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Abstract
Continual learning (CL) is crucial for advanc-
ing human-level intelligence, but its theoretical
understanding, especially regarding factors influ-
encing forgetting, is still relatively limited. This
work aims to build a unified theoretical frame-
work for understanding CL using feature learning
theory. Different from most existing studies that
analyze forgetting under linear regression model
or lazy training, we focus on a more practical two-
layer convolutional neural network (CNN) with
polynomial ReLU activation for sequential tasks
within a signal-noise data model. Specifically, we
theoretically reveal how the angle between task
signal vectors influences forgetting that: acute
or small obtuse angles lead to benign forgetting,
whereas larger obtuse angles result in harmful
forgetting. Furthermore, we demonstrate that the
replay method alleviates forgetting by expand-
ing the range of angles corresponding to benign
forgetting. Our theoretical results suggest that
mid-angle sampling, which selects examples with
moderate angles to the prototype, can enhance
the replay method’s ability to mitigate forgetting.
Experiments on synthetic and real-world datasets
confirm our theoretical results and highlight the
effectiveness of our mid-angle sampling strategy.

1. Introduction
Continual learning (CL) involves learning a series of tasks
in sequence (Wang et al., 2024), where the model adapts as
if all tasks are learned simultaneously. Unlike traditional
machine learning models which deal with static data, CL
focuses on dynamic and evolving distributions. A major
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challenge in CL is the catastrophic forgetting phenomenon
(McCloskey & Cohen, 1989), where learning from new
distributions often causes a significant decline in the model’s
ability to retain knowledge from previous tasks.

Catastrophic forgetting in CL has prompted various empir-
ical methods, which can be broadly categorized into three
types: regularization-based methods, replay-based meth-
ods, and architecture-based methods. Regularization-based
methods (Kirkpatrick et al., 2017; Chaudhry et al., 2018a;
Benzing, 2022) selectively regularize parameter changes to
balance the learning of new and old tasks. Replay-based
methods (Rebuffi et al., 2017; Lopez-Paz & Ranzato, 2017;
Chaudhry et al., 2018b; Rolnick et al., 2019; Buzzega et al.,
2020; Boschini et al., 2022) approximate and restore old
data distributions by storing training samples or gradient in-
formation from previous tasks. Architecture-based methods
(Mallya et al., 2018; Ostapenko et al., 2019; Qin et al., 2021;
Kumar et al., 2021) allocate specific network parameters to
each task to counteract forgetting.

Despite the success of experimental studies in addressing
forgetting, theoretical understanding of forgetting in CL
remains limited. Most of the recent works concentrate on
linear models (Evron et al., 2022; 2023; Lin et al., 2023;
Ding et al., 2024; Zhao et al., 2024). Analyses beyond linear
models are primarily confined to the teacher-student setup
(Lee et al., 2021) and the neural tangent kernel (Bennani
et al., 2020; Doan et al., 2021). However, these theories
often rely on strong assumptions, such as infinitely wide net-
works or linearizing assumptions in the weight space, which
may not fully capture the generalization and forgetting dy-
namics in CL. As a result, a unified theoretical framework
for CL with practical neural networks remains absent.

In this paper, we fill the theoretical gap in CL with neural
networks through the application of feature learning theory
(Allen-Zhu & Li, 2020; Cao et al., 2022; Huang et al., 2023),
establishing a unified theoretical framework to analyze the
convergence, generalization and forgetting in CL. We pro-
vide a precise characterization to how the angle between task
signal vectors influences forgetting in polynomial ReLU
neural networks during continual learning. Moreover, we
reveal the mechanisms by which replay-based methods help
alleviate forgetting. Our theoretical findings inspire mid-
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angle sampling, which further enhances the effectiveness of
replay-based methods in mitigating forgetting.

1.1. Problem Setup

Our focus is primarily on two binary classification tasks
in CL, using a data distribution similar to that in Cao et al.
(2022). The input data consists of two components: sig-
nals which correspond to image labels, and noises which
represent background information unrelated to the labels.

