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Abstract

We present a novel set of rigorous and computationally efficient topology-based
complexity notions that exhibit a strong correlation with the generalization gap
in modern deep neural networks (DNNs). DNNs show remarkable generalization
properties, yet the source of these capabilities remains elusive, defying the estab-
lished statistical learning theory. Recent studies have revealed that properties of
training trajectories can be indicative of generalization. Building on this insight,
state-of-the-art methods have leveraged the topology of these trajectories, partic-
ularly their fractal dimension, to quantify generalization. Most existing works
compute this quantity by assuming continuous- or infinite-time training dynam-
ics, complicating the development of practical estimators capable of accurately
predicting generalization without access to test data. In this paper, we respect the
discrete-time nature of training trajectories and investigate the underlying topologi-
cal quantities that can be amenable to topological data analysis tools. This leads
to a new family of reliable topological complexity measures that provably bound
the generalization error, eliminating the need for restrictive geometric assumptions.
These measures are computationally friendly, enabling us to propose simple yet
effective algorithms for computing generalization indices. Moreover, our flexible
framework can be extended to different domains, tasks, and architectures. Our ex-
perimental results demonstrate that our new complexity measures correlate highly
with generalization error in industry-standards architectures such as transformers
and deep graph networks. Our approach consistently outperforms existing topolog-
ical bounds across a wide range of datasets, models, and optimizers, highlighting
the practical relevance and effectiveness of our complexity measures.

1 Introduction

Generalization, a hallmark of model efficacy, is one of the most fundamental attributes for certifying
any machine learning model. Modern deep neural networks (DNN) display remarkable generalization
abilities that defy the current wisdom of machine learning (ML) theory [85 186]. The notion can be
formalized through the risk minimization problem, which consists of minimizing the function:

R(w) = ]EZNHZ w(wv Z)] ) 1
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Figure 1: We devise a novel class of complexity measures that capture the topological properties of
discrete training trajectories. These generalization bounds correlate highly with the test performance
for a variety of deep networks, data domains and datasets. Figure shows different trajegtories (
embedded using multi-dimensional scaling based on the distance-matjicesr(puted using either

the Euclidean distancé ( k) between weights as ii ()] or via the loss-induced pseudo-metrig

asin 21]. (c) plotﬁ theaverage granulated Kendall coef cienfisr two of our generalization measures

(E andPMag (' n))in comparison to the state-of-the-art per5|stent homology dimenslong]]

for a range of models, datasets, and domains, revealing signi cant gains and practical relevance.

wherez 2 Z := X Y denotes the data, distributed according to a probability distributioon the
data spacé . In practice, as ; is unknown, ML algorithms focus on minimizing the empirical risk,

X
Row)= 2 (w2, @

i=1

whereS :=(2z1;:::;2,) n.= 2, Wwhich means thatz;;:::; z,) are independent
samples from ,. In many apphcatlons the minimization () is achieved by discrete stochastic
optimization algorithms, such as stochastic gradient descent (SGD) or the ABg|vhethod. Such
algorithms generate a sequence of iteratd®9ndenotedVs := fwj O o» Which depends on the

dataS, the initializationwg 2 RY, and some additional randomnésse.g, the random batch indices
in SGD. Thegeneralization errorcharacterizing the model's performance is then de ned as:

Gs(Wk) := R(wy) Rs(wy): ®)

The empirical risk(2) typically has numerous local minima, which raises the question of how to
characterize their generalization properties. Recently, training trajectofigsSiure 1a) have been
shown to be paramount to answer this quest& 28]. Indeed, these trajectories can quantify the
quality of a local minimum in a compact way, because they depend simultaneously on the algorithm,
the hyperparameters, and the data, which is crucial for obtaining satisfactory b8uWhds\vide

family of trajectory-dependent bounds has been develod®&@®B, 50, 4, 36]. For instance, several
results on stochastic gradient Langevin dynami@s §4, 49, continuous Langevin dynamic§T]

and SGD [59] take into account the impact of the whole trajectory on the generalization error.

Parallel to these developments, several studies have brought to light the empirical links between
topological properties of DNNs and their generalization performab8e5p, 66, 70, 83, hereby
making new connections with topological data analysis (TDA) togJs These studies focus on
the structural changes across the different layers of the netwafkf on the nal trained network
[66, 70, 83], and are almost exclusively empirical. This partially inspired a new class of trajectory-
dependent bounds focusing on topological properties of the trajectories. In particular, recent studies
[78, 21, 35, 22, 10, 3] have proposed to relate the generalization error to various kinds of intrinsic
fractal dimensions 26, 53] that characterize the learning trajectory. Informally, these bounds provide
the guarantee that with probability at ledst , we have!

r

sup Gs(W) . dim(Ws) +IT +log(1 = );
w2W g n

(4)

wheredim(Ws) denotes various equivalent fractal dimensions, in particular the persistent homology
dimension (PH-dim) 10, 21] and the magnitude dimensioB][ The termIT is an information-
theoretic quantity that takes different forms among different studies. Despite providing rigorous links

We use. ininformal statements to indicate that absolute constants and/or small terms are missing.



between the topology of the trajectory and generalization, these bounds have major drawbacks. First
and foremost, as noted i@%$, 76, 13], fractal-trajectory bounds, such as Equat{dh do not apply to
discrete-time algorithms. This creates a discrepancy between these theoretical results and the TDA-
inspired methods to numerically evaluate them on commonly used discrete algordi®s, [3].
Additionally, existing bounds rely on intricate geometric assumptions, such as Ahlfors-regularity
[78, 35] or geometric stability [21], that are not realistic in a practical, discrete setting.

Previous attempts were made to address this discretization issue. Speci cally, under the assumption
that the training dynamics possess a stationary meaﬁngfor T!1 (T isthe number of

iterations), it was shown in [13] that with probabilty  overS , " andw \}VJS, we have:

r
dim( wjs) + 1T +log(l =)

Gs(W) . .

(5)

wheredim( js) corresponds to the fractal dimension of the measyrgsee p7] for formal

de nitions). While this was an important step, this bound only becomes practically relevant when the
number of iterations grows to in nity, which is never attained in real-life experiments. Other attempts
make use of so-called nite fractal dimensiord] or ne properties of the Markov transition kernels
associated with the dynamic34. However, these studies also rely on impractical assumptions and
involve intricate quantities which make them not amenable to numerical evaluation.

Despite the theoretical limitations of existing topology-dependent generalization bounds, TDA-
inspired tools have been developed to numerically estimate the proposed intrinsic dimensions in
practical settings. Two particular methods have emerged and successfully demonstrate correlation
with the generalization error, based persistent homologf10, 21] (PH-dim) andmetric space
magnitude[3] (magnitude dimension); these two dimensions are equivalent for compact metric
spaces3]. Because of the limitations discussed above, existing theories do not account for these
experiments, conducted with nite-time discrete algorithms. Moreover, existing empirical studies
[10, 21, 3, 78] only consider very simple models and small (image) datasets. Because of their lack of
theoretical foundations, it is not clear whether they could be extended to more practical setups.

Contributions. In this paper, we investigate the building blocks of PH and magnitude dimensions,

in order to propose new topology-inspired generalization bounds that rigorously apply to widely
used discrete-time stochastic optimization algorithms, and experimentally test our new topological
complexitied on practically relevant DNN architectures. Our detailed contributions are as follows:

» We start by establishing the rst theoretical links between generalization and a new kind of
computationally thrifty topological complexity measure, theveighted lifetime sum{33, 74].

» We propose and elaborate on another novel topological complpgiitive magnitudéPMag ), a
slightly modi ed version of magnituded, 55]. We rigorously linkPMag with the generalization
error, by relying on a new proof technique. Overall, our generalization bounds, rooted in TDA,
admit the following generic form:

r

sup Gs(W) . (Topological complexity} IT +log(1 = ):
w2W g n

« We then provide a exible computational implementation based upon dissimilarity measures
between neural nets (Figure 1b), which enables quantifying generalization across different architec-
tures and models, without the need for domain or problem-speci ¢ analysis as done in [39, 8].

» Unlike existing trajectory-based studiel)] 21] operating on small models, our experimental
evaluation is extensive. We consider several vision transforr@8yafd graph neural networks
(GNN) [30Q] trained on multiple datasets spanning regular and irregular data doriRg(re 1c).

Our results demonstrate that the novel measures we introduce correlate strongly with the test
performance across different architectures, hyperparameters and data modalities.

All the proofs of the main results are presented in the appendix, along with addi-
tional experiments. We will make our entire implementation publicly available under:
https://github.com/rorondre/TDAGeneralization.

20ur term “topological complexity” should not be confused with the homonym topological invariant.



2 Technical Background

Our generalization indicators will be based upomveighted lifetime sums and magnitude, capturing
different topological features, as we shortly dicsuss below(Xet ) be a nite pseudometric space.

-weighted lifetime sums Persistent homology (PH) is an important concept in the analysis of
geometric complexed ]l]. We focus on the persistent homology of degdg®H®). Informally, it
consists in tracking the “connected components” of a nite set at different scales. We provide in
Sections A.3 and A.4 exact de nitions of this notion. For simplicity, we present here an equivalent
formulation of the -weighted lifetime sums based on minimum spanning trees (MST) [42, 73].

Atree overX is a connected acyclic undirected graph (a set of edges) whose vertices are the points in
X . Given an edge linking the pgintsa andb, we de ne itscostasjej := (a;b). An MSTT onX
is a tree minimizing théotal cost ., jej. The -weighted lifetime sumg& are then written as:
X

8 0, E (X):= or 18
The celebrategersistent homology dimensi¢iH-dim) [1], of a compact pseudometric space )
is then de ned aglim,, (A) =inf  of9C > 0;8Y A nite, E (Y) Cg. The PH-dim has
been proven to be related to generalization error for different pseudomeftifs 21].

Magnitude. Magnitude is a recently introduced topological invaria@ jwhich encodes many impor-
tant invariants from geometric measure theory and integral geon#8r$%, 56]. Magnitude can be
interpreted as the effective number of distinct points in a spé@e For s 30, we de ne aweighting
of the modi ed spacgX;s )asamap : X ! R,suchthaBa2 X; ,,e 5@ (h=1.
Given such a weighting, the magnitude function ¢fX;s ) is de ned as

X
Mag (sX):= a2 x (a): (6)
The parametes > 0 should be interpreted as a “scale” through which we look at the&et). We
present in Appendix A.5 additional properties of this function. Note that magnitude is usually de ned
in metric spaces; we show in Appendix B.2 that we can seamlessly extend it to the pseudometric
setting. Magnitude can be extended to (in nite) compact spa®&$5p| and, as for PH, an intrinsic
dimension, thenagnitude dimensigrtan be de ned from magnitude by the formuale,,, (A) =

limsy 2929 A) it is known thatdimy,, anddim,,, coincide for compact metric spaces

[56, 73, 3]. As aresultdim,,,, has also been proposed as a topological generalization indihtor [

Total mutual information . Prior intrinsic dimension-based studies relied on “mixing” assumptions
([78, Assumption ], [10, Assumption H], [76, 13]) or various mutual information term8%, 21]

to take into account the statistical dependence between the data and the training trajectory. Recently,
a new framework was proposed 7 to unify these approaches by proving data-dependent uniform
generalization bounds using simpler and smaller information-theoretic (IT) terms. By leveraging these
methods, we derive new generalization bounds involving the same IT terms for all our introduced
topological complexities. More precisely, they take the form wital mutual informatiorbetween the

dataS and the training trajectors. This term is denotety (S;Ws) and measures the dependence
betweerS andW. We refer to Appendix A.1 and [35, 81] for exact de nitions.

3 Main Theoretical Results

We now introduce our learning-theoretic setup (section 3.1) before delving into our main theoretical
results in Sections 3.2 and 3.3.

