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Abstract

Brain imaging research has transitioned over the past decades from identifying
isolated regions of task-evoked activation to characterizing the spatiotemporal
dynamics of large-scale brain networks. Electrophysiological signals are the direct
manifestation of brain activity; thus, characterizing whole-brain electrophysiolog-
ical networks (WBEN) can serve as a fundamental tool for neuroscience studies
and clinical applications. In this work, we introduce a framework for integrating
scalp EEG and intracranial EEG (iEEG) for WBEN estimation through a princi-
pled state-space modeling approach, where an Expectation-Maximization (EM)
algorithm is designed to infer the state va riables and brain connectivity simultane-
ously. We validated the proposed method on synthetic data, and the results revealed
improved performance compared to traditional two-step methods using scalp EEG
only, demonstrating the importance of including iEEG signals for WBEN estima-
tion. For real data with simultaneous EEG and iEEG, we applied the developed
framework to understand the information flows during encoding and maintenance
phases of a working memory task. The information flows between subcortical and
cortical regions are delineated, highlighting more significant information flows
from cortical to subcortical regions during encoding than during maintenance.
The results are consistent with previous research findings, but from a whole-brain
perspective, which underscores the unique utility of the proposed framework.

1 Introduction

Brain networks represent the intricate and dynamic connectivity of neurons that facilitates communi-
cation across different brain regions. These networks are essential for supporting cognitive functions,
from basic sensory processing to complex decision-making [1, 2]. Existing studies have suggested
that accurately inferred brain connectivity patterns can help gain insights into the coordination and
interactions between different brain regions [3, 4], reveal the brain network underpinnings of cognitive
processes, and uncover the mechanisms and biomarkers of neuropsychiatric diseases [5, 6]. Over the
past decades, functional Magnetic Resonance Imaging (fMRI) has been the most widely used brain
imaging modality for functional brain network modeling and analysis [7]. By analyzing fMRI data,
researchers can explore the connectomes of the human brain across different cognitive tasks [8, 9],
consciousness states [10], degenerative diseases [11], and mental disorders [12]. However, fMRI has
limitations, including non-portability and low temporal resolution, which restrict its use in applica-
tions that require characterization of instantaneous brain activity at sub-millisecond timescales [13].
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Figure 1: The overall pipeline of integration of EEG and iEEG for brain network reconstruction

Neuroimaging techniques with high temporal resolution, such as Magnetoencephalography (MEG)
and Electroencephalography (EEG), can be used to measure electrical and magnetic brain signals,
offering a direct measurement of brain activity rather than metabolic signals. To establish the
electrophysiological connectome of the human brain, inferring whole-brain electrophysiological
networks (WBEN) is important since it provides a direct network-level delineation of brain connec-
tivity. Existing studies that use MEG/EEG to reconstruct brain electrophysiological networks have
typically adopted a two-step procedure, with EEG/MEG source imaging (ESI; Step 1) followed by
brain connectivity measures (Step 2), such as phase–amplitude coupling [14], coherence [15], phase
synchronization [16], and Granger causality [17].

Existing ESI frameworks based on brain source localization suffer from low accuracy in estimating
whole-brain activity across regions due to the ill-posedness of the inverse problem and are theoreti-
cally limited by the Restricted Isometry Property (RIP, the definition provided in Appendix A.1) [18].
While a number of recent works have sought to alleviate these limitations through refined spatial
priors and filtering strategies [19–21], the fundamental challenges remain significant. To address
the limitations of two-step approaches, Yang et al. proposed a one-step state-space model that
jointly estimates source localization and dynamic connectivity by modeling ROI mean activities with
time-varying autoregression [22]. Pirondini et al. developed computationally efficient algorithms
combining spatial covariance estimation, linear state-space dynamics, and sparsity constraints, achiev-
ing improved source localization performance with significant reduction in computation time through
steady-state Kalman filtering [23]. However, estimating whole-brain networks poses additional chal-
lenges for the ESI problem, as it further relaxes sparsity constraints [24]. More recently, Soleimani et
al. demonstrated that Granger causal links can be directly inferred from MEG measurements without
an intermediate source localization step, achieving superior performance with low false alarm rates
through integrated parameter estimation and statistical analysis [25]. Additionally, Sanchez-Bornot
et al. introduced multiple penalized state-space models with novel algorithms based on backprop-
agation, gradient descent, and alternating least squares, enabling simultaneous solution of source
localization and functional connectivity problems for thousands of cortical sources using data-driven
regularization [26].

In addition to non-invasive modalities, invasive neuroimaging technologies such as intracranial Elec-
troencephalography (iEEG), including Electrocorticography (ECoG) and stereoelectroencephalogra-
phy (sEEG), which place subdural electrodes on the brain surface (ECoG) or penetrating electrodes
in subcortical regions (sEEG), can achieve more accurate connectivity mapping among different
regions of interest with high temporal resolution [27, 28]. Recent studies have leveraged simultaneous
scalp EEG and iEEG recordings to improve the reliability of electrophysiological source imaging.
For example, Jiao et al. proposed an explainable deep learning framework (XDL-ESI) that unrolls
optimization algorithms into neural networks and achieves accurate, interpretable source localization
validated on simultaneous EEG-iEEG data [29]. Despite these advances, iEEG recordings remain
limited in spatial coverage due to their invasive nature, making the brain only partially observable
through iEEG measurement. As iEEG electrodes can only cover part of the brain, important neural
activity or connectivity patterns might be undetected in other regions. For example, in the analysis of
seizure onset zones in epilepsy, Shu et al. used MEG/EEG source imaging and identified interictal
spikes that are missed by iEEG [30], highlighting the value of synergy between scalp EEG and inva-
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sive iEEG. The partial observability of iEEG and the challenges of localizing networked brain sources
from EEG motivate the integration of scalp EEG and iEEG as complementary modalities. To address
the above issues, we propose to integrate scalp EEG and iEEG to provide a accurate delineation of
electrophysiological activation and connectivity at the whole-brain scale. Integrating iEEG and scalp
EEG can yield a faithful reconstruction of WBEN, however, a principled multimodal integration
modeling and inference framework has not been explored before. Early work leveraging state-space
models solving the ESI and brain networks demonstrated significant potential [22, 25, 31]. In this
paper, we propose a new inference framework based on state-space dynamical systems and Bayesian
inference that leverages multimodal fusion of scalp EEG and iEEG for WBEN estimation. This
work represents a new and unified computational paradigm that integrates scalp EEG and intracranial
recordings for whole-brain network inference, treating both modalities as complementary observa-
tions of shared underlying neural dynamics within a rigorous Bayesian state-space paradigm. This
framework enables comprehensive characterization of whole-brain electrophysiological networks
when simultaneous recordings are available. The pipeline of the proposed approach is illustrated in
Fig. 1.

