, j′ ∈ {1, . . . , P} such that ei ∈ {xj → yj}
and ei ∈ {xj′ → yj′}. If we denote ei as zi → yi, we have that zi ∈ B̄δ(xi), by definition of yi.
Therefore, by definition of yj , we have zi = yj (because B̄δ(xi) ∩ B̄δ(xj) = ∅). We have similarly
zi = yj′ and thus yj = yj′ . By definition of yj and yj′ we also have yi ∈ B̄δ(xj) ∩ B̄δ(xj′), which
is absurd, by definition of packing. We conclude the following:

∀k ∈ K, ∃!j ̸= i, ei ∈ {xj → yj} .
For k ∈ K, we denote the corresponding j by φ(k).

By definition of K, it is clear that φ(k) ∈ K. Moreover, as yφ(i) = zi ∈ B̄δ(xi), this implies that
φ2(i) = i. Therefore, we have constructed an involution,

φ : K −→ K,

such that ∀k ∈ K, φ(k) ̸= k. This implies that the cardinality of K is even and that we can write
K = K1

∐
K2, with:

|K1| = |K2|, φ(K1) = K2.

The outcome of this construction is that we now have disjoint paths given by the (xi → yi)i∈I and
the (xk → xφ(k))k∈K1 . Therefore, we get the following lower bound on Eα(X).

Eα(X) ≥
∑
i∈I

∑
e∈{xi→yi}

|e|α +
∑
k∈K1

∑
e∈{xk→xφ(k)}

|e|α.
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As α ∈ [0, 1], we have that:

Eα(X) ≥
∑
i∈I

 ∑
e∈{xi→yi}

|e|

α

+
∑
k∈K1

 ∑
e∈{xk→xφ(k)}

|e|


α

.

By the triangle inequality, and by definition of packing, we have:

Eα(X) ≥
∑
i∈I

δα +
∑
k∈K1

δα = δα(|I|+ |K1|) ≥
1

2
P ρ
δ (X)δα,

which concludes the proof.

Figure 5: Geometric representation of the proof of Lemma B.12. It represents a point cloud (wi)i,
the centers of the 3 packing balls (blue) and the minimum spanning tree T (red), so that the sum of
the lengths of the edges of T is exactly E1, see Appendix A.

Theorem 3.4. Let ρ be a pseudometric on Rd. Supposes that Assumption 1 holds and that ℓ is
(q, L, ρ)-Lipschitz, for q ≥ 1. Then, for all α ∈ [0, 1], with probability at least 1− ζ, we have:

sup
t0≤i≤T

GS(wi) ≤ 2B

√
2 log (1 +Kn,αE

ρ
α)

n
+

2B√
n
+ 3B

√
I∞(S,Wt0→T ) + log(1/ζ)

2n
,

with Kn,α := 2 (2L
√
n/B)

α.

Proof. For better clarity, we assume T < +∞. Let us fix some ζ ∈ (0, 1), δ > 0, and α ≥ 0. By
Theorem B.9, we have, with probability at least 1− ζ:

sup
t0≤i≤T

(
R(wi)− R̂S(wi)

)
≤ 2Lδ + 2B

√
2 logNρ

δ (Wt0→T )

n
+ 3B

√
I∞(S,Wt0→T ) + log(1/ζ)

2n
.

We now bound the covering number appearing in the above equation. By Lemma B.12, we have:

Eρ
α(Wt0→T ) ≥ 2−α−1

[
P ρ
δ/2(Wt0→T )− 1

]
δα.

Moreover, by Lemma B.11, we have:

Eρ
α(Wt0→T ) ≥ 2−α−1 [Nρ

δ (Wt0→T )− 1] δα.

We now combine this with our generalization bound by choosing the value:

δ :=
B

L
√
n
,

and we get that with probability at least 1− ζ, we have:

sup
t0≤i≤T

(
R(wi)− R̂S(wi)

)
≤ 2B√

n
+ 2B

√
2 log(1 +Kn,αE

ρ
α(Wt0→T ))

n

+ 3B

√
I∞(S,Wt0→T ) + log(1/ζ)

2n
,
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with:

Kn,α := 2

(
2L

√
n

B

)α

.

It leads to the desired result.

B.7 Proof of the magnitude-based generalization bounds

Lemma B.13. Let W ⊂ Rd be a finite set and ϵ := (ϵ1, . . . , ϵn) and ρ a pseudometric such that
(W, λρ) admits a positive magnitude (according to Definition B.5) for every λ > 0. We assume that ℓ
is (L, q, ρ)-Lipschitz continuous with q ∈ [1, 2]. Then, for any λ > 0, we have:

Eϵ

[
exp

{
λ

n
sup
w∈W

n∑
i=1

ϵiℓ(w, zi)

}]
≤ e

λ2B2

2n PMag ((Lλ)W) .

where PMag is the positive magnitude, see Appendix B.3

Proof. We first remark that, by Hölder’s inequality and the (L, q, ρ)-Lipschitz condition, we have:

∀w,w′ ∈ W, ρS(w,w
′) ≤ n−1/q ∥LS(w)−LS(w

′)∥q ≤ Lρ(w,w′).