3.1 Mathematical setup

Random trajectories. The primary goal of our theory is to prove unifotmeneralization bounds
over the training trajectorfwy; k  0g. We are mostly interested in the behavior near local minima
of Rs. To this end, we observe the trajectory between iteratipasdT , wheretg 2 N is the number

of iterations before reaching (near) a local minimum and tg is the total number of iterations.

3By “uniform”, we mean the worst error over a set; it should not be confused with uniform convergence.



Therefore, we consider the 3&t,, t := fw;; to i  Tg, which we call theandom trajectory
Note thatW;,, 7 is aset i.e, it does not contain any information about the time-dependence.
Moreover, our setup allows the random tintegndT to depend on the dathrough the choice of

a stopping criterion as opposed to being xed predetermined times.

General Lipschitz conditions The topological quantities described in section 2, as well as the
intrinsic dimensions introduced in prior workag, 10, 3, 21, 22], require a notion of distance between
parameters (ilRY) to be computed. In the case of fractal-based generalization bounds, two cases have
already been considered: the Euclidean distai8pgnd the data-dependent pseudometric de ned in
[21]. In our work, we emphasize that both examples are particular cases of a more general family of
pseudometrics on the parameter spaée In order to fully characterize this family of pseudometrics,

we de ne the data-dependentmhag : R ! R" byLs(w) = ("(W;z1);:::; (W;2z,)). To t

into our framework, a pseudometric must satisfy the following general Lipschitz condition.

De nition 3.1 ((g;L; )-Lipschitz continuity) For any pseudo-metriconR® andq 1, we will

say that is (q;L; )-Lipschitzinw wheng8w;w°2 R%; kLs(w) Ls(w9k, Ln*= (w;w9).

A wide variety of distances have been proposed to compare the weights of two DEINElie above
condition restricts our analysis to a family of pseudometrics containing the following examples.

Example3.2 (Data-dependent pseudometricBpr anyp 1, we de ne the pseudometrics
(Sp) (w;w9 = n PkLs(w) Ls(w9k,. The case (Sl) corresponds to the “data-dependent

pseudometric” used in [21]; we will denote i§ := (51).

Example3.3 (Euclidean distance)lf “(w;z) is L-Lipschitz continuous inw, i.e. j (w;z)
‘(w%2)] Lkw wforall z, then is (p; L; k k,)-Lipschitz continuous for every 1.

Assumptions Given an(q; L; )-Lipschitz continuous (pseudo-)metric, our approach relies only on
a single assumption of a bounded loss function. For the case of the pseudoméEiample 3.2),
this assumption is already made in [21, 22].

Assumption 1. We assume that the losss bounded if0; B], with B > 0 a constant.

The boundedness ofis classically assumed in the fractal / TDA literatu?d,[35, 22]. In particular,

this assumption is valid for the usual 1 loss. In R1], it is shown that the proposed theory seems

to be experimentally valid even for unbounded losses. Our experimental ndings suggest that this
observation also applies to our work.

3.2 Persistent homology related generalization bounds

In contrast to all existing fractal dimension-based bou@@s10, 13, 21], we propose new general-
ization bounds that apply to practical discrete stochastic optimizers with a nite number of iterations.
To this end, our key idea involves replacing the intrinsic dimension with intermediary quantities that
are used to compute them numerically. Followid@, [3], this points us towards the two quantities,

E andMag, de ned in section 2. We are now ready to state the rst generalization bound in terms
of the -weighted lifetime sums, where we den&e for E (Wi, 7).

Theorem 3.4. Let be a pseudometric oRY. Supposes that Assumption 1 holds and thiat
(g;L; )-Lipschitz, forg 1. Then, forall 2 [0; 1], with probability at leastL. ~ , we have:

r
2log(1+K, E ) 2B

N Pﬁ+3B I1 (S;Wy, 1) +log(l= );

sup Gs(w;) 2B n

to i T n

withK, =2@LPn=B) .

The terml; (S; Wi, 1) is the total mutual information (MI) term that is de ned in Sections 2 and
A.1. It measures the statistical dependence between the randdh,set and the dat& M

Such Ml terms appear in previous works related to fractal-based generalization ba8rid; 21, 35].

Our proof technique, presented in Appendix B.5, makes use of a recently introduced PAC-Bayesian
framework for random set2p] to introduce this Ml term. It is also shown i28] that the MI term

1 (S;Wy,1 7) is tighter than those appearing in the aforementioned works.

We highlight the fact that Theorem 3.4 is fundamentally different from the persistent homology
dimension (PH-dim) based bounds studiedlif, P1]. Indeed, while the growth dE  for increasing



(a) Comparison oMag andPMag . (b) Relative variation oE ; andMag .

Figure 2:Left: Comparison oMag andPMag (for s = 7 for different (ps&udo)metncs viT
on CIFARLQ). Right: relative variation of the quantitids (W;,1 ) andMag (" nW,, t), with

respect to the proportion of the data used to estlmagédVW on CIFAR1Q).

nite subsets of the trajectory are used i) to estimate the PH-dim, it does not provide any formal

link between the generalization error and the valug of Therefore, the above theorem could not be
cast as a corollary of these previous studies. Another important characteristic of the above theorem
(as well as the results of section 3.3) is to be non-asympiadicit is true for everyn 2 N . This is

an improvement over the fractal dimensions-based bounds presented in [78, 10, 21, 22].

3.3 Positive magnitude PMag ) and related generalization bounds

Recent preliminary experimental results displayed a correlation between the generalization error of
DNNs and magnitude3]. To provide a theoretical justi cation for this behavior, it would be tempting
to mimic the proof of Theorem 3.4 and build on existing covering arguments. However, while lower
bounds of magnitude in terms of covering numbers have been derivé@]jrtjey appear to be
impractical in our case. Another possibility would be to use the magnitude dimension bounds of
[3]. Yet, this could not apply to our nite and discrete setting where the dimensiOnHgence, we
identify a new quantity, closely related to magnitude, while being more relevant to learning theory.
With the notations of section 2, we x a nite metric spat¥; ) and aweightings:X ! R of
(X;s ), wheres > Qis a “scale” parameter. We de ne the positive magnitude as
X

8s> 0; PMag (sX) = 2 x s(8)+; (7
wherex,; = max( x; 0) denotes the positive part @ To avoid harming the readability of the
paper, we refer to Appendix B.3 for the extensiorPdflag to the pseudometric case. Based on
a new theoretical approach, we prove that the positive magnitude can be used to upper bound the
generalization error (see the proof in Appendix B.7). This leads to the following theorem:

Theorem 3.5. Let be a pseudometric such th@d/; ) admits a positive magnitude (according to
De nition B.5) for every > 0. We assume thatis (q; L; )-Lipschitz continuous wity 1. Then,
for anys > 0, we have with probability at leadt  that

r
2 B? | ‘W +log(1l=
sup Gs(wi) —logPMag (LsWi, 1)+ s— +3B 1 (SiWior 1) *log( ):
to i T S n 2n

We now present a quick sketch of the proof of Theorem 3.5, in order to highlight its key elements.

Proof. (Sketch).etW be a data-dependent random compacteset (V1 7). The proofis based on

two technical elements. The rstis a framework recently propose@2hfpr uniform generalization

bounds for random sets. These results give that with high probability we have a bound of the form:
r

1 (S;Wior 1) +log(1=),
; ;

sup Gs(w) . Rad(’; Wy, 1)+
w2W

whereRad('; Wi, 1) is the celebrated Rademacher complexily fvhose de nition is given in
Appendix A.2. The second technical element is a new link between the Rademacher complexity of a
compact set and its positive magnitude. This result is discussed in Appendix B.7. O



MODEL-DATASET | VIT-CIFAR10 SwiIN-CIFAR100 GRAPHSAGE-MNIST GATEDGCN-MNIST
COMPL.-METRIC | = s

LR BS ‘ LR BS

LR BS
dimpy - s [21] 093 -0.67 0.13 0.61] 0.69 -0.47 0.11 0.50|-0.28 -0.26 -0.27 -0.35/0.15 0.07 0.11 -0.06
Mag (" n)- s 0.68 062 0.65 0.64/ 056 047 0.51 0.53|069 0.71 0.70 0.79|0.85 0.97 0.91 0.88
Mag (O:Bl)— s 0.41 058 0.50 0.47|0.31 o047 0.39 0.33/0.24 0.0 0.17 0.36|035 0.35 0.35 0.49
PMag (" n)- s 0.91 o067 0.79 0.85|069 047 0.58 0.62|059 046 0.53 0.59 |0.73 097 0.85 0.84
PMag (0:01)- s 0.86 0.40 0.50 0.80/0.71 o058 0.64 0.68/0.24 o0.10 0.17 0.36|035 0.35 0.35 0.49
E - s 095 067 0.81 0.86/069 o047 0.58 0.62|0.67 0.74 0.70 0.77 |0.48 0.97 0.72 0.74
dim;,Hp—kk2 [10] 0.93 -0.67 0.13 0.61] 069 -0.47 0.34 0.51] 032 o081 0.56 0.51|-0.12 070 0.29 0.33
Mag (" n)-kk, [3] |095 -0.59 0.13 0.73/0.71 -0.57 0.07 0.53/{0.75 o077 0.76 0.61|077 076 0.77 0.52
Mag (O:Bl)-kk2 [3] | 0.95 -0.60 0.17 0.72/0.69 -0.44 0.12 0.53|0.75 0.74 0.74 0.60 [0.77 o042 0.60 0.47
PMag (" n) -kKk, 0.95 -0.59 0.18 0.73|0.71 -0.57 0.07 0.53|0.75 0.74 0.74 0.60 |0.77 0.93 0.85 0.54
PMag (0:01) -kk, |o055 071 0.63 0.58|064 o051 0.58 0.46|0.75 -0.05 0.35 0.51|0.60 -0.47 0.06 0.26
E -kk, 0.95 -0.31 0.32 0.76|0.63 0.75 0.74 0.74/0.75 0.74 0.74 0.60 |0.77 0.93 0.84 0.54
dimpy - 01[21] 0.95 -0.20 0.37 0.72| 0.64 o0.04 0.34 0.51 00 -013 -0.07 0.0 |o0.14 o0.00 0.07 0.00
Mag (" n) -01 0.95 067 0.81 0.88|069 047 0.58 0.62/0.64 068 0.66 0.75|0.78 0.85 0.82 0.82
Mag (0:81)-01 0.84 033 0.59 0.75/ 061 o0.27 0.44 0.50/013 o0.11 0.12 0.26 |0.10 0.0 0.10 0.25
PMag (" n)-01 095 064 0.80 0.89|0.69 047 0.58 0.62/063 065 0.64 0.74 |o76 0.83 0.79 0.80
PMag (0:01) - 01 0.84 036 0.60 0.76/0.65 049 0.57 0.54|013 o0.11 0.12 0.26 |0.10 0.0 0.10 0.25
E -01 095 067 0.81 0.87|069 047 0.58 0.61|063 o0.68 0.66 0.74 |0.78 0.85 0.82 0.82

Table 1: Correlation coef cients associated with the different topological complexities.

The IT term (1 ) in the above result is the same as in Theorem 3.4. Given a xed ( niteY\set

and a big enough, we establisiMag (sW) = PMag (sW). Moreover, we present in Figure 2a an
empirical comparison dflag andPMag , showing a small and almost monotonic relation between
both quantities. Therefore, Theorem 3.5 may be seen as the rst theoretical justi cation of the
empirical relationship between magnitude and the generalization error observed in [3].

A natural choice for the scakewould bes P n, ensuring a convergence ratenn’=2. However,

our empirical evaluations (see section 5, in particular, Table 1) revealed that small vadu@seof
typically uses = 10 2) can also provide good correlation with the generalization error. This could
be explained by the fact th&Mag (sW) ! 1lass! 0, i.e, the bound may not diverge when
s! 0. Forour topologiﬁal complexities to be computationally ef cient, we focus our experiments
on xed values ofs (in " n;10 2 ). We further analyze the sensitivity of part of our experiments
to the value ok in Appendix D.2.2. We will omit the trajectory and dendtiag (s) andPMag (s).