2 Method

2.1 Basic problem definition

The linear discrete dynamic system of brain sources, as well as the linear model of EEG and iEEG
observations, can be defined as:

xt =

K∑
k=1

Φkxt−k + nt, t = 1, ..., T, xt ∈ RN ,

yt = Lxt + wt, yt ∈ RM , (1)

zt = Cxt + et, zt ∈ RO,

where N , M , and O are the number of the source regions, EEG electrodes, and iEEG electrodes,
respectively. Φk ∈ RN×N is the state transition matrix that delineates the impact of the source state
at time t− k to t. nt ∈ RN , nt ∼ N (0,Q) is the noise in source state space which is assumed to be a
multivariate Gaussian distribution with mean 0 and diagonal covariance matrix Q. L ∈ RM×N is the
lead field matrix. wt ∈ RM , wt ∼ N (0,P) is the measurement noise in EEG observation which is
also assumed to be a multivariate Gaussian distribution with mean 0 and a covariance matrix P that
is assumed to be known by measuring on a realistic head model. And C ∈ RO×N is a full-row rank
transformation matrix that selects the source signal where its region can be observed by iEEG directly.
et ∈ RO, et ∼ N (0,S) is the iEEG observational noise which is assumed to follow multivariate
Gaussian distribution with mean 0 and a covariance matrix S that is also can be measured in a similar
manner as P. Thus, according to the model definition, the parameters that need to be estimated are Φ
and Q. Define the unknown parameters as θ = {Φ,Q}. Then, the log-likelihood can be written in the
form:

log p(y1:T , z1:T |θ), (2)

The log-likelihood of the model can be defined as

logp(y1:T , z1:T |θ), θ = {Φ,Q}. (3)

Since the number of observations substantially exceeds the number of sources, the inverse estimation
problem is highly ill-posed. To alleviate this phenomenon and simplify the problem, a regularization
term was added based on the assumption that the connection from all other regions to a given region
is sparse. In this case, the regularized maximum log-likelihood of parameters for the model can be
defined as :

θ∗ = argmax
θ

logp(y1:T , z1:T |θ)− λ

N∑
n=1

∥Φn,:∥1, (4)

where Φn,: is the nth row of the state transition matrix. λ is a regularization weight for model
estimation that can be decided manually according to the experience or by grid search [25].
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2.2 An Expectation-Maximization estimation framework

In the domain of statistical methodology, the Expectation–Maximization (EM) algorithm serves as
an iterative computational approach employed to determine the maximum likelihood, whether it
pertains to local optima or the maximum of posterior estimations (MAP) of parameters in the context
of a statistical model. These models, in particular, depend on latent variables hidden from direct
observations, underscoring the importance of this sophisticated approach. The EM is characterized
by iterative execution, with two pivotal steps: firstly, the Expectation (E) step, where a Q-function is
calculated to encapsulate the expected value of the log-likelihood. Secondly, the Maximization (M)
step, during which optimal parameters are derived to maximize the anticipated log-likelihood obtained
during the E step. Consequently, these derived parameters play an important role in illustrating
the distributional characteristics of the latent variables to prepare for the subsequent E step within
the iterative loop. Since the data distribution in the source domain is unknown, the Expectation-
Maximization framework takes the source state as the latent variable, which can be applied to find the
optimal estimation of the log-likelihood and then obtain the approximated state in the source domain
with the problem defined above.

We first illustrate the E-step by starting from Eq.(2) and using the facts that the observations of EEG
and iEEG are conditional independent on the source state x. The log-likelihood can be rewritten and
derived by introducing source state x1:T as

logp(y1:T , z1:T , x1:T |θ) = log p(y1:T , z1:T |x1:T , θ) + log p(x1:T |θ)
= log p(y1:T |x1:T , θ) + log p(z1:T |x1:T , θ) + log p(x1:T |θ).

(5)

The first and second terms of the right-hand side of the second row can be easily obtained based on
the Gaussian noise assumption while source xt is given which are

log p(y1:T |x1:T , θ) =

T∑
t=1

log p(yt|xt, θ) = −T

2
log(2π|P|)− 1

2

T∑
t=1

∥yt − Lxt∥P−1 , (6)

and

log p(z1:T |x1:T , θ) =

T∑
t=1

log p(zt|xt, θ) = −T

2
log(2π|S|)− 1

2

T∑
t=1

∥zt − Cxt∥S−1 , (7)

where | · | is the matrix determinant, and ∥v∥W = vTWv is the quadratic form in the exponential term
of multivariate Gaussian distribution. The last term can be obtained based on the linear dynamical
model from (1). and utilize the presumption that Q is a diagonal covariance matrix with the items
{σ2

i , i = 1, ..., N} on its diagonal, then we have

log p(x1:T |θ) =
T∑

t=1

log p(xt|θ) = −T

2
log(2π|Q|)− 1

2

M∑
i=1

1

σ2
i

∥x̂i −Xϕ̂i∥22, (8)

where x̂i = [xi,K+1, xi,K+2, ..., xi,T ]
T ,

X = [[x1,K+1, x1,K+2, ..., x1,T ]
T , ..., [x1,1, x1,2, ..., x1,T−K ]T , [xN,K+1, xN,K+2, ..., xN,T ]

T , ...,

[xN,1, xN,2, ..., xN,T−K ]T ], and ϕ̂i = [[Φk]i,j ]
T , k = 1, ...,K, j = 1, ..., N . By substituting Eqs.

(6)-(8) into Eq.(5), the formula can be reformulated, and then take the expectation to get the Q-
function for EM as

log p(y1:T , z1:T , x1:T |θ) =− T

2
log(2π|P|)− 1

2

T∑
t=1

∥yt − Lxt∥P−1

− T

2
log(2π|S|)− 1

2

T∑
t=1

∥zt − Cxt∥S−1

− T

2
log(2π)− T

2

N∑
i=1

log(σ2
i )−

1

2

N∑
i=1

1

σ2
i

∥x̂i −Xϕ̂i∥22 (9)

= Cθ −
T

2

N∑
i=1

log(σ2
i )−

1

2

N∑
i=1

1

σ2
i

∥x̂i −Xϕ̂i∥22,
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Q(θ; θ(j)) = E [log p(y1:T , z1:T , x1:T |θ)|y1:T , z1:T , θ(j)]

= Cθ(j) −
T

2

N∑
i=1

log(σ
(j)
i

2
)− 1

2

N∑
i=1

1

σ
(j)
i

2 E [∥x̂i
(j) −X(j)ϕ̂i

(j)
∥22] (10)

= Cθ(j) −
T

2

N∑
i=1

log(σ
(j)
i

2
)− 1

2

N∑
i=1

1

σ
(j)
i

2 {E [x̂i
(j)T x̂i

(j)|y1:T , z1:T , θ(j)]

− 2E [x̂i
(j)TX(j)|y1:T , z1:T , θ(j)]ϕ̂i

(j)
+ ϕ̂i

(j)T

E [X(j)TX(j)|y1:T , z1:T , θ(j)]ϕ̂i
(j)

