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ABSTRACT

Recent advances have explored the use of large language models (LLMs) as re-
trievers by rewriting user queries, while other work has focused on expanding
or augmenting corpus documents. However, such unidirectional augmentation,
applied to queries or documents in isolation, often fails to reconcile the lexical
and stylistic mismatches between them, limiting recall and overall retrieval ro-
bustness. To this end, we present an LLM-based retriever empowered to augment
both user queries and corpus documents, with its policy fully explored via rein-
forcement learning (RL) and minimal human inductive bias. Notably, we find that
simply training the LLM to augment queries and documents separately, even when
combining both at inference, yields little benefit unless paired with our carefully
designed bidirectional RL framework, which enables the LLM to simultaneously
learn and collaborate on both query and document augmentation policies. A key
technical challenge in realizing such a framework lies in jointly updating both
policies during training, where the rewards for the two directions depend on each
other, making their entangled reward intractable. Our approach addresses this
by introducing a reward sampling strategy and a specifically designed RL algo-
rithm that enables effective training with these sampled rewards. Experimental
results demonstrate that our approach significantly enhances LLM-based retrieval
performance in both sparse and dense settings, particularly in difficult retrieval
domains, and achieves strong cross-benchmark generalization. Our code will be
publicly released upon acceptance.

1 INTRODUCTION

Information retrieval (IR) (Baeza-Yates et al., 1999; Singhal et al., 2001) studies the task of finding
the best match from a large set of documents based on a given query, and has played a crucial
role in recent AI task scenarios, such as retrieval-augmented generation (RAG) (Gao et al., 2023;
Wang et al., 2024). Classical IR approaches include sparse retrievals based on TF-IDF (Salton &
Buckley, 1988) and BM25 (Robertson et al., 2009), as well as dense retrievals based on embeddings
obtained from pre-trained language models (Xiao et al., 2024). With well-established retrievers and
the emergence of large language models (LLMs), recent works have identified a bottleneck in poor
query quality, thus enhancing IR accuracy through query rewriting (Ma et al., 2023a; Ye et al., 2023;
Wang et al., 2023; Shen et al., 2023; Mao et al., 2024). However, retrieval performance still has
room for improvement, especially in challenging knowledge domains where accurately retrieving
information from a compact corpus is crucial (Dai et al., 2024a;b).

In this work, we argue that unidirectional augmentation—whether applied only to queries or only
to documents—fails to fully bridge the lexical and stylistic mismatches between them. Simply
enhancing one side in isolation cannot robustly improve retrieval in challenging domains. To address
this limitation, we propose an LLM-based retriever that simultaneously augments both queries and
documents through collaborative training, thereby pulling challenging queries and documents to be
more semantically related and better paired for retrieval. Our augmentation policy is explored purely
through reinforcement learning (RL) with minimal human-designed inductive bias.
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Figure 1: Alongside ordinary test-time query rewriting, we allow the LLM to pre-compute
lightweight augmentations for every document, giving it control over both queries and documents.
This query–document co-augmentation, when jointly optimized through our bidirectional RL frame-
work, enables the discovery of more accurate retrieval policies especially in challenging collections.

Notably, we find that training the LLM to augment queries and documents separately—even when
combining both at inference—yields little benefit unless paired with our carefully designed RL
framework to perform joint bidirectional training in a single process, which enables the model to co-
operate with itself in both query and document enhancement. A key technical challenge in realizing
this training process is the significantly enlarged action space, as the final action is the combination
of augmentation actions in both directions, making exact reward computation intractable. We pro-
pose a reward sampling strategy for this bidirectional training, and design specialized adjustments to
enable the RL algorithm to work with our sampled reward, where direct application of state-of-the-
art LLM reinforcement learning algorithms fails to handle our task. To integrate with existing LLM
RL frameworks, we adopt a batch-unbatch alternating implementation to achieve effective training
under our bidirectional setting.

We conducted experiments on challenging IR benchmarks to verify the efficacy of our approach
using both sparse and dense retrievers. The results show that our approach successfully tackled
the collaborative training challenge and enabled the model to learn an effective bidirectional aug-
mentation policy, which significantly enhances the performance of both the base model and query
enhancement methods. We also provide an analysis of the behavior of the trained policy using our
approach, which helps reveal the underlying causes of the improved performance. Furthermore,
we observe that the learned LLM-retriever policy achieves desirable cross-benchmark generaliza-
tion ability, demonstrating that our approach successfully harnesses the power of RL to enable the
LLM-retriever to obtain generalizable capabilities in IR through self-exploration.

We provide a detailed discussion of related work in the appendix (see “Related Work”).