Remark3.6. As itis explained in Appendix B.7, a key element in the proof of Theorem 3.5 is a hewly
discovered link between the celebrated Rademacher compl&kéyn§l positive magnitude. This

is an additional contribution of our work, which might be of independent interest. Moreover, this
relation extends beyond the case of nite sets and applies in particular to compact trajectories (or
hypothesis setd)V. We refer the reader to Remark B.15 and lemma B.16 for more details.

4 Computational Considerations

We now detail the numerical estimation of the topological complexities mentioned above.

Computation of E . We computéE by using thegiotto-ph library introduced in §5, 7]. This
setup is inspired by PH frameworks used19,[21]. This technique uses the equivalent formulation

of E interms of PH (see Appendix A.3 for details). Theorem 3.4, and its proof (presented in
Appendix B.6) suggest that the relevant value a$ 1; similar to [10], this is what we used in our
experiments.

Computation of Mag and PMag . Different methods exist to evaluate magnitud@|[ We use the
Krylov approximation method72], which is based on pre-conditioned conjugate gradient iteration,
implemented in the Python librakrypy.linsys.Cg  to solve for the magnitude weights. We then
sum over the weights to computéag , and sum over the positive weights to obtRiMag .

Distance matrix estimation. Given a nite set {.e,, a trajectoryW RY, the calculation of our
topological complexities requires computing thistance matrisD := (- (W; W%)y.w 2w . For large
DNNs, this may become challenging. Depending pwe propose the following solutions.

» Casel: If s the Euclidean distance, for large DNNs (in our case for the transformer experiments)
storing the whole trajectory is challenging. In that case, we use sparse random projections inspired
by the Johnson-Lindenstrauss lemr84][to project the trajectories onto a lower-dimensional



subspace. We use the implementatiosgikit-learn [63] so that, with high probability, the
relative variation of the distance matrices is at mgft see Appendix A.7 for details.

e Case2: If is of the form (SQ) as in Example 3.2, then the computationdf requires the
evaluation of the model on the entire dataset at each iteration, which becomes intractable for large
DNNSs. In [21, Figure3], the authors show that the PH-dim based on the pseudometric (Sl)

is very robust to a random subsampling of a training datasetvhen s is replaced by g with

B SandjBjFSj 1. Figure 2b shows thd& and positive magnitude are also robust to this

subsampling. We mainly us¢B j=jSj = 10%. We refer the reader to Appendix C.2 for details.

Generalization error. Our theory, like many trajectory-based studiég [LO, 21, 3] predicts upper
bounds on the worst-case generalization error over the traje@eyy . Yet, experiments in
previous works mainly reported the error at the last iteration. To estimate the worst-case error in
a computationally feasible way, we periodically evaluated the test risk betweenttraes T
(every100iterations) and reporteavprst test risk - final train risk ) as the error in our
experiments. This is consistent as we start the trajeddgry + from a weightw;, already in a

local minimum. Our main conclusions are still valid if the nal generalization gap is used. This
observation, which is to the best of our knowledge new, is brie y discussed in Appendix D.2.1.

5 Empirical Analysis

In what follows, we study our bounds on a variety of datasets and model architectures. We rst
explain the setup and the evaluation metrics before delving into the results and analysis.

Setup. Given a DNN and a dataset, we start from a pre-trained weight vegioyielding high
training accuracy on classi cation tasks. By varying the learning rataiid the batch sizéo), we

de ne a grid of6 6 hyperparameters. For each pgirb), we compute the training trajectory
W, 1 for5 10°iterations. Unless speci ed, we use the ADAM optimiz46[. Based onW,,, T,

we estimate distance matrices as described in section 4. For the sake of clarity, we f8cetevant
pseudometrics: (i) the Euclidean distarkde, as in [L(], (i) the data-dependent pseudometrig

used in R1, 3], and (iii) the01-loss distance. For (ii),s is computed based on tlserrogateloss

used in training€.g, the cross-entropy loss), while the reported generalization error is always based
onaccuracy gafg01-loss), which is of interest in most applications (see section 4). For the last one
(i) is de ned as in Example 3.2, but withbeing the01l-loss; we call it01-pseudometric and
denote it byOlin the tables. This last setup matches exactly our theoretical requirements.

In terms of DNN architectures, we focus on practically relevant models, while previous studies mainly
considered small network4 (), 35, 21, 76]. We examine two different families of architectures. The

rst family consists of vision transformers (ViT7B], CaiT [80], Swin [48], see Table 2), each
evaluated on both the CIFAR [44] and CIFARLOO[43] datasets. Moreover, we also tested our
theory on graph neural networks (GNN) architectures, namely GatedGgHrid GraphSage3p]

trained on the Super-pixel MNIST datas28]. To the best of our knowledge, this is the rsttime
these kinds of topological complexities have been evaluated on transformers and GNNs. We ran the
experiments on 18 NVIDIA 2080Ti (11 GB) GPUs.

Granulated Kendall's coef cients.. We assess the correlation between our complexities and the
generalization error by using the granulated Kendall's coef cients (GKXZ). [While the classical
Kendall's coef cients (KC) B8] (denoted ) measures the correlation between two quantities, it
may fail to capture their causal relationship. Instead, one “granulated” coef cient is de n&d]in [
for each hyperparameteird, g for and gg for b); it measures the correlation when only
this hyperparameter is varying. In Table 1, we report | and g, and the averaged GKC,

=( rt Bgs)=2 forseveral models, datasets and topological complexities. In Figures 4a and
4b, we represent our topological complexities in the plangs; g ); the red square indicates the
region of best correlation (the coef cients are[inl; 1], their sign is the sign of the correlation). It
should be noted that a scaling of this consntoming from Assumption 1, would not impact the
correlation between generalization and topological complexities that is observed in our experiments.

5.1 Analysis

As explained above, we focus our main experiments on the quartitieMag (p n), PMag (p n,
Mag (10 2) andPMag (10 2), each computed for th@pseudometrics discussed abokef, s,
01). In the interest of comparison, we also compute the PH-dim (proposédifof the k k, and in
[21] for s), which is thus tested for the rst time on transformers and GNNs.



Figure 3: s-based c};pmplexity measures vs. generalization gap for a ViT trained on QFAR
dimp, (left), PMag (" n) (middle, andE ; (right).

Performance on vision transformers We see in Table 1 and Figure 3 (additional graphical
representation is given in Appendix D.1) that our proposed topological complexities consistently
outperform the PH dimensions across several vision transformer models and datasets. This suggests
that PH-dim, previously tested only on small architectures, is less scalable to industry-standards
models with more parameters. Figure 4a, includingralbdel, dataset ) pairs for the pseudometric

s, reveals important observations. First, we notice that the GKC of our topological complexities
are both positive and close Igindicating that they are indeed good measures of generalization. We
note that for most models and dataseis) has a small or negativegg, indicating that it has less
ability to explain generalization for varying batch-sizes. As it was observetiljrfgr PH-dim, our
complexities computed from the pseudometrccorrelate very well with the generalization gap
while this gap is based on tiid loss.

Performance on GNNs An important aspect of our framework is the ability to seamlessly encapsu-
late different data domains. In particular, the possibility of using different pseudometrics can help
de ne topological complexities that naturally take into account the internal symmetries of GNNs,
without any model-speci ¢ analysiS9, 8]. The results of Table 1 and Figure 4a con rm that our
proposed topological complexities outperform PH-dim andé:orrelate strongly with the generalization
error for GNNs. Additionally, it may be ?Jbserved tidag (" n) performs signi cantly well for
GNNs, and in particular better th&Mag (' n). This points us towards the idea that further theory
would be desirable to formally relate magnitude to the generalization error in that case

Comparisor,of the topological complexitiesIn Table 1 and Figures 3 and 4a, it can be seenEhat
andPMag (" n) perform equally well for the image and graph experiments across multiple datasets,
models, and data domains. We see in Table 1 that most topological complexities perform better with
data-dependent metricsd, s and01) than with the Euclidean distance, for transformer-based
experiments. This extends results obtained for PH-din21h for smaller architectures. However,

the poor performance of Euclidean-based complexities may also be partially caused by the projections
applied to the Euclidean distance matrices to make them memory-wise computable (see section 4).
This is a remaining limitation of our algorithms. On the other handpthend s data-dependent
pseudometrics seem to yield similar performance in all experiments.

Ablations. In Figure 4b, we reveal that changing the optimizer has little effect on the observed
correlation (for the same model and dataset). Interestingly, we note that the PH-dim, computed with
pseudometric s and obtained from the SGD trajectories, exhibits high GKCs. This observation
agrees with the results i]]. Figure 3 further displays the typical behavior of several topological
complexities for ViT and CIFARO. In addition to the correlatjpn of our proposed complexities being
stronger than for the PH-dim, we observe tBat andPMag (' n) seem to better correlate with the
generalization gap for small learning rates. Finally, it is consistently observed in Table 1 and Figures
4a and 4b that using a relatively high value of the (positive) magnitude scale (n) yields better
correlations than small values £ 10 2). However, both cases still provide satisfying correlation,
comforting the robustness of magnitude as a generalization indicator.

Due to limited space, we present all the correlation coef cient of one transformer model ViT for
CIFAR10and Swin for CIFARLOOin Table 1 as illustrative examples for each dataset. The remaining
results appear in the Appendix, Tables 4, 6, 3 and 5, and they all follow a similar trend. Further
empirical results and illustrations of this behavior are provided in Appendix D.

“We shall underline that, whilslag with the Euclidean distance was empirically proposed as a complexity
measure in [3], a theoretical justi cation fddag results in Table 1 is still missing for moderate values.of



(@) ¢ pseudometric (b) Comparison of optimizers for ViT on CIFAR.

Figure 4: Granulated Kendall coef cients for several models, datasets and topological quantities.
Note that our framework is directly applicable to graph networks.

6 Conclusion

In this paper, we proved novel generalization bounds based on several topological complexities
coming from TDA, namely -weighted lifetime sums and a new variant of metric space magnitude,
which we called positive magnitude. Compared to previous studies, we require fewer assumptions and
operate in a discrete setting in which our proposed quantities are fully computable. Our algorithms are
exible enough to be seamlessly integrated with diverse data domains and tasks. These advantages
of our framework allowed us to create a computationally cheap experimental setup, as close as
possible to the theoretical setup. We thus provided a comprehensive suite of experiments with several
industry-relevant architectures across vision transformers and graph neural networks, which have not
been explored yet in this literature. We show that our proposed topological complexities correlate
well with the generalization error, outperforming the previously studied intrinsic dimensions.

Limitations & future work . The main limitation of our theory is the lack of understanding of the

IT terms, while they are still smaller than most prior works. The presence of this term renders our
bounds not fully computable in practice. Indeed, we are not aware of existing techniques to evaluate
the MI between random sets and the dimensionalitwef,  (billions of parameters) could make a
direct computation intractable. Nevertheless, our work focuses on improving the topological part of
the existing bounds. Our main goal is to demonstrate a correlation with the generalization error rather
than directly quantifying the generalization. Our experiments show that the introduced complexities
are important and meaningful in addition to being ampli ed in the rst part of the bound, as the
dependence is explicit. Moreover, a better understanding of the behavior of positive magnitude for
small values of the scale factemould be a necessary improvement. Regarding our experiments, a
re nement of the estimation techniques of the topological complexities would be bene cial. Despite
experimenting with practically relevant architectures, our future works also include scaling up our
empirical analysis to include larger models and datasets, in particular large language models, which
are still beyond the scope of this study.
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Broader impact. Certifying generalization is key for safe and trusted Al systems, hence we believe
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Appendix

We now provide additional technical details and proofs that are omitted from the paper, followed by
experimental evidence complementing our main paper. We organize the appendix as follows:

» Appendix A presents additional technical background related to information theory,
Rademacher complexity, and the various topological quantities that appear in our work.

* In Appendix B, we present the omitted proofs of all our theoretical results, as well as a few
additional theoretical contributions.