},

Cθ(j) =− T

2
log(2π|P|)− 1

2

T∑
t=1

∥yt − Lx
(j)
t ∥P−1

− T

2
log(2π|S|)− 1

2

T∑
t=1

∥zt − Cx
(j)
t ∥S−1 − T

2
log(2π),

(11)

where the bracket superscript represents the jth iteration in EM, and Cθ(j) is a constant term when
θ is given at jth iteration. We can find that the p(x1:T |y1:T , z1:T , θ) is also Gaussian due to the
Gaussian property on x, y, and z given θ [32]. To find the Q-function, we can permute the equation
and notice that the first and third expectation terms in the last row of the Eq.(10) consist of the
second-order moment of the density p(x1:T |y1:T , z1:T , θ) while the second expectation term can be
expressed by the first-order moment of p(x1:T |y1:T , z1:T , θ) whose mean as well as the covariance
matrix can be estimated via Fixed Interval Smoothing (FIS), and the details of it will be listed in the
next section. In the M-step, the optimal θ = {Φ,Q} that maximizes the Q-function defined above
should be found. Since the number of observations is far less than that of the source regions, the
inverse problem is ill-posed. The l1 regularization on Φ is introduced based on the premise that
the functional connection among a given region and others possesses sparse properties to reduce
problem-solving difficulty. Thus, the equation of the maximization can be described with the form

θ(j+1) = argmax
θ

Q(θ; θ(j)) + λ

N∑
i=1

∥Φi,:|θ∥1, (12)

which can be efficiently addressed through the implementation of the Fast Adaptive Shrinkage/Thresh-
olding Algorithm (FASTA). At this juncture, the EM)framework for source estimation has been
established, providing a statistically rigorous foundation for the subsequent analytical procedures.

2.3 Source density estimation with FIS

Fixed interval smoothing is a statistical technique used in time series analysis and signal processing. It
involves retrospectively estimating and improving the values of a time series over fixed time intervals,
considering both past and future observations. This method is particularly useful for reducing noise
or uncertainty in historical data and obtaining more accurate, smoothed estimates of the underlying
trends or states within the time series. The principle of FIS consists of two parts: forward filtering
and backward smoothing. The forward filter is executed to derive posterior estimates and covariances
up to the given time t. Subsequently, the backward filter is applied to yield prior estimates and
covariances, effectively extending the timeline backward to time t or providing a prior perspective in
reverse chronology, in other words. Finally, the estimates and covariances derived from both forward
and backward filtering at time t are integrated to produce the ultimate estimation of the state and
covariance matrix. Recall the main problem in Eq. (1). Considering computing performance factors,
the fusion observation can be described by combining y and z. The idea is that EEG and iEEG can be
viewed as components of a unified electrophysiological system. Still, there is no correlation between
the measuring noise of the two modalities, and the conditional density of merged observation is also
a Gaussian. Thus, observation is redefined as

y+t = L+xt + w+
t , (13)
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where

L+ =

(
L
C

)
, L+ ∈ R(M+O)×N ,

y+
t =

(
yt
zt

)
, y+

t ∈ RM+O, (14)

w+
t =

(
wt

et

)
, w+

t ∼ N (0,P+), w+
t ∈ R(M+O),

P+ =

(
P 0(M×O),

0(O×M) S

)
, P+ ∈ R(M+O)×(M+O),

log p(y+1:T , x1:T |θ) = log p(y+
1:T |x1:T , θ) + log p(x1:T |θ)

= C+
θ − T

2

N∑
i=1

log(σ2
i )−

1

2

N∑
i=1

1

σ2
i

∥x̂i −Xϕ̂i∥22, (15)

C+
θ =− T

2
log(2π|P+|)− 1

2

T∑
t=1

∥y+
t − L+x

(j)
t ∥P+−1 − T

2
log(2π).

Then the log-likelihood problem can be transformed to Eq. (15), and the same transformation can be
applied to Q-function. The estimation of the mean and the covariance matrix of p(x1:T |y1:T , z1:T , θ)
can be redefined as that of the p(x1:T |y+1:T , θ). And one can easily find that p(x1:T |y+1:T , θ) is a
Gaussian, since for two jointly Gaussians, the conditional distribution is also a Gaussian [32]. Then,
the FIS can be applied to find the mean and covariance matrix for p(x1:T |y+1:T , θ). The forward
Kalman filtering can give the estimation on p(xt|y+1:t, θ), ∀t, while the backward Kalman smoothing
can calculate the p(xt|y+t:T , θ), ∀t. The merging of two estimates can generate the final estimate
on p(xt|y+1:T , θ), ∀t. Next, referring to the estimation framework [25], we start with Vector Auto
Regressor (VAR) to generate the initial value for estimation. Since the source state at time t depends
on the state of the former K time points, it is necessary to redefine the augmented source state as
xt = [xt;xt−1; ...;xt−K+1],xt ∈ R(KN) and the augmented dynamic model as (22) to transform
VAR(K) problem into a VAR(1) one.

xt = Φ xt−1 + nt, ∀t, (16)

where

Φ =


Φ1 Φ2 ... Φ(K−1) ΦK

I(M×M) 0 ... 0 0
0 I(M×M) ... 0 0
...

...
. . .

...
...

0 0 ... I(M×M) 0

 ,Φ ∈ RKN×KN ,

nt =


nt

0
...
0

 ,nt ∈ RKN ,nt ∼ N (0,Q),

Q =

(
Q 0
0 0

)
,

(17)

are the augmented state transition matrix and disturbance in source, respectively. And Q is the
covariance matrix for the augmented disturbance, which is also diagonal, whose diagonal values are
the same variance as Q and 0 elsewhere. Then, the augmented version of merged observations is

y+t = L+ xt + w+
t , ∀t, (18)

where
L+ =

(
L+ 0

)
,L+ ∈ RM×KN . (19)

In this way, the p(xt|y+1:T , θ) can be calculated via FIS if the observations as well as θ are known.
Next, according to [33] one can define
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xt1|t2 = E [xt1
|y+

1:t2
],

Σt1|t2 = Cov(xt1
|y+

1:t2
),

Bt1,t2|T = Cov(xt1
,xt2

|y+
1:T ) =


BT

t2,t1|T , if t1 > t2

Σt1|t2 , if t1 = t2

Kb
t1B

T
t1+1,t2|T , if t1 < t2

,

Kb
t1 = Σt1|t1Φ

TΣ−1
t1+1|t1 ,

(20)

as the mean, covariance matrix as well as the cross-covariance matrix for any given t1 and t2. Then,
the model can be fitted with the FIS framework. We started with the initial value obtained via VAR in
the forward filtering step. Then, for t = 0, 1, 2, ..., T − 1 can have

xt+1|t = Φ xt|t,

Σt+1|t = ΦΣt|tΦ
T +Q,

Kf
t+1 = Σt+1|tL

+T
(L+Σt+1|tL

+T
+P+)−1,

xt+1|t+1 = xt+1|t +Kf
t+1(y

+
t+1 − L+xt+1|t),

Σt+1|t+1 = Σt+1|t −Kf
t+1(L

+Σt+1|tL
+T

+P+)Kf
t+1

T
.