Let us fix some λ > 0. As (W, λρ) admits a positive magnitude, we can introduce a canonical
weighting β : W −→ R. By definition of a weighting, we have

∀a ∈ W,
∑
b∈W

e−λρ(a,b)β(b) = 1.

Moreover, for any ϵ ∈ {−1, 1}n, we introduce:

aϵ := argmaxa∈W

n∑
i=1

ϵiℓ(a, zi).

With those notations, we can compute:

1 ≤
∑
b∈W

e−λρ(aϵ,b)β+(b)

≤
∑
b∈W

e−
λ
LρS(aϵ,b)β+(b)

=
∑
b∈W

exp

{
− λ

Ln

n∑
i=1

|ℓ(aϵ, zi)− ℓ(b, zi)|
}
β+(b)

≤
∑
b∈W

exp

{
− λ

Ln

n∑
i=1

ϵi(ℓ(aϵ, zi)− ℓ(b, zi))

}
β+(b)

= exp

{
− λ

Ln

n∑
i=1

ϵiℓ(aϵ, zi)

} ∑
b∈W

exp

{
λ

Ln

n∑
i=1

ϵiℓ(b, zi)

}
β+(b).

Therefore, by dividing by the first term on the right-hand side and using the independence of the ϵi,
we deduce that:

Eϵ

[
exp

{
λ

Ln
sup
w∈W

n∑
i=1

ϵiℓ(w, zi)

}]
≤ Eϵ

[∑
b∈W

exp

{
λ

Ln

n∑
i=1

ϵiℓ(b, zi)

}
β+(b)

]

=
∑
b∈W

n∏
i=1

Eϵ

[
e

λ
Ln ϵiℓ(b,zi)

]
β+(b).

By Hoeffding’s lemma, we have:

Eϵ

[
exp

{
λ

Ln
sup
w∈W

n∑
i=1

ϵiℓ(w, zi)

}]
≤ e

λ2B2

2nL2

∑
b∈W

β+(b)

= e
λ2B2

2nL2 PMag (λW) .

The result follows by the change of variable λ = ΛL.
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Theorem 3.5. Let ρ be a pseudometric such that (W, λρ) admits a positive magnitude (according to
Definition B.5) for every λ > 0. We assume that ℓ is (q, L, ρ)-Lipschitz continuous with q ≥ 1. Then,
for any s > 0, we have with probability at least 1− ζ that

sup
t0≤i≤T

GS(wi) ≤
2

s
logPMagρ (LsWt0→T ) + s

B2

n
+ 3B

√
I∞(S,Wt0→T ) + log(1/ζ)

2n
.

Proof. The beginning of the proof is completely similar to the proof of B.9 up to Equation (13).
More precisely, we have that with probability at least 1− ζ:

sup
t0≤i≤T

(
R(wi)− R̂S(wi)

)
≤ 2Rad(ℓ,Wt0→T , S) + 3B

√
I∞(S,Wt0→T ) + log(1/ζ)

2n
.

By Jensen’s inequality, we have, for all λ > 0:

Rad(ℓ,Wt0→T , S) ≤
1

λ
logEϵ

[
exp

{
λ

n
sup

w∈Wt0→T

n∑
i=1

ϵiℓ(w, zi)

}]
.

Therefore, we can apply Lemma B.13 to write that, for all s > 0:

Rad(ℓ,Wt0→T , S) ≤ s
B2

2n
+

1

s
logPMag (LsWt0→T ) .

We deduce that for all s > 0, we have with probability at least 1− ζ that:

sup
t0≤i≤T

(
R(wi)− R̂S(wi)

)
≤ s

B2

n
+

2

s
logPMag (LsWt0→T ) +

√
I∞(S,Wt0→T ) + log(1/ζ)

2n
.

Remark B.14 (Link between magnitude and positive magnitude). Let W ⊂ RM be a finite set (for
some M ), of cardinality N , and ρ a metric on W . If we denote the similarity matrix, for a given
value of s > 0, by Ms(a, b) = e−ρ(a,b), then it is clear that:

Ms −→
s→∞

IN .

Moreover, by continuity of the inverse, this implies that the weighting associated to s > 0, i.e.
βs : W → R, satisfy:

∀a ∈ W, βs(a) −→
s→∞

1.

From this, we first deduce that, for s→ ∞, we have Magρ(sW) → N . Moreover, by continuity of
the inverse, this means that, up to a certain s, the weighting (βs(a))a∈W only has positive elements.
Therefore, this implies that, for s big enough, one has Magρ(sW) = PMagρ(sW).