* In Appendix C, we show the experimental details needed to reproduce our experiments.

« Finally, Appendix D is dedicated to additional empirical results.

A Additional technical background

A.1 Information-theoretic quantities
The following de nition is a precise de nition of the total mutual information term that appears in our
main theoretical results. The reader may consult [81, 35, 22] for further information on this notion.

De nition A.1 (Total mutual information) Let X andY be two random elements de ned on a
probability spacé ;F;P) (note that the codomains &f andY may be distinct). We de ne the
total mutual information betweeX andY by the following formula:

Pxv (A)
I (X;Y)=lo sup ——-———
1 (X;Y) =log Up s Py (A)

Such a term has already been used in the fractal-based generalization lite35t@@. [Other works
used intricate variants of this total mutual information te, [LO, 3, 13]. We stress the fact that our
proposed bounds are simpler.

A.2 Rademacher complexity

Rademacher complexity[77] is a central tool in learning theory. As part of our theory uses this
notion, we now provide its de nition and introduce some notation.

De nition A.2 (Rademacher complexity on a hypothesis.seft us x a datase6 2 Z", a set

W RY%and =( 1;:::; ») some iid Rademacher random variabM/henever it is de ned, we
will call Rademacher complexity ofoverW the following quantity:
1 X
Rad(’; W;S):= —E sup i (w;z)
n w2W

i=1

Rademacher complexity has already been used8lnTheoren3:4] to relate the generalization error
to the so-called data-dependent fractal dimension. Part of our theory is based on a recent extension of
such arguments in the data-dependent setting [22].

A.3 Persistent homology

The goal of this short subsection is to present a few notions of persistent homology, which is necessary
for a better understanding of our contributions.

Persistent homologyf, 14, 11] is an important sub eld of TDA, capable of providing myriad of

new insights for analysing data by extracting meaningful topological features. It has demonstrated its
usefulness in a very diverse set of applications from biol@&g§y25], to materials scienceff], nance

[45], robotics PB], sensor networkslig] and a lot more$1]. The types of datasets which are amenable

to this kind of analysis are nite metric spaces (known as point-cloud datasets), images, networks
and also level-sets of functions. More recently, several studies have brought to light empirical links
between persistent homology and DNN$§,[17, 66]. In particular, recent studies have related the

5A Rademacher random variable is de ned®y ; =1)= P(; = 1)=1=2.

16



worst-case generalization error to several concept of intrinsic dimensions de ned through persistent
homology L0, 21]. As mentioned in the introduction, our goal is to extend these last studies to more
practical settings.

In general, persistent homology is de ned for any dedcee N (denotedDHk). Intuitively, PHX
keeps track of the number of “holes of dimensidrin a set when looked at different scales. However,
in our work and as inf0, 21], we only usePH®, whose presentation is simpler. In this section, to
avoid harming the readability of the paper, we only present a high-level introductiid%ahat is
suf cient to understand our work. The interested reader may corikljitlp, 87] for a more in-depth
introduction to persistent homology.

We rst start by introducing brie y homology, which is a classical concept in algebraic topology.
We only introduce the most essential concepts for understanding persistent homology. For a more
detailed introduction, please consult [33].

De nition A.3. A simplicial complex is a se of nite sets closed under the subset relation: if
2 K and ,then 2 K.

In the above de nition, is a simplex (plural simplices) andis a face of , its coface.

De nition A.4. An abstract simplicial compleK is a nite collection of simplices where a face of
any simplex 2 K is also a simplex if.

De nition A.5. A simplicial k-chain is the formal sum d&-simplices,

X
=T (8)
i=1
where eachn; 2 R, whereR is a xed commutative ring with additive identity and multiplicative
identity 1, and ; 2 K.

K is the set of simpliciak-chains with addition oveR, which is anR-module. Then, the set of all
k-simplices of the compleK is a set of generators fét,. For each generator, the boundary of
isthe sumofall(k 1)-faces of .

De nition A.6. Theboundaryof ak-simplex = (Xp;:::;Xk) isthe(k 1)-chain

b .
@( )= ( D'(Xo;::nX5inxe); (9)
i=0
where(Xo;:::;%; 11, Xk) isthe(k  1)-simplex spanned by all vertices withoyt
Itis common that the coef cients for homology are considered to be restrictéd, twhich is the
eld with 2 elements,0 and1, wherel + 1 = 0. However, the theory extends to homoogy with

coef ceints in any eld (and since every eld is a ring, the de nitions in terms of rings are more
general).

De nition A.7. A chain complex is a sequence of abelian gropsvith homomorphisms (called
boundary mapsi@ : Ax ! Ax 1,suchtha@ ; @ =0 forall k.
We should note that when considering coef cientZin ak-chain can be seen as a nite collection
of k-simplices.
Introduce topological invariants: simplicial homology groups and Betti numbers.
De nition A.8 (Simplicial Homology group) The n-th (simplicial) homology group of a nite
simplicial complexK is

Hn = ker @=im@-1 ; (10)
whereker and im are the kernel and image respectively of the boundary operator.

In order to de ne the simplicial complexes of use in TDA, we need to rst understand what a nerve is.

De nition A.9 (Nerve) A simplicial complex associated to a collection of sets is called a nerve.
The sets are the vertices of the complex, and a simplex belongs to a complex iff its vertices have a
non-empty intersection, Nrw f Sj\a2 A6 0.
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De nition A.10 (Cech complex) TheCech complex oK for radiusr is Cech (X) = NrvfB (x;r) j
X 2 X g, whereB (x;r) is the closed ball of radius 0, centered ax.

In other words, th&€ech complex is the nerve of the ball neighbourhoods of a set of pdintsR".

The Cech complex faithfully captures the topology of the space, but it is not computed in practice
due to its high computational cost. Instead, a different complex c¥lidris-Rips(VR) is used due

to ease of construction for higher dimensions. It can be shown that the VR complex is not always
homotopy equivalent to theech complex, and therefore it can be seen as an approximation.

We rst need to introduce the notion of a clique complex to explain what the VR is.

De nition A.11 (Clique complex) Theclique complexor a graphG = (V; E) consists of all cliques
of G, which are all simplices V for which E contains all edges of.

Now we have explicitly states all the necessary components in order to de ne the main complex used
in TDA, the Vietoris-Rips complex

De nition A.12 (Vietoris-Rips complex) The Vietoris-Rips complegf X for radiusr is the clique
complex of thel-skeleton of theCech complex oK andr, Rips (X)=f 2 X jjju vj 2rg
forallu;v 2

Now that we have de ned the most important complex in TDA, we proceed to explain how we can
derive important topological information at multiple scales by introducing the concept of a Itration.

De nition A.13. Given a simplicial compleX, a ltration is a totally ordered set of subcomplexes
K' of K, indexed by nonnegative integers, such thai forj, K' K !.

De nition A.14 (Filtered simplicial complex) A simplicial complex K, together with a Itration
(functionf : K! Rsuchthaft ( ) f( )whenever isaface of ). The sublevel set at a value
r2 Risf (1 ;r], whichis asubxomplex df. Letro <r < <r y be the values of the
simplices, anK; = f (1 ;r;],thenwecalKg K ; K m thesublevel set Itrationof
f.

When you start with a simplicial complé« and you lIter it according to a ltrationf , it is clear

that the homology oK, evolves as the radiusincreases. For example, new connected components
can be formed, loops can appear or disapper, cavities can form. What persistent homology does, and
where the importance of the Itering comes in is that now we have the tools to track the topological
changes associated with the different stages of the Itering process, and to associate a lifetime to
them (track when a topological feature has rst appeared and at which stage of the Itration it will
disappear). This essential topological information is recorded in a set of intervals known as barcodes,
which can be represented as a multiset of poinR4nwhere the coordinates correspond to the birth

and death points of each interval.

A.3.1 Persistent homology of degre8 (alternative approach)

For the rest of the this section, we only focus on homology in dimer&iand provide an alternative
and perhaps easier to understand interpretation. Please note that the following de nitsimsi&d
and non-standard (though equivalent) de nitionR°.

De nition A.15 (Persistent homology of degrégPH?)). Let (X; ) be a nite metric space and
its cardinality. For each tinffet 0, we construct an undirected gra@h, whose edges are given by:

8xy 2 X; fx;yg2 Gy ( (x:y)
There exists a nite set of time® < t; < tx < +1 such that the number of connected
components i, changes compared @ fort <t ;. Letc be the number of connected components

in Gt, . By convention we setp = N andtp =0 anddenen; := ¢ G 1. PHY is then de ned as
the following multiset (the notatioff gg denotes multisets):
88

<<

PHO := NI P IR (S
::}1,2,,2, }k_z

ni times nk times

5We use the term time for the scatams it is classically done in the study of persistent homology. Note that
this has nothing to do with the number of iterations appearing in the rest of the paper.
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RemarkA.16 (Vietoris-Rips ltration) The above is a simpli ed high-level de nition dPH°. More
formally, the construction of the family of grapk corresponds to the construction of the so-called
Vietoris-Rips Itration of X , of which we only kept the simplices of dimensitnsee [L1] for more
details.

We now usePH? to give the de nitions of the quantities of interest in our work. The following is a
de nition of the quantityE already mentioned in section 2, but seen through the lens of persistent
homology. As it will be explained in Appendix A.4, these de nitions are equivalent.

De nition A.17 ( -weighted lifetime sums)With the same notations as in De nition A.15, we
de ne the -weighted lifetime sums as:
X
8 0, E (X):= t:
t2PHO

RemarkA.18 (“birth” and “death” times) PH is usually de ned as a multiset of birth and death
times, tracking the appearance and disappearance of “holes of dimé&fisioring the construction
of the Vietoris-Rips ltration ofX . In the particular case d¥H?, all birth times ared and the times
that we constructed correspond to the death times.

We end this section by giving the de nition of the PH dimension, which has been shown to be
theoretically and empirically related to the generalization error of neural networks in prior works
[10, 21].

De nition A.19 (Persistent homology dimension of degf®e Given a compact metric spa¢¥; ),

we de ne the PH dimension of degréey:

dimp, (X) :=inf f 0; 9C > 0;8A X nite, E (A) Cg:

It has been shown in [42, 73] that for any compact metric space, the PH dimension de ned above is
equal to the celebrated upper box-counting dimension [26, 54].

A.4  Minimum spanning tree

The persistent homology dimension used in existing generalization bol@®d&]] is closely related

to another notion of intrinsic dimension, called minimum spanning tree (MST) dimen&#hrir the

sense that the PH and MST dimensions of bounded metric spaces are identical. The link between
persistent homology and MST is even deeper than the equality between the induced dimensions, as
noted by [3]. In this section, we de ne quantities related to MSTs which will play an important role

in our proofs.

In this section let us x a nite metric spac€X; ). Let us rst specify our notations for trees. A
treeT onX is a connected undirected graph. We repre3ehy its set of edges, which are denoted
a! b(orequivalentiyp! aasthe graph is undirected). For an edgd the forma! b, we de ne

its length byjej = (a; b).

De nition A.20 (Minimum spanning tree)Let us de ne the cost of a tree by the sum of the length
of its edgesi.e.,
X
EXT(T) = jei
e2T
An MST of X is de ned as a tree with minimal cost. A consequence of the greedy algorithm to nd
such an MST [16] is that an MST is also minimal for any of the following costs:
X
EYT(T)= " g ;
e2T
with 0.
Our interest in this notion comes from several results that are summed up in the following theorem.
The reader can refer to [1, 73, 11] for more details.

Theorem A.21(Link between MST and persistent homologyhere is a bijection between the two
following multisets:
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» The multiset of the lifetimes in the persistent homology of degefethe Vietoris-Rips
complex oiX .

» The multiset of the length of the edges of an MSX of

Therefore, if we x some 0, the weighted -sum associated to the persistent homology of degree
0 of the Vietoris-Rips complex &f is equal to the codE  of an MST ofX , ie:

EMST(T)= E (X):
In all the following, we will use the notatidd to denote both quantities.