(21)

Taking the results from the filtering step, we can further do backward smoothing for t = T − 1, T −
2, ..., 0 as

Kb
t = Σt|tΦ

TΣ−1
t+1|t,

xt|T = xt|t +Kb
t(xt+1|T − xt+1|t),

Σt|T = Σt|t −Kb
t(Σt+1|T −Σt+1|t)K

b
t

T
.

(22)

Then, the cross-covariance matrix can be obtained according to (20), and finally, simply extract the
first N rows of xt|T and the N th order submatrix of the upper left corner of the matrix Bt1+1,t2|T

for ∀t1, t2 = 1, 2, ..., T , which are exactly the first- and second-order moment of p(xt|y+1:T , θ), ∀t, to
finalize the E-step. The algorithmic pipeline is described in Appendix A.2.

3 Results

To validate the added value of the integration of scalp EEG and iEEG in estimating the WBEN, we
first conducted experiments with simulated data, and then we tested the proposed inference framework
on the Sternberg verbal working memory task to explore the connectivity maps between cortical and
subcortical regions during the encoding and maintenance phases [34].

3.1 Numerical experiment on synthetic data

Realistic simulated data are generated and several baseline methods are used for comparison. Detailed
experimental configurations are provided in the Appendix A.3.

Validation on the added value using simultaneous scalp EEG and iEEG: Firstly, the impact of
iEEG coverages of the partially observable brain regions (state variables) on the estimation of brain
connectivity was evaluated. In the experiment, the source space state variables are partial observable
with a prescribed portion rendered by the iEEG electrodes. The coverage ratio was set to range from
0% to 50% with a stepsize of 10%. The SNR levels for EEG and iEEG observations were set to
be -5dB and 30dB, respectively. The network complexity was set with the number of activations
as 10 and in-degree as 2. In the full factorial design of experiments, 10 repetitive simulations were
conducted.

We use Acc and Sen (definitions provided in Appendix A.3) to evaluate the network estimation
performance. The impact of the percentages of observable variables is given in Fig. 2, accompanied
with the numerical results given in Table 1. Not surprisingly, as the proportion of observable state
space variables increases, both Sen and Acc score are increasing. It is worth noting that when the
percentage of observable state space variables reaches 30%, there is a significant improvement in
both Acc and Sen, as is shown in Fig. 3. The result shows that the performance of WBEN estimation
can be significantly improved when appropriate amount of activated areas are observable from iEEG
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Percentage of observable brain regions

Figure 2: Evaluation of the Sen and Acc score varied with the percentage of observable brain regions
on the WBEN estimation. The curve plots show the mean value of Acc and Sen.

electrodes, which highlights the value of using simultaneous recordings of scalp EEG and iEEG to
characterize the whole brain network dynamics. An example with 30% partially observable brain
nodes is shown in Fig. 4. When using two-step methods, due to inaccuracy caused by classical
ESI approaches, the over-diffused source estimation results in highly dense brain networks. When
using one-step approach with 0% of observable brain regions (without iEEG electrodes) [25], the
performance is 0.461 for sensitivity and 0.189 for accuracy respectively, which a significant amount
of false positive predictions.

Figure 3: The significance of difference on accuracy and sensitivity between 0% and 30% source
observation using group t-test.

Table 1: Evaluation of the percentage of observable brain regions on the WBEN estimation.

Metrics 0% 10% 20% 30% 40% 50% 60%
Sen 0.461 ± 0.155 0.517 ± 0.042 0.556 ± 0.070 0.639 ± 0.120 0.690 ± 0.147 0.721 ± 0.153 0.852 ± 0.131
Acc 0.189 ± 0.176 0.179 ± 0.161 0.180 ± 0.174 0.545 ± 0.224 0.657 ± 0.194 0.687 ± 0.184 0.735 ± 0.201

Impact of SNR on WBEN estimation: The scalp EEG SNR is a key factor for WBEN estimation.
Since the SNR in the iEEG signal is known to be significant greater than that of the EEG signal [35],
we mainly evaluate the impact of scalp EEG SNR on the WBEN estimation. In the experiment, the
SNR of iEEG signal was set to 30dB with different levels of SNR for the scalp EEG signal. It is
unknown how the performance of WBEN estimation will be improved when integrating the iEEG into
the WBEN inference framework with a high level of noise presence in scalp EEG recordings. The
SNR for the EEG signal was set from -10dB to 10dB [35], meanwhile, the percentage of observable
brain regions from iEEG was set to be 30%, and the network complexity configuration is the same
as in Sec.3.1. Table 2 shows the statistical result for the experiment. The pairwise comparison of
0% and 30% observable state variables is illustrated in Fig. 3. The group level t-test shows the
significant difference when making 30% of state variables (brain regions) directly observable from
iEEG electrodes, with a pronounced improvement in Acc score by reducing the false positive rates.
From Table 2, the classical two-step methods do not achieve satisfactory results even under high
SNR conditions. In contrast, when employing the one-step state space modeling approach, per-
formance remains comparable with either 0% or 30% iEEG observations given high SNR scalp
EEG, highlighting the advantages of the one-step approach with state-space modeling paradigm
for WBEN estimation. As SNR decreases with increased noise, Acc and Sen metrics deteriorate
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Figure 4: Visualization for network estimation in different methods, where the activated patch centers
are highlighted with yellow color, and the iEEG observed patch centered are highlighted with green
color. For two-step methods, the eLORETA that has the best performance is selected for comparison.

across all methods. However, performance using the one-step state space dynamic model degrades
significantly, producing numerous incorrectly predicted connections at lower SNR values, whereas
integrating iEEG measurements yields a relatively stable performance curve. This finding further
confirms the value of incorporating iEEG for more accurate WBEN estimation, particularly when
scalp EEG channels are contaminated with high noise levels.

Further analysis on the false positive rate, the different causal analysis baselines, and the impact of
brain network complexity on the WBEN estimation are given in the Appendix A.6, A.5 and A.7,
respectively.

3.2 Cortical-subcortical network analysis of working memory task

In this section, we analyzed the networks between cortical and subcortical brain regions during
the Working Memory (WM) tasks. WM is commonly associated with learning, understanding,
executive functioning, information processing, intelligence, and problem-solving in humans and
various animals from infancy to old age [39]. Maintaining content in WM requires communication
between an extensive network of brain regions [40]. In this section, the proposed method was applied
to estimate and analyze the brain connectivity between cortical and subcortical regions at different
WM phases, which are the encoding phase and maintenance phase, in a verbal WM task conducted by
patients with epilepsy where simultaneous scalp EEG and iEEG were recorded. The data description
and preprocessing are detailed in Appendix A.4.