Definition 1.1. Let µk ∈ Rd be a fixed vector representing
the signal contained in each data point of the k-th task Tk,
and let U = orth({µk}) ∈ Rd×k represent the collection
of signal vectors, where orth(·) denotes Gram-Schmidt or-
thogonalization and normalization. Then each data point
(xk, yk) of task Tk with xk = [x

(1)⊤
k ,x

(2)⊤
k ]⊤ ∈ R2d and

yk ∈ {−1, 1} is generated from the distribution Dk:

1. Label yk is generated as a Rademacher random variable.

2. A noise vector ξk is generated from the Gaussian distribu-
tion N(0, σ2

pk
·(I−U(U⊤U)−1U⊤), where U ∈ Rd×k.

3. One of x(1)
k ,x

(2)
k is given as yk ·µk, which represents the

signal, the other is given by ξk, which represents noises.

Definition 1.1 adapts the data distribution from Cao et al.
(2022) for the CL task setting, with the noise patch following
N(0, σ2

pk
· (I−U(U⊤U)−1U⊤), ensuring orthogonality

to the signal vector µk of each task Tk. We train a two-layer
CNN with polynomial ReLU activation (ReLUq , q > 2) by
minimizing empirical cross-entropy loss:

LSk
(W(Tk)) =

1

nk

nk∑
i=1

ℓ[yk,i · f(W(Tk),xk,i)], (1.1)

where ℓ(z) = log(1 + exp(−z)), Sk = {(xk,i, yk,i)}nk
i=1

is the training data set for task Tk, and f(W(Tk),xk,i) is
the two-layer CNN as defined in Section 2. We use gra-
dient descent to minimize (1.1). Additionally, we define
the true loss (test loss) LDk

(W(Tk)) := E(xk,yk)∼Dk
ℓ[yk ·

f(W(Tk),xk)] and the true error (test error):

L0−1
Dk

(W(Tk)) := P(xk,yk)∼Dk

[
yk ̸= sign

(
f(W(Tk),xk)

)]
.

Then the forgetting is naturally measured by the true error
on the first task:

L0−1
D1

(W(T2)) := P(x1,y1)∼D1

[
y1 ̸= sign

(
f(W(T2),x1)

)]
.

1.2. Main Contributions

For ease of discussion, we define the signal-to-noise ratio
for task Tk as SNRk = ∥µk∥2/(σpk

√
d), and the cosine

similarity between the signal vectors of task T1 and T2

as cos θ1,2 = ⟨µ1,µ2⟩/(∥µ1∥2 · ∥µ2∥2). We prove the
following Theorem 1.2, which characterizes the training
loss and test loss on the current task T2, as well as the true
error on the previous task T1 of the two-layer polynomial
ReLU CNN. Figure 1 visually illustrates the relationship
between forgetting and cos θ1,2 from Theorem 1.2.

Harmful

Forgetting

Benign

Forgetting
CL:

Benign

Forgetting
Replay:

−1 −C2 −C1 0 1

cos θ1,2

−1 −1+C2

2
0 1

cos θ1,2

Figure 1. Illustration of the relationship between forgetting and
cosine similarity in CL wo/w replay. The blue region represents
the cosine setting with benign forgetting, while the yellow region
corresponds to the setting with harmful forgetting. The gray region
indicates the setting where forgetting is not well characterized.

Theorem 1.2 (Informal). For any ϵ > 0, under certain
regularity condition, if nk · SNRq

k = Ω̃(1) for k ∈ [2], with
probability at least 1−δ, there exists tend such that the train-
ing loss of task T2 converges to ϵ, i.e., LS(W

(T2,tend)) ≤ ϵ.
Furthermore, the model obtained through CL achieves a
small test loss on the current task: LD2(W

(T2,tend)) ≤
6ϵ+ exp(−n2

2). Regarding forgetting on the previous task
in CL, we present the following statements to illustrate its
relationship with cosine similarity.

1. When −C1 ≤ cos θ1,2 ≤ 1, the forgetting on task T1:
L0−1
D1

(W(T2,tend)) ≤ exp(−C ·m2q−2n2q/q2).

2. When −1 ≤ cos θ1,2 < −C2, the forgetting on task T1:
L0−1
D1

(W(T2,tend)) ≥ 1− exp(−C ·m2q−2n2q/q2).