A.5 Magnitude

Let us restate formally a few standard de nitions. The reader may refet6dbp, 56] for more
details on the notions of magnitude, weighting, and positive de nite metric spaces. In this section, we
x a nite metricspacgX; ). Some of the presented concepts will be later extended to pseudometric
spaces in Appendix B.2.

As before, thesimilarity matrix[46] of X is de ned byM (a;b) = e (&P fora;b2 X . We now
de ne weightings and magnitude &f, according to [46, SectioR 1].

De nition A.22 (Weighting and magnitud?A weighting of X is a function : X ! R such that

8a2 X; e @ (h=1:
b2 X
If such a weighting exists, the magnitudeXfis de*wed by:

Mag (X) := (b):
b2 X
It is easily seen that this de nition is independent of the choice of weighting/hen a weighting
exists, we say thaX “has magnitude”.

Based on such a de nition, it is natural to inquire, whether such a weighting exists. This question
has been studied by several auth@d® b5, 56]. This question appears to be related to the notion of
positive de nite space, which we now de ne, according to [46].

De nition A.23 (Positive de nite space)X is positive de nite if the similarity matrixM is positive

de nite.

It is clear that positive de nite spaces have magnitude. More interestingly, we have the following
result, which ensures that most metric spaces considered in this study are positive de nite.
Theorem A.24([46, 55]). Letp 2 [1;2]andd 1, every nite subset ofRY; k k,) is positive

de nite.

A.6 Covering and packing numbers

In this section, we x a compact pseudometric spé¥e ) and give de nitions of covering and
packing numbers. These quantities have long been of primary interest in learning theory, in particular
through the classical covering arguments for Rademacher compl&XitggJ]. More recently, limits

of covering arguments have been leveraged by several authors to derive uniform generalization
bounds in terms of fractal dimensions [78, 35, 13, 21, 22], which we aim to improve in this study.

Forx 2 X andr > 0, we denote the closed ball centeredxaand or radiug by B, (x) :=
fy2 X; (x;y) rg. We can now de ne covering and packing.

De nition A.25 (Covering number)Let > 0, the covering numbeX (X)) is the cardinality of a
minimal set of pointdN such that:

X [ B (x):

x2N
RemarkA.26. There exist several conventions for the de nition of such numb28sg3, 82, all of
which are equivalent up to absolute constants and in particular induce the same fractal dimensions on
X (see [26]).
De nition A.27 (Packing number)Let > 0, the covering numbeXd (X) is the cardinality of a
maximal set of disjoint closed balls with centers{n
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A.7 About Johnson-Lindenstrauss lemma

In our implementation of Euclidean-based topological quantities, we use sparse random projections
to project the weight vectors froRY to a lower dimensional subspace. This is necessary because
of memory constraints. Indeed, storing the full trajectivy,, RY (in our experiments

T to=5 10°) can become intractable for large models.

Given a nite set of points R%and > 0. LetN O “9Wi  johnson-Lindenstrauss
lemma [82, 27] ensures the existence of a linear MaR? ! RN such that:

sw:wl2W: (1 Ykw wx® k Pw Pwk® 1+ )kw wk®:

In practice, the linear maps suggested by this result can be obtained through subgaussian random
projections [82, Sectiof:3].

In our work, as the purpose of Johnson-Lindenstrauss embeddings is mainly memory optimization,
we have to rely on sparse random projections. We use the implementation providédtitearn
[63]. More precisely, we used a relative variatioof 5%.

Finally, it should be noted that these projection techniques were only used for the vision transformer
experiments, as the GNNs that we used have a small enough number of parameters to avoid the use
of random projections.

A.8 A note on the connection to Topological Deep Learning

Topological deep learning (TDL) is a rapidly evolving eld that uses topological features to understand
and design deep learning modef2,[31]. Our topological complexity measures can be seen as a
direction towards addressing the Open Probiementioned in $2] concerning the discovery of
topological properties of internal representations that are linked to generalization.

B Omitted proofs of the theoretical results

In this section, we present the proofs of our main theoretical contributions. We divide our proofs into
two groups of subsections:

» Sections B.1,B.2 and B.3 focus on the extension (in a very natural way) of the quantities
appearing in our bounds in pseudometric spaces. The main outcome of this analysis is the
de nition of positive magnitude in the pseudometric case. Note that Appendix B.1 is not
a contribution of this paper. We placed it in this section to improve the readability of the
paper.

* In sections B.4, B.5, B.6 and B.7, we present the proof of our main theoretical results.

Before, proving our main results, we de ne the notiomaétric identi cation which will be used in
several of the following subsections. This is the same setting that was us#q ia paturally extend
the persistent homology dimension to pseudometric spaces.

De nition B.1 (Metric identi cation). Let (X; ) be a pseudometric space. We can de ne an
equivalence relation oK bya b | (a;b = 0. The associated quotient space, which is
denoted<= is a metric space for the naturally induced metric, which we still dengdt&Ve will
also use the canonical projection,

X X=

These notations will be used throughout the text.
B.1 Persistent homology and MST in pseudometric spaces
In this short subsection, we rst restate results prover2itj,[regarding persistent homology in

pseudometric spaces. The main result is the following proposition, which has been proven inside the
proof of [21, Lemma B2].

"Indeed, ifa b, then we havéc 2 X; (a;c)= (b;0.
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Proposition B.2([22]). Let(X; ) be a nite pseudometric space and 0, then we have:
EX)=E (*=)
where the pseudometric(and its metric identi cation) have been omitted from the notation.

Based on Theorem A.21, the above result is also true Ehenepresents the cost of a MST Xf.

B.2 Magnitude in pseudometric spaces

In this section, we x(X; ) a nite pseudometric space. We denote’by its metric identi cation
andby :X ! X= the canonical projection.

We directly extend De nition A.22 to the pseudometric case. In order for this de nition to make
sense in our context, we rst need to verify that it provides a well-posed de nition of magnitude.
This follows from the following lemma.

Lemma B.3. We assume that the nite pseudometric sp@€g ) has magnitude. Then magnitude
is independent of the choice of weighting.

Proof. The proof is straightforward and identical to the metric case. Lef be two weightings, we
have:
X X X _ X X _ X
(a)= e P9 @= W e M@= W
a2X a2X b2X b2 X a2X b2 X

O

In the following theorem, we show that magnitude is invariant through metric identi cation.
Theorem B.4(Invariance of magnitude through metric identi cationX has magnitude if and only
if X="has magnitude, in which case we have:

Mag (X) = Mag (X=):

Proof. We decompos& into equivalence classes as:
a a

X = a=: a;
az2x= i21

where denotes disjoint union and the poirfts);>; 2 X' represent each equivalence class. We
denote bya the equivalence class af2 X .
Let :X ! R be any function. We have:

X _ X X

8a2 X; e @D (= e @a) (b): (11)
b2 X i21 b2 a;

=) :If X has magnitude, then we taketo be a weighting oK , we de ne:

X
8a2Xx=; (a):= (b):
b2 a
By Equation (11), is a weighting o= .
( =:if isaweighting o=, then we de ne:
8a2 X; (a):= 1 (a);
; = il ;
wherejaj denotes the cardinality @f. By Equation (11), is a weighting ofX . O
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B.3 De nition of positive magnitude in the pseudometric case

Let us extend our new notion pbsitive magnitudé nite pseudometric spaces. This is a rather
complicated task. Indeed we need to ensure that the positive magnitude is independent of the choice
of weighting, which is not true in general. For this reason, we restrict our de nition to pseudometric
spaces whose metric identi cation is positive de nite and we choose one particular weighting.

De nition B.5 (Positive magnitude in nite pseudometric spacdsgt (X; ) be a nite pseudometric
space whose metric identi catiof= is positive de nite. Let : X= ! R be a weighting ok=,
then we de ne the positive magnitude Xf, denoted®Mag , by:

X
PMag (X) = (X)+;

X2X=

wherex, := max(Xx; 0) denotes the positive part af. We will say thatX admits a positive
magnitude if its metric identi catioX= is positive de nite.

Note thatX= admits a unique weighting because it is positive de nite. HoweXestill admits

several weightings in general. The above de nition ensures that the de nition of positive magnitude
is independent of any choice of weighting. For the need of our proofs, we will need to introduce
weightings in pseudometric spaces, whose sums of positive parts yield the positive magnitude. This
is possible by using the following de nition, which corresponds to a “good” choice of weighting in
nite pseudometric spaces.

De nition B.6 (Canonical weighting) Let (X; ) be a nite pseudometric space whose metric

identi cation X= is positive de nite. Let : X= | R be a weighting ok= , we de ne the
canonical weighting ®: X | R onX by:
1
8a2X; %a:= —— ( (a);
@ = g7 (@
where :X ! X= isthe canonical surjection.

The following lemma is then obvious but crucial to some of our theoretical results.
Lemma B.7. With the notation of the previous de nition, we have:

X
PMag (X) = O(X)+ :
x2X

The next proposition is a consequence of Theorem A.24, it shows that the pseudometrics considered
in practice in our work (and in our experiments) admit a positive magnitude.

Proposition B.8. Letp 2 [1;2]andS 2 Z ", then every nite subset ¢RY; g’)) admits a positive
magnitude, and therefore it also has a canonical weighting.

KLs(w) Ls(w9k, = n*P ) (w; w9):

Therefore, if we denote by the equivalence class of in the metric identi cation, it is clear that
w=wo Ls(w) = Ls(w9. Hence, the maps := n “PL g naturally extends to an isometry
between metric spaces:

w= 1 'g(W) R™

nite

By Theorem A.24, the nite séts(W) is positive de nite, hence itis also the case/of . Therefore
W admits a positive magnitude by de nition. O

B.4 Warm-up: covering bounds

The following is deduced from the transcription of the results2@f fo our setting. It is the starting
point of our persistent homology-based analysis.
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Theorem B.9. Let be a pseudometric oRY. Suppose that Assumption 1 holds and thit
(g;L; )-Lipschitz, forg 1. Then, for all > 0, with probability at leastl over ," I
r r

z u

sup Gs(wj) 2L +2B 2logN_(Wior 7) +3B l1 (S; Wi, T)+Iog(1:):
to 1 T n on

The proof of this theorem will be given in the next subsection. Before discussing this proof, a few
remarks are in order.

Covering bounds, such as B.9 have been used3n1[3, 10, 21] to introduce fractal dimensions
(more precisely through the notion of upper box-counting dimension) into the generalization bounds.
This is done via the following de nition of the aforementioned upper box-counting dimension:

logN (X) .
log(1=) °
By using a similar procedure, we see that our framework could be used to introduce intrinsic

dimensions associated to a wide range of pseudometrics, as soon as they gqtikfy #Lipschitz
continuity assumption.

dimg(X) := limsup
10

However, arguments based on these intrinsic dimensions only make sense in the liit |,

which makes little sense in practical settings. To address this issue, we take inspiration from two
other notions that are equal to the upper box-counting dimension (and therefore lay the ground of
the numerical approximation of this dimension), namely the PH-dimend®@YB, 10, 21] and the
magnitude dimensiorbp, 3]. Our approach is to replace the intrinsic dimensions by the “intermediary
guantities” used to de ne them. This leads to the results presented in the next two subsection.

B.5 Proof of Theorem B.9

Before going to the proof of Theorem B.9, we specify our theoretical setup, which is the one
introduced in 22]. In this section, we prove our results in the cdse +1 . However, note that one
could considelm =+ 1 without much technical dif culties.

The setup is the following: lgtF (RY); T) denote the set of all nite subsets B, endowed with a
-algebral .

We consider the following probability distribu%on en(RY):
8A2T,; (A):= s(A)d ,"(S): (12)

Z n
As itis discussed ing2, Section5:4], we make the following technical measure-theoretic assumption.

Assumption 2. The probability measure, " is a strictly positive Borel measure. Moreover, for
everyA 2T ,themapS 7! s(A) is continuous.