Thanks to our definitions for positive magnitude in pseudometric spaces, given in Appendix B.3, this
observation extends to the pseudometric case.
Remark B.15 (Extension to infinite sets). There exist extensions of the definition of magnitude
beyond finite sets [55, 56]. More specifically, weightings are then represented by measures on the set.
It is clear from the above proofs that we can extend the positive magnitude in this setting and that
the proof would follow similar lines. Therefore, our theory provides upper bounds of Rademacher
complexity in terms of positive magnitude in more general cases than the one we use in this work.

In particular, the present reasoning could be extended to compact random sets W . The next lemma
is the extension of Lemma B.13 to the compact setting. The proof follows very similar lines as
Lemma B.13.
Lemma B.16. Let us fix S ∈ Zn and consider a set W ⊂ Rd that is compact8 with respect to the
pseudometric ρS . For every λ > 0, we assume that A possesses a weighting µλ (which is a finite

8As we did in Appendix B.3, the positive magnitude of compact spaces should be properly extended to
pseudometric spaces, we omit the details as it is very similar to the case treated in this paper.
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measure on A) with respect to pseudometric λρS , in the sense of [56, Definition 3.3]. Then we have,
for any λ > 0:

Eϵ

[
exp

{
λ

n
sup
a∈A

n∑
i=1

ϵiℓ(w, zi)

}]
≤ e

λ2B2

2n PMag (λA) .

where PMag is the positive magnitude of the compact space (A, λρS) which, according to [56],
can be defined as:

PMag (λA) = (µλ)+ (A),

where (µλ)+ denotes the positive part of the measure µλ.

C Additional Experimental Details

In this section, we give additional details regarding the models, datasets, and hyperparameters used in
our experiments.

C.1 Experimental setting

C.1.1 Vision Transformers Architecture and implementation details

Table 2: Architecture details for the vision transformers (taken from [29]). WS refers to Window Size.

MODEL DATASET DEPTH PATCH SIZE TOKEN DIM HEADS MLP-RATIO WS #PARAMS

VIT [79] CIFAR10 9 4 192 12 2 - 2697610
VIT [79] CIFAR100 9 4 192 12 2 - 2714980

SWIN [48] CIFAR10 [2,4,6] 4 96 [3,6,12] 2 4 7048612
SWIN [48] CIFAR100 [2,4,6] 4 96 [3,6,12] 2 4 7083262
CAIT [80] CIFAR10 24 4 192 4 2 - 8053450
CAIT [80] CIFAR100 24 4 192 4 2 - 8070820

The design of the ViT has been modified to accommodate for the small datasets as per [68]. Our
implementation is based on the [29], which is based on the timm library with the architecture
parameters presented in Table 2. The implementation of Swin is based on the Swin-Transformer
libarary and the implementation of CaiT is predominantly based on the timm library with some
modifications. The full version can be found in the supplementary code.

Instead of training from scratch, which is extremely time-consuming, we used the pre-trained weights
available from the GitHub repository of the paper [29], we further fintetuned them for 100 epochs
on the dataset CIFAR10 or CIFAR100 to achieve the optimum performance reported in the paper
[29]. Then we verified that the finetuned weights achieved 100% training performance, and then they
were the starting point of our computational framework. We ran the transformer experiments on 18
NVIDIA 2080Ti GPUs, and the graph experiments on 18 Intel Xeon Silver 4114 CPUs.

C.1.2 GNN Architecture and implementation details

We will briefly talk about the details of GraphSage [32] and GatedGCN [12], prior works we use in
our experiments. GraphSage [32] is an improvement over the GCN (Graph ConvNets) model [41]
and it incorporates each node’s own features from the previous layer in an explicit way by the update
equation:

hl+1
i = ReLU(U lConcat(hli,Meanj∈Ni

hlj)),

where Ni is the neighbourhood of node i, hli is the feature vector and U l ∈ Rd×2d. We use the
graph-pooling version of GraphSage, with the following update equation:

hl+1
i = ReLU(U lConcat(hli,Maxj∈Ni

ReLU(V lhlj))),
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where V l ∈ Rd×d. GatedGCN (Gated Graph ConvNet) [12] uses the following update equation:

hl+1
i = hli +ReLU(BN(U lhli +

∑
j∈Ni

elij ⊙ V lhli)),

where U l, V l ∈ Rd×d, ⊙ is the Hadamard product, and the edge gates elij have the following
definitions:

elij =
σ(êlij)∑

j′∈Ni
σ(êlij) + ϵ

,

êlij = êl−1
ij +ReLU(BN(Alhl−1

i +Blhl−1
i + Clêl−1

ij )),

where σ is the sigmid funciton, ϵ is a small constant for numerical stability, Al, Bl, Cl ∈ Rd×d, and
BN stands for Batch Normalization.

We used the code provided by [23], which relies on the dgl library implementation of GraphSage and
GatedGCN. We trained GraphSage and GatedGCN until 100% training accuracy, following the setup
in [23]. All experiments were ran on 18 Intel Xeon Silver 4114 CPUs. Each experiment (one fixed
batch size and learning rate) was run on a single CPU and 18 experiments were run on the server at
any given time (on different CPUs).