The experiment used a second-order vector auto-regressor model for the estimation framework stated
in section 2.2. The regional connectivity of brain activity during the encoding and maintenance
phases was estimated separately for each human participant’s tasks. Lastly, the final estimation
was obtained by first taking the sum over the estimated state transition matrices for each task and
then averaging all task-leveled state transition matrices according to different phases. To ensure the
stability of the result, only the connections from region i to j that contains signal power no less than
10% of the signal power from region j to itself were kept, i.e., Φ(i, j) > 0.1 ∗Φ(j, j). Moreover,

Table 2: Evaluation of performance with different levels of scalp EEG SNR.

Method Metrics SNR=5 SNR=0 SNR=-5 SNR=-10

MNE Sen 0.328 ± 0.131 0.253 ± 0.149 0.162 ± 0.120 0.170 ± 0.192
Acc 0.013 ± 0.006 0.011 ± 0.005 0.008 ± 0.004 0.006 ± 0.003

dSPM Sen 0.199 ± 0.144 0.203 ± 0.144 0.152 ± 0.134 0.149 ± 0.159
Acc 0.010 ± 0.008 0.011 ± 0.007 0.007 ± 0.003 0.006 ± 0.003

sLORETA Sen 0.255 ± 0.160 0.269 ± 0.159 0.165 ± 0.123 0.176 ± 0.189
Acc 0.011 ± 0.006 0.011 ± 0.007 0.008 ± 0.004 0.006 ± 0.004

eLORETA Sen 0.442 ± 0.101 0.412 ± 0.119 0.383 ± 0.135 0.363 ± 0.143
Acc 0.013 ± 0.006 0.012 ± 0.006 0.010 ± 0.005 0.010 ± 0.005

ALCMV [36] Sen 0.427 ± 0.134 0.390 ± 0.145 0.412 ± 0.161 0.384 ± 0.139
Acc 0.002 ± 0.001 0.002 ± 0.001 0.002 ± 0.001 0.002 ± 0.001

ASTAR [37] Sen 0.113 ± 0.011 0.107 ± 0.013 0.125 ± 0.022 0.095 ± 0.013
Acc 0.003 ± 0.001 0.002 ± 0.001 0.003 ± 0.001 0.003 ± 0.002

VSSI-ARD [38] Sen 0.448 ± 0.117 0.421 ± 0.128 0.361 ± 0.124 0.338 ± 0.148
Acc 0.003 ± 0.002 0.003 ± 0.001 0.003 ± 0.003 0.003 ± 0.001

EEG with 0% of
iEEG obs.

Sen 0.707 ± 0.194 0.592 ± 0.169 0.461 ± 0.155 0.402 ± 0.132
Acc 0.429 ± 0.292 0.253 ± 0.245 0.189 ± 0.176 0.034 ± 0.023

EEG with 30% of
iEEG obs.

Sen 0.780 ± 0.136 0.716 ± 0.115 0.639 ± 0.120 0.491 ± 0.103
Acc 0.404 ± 0.270 0.501 ± 0.269 0.545 ± 0.224 0.595 ± 0.167
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Figure 5: Cortical-subcortical connectivity estimation analyses across encoding and maintenance
phases in verbal working memory. A depicts the distribution of absolute connectivity strength be-
tween cortical and subcortical regions during both phases based on averaged results, with significant
differences confirmed by group t-test (t = 3.359, p < 0.001). B illustrates the distribution of con-
nection frequencies across phases derived from event-level analyses: left panel represents outgoing
information flows from cortical regions (t = 5.487, p < 0.001), while right panel shows outgoing
information flows from subcortical regions (t = -13.336, p < 0.001).

the HO atlas regions in the cortical area were further merged into lobe-level granularity, while
caudate, putamen, and pallidum were aggregated as basal ganglia to further pursue robust macro-scale
results. The estimated dynamic networks (Appendix A.9) revealed significant phase-dependent
differences. During encoding, predominant information flow occurred from cortical to subcortical
regions, specifically from frontal, temporal (including auditory processing areas), and parietal lobes to
thalamus and basal ganglia. Meanwhile, subcortical-originating connections primarily targeted other
subcortical structures, with directed pathways from basal ganglia and hippocampus to thalamus, and
from amygdala to basal ganglia and thalamus. Conversely, maintenance phase exhibited a reversed
directionality pattern, with prominent connections from thalamus and basal ganglia to frontal and
parietal lobes, and from hippocampus to temporal regions (including auditory processing areas).
Statistical analyses in Fig. 5 confirmed significant differences in both directional connectivity and
distribution patterns between subcortical and cortical regions across phases. We further analyzed the
connectivity strength and the direction of information flow between cortical and subcortical regions
during the encoding and maintenance phases. As shown in Fig. 5, the overall connectivity strength
during the encoding phase is stronger than that of the maintenance phase. Besides, the amount of
connection that flows start from cortical regions is generally greater during the encoding phase than
the maintenance phase, whereas brain connections during the maintenance phase are more active in
the information flow that is directed from subcortical regions to elsewhere.

4 Conclusion

We proposed the first unified computational framework for integrating simultaneously recorded scalp
EEG and iEEG data to estimate the whole-brain electrophysiological networks. This framework
enables the delineation of neurophysiological networks at a whole brain scale and with millisecond-
level temporal resolution. Results validate the complementary value of both modalities, demonstrating
that strategic multimodal scalp EEG and iEEG deployment can significantly improve network
reconstruction accuracy even with high volume of measurement noise. Numerical experiments
confirm the robustness under broad experiment configurations, while application to Sternberg verbal
working memory task yielded insightful findings consistent with previous studies [40–47], particularly
the characterization of cortical-subcortical information flows during encoding and maintenance
phase [40], which is the first analysis of this type at the whole brain scale. The proposed framework
can serve as a fundamental computational tool for electrophysiological brain network analysis with
applications to clinical studies and neuroscience research.
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sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The data we used is public available. https://doi.org/10.18112/
openneuro.ds004752.v1.0.1. The code for the model will be made public accessible
upon acceptance. At the current stage, no code is made public available.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, experimental setting is presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Random trials were used. Statistical significance were tested.

Guidelines: .

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The computational resources for this research is presented in Appendix A.3
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We confirm that we followed the NeurIPS code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: This tool can be used as an analytical tool to characterize the brain networks. It
can help neurosurgeons make better decisions, however, it may mislead the decision making
if this tool did not used properly.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: Safeguards are given in the Appendix A.12.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Public data is used in this paper, and the original paper and link for the public
dataset is presented in our paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: The authors’ university IRB board approved its exemption.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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A Appendix

A.1 Definition of restricted isometry property

The definition of Restricted Isometry Property (RIP) is that for a lead field matrix Φ ∈ Rm×n and
sparsity level s, the RIP is mathematically defined as:

(1− δs)∥x∥22 ≤ ∥Φx∥22 ≤ (1 + δs)∥x∥22, (23)

where δs ∈ (0, 1) is the Restricted Isometry Constant (RIC) and the inequality holds for all s-sparse
vectors x.

The RIP can be equivalently expressed using operator norms:

δs = max
|S|≤s

∥ΦT
SΦS − I∥2→2, (24)

where ΦS denotes the submatrix of Φ with columns indexed by set S, and I is the identity matrix.