The following example highlights the fact this is a very mild assumption.
ExampleB.10. If the data spac& is countable and the data distributiop has no null mass, then
the above assumption is automatically satis ed with respect to the discrete topology.
Theorem B.9. Let be a pseudometric oRY. Suppose that Assumption 1 holds and thast
(g;L; )-Lipschitz, forg 1. Then, forall > 0, with probability at leastl over ," )
r r
2logN (Wi, 71) ‘3

sup Gs(wj) 2L +2B g 11 (GWi 1) +logl=),
to i T n 2n

Proof. Let us x some 2 (0;1). First note that thanks to Assumption 2, we have thais
absolutely continuous with respect top , "-almost surely. Therefore, we can introduce its Radon-
Nykodym derivative, denoted by s=d .

Thanks to the above notation, we can apply the data-dependent Rademacher complexity bound of
[22, Theorenil(] to obtain that with probability at leagt , we have, for any> 0:
1 ds 98?2

tSl.Jp R(wi) Rs(w) 2Rad(’; Wiy 7:S)+ — d—(Wtog T)+log(l=) + an
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with Rad("; Wi, 1;S) a Rademacher complllexity term, de ned by:

1 X
Rad(’; Wi, 7;S):= E sup — i (w;z)
W2W o1 T i=1
where :=( 1;:::; pn)isavector of independent centered Bernoulli random variables.

By [22, Lemmal6], we have almost surely that:
d
TS(WtO! 1) 11 (Wi 7:5):

Therefore, by optimizing the choice of the parametén the above equation, we have that:

:
sup R(w) Rsw)  2Rad(; W, 1;5)+3p 2O TITI0RZ),
to i T

(13)

We now perform a covering argument very similar to classical covering arguments for Rademacher

-covering ofW,,, 1 for pseudometric. Foranyw 2 W, T, there exist§ such that (w; x;)
Therefore we have:

11X 11X X .
sup = i (w;z) sup X5zt = iCw;z) "(x5;z))
WZWIO! T i=1 1 J N (Wto! T) i=1 n i=1
X 1 X . .
sup i Xz - Twz) (X5 zi)]
1] N (Wi 1) n i=1 n i=1
1 X _
sup (Xj:z)+ n FIKLs(w) L s(Xj)kg;

TN W 1)
where the last line comes from Holder's inequality.

We can now apply Massart's lemma on the rst term and(ipel; )-Lipschitz continuity of on

the second term, this gives us:
r

Rad('; Wi 7;S) L +B

2logN (Wiyr 1),
n b

which concludes the proof.

B.6 Persistent homology bounds

We now present the proofs of our persistent homology-based bounds, ie, the results of section 3.2.

The following lemma is a pseudometric version of a classical result of fractal geometry [26].

Lemma B.11(Covering and packing in pseudometric spacést(X; ) be a pseudometric space,
> 0,and xi;:::;Xp (x) amaximal -packing ofX for pseudometric. Then we have:

N, (X) P (X):

-balls. Let us assume that:

Xn [ B2 (xi) 6 ;;

10 P (X)

andw 2 B (Xx;). By the triangle inequality and the de nition @f andx,, we have:

gy ComT gty
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Therefore, we have(xgo;w) > , and henceB (xij) \ B (Xp), so that we construct a bigger

S
Therefore, we havn ; ; p (x,Bz2 (Xi) = ;, hence the result. O

The next lemma asserts tHat is increasing (with respect to the inclusion of sets), if and only if
1. This is the reason why we require2 [0; 1] in Theorem 3.4.

Lemma B.12. Let(X; ) be a non-empty nite pseudometric space? [0;1]and > 0. Then we
have:
P (X)

E(X)

Proof. We refer to Figure 5 for a graphical illustration of the main technical elements of this proof.

In the case wher® (X) = 1, the result is obvious. In the rest of the proof we assume that
P (X) 2

In all the following, we x 2 [0;1]and > 0. We also denot® := P (X). Without loss of
generality, we can assunie 2.

We x T an MST ofX , represented by a set of edges dencotéd y, with x;y 2 X 2 (note that we
identifyx I yandy! x). Itis aclassical resultthat there gi¢j 1 edges. For an edgeof the
forma! b, we denote its length bjgj := (a; b).

Fora;b2 X ,witha 6 b, we denote bya! bgthe shortest path betwearandb. More precisely,
we represent it as a list of edges, denaded ag ! a; ! akx = b, for someK. When the
context is clear, we identiffa! bgto the set of its edges! b.

only pointin the patlf x; ! y;gthat does not belong to the bal (x;).

For eachi, we denoteg the only edge irfx; ! y;gto whichy; belongs,.e. g is of the form
zi ! vyi,withz 2 B (X;). By construction, those edgesare the only ones that can be shared by
several pathéx; ! vyiog.

Let us introduce the following set of indices:

ande 2 fxjo! yj00. If we denoteg asz; ! y;, we have that; 2 B (x;), by de nition of ;.
Therefore, by de nition ofy; , we havez; = y; (becausd® (xj)\ B (xj) = ;). We have similarly
z; = yjo and thusy; = yjo. By de nition of y; andy;o we also havg; 2 B (x;)\ B (X;0), which
is absurd, by de nition of packing. We conclude the following:

8k2K; 9j6i e 2fx;! yg:
Fork 2 K, we denote the correspondipdpy ' (k).
By de nition of K , itis clear that (k) 2 K. Moreover, ag- ¢y = z 2 B (x;), this implies that
' 2(i) = i. Therefore, we have constructed an involution,

KK
such thaBk 2 K; ' (k) 6 k. This implies that the cardinality df is even and that we can write
K = K, Ko, with:
JK1j = jKoj; " (K1) = Ka:

The outcome of this construction is that we now have disjoint paths given kxithe y;)i2, and
the(xk ! X (k))k2k,. Therefore, we get the following lower bound Bn (X).

X X o X X o

E (X) jg + jg
i21 e2f xi! yig k2K1e2fxy! x. 0
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As 2 [0; 1], we have that:
0 1 0 1

X X X X
E(xX) @ igA + B jeiix
i21 e2f xi! yig k2K ezka! X (g
By the triangle inequality, and by de nition of packing, we have:
X X B |
E (X) + = (h+jKy) 5P (X)
i21 k2K
which concludes the proof. O

Figure 5: Geometric representation of the proof of Lemma B.12. It represents a poin{wigud
the centers of th8 packing balls (blue) and the minimum spanning ffe@ed), so that the sum of
the lengths of the edges ®fis exactlyE 1, see Appendix A.

Theorem 3.4. Let be a pseudometric oR?. Supposes that Assumption 1 holds and thiat
(g;L; )-Lipschitz, forg 1. Then, forall 2 [0; 1], with probability at leastL. ~ , we have:
r r

2log(1+Kn E ), §§+3B l1 (S;Wier 7)+log(l=) .
n 2n '

sup Gs(w;) 2B
to i T n

withK . =2@LPn=B) .

Proof. For better clarity, we assunife< +1 . Letus xsome 2 (0;1), > 0, and 0. By
Theorem B.9, we have, with probability at ledst
r

r
sup R(w) Rs(wi) 2L +2B 2logN r(]Wt"! 1) ,3p 1 EGWu 2Tn)+|°g(1: ).
to 1 T

We now bound the covering number appearinrg in the above equation. By Lemma B.12, we have:
i
E Wi 1) 2 P P_,(Wgr) 1
Moreover, by Lemma B.11, we have:
E (Wi 1) 2 '[N (Wi 1) 1]
We now combine this with our generalization bound by choosing the value:

. B .
= ﬁ
and we get that with probability at leakt , we have:
r
sup R(w) Rs(w) §i+2|3 2log(1 + Kpn, E (Weor 1))
to 1 T n . n
+3B 1 (S;Wigr 1) +log(1= );
2n
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with:

It leads to the desired result. O

B.7 Proof of the magnitude-based generalization bounds

Lemma B.13. LetW R%bea nitesetand :=( 1;:::; ) and a pseudometric such that
(W; ) admits a positive magnitude (according to De nition B.5) for every 0. We assume that
is(L;q; )-Lipschitz, cont&nuous with 2 [1; 2]. Tsﬁn, forany > 0, we have:
X0
E exp — sup i (w;z) e 2 PMag ((L )W):
N waw i=1
wherePMag is the positive magnitude, see Appendix B.3

Proof. We rst remark that, by Holder's inequality and tiie; q; )-Lipschitz condition, we have:
Bw;wo2W; s(w;w) n FIkLs(w) Ls(wIk, L (w;w:
Letus xsome > 0. As(W; ) admits a positive magnitude, we can introduce a canonical
weighting :W ! R. By de nition of a%veighting, we have
8a2W; e @D (p=1:
b2wW
Moreover, forany 2 f 1;1g", we introduce:

X0
a = argmaxgw i (a;z):
i=1
With those notatigns, we can compute:
1 e @D (b
R _
e U s(@:b) + (b
b2wW
X ( X . _)
= exp o iaiz) “(bz)i (b
b2w ( i=1 )
X N ~
exp — i(@;z) “(0z) (b
bZW( i=1 ) ( )
X0 X X0
=exp — i(a;z) exp — i(b;z) +(b:
Ln i=1 b2wW Ln i=1
Therefore, by dividing by the rst term on the right-hand side and using the independence qgf the
we deduce that; " " #
( o ) NI )
E exp — sup i (w;z) E exp — i(b;z) +(b
L waw b2wW Ln iy
X Yy h ‘ [
— E em i (bz) +(b):
b2W i=1
By Hoeffding's lemma, W? have: y
)@ 2B2 X
E exp — sup i (W;z) ez ? + ()
WaW =g b2w
252
= e ZPMag ( W):
The result follows by the change of variable= L. O
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Theorem 3.5. Let be a pseudometric such th@d/; ) admits a positive magnitude (according to
De nition B.5) for every > 0. We assume thatis (q; L; )-Lipschitz continuous wity 1. Then,
for anys > 0, we have with probability at leadt  that

l1 (S;Wiy 1) +log(l=)
2n '

2 B?
sup Gs(wi) —logPMag (LsW;, 1)+ s— +3B
to i T S n

Proof. The beginning of the proof is completely similar to the proof of B.9 up to EqudtiGh
More precisely, we have that with probability at least
r

sup R(w) Rsw) 2Rad(iWy, r;5)+sp Wl )H0gZ),
to i T

By Jensen's inequality, we have, for att O:

" y )

Rad(; Wi, 1;S) ~logE exp — sup - (w;zi)
n WZW;O! T =1

Therefore, we can apply Lemma B.13 to write that, forsaH O:

2
Rad(’; Wy,i 1;S) s%ﬁ' %'OQPMag (LsWio 1)

We deduce that for ali > 0, we have with probability at leadt  that:

l1 (S;Wiyr 1) +log(l=)
2n '

2
sup R(w;) Rs(w) 24 gIogPl\/lag (LsWi 1)+
to I T n S

O

RemarkB.14 (Link between magnitude and positive magnitudestW  RM be a nite set (for
someM ), of cardinalityN, and a metric onW. If we denote the similarity matrix, for a given
value ofs > 0, byMg(a;b) = e (@P) thenitis clear that:
Ms s!!1 In:
Moreover, by continuity of the inverse, this implies that the weighting associated>td), i.e.
s W ! R, satisfy:

8a2W,; s(a)S!!l 1

From this, we rst deduce that, fa!1 ,we haveMag (sW)! N. Moreover, by continuity of
the inverse, this means that, up to a cersithe weighting s(a))a2w only has positive elements.
Therefore, this implies that, farbig enough, one hadag (sW) = PMag (sW).

Thanks to our de nitions for positive magnitude in pseudometric spaces, given in Appendix B.3, this
observation extends to the pseudometric case.