C.2 Hyperparameter details

Hyperparameters shared among experiments.. For the Vision Transformers experiments, we
varied the learning rate range [10−5, 10−3], and batch size in the range [8, 256]. For the graph
experiments, [10−6, 10−4], and batch size in the range [8, 256]. For all experiments, we used 0.1
proportion of the training data for the computation of the pseudo matrix, apart from CaiT and Swin
on CIFAR100, where we used 0.09 proportion of the training data due to memory constraints. All
experiments use a 6× 6 grid of hyperparameters which is specified as follows.

ViT on CIFAR10. We selected 6 values for the learning rate in the range [10−5, 10−3], and the batch
size between [8, 256], and data proportion for the computation of the pseudo-distance (ρS) of 10%
(see section 4).

ViT on CIFAR100. We selected 6 values for the learning rate in the range [10−5, 10−3], and the
batch size between [8, 256], and data proportion for the computation of the pseudo-distance (ρS) of
10% (see section 4).

CaiT on CIFAR10. We selected 6 values for the learning rate in the range [10−5, 10−3], batch size
between [8, 256], and data proportion for the computation of the pseudo-distance (ρS) of 10% (see
section 4).

CaiT on CIFAR100. We selected 6 values for the learning rate in the range [10−5, 10−3], batch size
between [8, 256], and data proportion for the computation of the pseudo-distance (ρS) of 9% (see
section 4).

Swin on CIFAR10. We selected 6 values for the learning rate in the range [10−5, 10−3], batch size
between [8, 256], and data proportion for the computation of the pseudo-distance (ρS) of 10% (see
section 4).

Swin on CIFAR100. We selected 6 values for the learning rate in the range [10−5, 10−3], batch size
between [8, 256], and data proportion for the computation of the pseudo-distance (ρS) of 9% (see
section 4).

GatedGCN. We selected 6 values for the learning rate in the range [10−6, 10−4], the batch size
between [8, 256] and data proportion for the computation of the pseudo-distance (ρS) of 10% (see
section 4). We note that for due to time constraints, the experiments with batch sizes of 8 and 256 for
the Euclidean metric were not complete.

GraphSage. We selected 6 values for the learning rate in the range [10−6, 10−4], the batch size
between [8, 256], and data proportion for the computation of the pseudo-distance (ρS) of 10% (see
section 4).
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Figure 6: Comparison of topological complexities for different models, datasets, and pseudometrics.
The results are a visual representation of some results from Table 1, they complete Fig. 1.c in the
main par of the paper.

ViT on CIFAR10 (Adam). We selected 6 values for the learning rate in the range [10−5, 10−3], and
the batch size between [8, 256], and data proportion for the computation of the pseudo-distance (ρS)
of 10% (see section 4).

ViT on CIFAR10 (SGD). We selected 6 values for the learning rate in the range [5× 10−3, 10−1],
and the batch size between [8, 256], and data proportion for the computation of the pseudo-distance
(ρS) of 10% (see section 4).

ViT on CIFAR10 (RMSprop). We selected 6 values for the learning rate in the range [10−6, 10−3],
and the batch size between [8, 512], and data proportion for the computation of the pseudo-distance
(ρS) of 10% (see section 4).

D Additional experimental results

In this section, we present additional empirical results, in addition to what was already presented
in the main part of this document. We divide this section into three parts. Additional graphical
representation of our main experimental results is presented in Appendix D.1. Then, we quickly
explore in Appendix D.2 additional ablation studies and comparison of our proposed topological
complexities with a complexity notion that is more standard in the literature, namely gradient
variance [37]. In Appendix D.3 we report additional experiments based on vision transformers and in
Appendix D.4 we include additional illustrations of the GNN experiments.

D.1 Additional graphical representations

In this section, we include additional bar plots, shown in Figure 6, which are meant to provide more
visual support to understand the results of Table 1. Figure 6 completes the bar plots shown in Figure 1.

D.2 Further ablations and comparison with other complexity metrics

D.2.1 About the final accuracy gap and the worst accuracy gap

Our main theoretical results, presented in section 3, apply to the worst-case generalization error
over the trajectory, i.e. on the quantity supt0≤k≤T

(
R(wk)− R̂S(wk)

)
. However, computing

this quantity over the whole trajectory may be extremely expensive as it requires evaluating the
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model on the whole dataset at each iteration (this is a similar problem to the one encountered for
the computation of the data-dependent distance matrices, discussed in section 4). Previous studies
on worst-case TDA-inspired generalization bounds circumvented this issue by reporting the final
accuracy gap as the “generalization error” in their experiments (as it is the case in our work, most
existing experiments consist of classification tasks).

In our work, we argue that the true worst-case generalization error may however have a different
behavior than the final accuracy gap. In order to estimate this quantity in a computationally friendly
way, we used the following procedure: we periodically estimated the test accuracy during the training,
computed its minimum value acctest-worst and substracted it from the final train accuracy (acctrain-final)
to obtain the “generalization gap” ĜS reported in our main experiments, i.e.,

ĜS := acctrain-final − acctest-worst.