In terms of eigenvalues, RIP ensures:

1− δs ≤ λmin(Φ
T
SΦS) ≤ λmax(Φ

T
SΦS) ≤ 1 + δs. (25)

Cai et al. proved that as sparsity s increases, even optimal measurement matrices cannot keep
δs sufficiently small, making recovery unreliable [48]. Since EEG leadfields often violate RIP at
moderate–high sparsity, ESI accuracy degrades under multi-source conditions, motivating the use of
strong priors or data-driven constraints.

A.2 Algorithmic framework and procedure

Algorithm 1 EM Framework for Parameter Estimation
Require: EEG measurement {yt}Tt=1, iEEG measurement {zt}Tt=1, leadfield matrix for EEG L and iEEG C,

estimated noise covariance matrix of EEG P and iEEG S, other parameters for VAR model, regularization,
and halting condition.

1: Integrate the two modalities to get an augmented measurement {y+
t }Tt=1, leadfield matrix L+, and noise

covariance matrix P+. Initialize parameter θ(0) according to any conventional source localization method,
e.g., MNE.

2: while the convergence or halting condition is not met do
3: E-step: Compute Q(θ; θ(j)) based on the conditional density p(x1:T |y+

1:T , θ
(j)) estimated via FIS.

4: M-step: Maximize θ(j+1) = argmax
θ

{Q(θ; θ(j)) + λ
∑N

i=1 ∥Φ
(j)
i,: |θ∥1} using FASTA.

5: j = j + 1
6: end while

Ensure: Optimal parameter θ∗

A.3 Simulated experiment settings

Brain Forward Model: To generate synthetic EEG data, we used a realistic head model to compute
the leadfield matrix based on the T1-MRI images from FreeSurfer [49]. The brain tissue segmentation
and tissue surface generation were conducted using FreeSurfer. A 128-channel BioSemi EEG cap
layout was used, and the EEG channels were co-registered with the scalp surface and further validated
on the MNE-Python toolbox [50]. The source space was parcelled and resampled. Then a three-
layer boundary element method (BEM) was built based on the reconstructed surfaces, resulting in a
leadfield matrix denoted as L.

Realistic data generation: To generate a causal time series, the Berlin Brain Connectivity Benchmark
(BBCB) [51] is used with randomly generated state transition matrices Φk with k ∈ {1, · · · ,K}. To
ensure the convergence of source signals, each eigenvalue in Φ is further validated to be less or equal
to 1. Then we add an independent random Gaussian noise to each source signal at every time step.
Lastly, an acausal third-order Butterworth filter with zero phase delay was applied with band-pass
frequency being [0.1Hz, 40Hz] [52]. With the generated source signal, the observation time series
can be derived by multiplying the leadfield matrix with the source signal and adding the channel-wise
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correlated random Gaussian noise with a given signal-to-noise ratio (SNR) level. The iEEG noise is
generated separately with a relatively higher SNR level [35].

Evaluation Metrics: In the simulated experiment, the ground truth of the connectivity network is
defined based on the generated state transition matrix Φ. If the i, j-th element Φ(i,j) is zero, there is
no link from i to j, otherwise there is a link from i to j. In this experiment, K is set to be 1 so that
the state at time t is only dependent on the state at time t− 1. The Sensitivity (Sen) and Accuracy
(Acc) metrics for connectivity estimation are defined to evaluate the performance given as:

Sen =
Nc

Ntot
, Acc =

Nc

Nc +Nw
, (26)

where Nc denotes the number of correct predictions, and Ntot is the total number of connectivities,
and Nw is the number of wrong predictions (number of false positives).

Benchmark algorithms: The baseline methods include traditional two-step methods, which con-
ducted brain source localization first with existing ESI algorithms, such as MNE [53], sLORETA
[54], dSPM [55], eLORETA [56] etc., followed by applying the Granger causality analysis on the
estimated source signals for source space connectivity estimation. The observation signals were
set with sampling rate 100Hz and a group of 10s time series were generated. In order to analyze
the impact of the integration of iEEG, several hyperparameters, i.e., the number of partially observ-
able brain regions, different levels of SNR, and complexity of brain networks (which includes the
number of activated source regions and the maximum in-degree of each region), were evaluated
comprehensively.

Computational resources: All experiments are run on a Windows 11 pro desktop with 32G memory,
an Intel i9-12900KF CPU and an A6000 GPU of 48G memory.

A.4 Real Data Description and Preprocessing

The dataset comprises intracranial recordings from 15 epilepsy patients undergoing clinical moni-
toring for seizure localization while performing a modified Sternberg verbal working memory task.
This paradigm temporally segregated encoding, maintenance, and recall phases. The comprehensive
dataset includes simultaneous scalp EEG recordings following the 10-20 system, depth electrode
iEEG recordings, and the corresponding MNI coordinates with anatomical labels for all intracranial
electrodes [34]. Each participant completed multiple experimental sessions, with 50 distinct events
per session. Each event epoch consisted of an 8-second recording (sampled at 200 Hz for EEG
and 2000 Hz for iEEG), structured as follows: fixation (0-1s), working memory encoding (1-3s),
maintenance (3-6s), and response (6-8s). Our analysis specifically targeted the encoding and mainte-
nance phases. To account for potential temporal extension of the auditory encoding process beyond
the visual stimulus presentation, we analyzed only the final 2 seconds of the maintenance phase,
consistent with methodological considerations outlined in prior research [40].
All iEEG and EEG electrodes were co-registered to the standard ’fsaverage’ template [57]. The for-
ward model was calculated using MNE-Python with source spacing set to oct-5, generating over 2000
patches per hemisphere. Forward solutions were computed independently for each subject according
to the standard 10-20 montage of their specific electrode configurations. For regional connectivity
analysis, source locations were aggregated into anatomical regions defined by the Harvard-Oxford
(HO) atlas (48 cortical and 21 subcortical areas) using nearest-neighbor mapping in MNI space,
thereby reducing the high-dimensional source space to a more tractable atlas-based representation.
iEEG channels were mapped to HO atlas areas based on electrode positions, with signals averaged
across channels assigned to identical atlas regions. The iEEG leadfield matrix was constructed as
a binary mapping, with unit values representing measured atlas areas and zeros elsewhere. In the
absence of empty room recordings, we modeled EEG noise as a multivariate Gaussian distribution
(mean=0, standard deviation=1) and iEEG noise as a multivariate Gaussian with reduced variance
(mean=0, standard deviation=0.1). Both EEG and iEEG signals were subsequently downsampled to
50 Hz.

A.5 Assessment of model performance with respect to different causal analysis under
different SNR

We further use transfer entropy and partial directed coherence for two-stage causal analysis baselines.
As can be seen from Table 3 and 4. The proposed method is consistently better than baselines.
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Table 3: Evaluation of performance with different levels of scalp EEG SNR. The connectivity
estimation for two-step methods is based on transfer entropy.