2 PROPOSED APPROACH

2.1 OVERVIEW

We propose enhancing a large language model (LLM) via reinforcement learning (RL) to jointly op-
timize query and document augmentation, rather than treating them as isolated tasks, thereby align-
ing their word distributions and semantic spaces with the model’s internal knowledge for improved
retrieval performance. After training, the learned policy can be used to precompute augmented doc-
ument representations, effectively encoding document knowledge in advance. At inference time,
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Figure 2: Illustration of the bidirectional RL training process. Left: Overview of the training
pipeline. Right: Reward calculation—one sample is randomly selected from the rollouts for each
query and related document, its reward is computed, and the reward is accumulated onto the corre-
sponding rollout sample for estimation.

given a user query, the policy augments both the query and performs retrieval over the preprocessed
document collection with computational costs comparable to standard query rewriting. Since query
and document augmentation are formulated as text processing tasks, they remain independent of
the underlying retrieval method, enabling flexible integration with various retrieval modules (e.g.,
BM25 (Robertson et al., 2009) for sparse retrieval or BGE models (Xiao et al., 2024) for dense
retrieval).

The overview of the training pipeline is illustrated in Fig. 2. To enable joint training of query and
document augmentation, we introduce a novel query-document composite sampling strategy (Sec.
“Query-Document Composite Sampling”). This approach organizes queries and their associated
documents into the same batch during sampling, effectively reducing the training data scale from
the entire document collection to a manageable batch size. For reward computation (Sec. “Within-
Batch Reward Computation”), we perform retrieval by executing query rollouts within document
rollouts for each batch, using the average score of each rollout as the reward signal. Owing to the
distinct characteristics of our reward computation, conventional group-wise or batch-wise reward
normalization methods, such as those used in GRPO (Guo et al., 2025) or REINFORCE++ (Hu,
2025b), are not directly applicable. Therefore, we adapt the advantage computation method (Sec.
“Taming Reward Variance in RL”) to better align with our task requirements. Notably, despite intro-
ducing more sophisticated sampling, reward computation, and advantage calculation procedures, our
approach remains fully compatible with standard LLM RL training pipelines (Sec. “Batch-Unbatch
Alternating Implementation”). Specifically, rollout inference and backpropagation are performed at
the individual text level, while sampling, reward computation, and advantage calculation are con-
ducted at the group level.

2.2 QUERY-DOCUMENT COMPOSITE SAMPLING

To enable synchronous augmentation training for both queries and documents, a straightforward ap-
proach would be to evaluate lexical and semantic alignment by performing retrieval with augmented
queries over the augmented document collection. However, executing inference at the scale of the
entire document collection during every training step is computationally infeasible. To address this,
we modify the sampling strategy to preserve the original batch size while ensuring that each batch
contains three essential components: queries, relevant documents, and irrelevant documents, thereby
forming a representative mini-dataset.
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Figure 3: Illustration of the problems identified in our mission when adopting state-of-the-art rein-
forcement learning algorithms. The unique challenge of our task requires specialized design.

The sampling procedure is as follows: We first randomly select q queries from the query pool.
For each query, we sample dpos documents with positive retrieval scores (i.e., relevant documents).
Additionally, we sample dneg documents (irrelevant documents) that have zero retrieval scores with
respect to all q queries. This combination of queries, relevant documents, and irrelevant documents
constitutes a complete data group. Each batch thus contains q + q × dpos + dneg distinct texts,
which are assigned appropriate system prompts based on their type (query or document) before
being processed by the text augmentation model as training data.

2.3 WITHIN-BATCH REWARD COMPUTATION

Given the inherent semantic and lexical disparities between user queries and documents, employ-
ing a single critic model to evaluate augmented texts originating from different distributions may
result in suboptimal assessment quality. Following the methodology of GRPO, we generate nrollout

augmented rollouts for each text and compute rewards for each variant at the group level. How-
ever, the combinatorial complexity increases exponentially with the number of documents: for a
batch containing q + q × dpos + dneg texts, evaluating all possible configurations would require
processing:q × nrollout × n

dpos+dneg

rollout matching pairs, which is exponential in the number of docu-
ments.

We observe that while query rollouts remain independent, each combination of a document’s nrollout

augmented rollouts introduces potential variations in similarity rankings during retrieval, which con-
sequently influences reward computation. To address this challenge, we adopt a straightforward
multi-sampling strategy applied to the mini-batch of documents.

Specifically, in each sampling iteration, we randomly select one rollout for each document and then
evaluate all query rollouts by calculating their NDCG scores (Järvelin & Kekäläinen, 2002) based
on the similarity rankings obtained from retrieval. These scores serve as rewards for the selected
combinations of query and document rollouts. The final reward for each rollout is calculated by
averaging between all sampling iterations. This sampling method incurs significantly lower compu-
tational overhead (less than 1e−1× inference time) while accurately estimating the rewards for each
query and document rollout (error ≤ 1e−2), thereby enabling efficient and effective synchronous
training of both query and document augmentation components.