3. With replay, when −C2+1
2 ≤ cos θ1,2 < 0, the forget-

ting on task T1 is bounded by: L0−1
D1

(W(T2,tend)) ≤
exp(−C ·m2q−2n2q/q2).

Here, C1 and C2 are positive constants with C1 < C2 < 1.

The significance of Theorem 1.2 is summarized as follows:

• Under the condition on the signal-to-noise ratio that nk ·
SNRq

k = Ω̃(1), the learned CNN can achieve both small
training and test losses on the current task.

• When the angle θ1,2 between two tasks satisfies −C1 ≤
cos θ1,2 ≤ 1, the CNN can achieve benign forgetting,
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where performance on the previous task slightly deterio-
rates to accommodate the new task, but test error remains
small. This contrasts with harmful forgetting, which oc-
curs when −1 ≤ cos θ1,2 < −C2 leading to significant
test error on the old task. Notably, Jeon et al. (2022) also
introduce the benign forgetting, but they refer to the for-
getting of misguidance learned from biased datasets rather
than the balance between old and new tasks.

• With replay, benign forgetting occurs when the angle be-
tween two tasks satisfies −C2+1

2 ≤ cos θ1,2 ≤ 1, indi-
cating an expanded angular range compared to the case
without replay (−C1 ≤ cos θ1,2 ≤ 1).

To the best of our knowledge, we are the first to apply
feature learning theory to analyze the convergence, gen-
eralization, and forgetting of the polynomial ReLU CNN
in CL. This analysis extends beyond the previous works
that rely on the linearization assumption in lazy training
(Bennani et al., 2020; Doan et al., 2021), where network
parameters remain close to their initial values throughout
the training process. Our theoretical results demonstrate
that replay-based methods mitigate forgetting by expanding
the angular range of benign forgetting and inspire mid-angle
sampling to enhance replay strategies. Furthermore, we
conduct comprehensive experiments on both synthetic and
real-world datasets to validate our theoretical findings and
the effectiveness of mid-angle sampling.

2. Preliminaries
In this section, we present the notation, the neural network
model, and the training algorithm based on gradient descent.

Notation. We represent scalars with lowercase letters, vec-
tors with lowercase boldface letters, and matrices with up-
percase boldface letters. The l2 norm of a vector v is de-
noted as ∥v2∥2. For a matrix A, we denote its spectral norm
by ∥A∥2 and its Frobenius norm by ∥A∥F . To compare
two sequences, we use standard asymptotic notations such
as o(·), O(·), Ω(·) and Θ(·) to characterize their limiting
behavior. Additionally, we utilize Õ(·), Ω̃(·), and Θ̃(·) to
suppress logarithmic factors in these notations. Moreover,
we write xn = poly(yn) if xn = O(yDn ) for some positive
constant D. Lastly, sequences of integers are represented as
[n] = {1, 2, . . . , n}, and a ∨ b denotes max{a, b}.

Neural Network Model. We consider a two-layer CNN
model with a ReLUq activation function, defined as σ(z) =
(max{0, z})q . When learning task Tk, the neural network’s
output for the input data xk is expressed as f(W(Tk),xk) =

F+1(W
(Tk)
+1 ,xk) − F−1(W

(Tk)
−1 ,xk), where the sign cor-

responds to the neuron fixed as either +1/m or −1/m

in the second layer. The terms F+1(W
(Tk)
+1 ,xk) and

F−1(W
(Tk)
−1 ,xk) are defined as:

Fj(W
(Tk)
j ,xk) =

1

m

m∑
r=1

[
σ(⟨w(Tk)

j,r ,x
(1)
k ⟩) + σ(⟨w(Tk)

j,r ,x
(2)
k ⟩)

]
where m is the network width, and w

(Tk)
j,r represents the r-th

neuron in the first layer during task Tk. The entire parameter
set of the model is denoted by W(Tk).

Training Algorithm. We use gradient descent to optimize
the objective defined in (1.1). For the first task, the weights
are initialized using Gaussian initialization, where each en-
try of W(T1,0)

+1 and W
(T1,0)
−1 is independently drawn from a

Gaussian distribution N(0, σ2
0). In the context of CL, the ini-

tial weight of the current task naturally equal the final weight
of the previous task, i.e., w(Tk,0)

j,r = w
(Tk−1,tend)
j,r (k ≥ 2).