Note that in addition to being a good proxy to the true error appearing in our theory, the above
quantity could be of independent experimental interest.

In order to assess that our main conclusions remain valid if the final accuracy gap is used instead of
ĜS , we present here a few additional experiments using the final accuracy gap as a generalization
measure (it is denoted Accuracy gap in the figures.) In the case of a ViT on CIFAR10, this is shown
in Figure 7 and Figure 8. We observe that our proposed topological complexities also correlate very
well with the final accuracy gap, and outperform the previously proposed PH dimensions [10, 21].

In addition to these findings, we make two additional new observations. First, the Ph dim, while
outperformed by our proposed metric, has better granulated Kendall’s coefficients when compared
to the final accuracy gap than the worst generalization error (Ψ goes from 0.20 to 0.36). This may
explain why we observed poor performance of PH-dim in Figure 4a. Second, we observe that the
correlation seems to be slightly less good with the final accuracy gap, especially for high learning
rates, which seems to be similar behavior to what was reported in [21].
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Figure 7: ViT on CIFAR10 with ρS-pseudometric, using the final accuracy gap as a generalization
measure.
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Figure 8: ViT on CIFAR10 with 01-pseudometric, using the final accuracy gap as a generalization
measure.
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D.2.2 Sensitivity to the scale parameter in magnitude experiments

As is explicitly shown by Theorem 3.5, using (positive) magnitude as a topological complexity
requires choosing the scale parameter s > 0. In our main experiments, we experimented with both
s =

√
n (justified to obtain the expected 1/

√
n in the generalization bound) and s = 0.01 (in order

to compare with using a small value for s). We can see in Table 1 that both settings give relatively
satisfactory results. Note that in our setting we have

√
n ≈ 223.6.

We present in Figure 9 the observed correlation between positive magnitude and generalization error
for several intermediary values of s. This experiment was made with a ViT on the CIFAR10 dataset,
using the ADAM optimizer. We observe a relative stability of the correlation Ψ with respect to s.
In this particular case, the correlation is extremely stable for higher values of s while it displays
more variability for smaller values of s. Further experiments would be necessary to understand
whether this behavior is general and could then lead to the discovery of more stable magnitude-related
complexities, which we leave for future work.
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Figure 9: Sensitivity analysis of the scale parameter s for positive magnitude PMag(sWt0→τ ).
Experiment made with ViT on CIFAR10 and ADAM optimizer.

D.2.3 Comparison with gradient variance as a generalization measure

In this short subsection, we investigate the performance comparison of our proposed topological
complexities with the more widely used gradient variance, which appears for instance in [37].

In this experiment, conducted with a ViT on the CIFAR10 dataset and the ADAM optimizer, we
observe very similar performance between E1, PMag(

√
nWt0→τ ) and the gradient variance. Note

that the fact that E1 and PMag(
√
nWt0→τ ) yield similar correlation was already observed on

Table 1. This tends to suggest that these three complexity measures may be able to capture similar
aspects of the geometry around a local minimum.
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Figure 10: Comparison of the granulated Kendall coefficients of topological complexities vs gradient
variance (GV). ψLR is denoted GKC (LR), ψBS is denoted GKC (BS) and the averaged coefficient Ψ
is denoted Avg GKC. Experiment made with ViT on CIFAR10 and ADAM optimizer.
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Remark D.1. It should be noted that the primary goal of the introduced topological complexity
measure is not to outperform existing measures such as a gradient variance but rather to demonstrate
the empirical importance of the topology of the trajectory for generalization error.

D.3 Vision Transformers - additional experiments

We compare the performance of the different metrics by using the granulated Kendall’s coefficients
introduced in [37]. The experiments presented here use 3 different Vision Transformers (ViT [79],
CaiT [80], Swin [48]) on CIFAR10 and CIFAR100. As a baseline, we use the dimPH introduced in
[10] and the data-dependent dimension with the pseudometric dimPH from [21].

Here we present the full results on each dataset and model. They can be found in Table 4 for CaiT and
CIFAR10, 6 for Swin and CIFAR10, 3 for ViT and CIFAR100 and 5 for CaiT and CIFAR100. The
plots from each experiment for every computed quantity can be found in (the remaining 3 quantities
for ViT and CIFAR10).
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Figure 11: ViT on CIFAR10 with ρS
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Figure 12: ViT on CIFAR10 with ∥ · ∥2
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Figure 13: ViT on CIFAR10 with 01-pseudometric

Table 3: Correlation coefficients for all quantities for ViT model and CIFAR100 dataset. The
corresponding plots are presented in Figures 14, Figure 15 and Figure 16.