2.4 TAMING REWARD VARIANCE IN RL

While the sampling strategy serves as an effective reward estimator, it inevitably introduces some
variance. However, our within-batch reward computation can easily reduce this variance to the level
of 1e−5, rendering reward fluctuations negligible for policy learning in most cases. In GRPO, the
advantage for each rollout is computed as (r−rmean)/rstd. As illustrated in Fig. 3, we observe that
when all rollouts within a group receive identical rewards, the within-group normalization in GRPO
amplifies the originally negligible sampling variance to 1. This leads to random advantage assign-
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Figure 4: Implementation of our RL training pipeline. The entanglement is introduced by our re-
ward calculation. Thus, we pack queries and documents into a single batch, and perform paralleled
sampling for rollout efficiency. We only entangle the contents for reward computation, and revert
them to separate samples for advantage computation and policy update.

ments among rollouts, without reflecting meaningful quality differences. Consequently, substantial
noise is introduced into the optimization process, ultimately resulting in training failure.

We subsequently investigated REINFORCE++, which modifies the GRPO approach by replacing
within-group reward normalization with batch-wide normalization. However, in our experimental
setup, significant variations in average scores attributable to differing query difficulties introduce
a critical limitation. As shown in Fig. 3, REINFORCE++’s batch-wide normalization causes the
advantage computation to be dominated by query difficulty rather than the quality of text augmenta-
tion. As a result, rollouts from the same sample often become uniformly positive or negative, which
leads to poor training performance.

Returning to the fundamentals of reinforcement learning training, our primary concerns regarding
advantage computation are numerical stability and discriminative power, rather than standardization.
Notably, our implementation of expected NDCG scores as rewards (as detailed in Sec. “Within-
Batch Reward Computation”) naturally satisfies these requirements. These scores maintain stable
distributions within the [0, 1] range while effectively capturing variations in augmentation quality.
Our final solution is simple but effective. We remove within-group normalization while retain-
ing within-group centering. This modification successfully eliminates noise arising from identical
rewards, while preserving the original reward differentials among group rollouts, resulting in sub-
stantial improvements in training performance. Additionally, we apply differential scaling to the
advantage scores computed from queries, relevant documents, and irrelevant documents to balance
their contributions during training. This adjustment mitigates the risk of gradient domination by the
disproportionately large number of irrelevant documents.

To validate these findings, we conducted comprehensive ablation studies comparing various ap-
proaches. The respective impacts on training efficacy are discussed in detail in Sec. “Analysis on
Normalization Techniques”.

2.5 BATCH-UNBATCH ALTERNATING IMPLEMENTATION

To align with conventional RL training frameworks, we adopt a batched-unbatched alternating
paradigm shown in Fig. 4. The core distinction from previous approaches lies in our batch construc-
tion, where individual samples are intrinsically interlinked rather than independently distributed.

Batch-Level Sampling. We redesigned the dataset sampling mechanism to generate batches com-
prising queries, relevant documents, and irrelevant documents, following the methodology described
in Sec. “Query-Document Composite Sampling”. Each text sample is augmented with system
prompts according to its source before being assembled into the same batch. This design ensures
the integrity of each batch, allowing it to be used independently for training.

Sample-Level Inference. During model rollout operations, batched text samples are logically un-
batched into individual samples. At this stage, the distinct sources of the samples (queries or doc-
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uments) become transparent to the inference engine, enabling parallel processing of all rollouts
without mutual interference. Importantly, this phase maintains complete compatibility with existing
RL training infrastructures.

Batch-Level Reward Computation. All rollouts are reaggregated at the batch level for reward
calculation. We group the selected rollouts based on their sources (queries or documents), and
then apply the retrieval module to rank them and compute the corresponding rewards. Subsequently,
group-wise centralization is performed for each sample to provide advantage estimates for individual
rollouts.

Sample-Level Parameter Update. After calculating the advantages, the text samples are unbatched
once again. Although processed in batch form, policy gradient losses are individually computed for
each rollout using their respective advantage values, and the model parameters are then updated
accordingly. This step is fully compatible with existing reinforcement learning training frameworks
and does not require additional modifications.

3 EXPERIMENTS

We conduct experiments to evaluate the effectiveness of our proposed reinforcement learning frame-
work, as well as to investigate the importance of query-document collaborative training. The experi-
mental results substantiate the core motivations underlying our training framework and demonstrate
its performance advantages. Additionally, we perform ablation studies to examine the impact of
different advantage calculation strategies on model performance.