RemarkB.15 (Extension to in nite sets)There exist extensions of the de nition of magnitude
beyond nite sets 5, 56]. More speci cally, weightings are then represented by measures on the set.
It is clear from the above proofs that we can extend the positive magnitude in this setting and that
the proof would follow similar lines. Therefore, our theory provides upper bounds of Rademacher
complexity in terms of positive magnitude in more general cases than the one we use in this work.

In particular, the present reasoning could be extended to compact random.sEltee next lemma
is the extension of Lemma B.13 to the compact setting. The proof follows very similar lines as
Lemma B.13.

Lemma B.16. Letus xS 2 Z " and consider aséV R that is compactwith respect to the
pseudometrics. For every > 0, we assume thak possesses a weighting (which is a nite

8As we did in Appendix B.3, the positive magnitude of compact spaces should be properly extended to
pseudometric spaces, we omit the details as it is very similar to the case treated in this paper.
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measure o) with respect to pseudometric s, in the sense o6, De nition 3.3]. Then we have,
forany > O:
o )#

X 2g2
E exp —sup i (w;z) ez PMag (A):
azA

wherePMag is the positive magnitude of the compact spése s) which, according to $6],
can be de ned as:

PMag (A)=( ), (A)
where( ), denotes the positive part of the measure
C Additional Experimental Details

In this section, we give additional details regarding the models, datasets, and hyperparameters used in
our experiments.

C.1 Experimental setting

C.1.1 Vision Transformers Architecture and implementation details

Table 2: Architecture details for the vision transformers (taken fra@h)[ WS refers to Window Size

MODEL DATASET DEPTH PATCH SIZE TOKENDIM HEADS MLP-RATIO WS #RARAMS
VIT [79] CIFAR10 9 4 192 12 2 - 2697610
VIT [79] CIFAR100 9 4 192 12 2 - 2714980
Swin [48] CIFAR10 [2,4,6] 4 96 [3,6,12] 2 4 7048612
SwiN [48] CIFAR100 [2,4,6] 4 96 [3,6,12] 2 4 7083262
CAIT [80] CIFAR10 24 4 192 4 2 - 8053450
CAIT [80] CIFAR100 24 4 192 4 2 - 8070820

The design of the ViT has been modi ed to accommodate for the small datasets &§|p&dyir
implementation is based on th2d, which is based on thémm library with the architecture
parameters presented in Table 2. The implementation of Swin is based on the Swin-Transformer
libarary and the implementation of CaiT is predominantly based ottirttra library with some

modi cations. The full version can be found in the supplementary code.

Instead of training from scratch, which is extremely time-consuming, we used the pre-trained weights
available from the GitHub repository of the pap2$], we further ntetuned them for 100 epochs

on the dataset CIFARD or CIFAR100to achieve the optimum performance reported in the paper
[29]. Then we veri ed that the netuned weights achieved 100% training performance, and then they
were the starting point of our computational framework. We ran the transformer experiments on 18
NVIDIA 2080Ti GPUs, and the graph experiments on 18 Intel Xeon Silver 4114 CPUs.

C.1.2 GNN Architecture and implementation details

We will brie y talk about the details of GraphSaggZd] and GatedGCN12], prior works we use in

our experiments. GraphSad#?] is an improvement over the GCN (Graph ConvNets) mod#] [

and it incorporates each node's own features from the previous layer in an explicit way by the update
equation:

hi** = ReLU( U'Concat(h!; Mean; 2, h!));

whereN; is the neighbourhood of nodeh! is the feature vector and' 2 R 24, We use the
graph-pooling version of GraphSage, with the following update equation:

hi** = ReLU(U'Concat(h}; Max;2n, ReLU(V'h})));
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whereV' 2 RY 9. GatedGCN (Gated Graph ConvNet) [12] uses the following update equation:

X
hi*1 = h! + ReLU(BN( U'h! + e Vv'h);
i 2N
whereU';v! 2 R? 4, is the Hadamard product, and the edge gajeave the following
de nitions:

|
(-}:- ) (eu ) :
J joon, (&)

& =4 "+ReLUBN(A'h; '+ B'h 1+ C'e h);

where is the sigmid funciton, is a small constant for numerical stabiliy);B';C' 2 R 9, and
BN stands for Batch Normalization.

We used the code provided b3d], which relies on thelgl library implementation of GraphSage and
GatedGCN. We trained GraphSage and GatedGCN until 100% training accuracy, following the setup
in [23]. All experiments were ran on 18 Intel Xeon Silver 4114 CPUs. Each experiment (one xed
batch size and learning rate) was run on a single CPU and 18 experiments were run on the server at
any given time (on different CPUS).

C.2 Hyperparameter details

Hyperparameters shared among experiments. For the Vision Transformers experiments, we
varied the learning rate randg&0 °;10 3], and batch size in the rang@; 256} For the graph
experiments[10 ©;10 4], and batch size in the rand@ 256} For all experiments, we usetl
proportion of the training data for the computation of the pseudo matrix, apart from CaiT and Swin
on CIFARLOQ, where we use@:09 proportion of the training data due to memory constraints. All
experiments use@ 6 grid of hyperparameters which is speci ed as follows.

ViT on CIFAR 10. We selected 6 values for the learning rate in the rg@ge®; 10 3], and the batch
size betweefiB; 256] and data proportion for the computation of the pseudo-distargeof 10%
(see section 4).

ViT on CIFAR 100. We selected 6 values for the learning rate in the rgtige®; 10 3], and the
batch size betwed8; 256] and data proportion for the computation of the pseudo-distargeof
10%(see section 4).

CaiT on CIFAR 10. We selected 6 values for the learning rate in the rg@ge®; 10 2], batch size
betweer{8; 256] and data proportion for the computation of the pseudo-distargeof 10% (see
section 4).

CaiT on CIFAR 100. We selected 6 values for the learning rate in the rga@e®; 10 3], batch size
betweer8; 256} and data proportion for the computation of the pseudo-distargeof 9% (see
section 4).

Swin on CIFAR10. We selected 6 values for the learning rate in the rgage®; 10 3], batch size
betweer{8; 256] and data proportion for the computation of the pseudo-distargeof 10% (see
section 4).

Swin on CIFAR100. We selected 6 values for the learning rate in the rgage®; 10 2], batch size
betweer8; 256] and data proportion for the computation of the pseudo-distargeof 9% (see
section 4).

GatedGCN. We selected 6 values for the learning rate in the rga@e®; 10 4], the batch size
betweer]8; 256]and data proportion for the computation of the pseudo-distargeof 10% (see
section 4). We note that for due to time constraints, the experiments with batch s&easai?56 for
the Euclidean metric were not complete.

GraphSage. We selected 6 values for the learning rate in the rgage®; 10 4], the batch size
betweer{8; 256] and data proportion for the computation of the pseudo-distargeof 10% (see
section 4).
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Figure 6: Comparison of topological complexities for different models, datasets, and pseudometrics.
The results are a visual representation of some results from Table 1, they complete Fig. 1.c in the
main par of the paper.

ViT on CIFAR 10 (Adam). We selected 6 values for the learning rate in the rgage®; 10 3], and
the batch size betwed8; 256] and data proportion for the computation of the pseudo-distarge (
of 10% (see section 4).

ViT on CIFAR 10 (SGD). We selected 6 values for the learning rate in the rgbge10 2;10 1],
and the batch size betwef8) 256] and data proportion for the computation of the pseudo-distance
( s) of 10%(see section 4).

ViT on CIFAR 10 (RMSprop). We selected 6 values for the learning rate in the rgage®; 10 9],
and the batch size betwef8)512] and data proportion for the computation of the pseudo-distance
( s) of 10%(see section 4).

D Additional experimental results

In this section, we present additional empirical results, in addition to what was already presented
in the main part of this document. We divide this section into three parts. Additional graphical
representation of our main experimental results is presented in Appendix D.1. Then, we quickly
explore in Appendix D.2 additional ablation studies and comparison of our proposed topological
complexities with a complexity notion that is more standard in the literature, namely gradient
variance B7]. In Appendix D.3 we report additional experiments based on vision transformers and in
Appendix D.4 we include additional illustrations of the GNN experiments.

D.1 Additional graphical representations

In this section, we include additional bar plots, shown in Figure 6, which are meant to provide more
visual support to understand the results of Table 1. Figure 6 completes the bar plots shown in Figure 1.

D.2 Further ablations and comparison with other complexity metrics

D.2.1 Aboutthe nal accuracy gap and the worst accuracy gap

Our main theoretical results, presented in section 3, apply to the worst-case generalization error
over the trajectoryi.e. on the quantitysup,  + R(wk) Ii?s(wk) . However, computing
this quantity over the whole trajectory may be extremely expensive as it requires evaluating the
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model on the whole dataset at each iteration (this is a similar problem to the one encountered for
the computation of the data-dependent distance matrices, discussed in section 4). Previous studies
on worst-case TDA-inspired generalization bounds circumvented this issue by reporting the nal
accuracy gap as the “generalization error” in their experiments (as it is the case in our work, most
existing experiments consist of classi cation tasks).

In our work, we argue that the true worst-case generalization error may however have a different
behavior than the nal accuracy gap. In order to estimate this quantity in a computationally friendly
way, we used the following procedure: we periodically estimated the test accuracy during the training,
computed its minimum valuaCGest.worstand substracted it from the nal train accura@cGrain- nal)

to obtain the “generalization gad?s reported in our main experiments.,

@S ‘= ACCtrain-nal  ACGest-worst

Note that in addition to being a good proxy to the true error appearing in our theory, the above
guantity could be of independent experimental interest.

In order to assess that our main conclusions remain valid if the nal accuracy gap is used instead of
85, we present here a few additional experiments using the nal accuracy gap as a generalization
measure (it is denoteficcuracy gap inthe gures.) In the case of a ViT on CIFAR), this is shown

in Figure 7 and Figure 8. We observe that our proposed topological complexities also correlate very
well with the nal accuracy gap, and outperform the previously proposed PH dimensions [10, 21].

In addition to these ndings, we make two additional new observations. First, the Ph dim, while
outperformed by our proposed metric, has better granulated Kendall's coef cients when compared
to the nal accuracy gap than the worst generalization errogfes from0:20to 0:36). This may
explain why we observed poor performance of PH-dim in Figure 4a. Second, we observe that the
correlation seems to be slightly less good with the nal accuracy gap, especially for high learning
rates, which seems to be similar behavior to what was reported in [21].

(2)E (b)PMag (° ) (0) dim

Figure 7: ViT on CIFARLOwith gs-pseudometric, using the nal accuracy gap as a generalization
measure.

(@)E (b)PMag (° i) (c) dim py

Figure 8: ViT on CIFAROwith 01-pseudometric, using the nal accuracy gap as a generalization
measure.

33



D.2.2 Sensitivity to the scale parameter in magnitude experiments

As is explicitly shown by Theorem 3.5, using (positive) magnitude as a topological complexity
requéres choosing the scale paramster (PJ In our main experiments, we experimented with both
s= " n (justi ed to obtain the expectet= n in the generalization bound) asd= 0:01 (in order

to compare with using a small value fex. We cansee in Table 1 that both settings give relatively
satisfactory results. Note that in our setting we have 2236.

We present in Figure 9 the observed correlation between positive magnitude and generalization error
for several intermediary values sf This experiment was made with a ViT on the CIFAR10 dataset,
using the ADAM optimizer. We observe a relative stability of the correlationith respect tcs.

In this particular case, the correlation is extremely stable for higher valugsvbfle it displays

more variability for smaller values . Further experiments would be necessary to understand
whether this behavior is general and could then lead to the discovery of more stable magnitude-related
complexities, which we leave for future work.

Figure 9: Sensitivity analysis of the scale parametéor positive magnitudéMag (sW;,1 ).
Experiment made with ViT on CIFAR10 and ADAM optimizer.

D.2.3 Comparison with gradient variance as a generalization measure

In this short subsection, we investigate the performance comparison of our proposed topological
complexities with the more widely used gradient variance, which appears for instance in [37].