Method Metrics SNR=5 SNR=0 SNR=-5 SNR=-10

MNE Sen 0.255 ± 0.093 0.255 ± 0.093 0.255 ± 0.093 0.255 ± 0.093
Acc 0.002 ± 0.001 0.002 ± 0.001 0.002 ± 0.001 0.002 ± 0.001

DSPM Sen 0.000 ± 0.000 0.000 ± 0.000 0.008 ± 0.024 0.008 ± 0.024
Acc 0.000 ± 0.000 0.000 ± 0.000 0.033 ± 0.100 0.000 ± 0.001

SLORETA Sen 0.262 ± 0.074 0.277 ± 0.043 0.292 ± 0.046 0.296 ± 0.053
Acc 0.002 ± 0.000 0.002 ± 0.000 0.002 ± 0.000 0.002 ± 0.001

ELORETA Sen 0.296 ± 0.053 0.296 ± 0.053 0.296 ± 0.053 0.291 ± 0.058
Acc 0.004 ± 0.001 0.003 ± 0.001 0.003 ± 0.000 0.002 ± 0.000

ALCMV [36] Sen 0.140 ± 0.104 0.166 ± 0.095 0.212 ± 0.113 0.232 ± 0.103
Acc 0.096 ± 0.064 0.056 ± 0.033 0.021 ± 0.013 0.007 ± 0.005

ASTAR [37] Sen 0.009 ± 0.018 0.009 ± 0.018 0.004 ± 0.013 0.004 ± 0.013
Acc 0.014 ± 0.031 0.014 ± 0.031 0.005 ± 0.014 0.004 ± 0.011

VSSI-ARD [38] Sen 0.087 ± 0.065 0.067 ± 0.058 0.066 ± 0.053 0.062 ± 0.056
Acc 0.120 ± 0.085 0.088 ± 0.121 0.062 ± 0.089 0.035 ± 0.060

EEG with 0% of
iEEG obs.

Sen 0.707 ± 0.194 0.592 ± 0.169 0.461 ± 0.155 0.402 ± 0.132
Acc 0.429 ± 0.292 0.253 ± 0.245 0.189 ± 0.176 0.034 ± 0.023

EEG with 30% of
iEEG obs.

Sen 0.780 ± 0.136 0.716 ± 0.115 0.639 ± 0.120 0.491 ± 0.103
Acc 0.404 ± 0.270 0.501 ± 0.269 0.545 ± 0.224 0.595 ± 0.167

Table 4: Evaluation of performance with different levels of scalp EEG SNR. The connectivity
estimation for two-step methods is based on partial directed coherence.

Method Metrics SNR=5 SNR=0 SNR=-5 SNR=-10

MNE Sen 0.306 ± 0.151 0.217 ± 0.157 0.150 ± 0.178 0.115 ± 0.190
Acc 0.011 ± 0.009 0.011 ± 0.007 0.012 ± 0.014 0.011 ± 0.017

DSPM Sen 0.111 ± 0.210 0.147 ± 0.197 0.126 ± 0.200 0.105 ± 0.204
Acc 0.018 ± 0.030 0.151 ± 0.136 0.155 ± 0.122 0.129 ± 0.178

SLORETA Sen 0.270 ± 0.194 0.214 ± 0.181 0.175 ± 0.191 0.121 ± 0.213
Acc 0.007 ± 0.006 0.006 ± 0.003 0.007 ± 0.004 0.005 ± 0.006

ELORETA Sen 0.467 ± 0.170 0.431 ± 0.143 0.366 ± 0.163 0.417 ± 0.168
Acc 0.019 ± 0.011 0.013 ± 0.006 0.007 ± 0.002 0.006 ± 0.002

ALCMV [36] Sen 0.643 ± 0.069 0.699 ± 0.104 0.716 ± 0.113 0.699 ± 0.077
Acc 0.004 ± 0.001 0.005 ± 0.000 0.005 ± 0.001 0.005 ± 0.001

ASTAR [37] Sen 0.078 ± 0.042 0.068 ± 0.060 0.055 ± 0.039 0.064 ± 0.048
Acc 0.038 ± 0.023 0.034 ± 0.033 0.026 ± 0.018 0.029 ± 0.022

VSSI-ARD [38] Sen 0.648 ± 0.215 0.658 ± 0.221 0.624 ± 0.214 0.515 ± 0.218
Acc 0.005 ± 0.001 0.005 ± 0.001 0.005 ± 0.001 0.004 ± 0.001

EEG with 0% of
iEEG obs.

Sen 0.707 ± 0.194 0.592 ± 0.169 0.461 ± 0.155 0.402 ± 0.132
Acc 0.429 ± 0.292 0.253 ± 0.245 0.189 ± 0.176 0.034 ± 0.023

EEG with 30% of
iEEG obs.

Sen 0.780 ± 0.136 0.716 ± 0.115 0.639 ± 0.120 0.491 ± 0.103
Acc 0.404 ± 0.270 0.501 ± 0.269 0.545 ± 0.224 0.595 ± 0.167

A.6 Assessment of model performance using false positive rate

To address ghost interactions, which mainly represent false positive connections in brain network
analysis, we calculated the false positive rate (FPR) of different methods. As shown in Table 5,
the proposed method achieved significantly lower FPR compared to other benchmark algorithms,
demonstrating superior specificity in identifying true brain network connections while effectively
suppressing spurious interactions caused by signal leakage.

Table 5: False positive rate of different methods under varying observation noise levels. The
connectivity estimation for two-step methods is based on Granger causality.

Method Metric SNRobs=5 SNRobs=0 SNRobs=-5 SNRobs=-10
MNE FPR 0.154 ± 0.273 0.156 ± 0.260 0.145 ± 0.263 0.151 ± 0.262
dSPM FPR 0.129 ± 0.276 0.137 ± 0.266 0.139 ± 0.265 0.139 ± 0.263

eLORETA FPR 0.256 ± 0.278 0.265 ± 0.272 0.272 ± 0.275 0.258 ± 0.271
sLORETA FPR 0.146 ± 0.271 0.147 ± 0.263 0.146 ± 0.263 0.148 ± 0.262

ALCMV [36] FPR 0.643 ± 0.225 0.700 ± 0.236 0.732 ± 0.242 0.736 ± 0.249
ASTAR [37] FPR 0.172 ± 0.071 0.228 ± 0.101 0.188 ± 0.085 0.165 ± 0.092

VSSI-ARD [38] FPR 0.548 ± 0.176 0.522 ± 0.179 0.468 ± 0.197 0.371 ± 0.194
EEG with 0% of

iEEG obs. FPR 0.037 ± 0.091 0.038 ± 0.089 0.028 ± 0.061 0.071 ± 0.085

EEG with 30% of
iEEG obs. FPR 0.007 ± 0.005 0.008 ± 0.005 0.003 ± 0.003 0.002 ± 0.002
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A.7 Assessment of model performance with respect to network architectural complexity

Impact of brain network complexity on the WBEN estimation: The benefit of integrating iEEG
and scalp EEG is further validated with different network complexity levels. The network complexity
level is designed with varied number of activated source regions, and varied value of in-degree of
node that effects the number of edges in the brain networks. The number of activated source regions
is set to be 10, 15 and 20, while the in-degree was varied from 1 to 4 with other parameters being the
same as the previous experiments.