METRIC COMPLEXITY ψLR ψBS Ψ τ

ρS

Eα 0.78 0.71 0.74 0.70
Mag(

√
n) 0.78 0.71 0.74 0.72

Mag(0.01) 0.15 0.11 0.13 0.17
PMag(

√
n) 0.78 0.71 0.74 0.72

PMag(0.01) 0.60 0.62 0.61 0.56
dimPH [21] 0.77 -0.71 0.03 0.36

∥ · ∥2

Eα 0.77 0.51 0.64 0.67
Mag(0.01) [3] 0.77 -0.69 0.04 0.50
Mag(

√
n) 0.77 -0.45 0.16 0.54

PMag(0.01) 0.82 0.53 0.68 0.66
PMag(

√
n) 0.78 -0.45 0.16 0.54

dimPH [10] 0.77 -0.71 0.03 0.37

01

Eα 0.77 0.71 0.74 0.70
Mag(

√
n) 0.77 0.71 0.74 0.71

Mag(0.01) 0.68 0.51 0.59 0.59
PMag(

√
n) 0.77 0.71 0.74 0.70

PMag(0.01) 0.72 0.71 0.71 0.63
dimPH 0.73 0.02 0.37 0.57
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Figure 14: ViT on CIFAR100 with ρS
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Figure 15: ViT on CIFAR100 with ∥ · ∥2
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Figure 16: ViT on CIFAR100 with 01-pseudometric
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Table 4: Correlation coefficients for all quantities for CaiT model and CIFAR10 dataset. The
corresponding plots can be seen in Figures 17, 18 and 19.

METRIC COMPLEXITY ψLR ψBS Ψ τ

ρS

Eα 0.91 0.33 0.62 0.78
Mag(

√
n) 0.91 0.33 0.62 0.75

Mag(0.01) 0.75 0.29 0.52 0.69
PMag(

√
n) 0.91 0.33 0.62 0.75

PMag(0.01) 0.87 0.38 0.62 0.75
dimPH [21] 0.91 -0.19 0.36 0.75

∥ · ∥2

Eα 0.91 0.38 0.64 0.85
Mag(

√
n) 0.89 -0.42 0.23 0.73

Mag(0.01) [3] 0.91 -0.15 0.37 0.77
PMag(

√
n) 0.89 -0.42 0.23 0.73

PMag(0.01) 0.53 0.26 0.4 0.48
dimPH [10] 0.91 -0.31 0.30 0.67

01

Eα 0.91 0.33 0.62 0.84
Mag(

√
n) 0.91 0.33 0.62 0.77

Mag(0.01) 0.86 0.33 0.60 0.76
PMag(

√
n) 0.91 0.33 0.62 0.79

PMag(0.01) 0.88 0.44 0.66 0.71
dimPH 0.91 -0.13 0.39 0.78
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Figure 17: CaiT on CIFAR10 with ρS-pseudometric.
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Figure 18: CaiT on CIFAR10 with ∥ · ∥2 distance.
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Figure 19: CaiT on CIFAR10 with 01-pseudometric.
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Figure 20: CaiT on CIFAR100 with ρS-pseudometric.
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Table 5: Correlation coefficients for all quantities for CaiT model and CIFAR100 dataset. The
corresponding plots can be seen in 20, 21 and 22

METRIC COMPLEXITY ψLR ψBS Ψ τ

ρS

Eα 0.67 0.13 0.40 0.54
Mag(

√
n) 0.67 0.13 0.40 0.52

Mag(0.01) 0.47 -0.18 0.14 0.36
PMag(

√
n) 0.67 0.13 0.40 0.53

PMag(0.01) 0.76 0.53 0.64 0.71
dimPH [21] 0.67 -0.13 0.27 0.56

∥ · ∥2

Eα 0.67 0.40 0.53 0.64
Mag(

√
n) 0.68 0.33 0.50 0.65

Mag(0.01) [3] 0.66 -0.33 0.17 0.54
PMag(

√
n) 0.68 0.33 0.50 0.65

PMag(0.01) 0.62 0.09 0.36 0.43
dimPH [10] 0.64 -0.09 0.28 0.50

01

Eα 0.67 0.13 0.40 0.52
Mag(

√
n) 0.67 0.13 0.40 0.57

Mag(0.01) 0.61 0.18 0.40 0.43
PMag(

√
n) 0.67 0.11 0.39 0.53

PMag(0.01) 0.65 0.41 0.53 0.48
01 LOSS 0.58 0.07 0.32 0.57
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Figure 21: CaiT on CIFAR100 with ∥ · ∥2.
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Figure 22: CaiT on CIFAR100 with 01-pseudometric.

Table 6: Correlation coefficients for all quantities for Swin model and CIFAR10. The corresponding
plots are in Figure 23, 24 and 25.