3.1 EXPERIMENTAL SETUP

We adopt the BEIR benchmark (Thakur et al., 2021) and select three of its datasets for model train-
ing. These datasets are used to evaluate the benefits of in-domain training and to assess model
generalization through cross-benchmark testing. Training LLMs using RL is computationally ex-
pensive. Due to resource constraints, training is limited to a maximum of 300 steps per dataset,
and we choose to allocate our resources to experiments centered around one base model, Qwen2.5-
7B (Qwen et al., 2025), for a fair evaluation of improvements.

To investigate the impact of query-document collaborative training, we conduct ablation experiments
on the NFCorpus dataset. Specifically, we train models under three settings—query-augmentation-
only, document-augmentation-only, and query–document collaborative augmentation—and evaluate
their individual and combined contributions to retrieval performance. Furthermore, we compare the
effects of different advantage calculation methods via an additional ablation study. We compare
existing normalization strategies from GRPO and REINFORCE++, as well as our centralization-
only setting. All experiments adopt NDCG@10 (Järvelin & Kekäläinen, 2002) as the evaluation
metric.

Notably, our framework is designed to be orthogonal to the underlying retrieval architecture, sup-
porting flexible integration with different retrieval modules. To demonstrate this, we evaluate our
method in both sparse and dense retrieval settings. For sparse retrieval, we adopt BM25 as the
base retriever, where the LLM is prompted to first summarize textual content and then generate
query expansions or document keywords in the form of discrete words. For dense retrieval, we
utilize BGE-base-en-v1.5, where the LLM produces sentence-level query expansions or document
summaries. These augmented outputs are concatenated with the original contents, aligning with
the retrieval mechanisms: BM25 relies on discrete word matching, while BGE-base-en-v1.5 uses
holistic paragraph understanding and vectorization.

3.2 PERFORMANCE ON SPARSE AND DENSE RETRIEVAL

Tab. 1 presents a comprehensive comparison of NDCG@10 performance across five datasets under
both sparse (BM25) and dense (BGE-base-en-v1.5) retrieval settings. The results include various
model scales and training strategies, with the best and top-three results highlighted.

Our training method consistently outperforms baseline retrievers across different datasets and re-
trieval settings. Notably, Ours-7B achieves the best results on all datasets under the sparse setting and
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Table 1: NDCG@10 Performance under sparse (BM25) and dense (BGE-base-en-v1.5) retrieval.
The best results are bolded, and other top-three results are underlined.

Settings NFCorpus SciFact FiQA-2018 SCIDOCS TREC-COVID

Base Retriever BM25 0.343 0.691 0.254 0.165 0.688
BGE-base-en-v1.5 0.368 0.738 0.391 0.214 0.672

Qwen2.5-3B BM25 0.352 0.692 0.237 0.155 0.642
BGE-base-en-v1.5 0.363 0.741 0.359 0.210 0.772

Qwen2.5-7B BM25 0.363 0.696 0.258 0.162 0.694
BGE-base-en-v1.5 0.371 0.746 0.383 0.212 0.776

QwQ-32B BM25 0.361 0.709 0.276 0.162 0.642
BGE-base-en-v1.5 0.391 0.769 0.373 0.223 0.756

Qwen2.5-72B BM25 0.370 0.747 0.305 0.164 0.670
BGE-base-en-v1.5 0.377 0.751 0.395 0.220 0.734

Ours-3B BM25 0.371 0.715 0.273 0.168 0.716
BGE-base-en-v1.5 0.379 0.749 0.364 0.217 0.771

Ours-7B BM25 0.403 0.748 0.328 0.181 0.727
BGE-base-en-v1.5 0.384 0.753 0.395 0.224 0.807

Table 2: NDCG@10 performance of query-only and doc-only ablation studies on NFCorpus. Base-
Q and Base-D represent using the base model (Qwen2.5-7B) to enhance only queries or only docu-
ments, respectively. RL-Q and RL-D refer to models trained using RL for query-only augmentation
and document-only augmentation, respectively. The plus sign (+) indicates that the methods are
used jointly. RL-QD refers to collaborative training for bidirectional augmentation (our proposed
method).

Settings Base Retriever Base-Q Base-D Base-Q + Base-D RL-Q RL-D RL-Q + RL-D RL-QD (ours)

BM25 0.343 0.357 0.356 0.363 0.381 0.372 0.388 0.403
BGE-base-en-v1.5 0.368 0.377 0.364 0.371 0.379 0.373 0.372 0.384

most datasets under the dense setting, surpassing even the much larger models like Qwen2.5-72B
and QwQ-32B. Ours-3B also demonstrates significant improvements over its base model, though
its performance still lags behind larger models. These results indicate that our approach provides
substantial enhancements to base models of varying scales.