In this experiment, conducted with a ViT on the CH:ARlo dataset and the ADAM optimizer, we
observe very similar performancs betwden PMag (" nW;,: ) and the gradient variance. Note

that the fact thaE; andPMag (" nW;,, ) yield similar correlation was already observed on
Table 1. This tends to suggest that these three complexity measures may be able to capture similar
aspects of the geometry around a local minimum.

Figure 10: Comparison of the granulated Kendall coef cients of topological complexities vs gradient
variance (GV). |r is denoted GKC (LR), gs is denoted GKC (BS) and the averaged coef cient
is denoted Avg GKC. Experiment made with ViT on CIFAR10 and ADAM optimizer.
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RemarkD.1. It should be noted that the primary goal of the introduced topological complexity
measure is not to outperform existing measures such as a gradient variance but rather to demonstrate
the empirical importance of the topology of the trajectory for generalization error.

D.3 Vision Transformers - additional experiments

We compare the performance of the different metrics by using the granulated Kendall's coef cients
introduced in 87]. The experiments presented here 8s#fferent Vision Transformers (ViTq19],

CaiT [80], Swin [48]) on CIFAR10and CIFARLOO. As a baseline, we use tisémp,, introduced in

[10] and the data-dependent dimension with the pseudontirig,, from [21].

Here we present the full results on each dataset and model. They can be found in Table 4 for CaiT and
CIFAR10, 6 for Swin and CIFAR10, 3 for ViT and CIFAR100 and 5 for CaiT and CIFAR100. The
plots from each experiment for every computed quantity can be found in (the remaining 3 quantities
for VIiT and CIFAR10).

Figure 11: ViT on CIFAR10 with g

Figure 12: ViT on CIFAR10 withk k»
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Figure 13: ViT on CIFAR10 witlD1-pseudometric

Table 3: Correlation coef cients for all quantities foiT model and CIFAR100 dataset The
corresponding plots are presented in Figures 14, Figure 15 and Figure 16.

METRIC COMPLEXITY R ss
E b 0.78 0.71 0.74 0.70
Mag (" ) 0.78 0.71 0.74 0.72
Mag (0}91) 0.15 0.11 0.13 0.17
s PMag (" n) 0.78 0.71 0.74 0.72
PMag (0:01) 0.60 0.62 0.61 0.56
dimpy [21] 0.77 -0.71 0.03 0.36
E 0.77 0.51 0.64 0.67
Mag (0:q1) [3] 0.77 -0.69 0.04 0.50
K K Mag (" n) 0.77 -0.45 0.16 0.54
PMag (;01) 0.82 0.53 0.68 0.66
PMag (" n) 0.78 -0.45 0.16 0.54
dimpy [10] 0.77 -0.71 0.03 0.37
E b 0.77 0.71 0.74 0.70
Mag (" 1) 0.77 0.71 0.74 0.71
o1 Mag (0,91) 0.68 0.51 0.59 0.59
PMag (" n) 0.77 0.71 0.74 0.70
PMag (0:01) 0.72 0.71 0.71 0.63
dimpy 0.73 0.02 0.37 0.57
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Figure 14: ViT on CIFAR100 with s

Figure 15: ViT on CIFAR100 witlkk Kz

Figure 16: ViT on CIFAR100 witl1-pseudometric
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Table 4: Correlation coef cients for all quantities f@aiT model and CIFAR10 dataset The
corresponding plots can be seen in Figures 17, 18 and 19.

METRIC COMPLEXITY R 8s
E P 0.91 0.33 0.62 0.78
Mag (" n) 0.91 0.33 0.62 0.75
Mag (0191) 0.75 0.29 0.52 0.69
S PMag (" n) 0.91 0.33 0.62 0.75
PMag (0:01) 0.87 0.38 0.62 0.75
dimpy [21] 0.91 -0.19 0.36 0.75
E P 0.91 0.38 0.64 0.85
Mag (" n) 0.89 -0.42 0.23 0.73
K k» Mag (O:%) [3] 0.91 -0.15 0.37 0.77
PMag (' n) 0.89 -0.42 0.23 0.73
PMag (0:01) 0.53 0.26 0.4 0.48
dimpy [10] 0.91 -0.31 0.30 0.67
E p 0.91 0.33 0.62 0.84
Mag (" n) 0.91 0.33 0.62 0.77
o1 Mag (O'}S)Q 0.86 0.33 0.60 0.76
PMag (" n) 0.91 0.33 0.62 0.79
PMag (0:01) 0.88 0.44 0.66 0.71
dimpy 0.91 -0.13 0.39 0.78

Figure 17: CaiT on CIFAROwith s-pseudometric.
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Figure 18: CaiT on CIFAROwith k k, distance.

Figure 19: CaiT on CIFARO with 01-pseudometric.

Figure 20: CaiT on CIFAROOwith s-pseudometric.
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Table 5: Correlation coef cients for all quantities f@aiT model and CIFAR100 dataset The
corresponding plots can be seen in 20, 21 and 22

METRIC COMPLEXITY R 8s
E p 0.67 0.13 0.40 0.54
Mag (" n) 0.67 0.13 0.40 0.52
Mag (06)1) 0.47 -0.18 0.14 0.36
S PMag (" n) 0.67 0.13 0.40 0.53
PMag (0:01) 0.76 0.53 0.64 0.71
dimpy [21] 0.67 -0.13 0.27 0.56
E p 0.67 0.40 0.53 0.64
Mag (" n) 0.68 0.33 0.50 0.65
K k» Mag (O:O&) [3] 0.66 -0.33 0.17 0.54
PMag (' n) 0.68 0.33 0.50 0.65
PMag (0:01) 0.62 0.09 0.36 0.43
dimpy [10] 0.64 -0.09 0.28 0.50
E D 0.67 0.13 0.40 0.52
Mag (" n) 0.67 0.13 0.40 0.57
o1 Mag (O'Fg)l) 0.61 0.18 0.40 0.43
PMag (" n) 0.67 0.11 0.39 0.53
PMag (0:01) 0.65 0.41 0.53 0.48
O0lLoss 0.58 0.07 0.32 0.57

Figure 21: CaiT on CIFAROOwith k k».
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Figure 22: CaiT on CIFAROOwith 01-pseudometric.

Table 6: Correlation coef cients for all quantities f8win modelandCIFAR10. The corresponding
plots are in Figure 23, 24 and 25.

METRIC ~ COMPLEXITY R as

Ep 0.97 0.58 0.77 0.86
Mag (" n) 0.97 0.57 0.77 0.84
Mag (0;p1) ~ 0.87 0.58 0.72 0.75
s PMag (' n) 0.98 0.55 0.77 0.87
PMag (0:01) 0.76 0.20 0.48 0.65
dimpy [21] 0.97 -0.57 0.19 0.67

E 0.97 -0.04 0.46 0.84
Mag (" n)  0.97 -0.43 0.27 0.77

K K Mag (0:04)[3] 0.98 -0.22 0.38 0.80
PMag ("n) 0.98 -0.43 0.27 0.77

PMag (0:01) 0.51 0.53 0.52 0.47

dimpy [10]  0.95 -0.57 0.18 0.69

Ep 0.97 0.58 0.77 0.84

Mag (' n)  0.97 0.58 0.77 0.86

o1 Mag (091)  0.94 048 0.71 0.79

PMag (' n) 0.98 0.58 0.78 0.87
PMag (0:01) 0.92 0.42 0.67 0.78
dimpy, 0.93 -0.28 0.32 0.69
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Figure 23: Swin on CIFAROwith s-pseudometric.

Figure 24: Swin on CIFAROwith k k.

Figure 25: Swin on CIFAROwith 01-pseudometric.
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Table 7: Correlation coef cients for all quantities f8win modelandCIFAR100. See Figures 26,
27 and 28 for the corresponding plots.

METRIC ~ COMPLEXITY R as

Ep 0.69 0.47 0.58 0.62
Mag (" n) 0.56 0.47 0.51 0.51
Mag (091) 031 0.47 039 0.33
s PMag (" n) 0.69 0.47 0.58 0.63
PMag (0:01) 0.71 0.58 0.64 0.68
dimpy [21] 0.69 -0.47 0.11 0.50

E 0.69 0.22 0.46 0.63
Mag ("m)  0.71 -0.57 0.07 0.53

K K Mag (0:04)[3] 0.69 -0.44 0.12 053
PMag ("n) 0.71 -0.57 0.07 0.53

PMag (0:01) 0.64 0.51 0.58 0.46

dimpy [10]  0.69 -0.47 0.11 0.45

Ep 0.69 0.47 0.58 0.61

Mag (' n)  0.69 0.47 0.58 0.62

o1 Mag (0,01)  0.61 0.27 0.44 0.50

PMag ("n) 0.69 0.47 0.58 0.62
PMag (0:01) 0.65 0.49 0.57 0.54
dimpy 0.64 0.04 0.34 0.51

Figure 26: Swin on CIFAROOwith g-pseudometric.
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Figure 27: Swin on CIFAROOwith k k.

Figure 28: Swin on CIFAROOwith 01.
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D.4 Graph Neural Networks — Additional Experiments

In Table 1, we already presented the correlation coef cients for all quantities for the GNN models
considered in our study (GraphSage, GatedGQ@) (we have selected the models which achieve

100% training accuracy)) and Graph-MNIST. We can observe a nice correlation, outperforing dim-PH

in most experiments. As it was observed for the transformer-based experiments, the correlation seems
to be better for the data-dependent-metrics. This is an important fact, as no sparse random projection
was used to compute the Euclidean distance matrices in the GNN experiments (it was not necessary
as these models have less parameters than the tramsformers considered above). This shows that the
fact the data-dependent pseudometrics outperform the Euclidean distance also happens in the absence
of these projections. It also shows that all quantities seem to yield better correlations in the absence
of random projections, at least in the GNN expsriments.

The corresponding plots for GatedGCN can be seen in Figure 32 with the pseudometric, Figure 33
for the Euclidean and 34 f@l. The plots for GraphSage are reported in Figure 29, Figure 30 and
Figure 31.

We can observe a strong correlation on these gures, outperforing dim-PH in most cases. As it
was observed for the transformer-based experiments, the correlation seems to be better for the
data-dependent-metrics. This is an important fact, as no sparse random projection was used to
compute the Euclidean distance matrices in the GNN experith€eFitss shows that data-dependent
pseudometrics outperform the Euclidean distance also in the absence of these projections. In addition,
all quantities seem to yield better correlations in the absence of random projections, at least in the
GNN expsriments.

Interestingly, a few failure cases can be seen on these plots. Infdagd0:01) andPMag (0:01)

seem to be almost constant and nkarhis indicates that the scale choke 0:01was not suited

for these experiments; this behavior was already re ected in Table 1 Hwough very Iovb Kendall's
coef cients, indicating the absence of meaningful correlation. Howdwag ( ﬂ) andPMag (' n)
provide signi cantly better correlation, which supports our main claims as n has been argued

in section 3.3 to be a particulary relevant choice of scale factor.

Note nally that the PH-dim plots for th@1-pseudometric failed to produce numbers in these graphs
experiments (this is why they are either missing or look irrelevant). As before, we gave away this
fact in Table 1 by imposing our granulated Kendall's coef cients implementation to return zeros

in the absence of correlation, hence the small numbers observed in this case. That being said, this
behavior should not be seen as an issue. Indeed, PH-dinDixiseudometric consists (in theory) in
estimating the dimension of a subset of a discrete hypercube, which is @wake reason we still
reported PH-dim for this pseudometric is for consistence and to test the implementatl@nif][in

this non-standard setting; it is however not theoretically grounded.

%A sparse random projection was not necessary as these models have less parameters than the tramsformers
considered above
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Figure 29: GraphSage on MNIST witl -pseudometric.

Figure 30: GraphSage on MNIST wikh k.

Figure 31: GraphSage on MNIST wifH.
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Figure 32: GatedGCN on MNIST withs-pseudometric.

Figure 33: GatedGCN on MNIST witk ks.

Figure 34: GatedGCN on MNIST witbl.
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