METRIC COMPLEXITY ψLR ψBS Ψ τ

ρS

Eα 0.97 0.58 0.77 0.86
Mag(

√
n) 0.97 0.57 0.77 0.84

Mag(0.01) 0.87 0.58 0.72 0.75
PMag(

√
n) 0.98 0.55 0.77 0.87

PMag(0.01) 0.76 0.20 0.48 0.65
dimPH [21] 0.97 -0.57 0.19 0.67

∥ · ∥2

Eα 0.97 -0.04 0.46 0.84
Mag(

√
n) 0.97 -0.43 0.27 0.77

Mag(0.01) [3] 0.98 -0.22 0.38 0.80
PMag(

√
n) 0.98 -0.43 0.27 0.77

PMag(0.01) 0.51 0.53 0.52 0.47
dimPH [10] 0.95 -0.57 0.18 0.69

01

Eα 0.97 0.58 0.77 0.84
Mag(

√
n) 0.97 0.58 0.77 0.86

Mag(0.01) 0.94 0.48 0.71 0.79
PMag(

√
n) 0.98 0.58 0.78 0.87

PMag(0.01) 0.92 0.42 0.67 0.78
dimPH 0.93 -0.28 0.32 0.69
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Figure 23: Swin on CIFAR10 with ρS-pseudometric.
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Figure 24: Swin on CIFAR10 with ∥ · ∥2.

6 8 10 12
Generalization gap

10 2

10 1

100

101

102

E
 a

lp
h

a

Batch size
8
16
32
64
128
256

10 5

10 4

10 3

6 8 10 12
Generalization gap

101

102

103

p
o

si
ti

v
e
 m

a
g

n
it

u
d

e

Batch size
8
16
32
64
128
256

10 5

10 4

10 3

6 8 10 12
Generalization gap

1.2 × 100

1.4 × 100

1.6 × 100

1.8 × 100

2 × 100

2.2 × 100

2.4 × 100

p
h

 d
im Batch size

8
16
32
64
128
256

10 5

10 4

10 3

L
e
a
rn

in
g

 r
a
te

6 8 10 12
Generalization gap

100

101

102

103

m
a
g

n
it

u
d

e

Batch size
8
16
32
64
128
256

10 5

10 4

10 3

6 8 10 12
Generalization gap

100

101

p
o

si
ti

v
e
 m

a
g

n
it

u
d

e
 s

m
a
ll

Batch size
8
16
32
64
128
256

10 5

10 4

10 3

6 8 10 12
Generalization gap

100

1.001 × 100

1.002 × 100

1.003 × 100

1.004 × 100

m
a
g

n
it

u
d

e
 s

m
a
ll

Batch size
8
16
32
64
128
256

10 5

10 4

10 3

L
e
a
rn

in
g

 r
a
te

Figure 25: Swin on CIFAR10 with 01-pseudometric.
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Table 7: Correlation coefficients for all quantities for Swin model and CIFAR100. See Figures 26,
27 and 28 for the corresponding plots.

METRIC COMPLEXITY ψLR ψBS Ψ τ

ρS

Eα 0.69 0.47 0.58 0.62
Mag(

√
n) 0.56 0.47 0.51 0.51

Mag(0.01) 0.31 0.47 0.39 0.33
PMag(

√
n) 0.69 0.47 0.58 0.63

PMag(0.01) 0.71 0.58 0.64 0.68
dimPH [21] 0.69 -0.47 0.11 0.50

∥ · ∥2

Eα 0.69 0.22 0.46 0.63
Mag(

√
n) 0.71 -0.57 0.07 0.53

Mag(0.01) [3] 0.69 -0.44 0.12 0.53
PMag(

√
n) 0.71 -0.57 0.07 0.53

PMag(0.01) 0.64 0.51 0.58 0.46
dimPH [10] 0.69 -0.47 0.11 0.45

01

Eα 0.69 0.47 0.58 0.61
Mag(

√
n) 0.69 0.47 0.58 0.62

Mag(0.01) 0.61 0.27 0.44 0.50
PMag(

√
n) 0.69 0.47 0.58 0.62

PMag(0.01) 0.65 0.49 0.57 0.54
dimPH 0.64 0.04 0.34 0.51
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Figure 26: Swin on CIFAR100 with ρS-pseudometric.
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Figure 27: Swin on CIFAR100 with ∥ · ∥2.
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Figure 28: Swin on CIFAR100 with 01.
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D.4 Graph Neural Networks – Additional Experiments

In Table 1, we already presented the correlation coefficients for all quantities for the GNN models
considered in our study (GraphSage, GatedGCN) [23] (we have selected the models which achieve
100% training accuracy)) and Graph-MNIST. We can observe a nice correlation, outperforing dim-PH
in most experiments. As it was observed for the transformer-based experiments, the correlation seems
to be better for the data-dependent-metrics. This is an important fact, as no sparse random projection
was used to compute the Euclidean distance matrices in the GNN experiments (it was not necessary
as these models have less parameters than the tramsformers considered above). This shows that the
fact the data-dependent pseudometrics outperform the Euclidean distance also happens in the absence
of these projections. It also shows that all quantities seem to yield better correlations in the absence
of random projections, at least in the GNN expsriments.

The corresponding plots for GatedGCN can be seen in Figure 32 with the pseudometric, Figure 33
for the Euclidean and 34 for 01. The plots for GraphSage are reported in Figure 29, Figure 30 and
Figure 31.