Examining the cross-domain generalization capability, our models, trained on individual datasets,
maintain strong performance when evaluated on unseen domains such as SCIDOCS and TREC-
COVID. In particular, under the dense retrieval setting on TREC-COVID, our approach achieves a
13% improvement over the base retriever and further outperforms the base model with augmentation
by 3.1%.

We also observe that, for training-free models, retrieval performance generally improves with model
size, although this trend is not strictly monotonic. In some cases, larger models do not yield bet-
ter augmentation or retrieval results, likely due to misalignment between independently generated
query and document augmentations. Furthermore, for smaller models such as Qwen2.5-3B, the lim-
ited instruction-following capability may result in suboptimal augmentation outputs, such as empty
strings or outputs in incorrect formats, thereby constraining the benefits of our training method.

Cross-benchmark generalization. We conducted cross-benchmark validation on the models
trained on three different datasets to evaluate the generalization capability of our method. As ob-
served, in the sparse retrieval setting, our models demonstrated strong generalization ability: mod-
els trained on any single dataset achieved notable performance improvements over the untrained
Qwen2.5-7B when applied to unseen domains. In contrast, under the dense retrieval setting, the
generalization performance varied across domains. While improvements were observed on NFCor-
pus and SciFact, the performance on FiQA-2018 was inferior to that of Qwen2.5-7B.
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Table 3: Cross Entropy of query-only and
doc-only Ablation Studies on NFCorpus.

Settings H(Q, D)

Qwen2.5-7B BM25 10.318
BGE-base-en-v1.5 8.314

queryonly BM25 9.998
BGE-base-en-v1.5 8.269

doconly BM25 10.096
BGE-base-en-v1.5 8.467

Ours BM25 9.501
BGE-base-en-v1.5 7.743

Table 4: NDCG@10 Performance of Config Ab-
lation Studies on NFCorpus.

Settings NDCG@10

Qwen2.5-7B BM25 0.363
BGE-base-en-v1.5 0.371

groupnorm (GRPO) BM25 0.376
BGE-base-en-v1.5 0.374

batchnorm (RF++) BM25 0.364
BGE-base-en-v1.5 0.354

w/o adv scale BM25 0.366
BGE-base-en-v1.5 0.348

Ours BM25 0.403
BGE-base-en-v1.5 0.384

3.3 ESSENTIALNESS OF QUERY-DOCUMENT CO-AUGMENTATION

Tab. 2 shows ablation studies on query-document co-augmentation. Models trained with only query
or document augmentation, whether used alone or even combined at inference, exhibit a substan-
tial performance gap compared with our collaboratively trained model. This indicates that single-
direction augmentation—applied to queries or documents in isolation—fails to effectively reconcile
lexical and stylistic mismatches, limiting retrieval performance.

The superior performance of our approach arises from the collaborative bidirectional training, which
enables the LLM to simultaneously learn and align both query and document augmentation policies.
Only through this joint training can the model effectively match queries and documents semantically,
resulting in significant improvements across sparse and dense retrieval settings.

To further investigate the detailed behavior of our explored collaborative bidirectional augmentation
policy, we conduct qualitative and quantitative analyses of the augmented results. We first compute
the word distributions of the augmented queries and documents across the entire dataset for all
models used in the ablation study of Tab. 2, and calculate the cross-entropy H(Q,D) of the query
distribution relative to the document distribution, which quantitatively reflects the behavior of the
output token space given the same input. As shown in Tab. 3, the cross-entropy for models trained
with collaborative query-document augmentation is substantially lower than that of other models
in both sparse and dense retrieval settings. This supports our motivation in enhancing both queries
and documents: collaborative training enables the policy to learn to cooperate with itself to match
queries and documents in the semantic domain, thereby improving retrieval effectiveness, which is
only possible when trained in a bidirectional manner. With the policy understanding how to align
the queries and documents instead of overfitting to the knowledge of a specific corpus, this explains
the observed generalization across datasets, which can be essential when deployed to a new corpus.
We also note that the generalization ability from the BM25 model is stronger than that of the policy
explored using the dense retrieval model. This might be caused by dense retrievers developing
implicit representations with domain preference (Zhao et al., 2024b), which is also observed and
reported in our concurrent work on RL-based query augmentation (Jiang et al., 2025).