Table 6: Evaluation of performance with different number of activated source regions

Method Metrics #Brain Regions=10 #Brain Regions=15 #Brain Regions=20
MNE Sen 0.162 ± 0.120 0.251 ± 0.191 0.154 ± 0.156

Acc 0.008 ± 0.004 0.013 ± 0.008 0.011 ± 0.006
dSPM Sen 0.152 ± 0.134 0.254 ± 0.195 0.208 ± 0.212

Acc 0.007 ± 0.003 0.012 ± 0.009 0.010 ± 0.005
sLORETA Sen 0.165 ± 0.123 0.272 ± 0.189 0.206 ± 0.214

Acc 0.008 ± 0.004 0.013 ± 0.008 0.010 ± 0.005
eLORETA Sen 0.383 ± 0.135 0.390 ± 0.169 0.389 ± 0.146

Acc 0.010 ± 0.005 0.009 ± 0.005 0.011 ± 0.005
EEG with 0% of
iEEG observation

Sen 0.461 ± 0.155 0.350 ± 0.087 0.398 ± 0.096
Acc 0.189 ± 0.176 0.118 ± 0.095 0.191 ± 0.091

EEG with 30% of
iEEG observation

Sen 0.639 ± 0.120 0.518 ± 0.110 0.547 ± 0.093
Acc 0.545 ± 0.224 0.500 ± 0.172 0.552 ± 0.182

Table 7: Evaluation of performance with different values of node in-degree

Method Metrics In-degree=1 In-degree=2 In-degree=3 In-degree=4
MNE Sen 0.117 ± 0.043 0.162 ± 0.120 0.230 ± 0.197 0.304 ± 0.259

Acc 0.005 ± 0.002 0.008 ± 0.004 0.014 ± 0.011 0.016 ± 0.011
dSPM Sen 0.121 ± 0.037 0.152 ± 0.134 0.423 ± 0.294 0.504 ± 0.296

Acc 0.005 ± 0.002 0.007 ± 0.003 0.011 ± 0.010 0.011 ± 0.009
sLORETA Sen 0.131 ± 0.058 0.165 ± 0.123 0.428 ± 0.292 0.511 ± 0.289

Acc 0.005 ± 0.002 0.008 ± 0.004 0.011 ± 0.010 0.011 ± 0.010
eLORETA Sen 0.196 ± 0.098 0.383 ± 0.135 0.505 ± 0.189 0.630 ± 0.139

Acc 0.005 ± 0.003 0.010 ± 0.005 0.010 ± 0.007 0.009 ± 0.006
EEG with 0% of
iEEG observation

Sen 0.570 ± 0.194 0.461 ± 0.155 0.401 ± 0.198 0.422 ± 0.241
Acc 0.228 ± 0.234 0.189 ± 0.176 0.149 ± 0.201 0.109 ± 0.168

EEG with 30% of
iEEG observation

Sen 0.797 ± 0.129 0.639 ± 0.120 0.546 ± 0.143 0.422 ± 0.203
Acc 0.697 ± 0.248 0.545 ± 0.224 0.498 ± 0.159 0.410 ± 0.215

Based on performance summarized in Table 6 and Table 7, the performance of the two-step methods
is usually limited, with high false positive predictions. By integrating iEEG and scalp EEG in the
WBEN estimation, both Acc and Sen showed improved performance compared with the comparison
methods. The experiments further highlight the benefits of leveraging simultaneously recorded scalp
EEG and iEEG for WBEN estimation.

A.8 Intra- and Inter-subject analysis

We conducted a comprehensive analysis of connectivity pattern consistency to validate the reliability
of our derived brain connections across different subjects and experimental sessions using Pearson
correlations.

Intra-subject consistency: Encoding phase: 0.539 ± 0.062, Maintenance phase: 0.511 ± 0.043.
Inter-subject consistency: Encoding phase: 0.355 ± 0.037, Maintenance phase: 0.353 ± 0.059.

The results reflect the expected balance between network stability and task-specific adaptability
based on EEG data. The moderate intra-subject correlations are consistent with the functional
flexibility of brain networks during working n-back memory tasks (each time different words are
presented to the participants). Individual connectivity patterns are preserved across sessions while
allowing for task-related adaptations to different verbal stimuli. The inter-subject consistency reflects
a biologically meaningful balance [58]. It demonstrates the presence of shared functional networks
underlying verbal working memory while preserving the individual neural diversity that characterizes
brain function [59]. This moderate correlation (compared to random correlation (≈ 0) between
two vectors of 4761 dimensions (directed edges from a 69 by 69 matrix)) indicates our method
successfully captures both the common neural mechanisms required for the task and the individual
network signatures that contribute to cognitive variability across subjects.
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A.9 Visualization of connectivity estimation in real data experiment

Figure 6: A visualization example of cortical-subcortical connectivity estimation in working memory.
Sub-figure A shows the brain connectivity network in two WM phases according to the HO atlas,
while B is the network of aggregated lobe-leveled regions used for macroscopic expression. C is
the circular brain connectivity graph in HO atlas parcellation for encoding and maintenance phases,
respectively.

A.10 Approximated computational complexity

The computational complexity of the proposed method is dominated by the FIS in the E-step. The
forward Kalman filtering requires matrix operations at each time step, including the covariance update
and matrix inversion, both involving O(N3) operations, where N is the number of source regions.

To align with established work on brain network analysis using fMRI [60], we also adopted an
atlas-based approach where we estimate region-to-region connectivity. In this work, we used the
Harvard-Oxford atlas regions (N = 69). The computational cost for the atlas-based analysis will
remain stable regardless of the different dimensions of the source space. Practically, the brain network
estimation is computationally feasible (about 3 minutes wall clock for 1000 time points).

A.11 Limitations

Although this method is a one-step approach to modeling source-space connectivity, false-positive
connections may still occur near true connections due to ‘signal leakage’ during source reconstruction
[61, 62]. This problem occurs because estimating thousands of sources from data collected by only
a hundred electrodes is inherently under-determined. As a result, residual signal leakage between
locations will inevitably influence the source data, causing false connectivities to appear as unintended
artifacts of true interactions between source pairs. Moreover, the exact locations of these sources may
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be inaccurately determined. This issue, known as "ghost interaction," can be mitigated by a novel
method that organizes connections into hyperedges based on their adjacency in signal mixing [63].

A.12 Safeguards

The code and result produced from our developed framework can give a delineation of electrophys-
iological brain networks which can be used for surgical decision. However, epileptologists and
neurosurgeons should use this as a augmented tool for decision making and should double check the
result with other brain imaging modalities.
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