We can observe a strong correlation on these figures, outperforing dim-PH in most cases. As it
was observed for the transformer-based experiments, the correlation seems to be better for the
data-dependent-metrics. This is an important fact, as no sparse random projection was used to
compute the Euclidean distance matrices in the GNN experiments9. This shows that data-dependent
pseudometrics outperform the Euclidean distance also in the absence of these projections. In addition,
all quantities seem to yield better correlations in the absence of random projections, at least in the
GNN expsriments.

Interestingly, a few failure cases can be seen on these plots. Indeed, Mag(0.01) and PMag(0.01)
seem to be almost constant and near 1. This indicates that the scale choice s = 0.01 was not suited
for these experiments; this behavior was already reflected in Table 1 through very low Kendall’s
coefficients, indicating the absence of meaningful correlation. However, Mag(

√
n) and PMag(

√
n)

provide significantly better correlation, which supports our main claims, as s =
√
n has been argued

in section 3.3 to be a particulary relevant choice of scale factor.

Note finally that the PH-dim plots for the 01-pseudometric failed to produce numbers in these graphs
experiments (this is why they are either missing or look irrelevant). As before, we gave away this
fact in Table 1 by imposing our granulated Kendall’s coefficients implementation to return zeros
in the absence of correlation, hence the small numbers observed in this case. That being said, this
behavior should not be seen as an issue. Indeed, PH-dim with 01-pseudometric consists (in theory) in
estimating the dimension of a subset of a discrete hypercube, which is always 0. The reason we still
reported PH-dim for this pseudometric is for consistence and to test the implementation of [10, 21] in
this non-standard setting; it is however not theoretically grounded.

9A sparse random projection was not necessary as these models have less parameters than the tramsformers
considered above
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Figure 29: GraphSage on MNIST with ρS-pseudometric.
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Figure 30: GraphSage on MNIST with ∥ · ∥2.
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Figure 31: GraphSage on MNIST with 01.
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Figure 32: GatedGCN on MNIST with ρS-pseudometric.
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Figure 33: GatedGCN on MNIST with ∥ · ∥2.
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Figure 34: GatedGCN on MNIST with 01.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly stated our contributions in the introduction and abstract. These
contributions are then detailed in the main part of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss several theoretical and empirical limitations of our work in Sections
3, 4 and 5. Moreover, a paragraph following the conclusion is dedicated to highlighting the
most important limitations and discussing future works.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: All our assumptions are clearly stated. We additinoally include technical
measure-theoretic considerations in B.5, showing the level of rigour in our mathematical
analysis. It should be noted that all the proofs of the theoretical results are presented in the
appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The models, datasets and optimizers of all our epxeimrents are clearly stated.
Moreover, all the details of the hyperparameters we used for both training the neural
networks and evaluating our topological complexities are clearly stated in Sections 5 and
C.2. Moreover, we specify the exact algorithms that we use to compute the proposed
topological complexities.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the essential part of our code as part of the supplementary material.
This code submission contains a README.md file that contains instructions to first test the
code and then run experiments. The code will be made publicly available upon acceptance
of the paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide in Sections 5 and C.2 the full details of hyperparameters and
optimizers, models and datasets used to train the neural networks in our experiments.
Moreover, all hyperparameters used to evaluate our proposed topological complexities are
explicitely mentioned in the paper, this includes in particular the number of iteratiosn in the
trajectory, the proportion of the data used to evaluate the data-dependent distance matrices.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [No]

Justification: In our paper, we conducted experiments on a variety of models (vision
transformers, graph neural networks) that are significantly bigger than the ones previously
used in the trajectory-dependent generalization literature. As the cost of these experiments
is extremely high, both in terms of computational time (it requires evaluating the model on a
large part of the data at each iterations in order to compute the distance matrices) and memory
(storing the trajectories). Moreover, for each (model - dataset) pair, we run the experiments
on a grid of hyperparameters, corresponding to 36 different set of hyperparameters each
time. Therefore, we were not able to perform numerous epxeriments for each model/dataset.
However, the fact that our experiments have good performance accross a variety of models
and datasets and on a grid of hyperparameters. Therefore, while we do not explicitly study
the statistical significance of the resented results, our extensive set of experiments does
support the significance of these results. Moreover, it should be noted that we partially base
our empirical study on the granulated Kendall’s coefficients, which are more relevant than
the classical Kendall’s coefficient to capture causal relationships.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We specified in Section C the compute resources we used to run our experi-
ments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
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Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our paper follows the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Our algorithms to evaluate the topological complexities that we propose, as
well as the baselines, make use of existing libraries and codes that are clearly stated in
Sections 4 and 5.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We include, as part of the submission, a version of our code that contains the
algorithms described in the paper, along with documentation provided in a README.md file.
Our code will be made publicly available and will be clearly documented regarding what
are the existing and new assets, as it is done in the paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

53

paperswithcode.com/datasets


Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper includes neither crowdsourcing experiments nor research with
human subjects.
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