Case study. We also provide qualitative analysis with a case study, focusing on analyzing sparse
retrievers, as the retriever operates in word space, which is directly interpretable by humans, as pre-
sented in Fig. 5. In the top case, we aimed to retrieve a target document concerning “(210)Po” using
the query “carcinogens”. It can be observed that all models were able to generate relevant words
during the augmentation process that semantically “bridge” the gap between the query and the docu-
ment. For example, words such as “DNA”, “carcinogenesis”, “genetic mutation”, and “chemical ex-
posure” were generated to augment the query, while words like “radiation” and “radioactivity” were
generated to augment the document. However, these semantically related words failed to achieve a
successful match due to discrepancies in word distribution. In contrast, our proposed method aug-
ments both the query and the document with a consistent word distribution, resulting in the presence
of shared words such as “radiation” and “risk” in both augmented texts. This lexical alignment fa-
cilitates the successful retrieval of the target document. In the bottom case, our method expands the
query “Probiotics” with related words such as “Gut Health”, “Microbiome”, “Supplements”, “Di-
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carcinogens

Query

…the (210)Po 
levels ranged from 
0.10 to 0.39 mBq 
g(-1). This value 
decreased to 0.10 
± 0.02 mBq g(-1)  
after two weeks of 
a controlled diet, 
excluding fish and 
seafood…

Document

substances, cancer, DNA, apoptosis, carcino-
genesis

…it explores how dietary changes affect these ra-
diation levels, particularly noting the impact of 
consuming mussels. Radioactive contamination…

Carcinogen, Cancer, Genetics, DNA, Mutation, 
Tobacco, Radiation, Chemicals, Environment, 
Risk Factors

The research demonstrates the significant impact of 
dietary choices on internal radioisotope accumulation 
within the body…Human Exposure, Radiation Levels, 
Health Risk Assessment.

Probiotics, Gut Health, Microbiome, Supple-
ments, Digestion, Bacteria, Immunity, Lacto-
bacillus, Acidophilus

…were treated using Fecal Microbiota Trans-
plantation (FMT) delivered via a nasogastric 
tube...Antibiotics, Gut Microbiome…

…consuming mussels can significantly in-
crease polonium-210 levels in human semen. 
Polonium-210 is a highly toxic radioactive ele-
ment…Radioactivity, Bioaccumulation…

Augmented Query Augmented Document

carcinoma, carcinogen, cancer, DNA alter-
ation, tumor, genetic mutation, chemical expo-
sure

How should I take 
probiotics?

...During the period between 
the initial diagnosis of C. diffi-
cile colitis and the stool treat-
ments, the 18 subjects re-
ceived a total of 64 courses 
of antimicrobials…

Ours

Ours

Base

Model

RL (Document Only)

RL (Query Only)

RL Q+D
separately

Qualitative: Terms Aligned
Qualitative: Concepts Excavated

Figure 5: Qualitative demonstration of RL behaviors that boost performance. Top: Concepts are
discovered, but terms are not unified. Related terms are marked in blue, while matched terms are
marked in red. The base model, query-only, and document-only models all discovered related con-
cepts, but with misaligned terms. Enhancing the documents alone does not directly improve per-
formance; instead, success arises from joint bidirectional training. Below: We show another case
where our policy also learns to discover concepts to retrieve related documents, whereas other meth-
ods failed to generate related concepts (failed results omitted for conciseness).

gestion”, “Bacteria”, “Immunity”, “Lactobacillus”, and “Acidophilus”, and augments the document
mentioning “treated using Fecal Microbiota Transplantation (FMT)” with words related to the “Gut
Microbiome”, thus successfully retrieving a target document with otherwise low textual overlap.

3.4 ANALYSIS ON NORMALIZATION TECHNIQUES

Finally, we conduct ablation studies on the advantage calculation settings described in Sec. “Tam-
ing Reward Variance in RL” to highlight the performance benefits of our approach. Tab. 4 compares
the results of group normalization (GRPO), batch normalization (REINFORCE++), and central-
ization only (ours). Group normalization amplifies sampling variance, introducing excessive noise
and impairing optimization. Batch normalization disrupts intra-group reward comparisons, causing
advantage calculations within a batch to be dominated by query difficulty, resulting in negligible
training effectiveness; in dense retrieval, it even underperforms direct augmentation with Qwen2.5-
7B. In contrast, our centralization-only setting preserves intra-group reward relationships and thus
achieves the best performance. Table 4 also demonstrates the necessity of advantage scaling after
centralization: without it, the training direction is dominated by the majority of irrelevant docu-
ments, which constitute the majority within each batch, leading to poor performance.

4 LIMITATIONS AND FUTURE WORK

While our collaborative bidirectional RL framework significantly improves retrieval performance,
training becomes challenging when the number of candidate documents is very large. Although
this is less of a concern during testing—since augmented documents can be precomputed—the pri-
mary computational bottleneck arises during training, where both query and document augmentation
policies must be updated jointly. Our method introduces sampling techniques to reduce the cost of
generating the substantially increased rollouts required in this setting.

These considerations suggest that our approach is particularly well-suited to semantically complex
domains with moderately sized corpora, where bidirectional training can enhance retrieval effec-
tiveness without incurring prohibitive costs. We believe that this leads to important and meaningful
future work in applying our approach to challenging IR applications. Moreover, our RL framework
may offer insights for reinforcement learning scenarios that rely on jointly computing rewards across
interdependent samples.
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A RELATED WORK

With the wide adoption of LLM systems, information retrieval (IR) systems are gaining increasing
importance through retrieval-augmented generation (RAG), reducing hallucination and enriching
factual knowledge (Mallen et al., 2022; Shi et al., 2023; Chen et al., 2017; Lee et al., 2019; Guu
et al., 2020; Lewis et al., 2020; Lazaridou et al., 2022; Asai et al., 2024). IR systems also benefit
from LLMs to increase their retrieval accuracy by rewriting queries (Ma et al., 2023a), as the queries
might not provide sufficient information that can be faithfully related to the document, hampering
IR accuracy (Dageville et al., 2016; Belkin et al., 1982). In this work, we focus on enhancing the
ability of LLMs to improve IR accuracy using reinforcement learning. We will first discuss retrieval
augmentation methods, then discuss methods for enhancing LLMs in IR tasks.

A.1 RETRIEVAL AUGMENTATION

Previous methods mainly enhance information retrieval tasks by developing better retrievers (Chen
et al., 2017; Karpukhin et al., 2020), enhancing retrievers and readers together (Karpukhin et al.,
2020; Lewis et al., 2020; Sachan et al., 2021; Lee et al., 2022; Jiang et al., 2022), or by enhancing
queries with external knowledge (Zesch et al., 2007; 2008; Syed, 2010; Dalton et al., 2014; Xu
et al., 2009; Meij et al., 2010; Xiong & Callan, 2015) and relevant content (Abdul-Jaleel et al.,
2004; Metzler & Croft, 2005; 2007).

In the era of LLMs, as sparse retrievers are well-established and tuning dense retrievers requires
a lot of data to reduce overfitting (Ma et al., 2023a), recent methods mainly focus on leveraging
or improving the ability of LLMs in information retrieval (Trivedi et al., 2023; Yao et al., 2023;
Khattab et al., 2022; Press et al., 2022). Studies have revealed that, pre-trained on large corpora,
LLMs without fine-tuning already serve as powerful query optimizers (Shen et al., 2023; Wang
et al., 2023; Brown et al., 2020; Touvron et al., 2023).

A.2 REINFORCEMENT LEARNING FOR ENHANCING LLMS IN IR

With the success of RLHF in aligning LLMs with human preferences (Christiano et al., 2017; Stien-
non et al., 2020; Ouyang et al., 2022), reinforcement learning has emerged as a principled approach
for enhancing LLMs, such as PPO (Schulman et al., 2017), as well as recent methods including
GRPO (Guo et al., 2025) and REINFORCE++ (Hu, 2025a), which have demonstrated significant
performance gains in tasks by exploring based on reward beyond preference alignment (Guo et al.,
2025).

In the domain of information retrieval, recent methods have also explored utilizing reinforcement
learning to improve query augmentation. Some systems leverage reward feedback from the final
search or generation results (Ma et al., 2023b; Fan et al., 2024; Zhao et al., 2024a). Another line
of work, which is most relevant to us, directly utilizes feedback signals, including a recent work
exploring trial-and-error from metric feedback (Hsu et al., 2024) and a concurrent work (Jiang et al.,
2025) utilizing feedback signals to enhance IR tasks and SQL tasks. Our work also focuses on
improving the performance of LLMs in the specific IR task. The main difference is that our proposed
method enables the LLM to explore a policy that not only augments the query but also manages
the document itself simultaneously, which significantly improves performance in challenging IR
domains.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 RESULTS OF STATISTICAL EVALUATION ON NORMALIZATION TECHNIQUES

In this section, in addition to the empirical evidence from the ablation study, we also present statis-
tical evidence to support the problem analysis in Sec. “Taming Reward Variance in RL” and Sec.
“Analysis on Normalization Techniques”. The experiments are conducted using the same settings as
our ablation studies.

Specifically, we collect statistical evidence for the two problems illustrated in Fig. 3: Variance Am-
plified and Biased Towards Easier Cases. For a clear quantitative demonstration, we define two
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Settings Amplified Variance Same Sign

groupnorm (GRPO) BM25 94.4% 0.0%*
BGE-base-en-v1.5 94.8% 0.0%*

batchnorm (RF++) BM25 19.1% 63.9%
BGE-base-en-v1.5 7.5% 84.4%

Ours BM25 0.0%* 0.0%*
BGE-base-en-v1.5 0.0%* 0.0%*

Table 5: Anomalous group proportion under different normalization settings. “Amplified Variance”
means the variance in reward is significantly amplified after normalization. “Same Sign” means all
advantages in the group are positive or negative. “*” indicates this problem will not occur in theory.
For more details, please see Sec. “Results of Statistical Evaluation on Normalization Techniques”

anomaly indicators and report their occurrences. To detect amplified variance, we track the original
percentage of groups with variance below a threshold stdthreshold, and subtract the corresponding
percentage after normalization. To detect biased advantage, we evaluate the occurrence of all ad-
vantages in a group sharing the same sign (all positive or all negative), which strongly indicates bias
introduced by batch normalization.

As shown in Tab. 5, we observe that in our task, GRPO and our method do not exhibit the biased
advantage reflected by the occurrence of the “same sign” phenomenon, as there is no batch-based
advantage calculation. Regarding amplified variance, we choose a small threshold, and the resulting
statistics demonstrate two key points: 1) there is initially a large proportion of rewards with small
variance below our set threshold, and 2) these are amplified after normalization, especially in GRPO,
as values below 0.02 are unavoidably amplified to 1. The selection of the threshold does not affect
our conclusion, as it clearly shows that many rewards have very small variances, which are greatly
amplified. We believe the abundance of small-variance groups is due to the fact that augmentation
does not necessarily alter the similarity ranking in retrieval, especially for documents, where each
batch contains many randomly irrelevant documents whose augmented results are unlikely to affect
the reward. This also indicates that the variance introduced by our reward sampling computation is
not significant, and that the problem is caused by subsequent computation rather than the variance of
the reward sampling itself. While batch normalization reduces this problem, it causes many groups
to have only positive or negative advantages, which does not represent a meaningful direction of
optimization. In contrast, by only performing centering and allowing the variance to be naturally
controlled by the reward computation itself, we avoid amplifying sampling errors in the reward
and do not introduce intra-group bias, enabling effective reinforcement learning and successfully
improving performance.

C IMPLEMENTATION DETAILS

C.1 TRAINING SETUP

We adopt a GRPO-based training pipeline, following most hyperparameters from the countdown
experiment in TinyZero (Pan et al., 2025), with several modifications to accommodate the require-
ments of different tasks. Specifically, the temperature is set to 1.2 to encourage exploration of diverse
augmentations. A repetition penalty of 1.2 is applied to prevent the model from becoming trapped
in locally optimal solutions that simply copy the original text. The micro batch size is set to 16,
with each micro batch containing one query and 1–5 relevant documents (depending on the dataset),
while the remaining slots are filled with randomly selected irrelevant documents. The batch size is
set to 512 and the mini batch size to 128 to ensure gradient stability. We select advantage scale coef-
ficients of 1.0, 0.2, and 0.1 for queries, relevant documents, and irrelevant documents, respectively,
to balance the proportions of each component. Additionally, we remove the KL loss and entropy
loss terms, as these constraints hinder further model optimization, which is consistent with findings
reported in concurrent work DAPO (Yu et al., 2025). The format reward is also omitted; however,
we still extract augmented content from within ¡answer¿¡/answer¿ tags, defaulting to empty aug-
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mentation if such tags are absent. Under this configuration, the model quickly learns to follow the
required format while avoiding performance degradation due to excessive adherence to formatting.

C.2 ENVIRONMENT SETUP

We utilize VERL (Sheng et al., 2024) as the LLM RL fine-tuning framework, building upon
TinyZero. The software packages and runtime environment are configured to be compatible with this
version of the training framework, including Python (v3.9), CUDA (v12.4), VLLM (v0.6.3) (Kwon
et al., 2023), PyTorch (v2.4.0), and Ray (v2.46.0) (Moritz et al., 2018). For sparse retrieval and
BM25 evaluation, we employ ElasticSearch (v7.10.2), while FAISS-GPU (v1.7.2) (Douze et al.,
2024) is used to support efficient dense vector matching. All experiments are conducted on a single
node equipped with eight NVIDIA A100 80GB GPUs.

D THE USE OF LARGE LANGUAGE MODELS

D.1 RESEARCH SUBJECT

We develop an LLM-based retriever that jointly augments both queries and documents, and design
a bidirectional RL framework to optimize these augmentation policies collaboratively.

D.2 WRITING ASSISTANT

We utilize LLMs to help proofread the manuscript and fix writing issues.
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