Note that (Tk, tend) represents the final iteration of task Tk,
where the corresponding tend can vary for different tasks.
Then the update of the filters in the CNN during learning
task Tk can be written as

w
(Tk,t+1)
j,r = w

(Tk,t)
j,r − ηk · ∇wj,r

LSk
(W(Tk,t))

= w
(Tk,t)
j,r − ηk

nkm

nk∑
i=1

ℓ
′(Tk,t)
k,i j[σ′(⟨w(Tk,t)

j,r , ξk,i⟩)

· yk,iξk,i + σ′(⟨w(Tk,t)
j,r , yk,iµk⟩)µk]

(2.1)
for j ∈ {±1} and r ∈ [m], where the derivative of the loss
is defined as ℓ′(Tk,t)

k,i = ℓ′[yk,i · f(W(Tk,t),xk,i)].

3. Main Results
In this section, we present our main theoretical results,
which are established based on the following conditions.

Condition 3.1. Suppose that

1. The dimension d is sufficiently large: d =
Ω̃(m2∨[4/(q−2)] ·max{nk}4∨[(2q−2)/(q−2)]).

2. The neural network width m and training sample size nk

of task Tk satisfy m,nk = Ω(polylog(d)) for k ∈ [2].

3. The learning rate ηk of task Tk satisfies ηk ≤
Õ(min{∥µk∥−2

2 , σ−2
pk

d−1}) for k ∈ [2]. The standard
deviation of Gaussian initialization σ0 is chosen such
that σ0 ≤ Õ(m−[2/(q−2)]∨1 · max{nk}−[1/(q−2)]∨1) ·
min{(σpk

√
d)−1, ∥µk∥−1

2 }.

The first two conditions regarding d,m, nk are designed
to ensure a sufficiently over-parameterized learning setup,
as well as certain statistical properties of the training data
and weight initialization based on concentration inequalities.
Similar conditions have also been employed in Chatterji &
Long (2021); Frei et al. (2022); Cao et al. (2022); Kou et al.
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(2023). Condition on ηk and σ0 is imposed to guarantee that
gradient descent can effectively minimize the training loss.

The definition of cos θ1,2 follows Subsection 1.2, represent-
ing the cosine similarity between task T1 and T2. Based on
the aforementioned conditions and definitions, we present
the main result in the following theorems.

Theorem 3.2 (standard CL). For any ϵ > 0, under Con-
dition 3.1, if nk · SNRq

k = Ω̃(1), then with probability at
least 1− δ there exists tend = Õ(mη−1

2 σ
−(q−2)
0 ∥µ2∥−q

2 +
m3η−1

2 ϵ−1∥µ2∥−2
2 ) such that the training loss on task T2

converges to ϵ, i.e., LS(W
(T2,tend)) ≤ ϵ. Moreover, the

trained CNN will generalize with a small test loss on task
T2: LD2(W

(T2,tend)) ≤ 6ϵ + exp(−n2
2). The connection

between forgetting and cosine similarity can be summarized
in the following three points:

1. When cos θ1,2 ≥ 0, the trained CNN achieves a small test
loss on task T1: LD1(W

(T2,tend)) ≤ 18ϵ+ exp(−n2
1).

2. When −C1 ≤ cos θ1,2 < 0, the trained CNN achieves
a small test error on task T1: L0−1

D1
(W(T2,tend)) ≤

exp(−C ·m2q−2n2q/q2).

3. When −1 ≤ cos θ1,2 < −C2, the test error on task T1:
L0−1
D1

(W(T2,tend)) ≥ 1− exp(−C ·m2q−2n2q/q2).

Here, C1 and C2 are positive constants, with C1 < C2 < 1.

Theorem 3.2 shows that the learned CNN can achieve small
training and test losses on the current task if the signal-to-
noise ratio is large. As the training loss converges to ϵ, the
angle θ1,2 plays a crucial role in determining the nature
of forgetting: acute or small obtuse angles lead to benign
forgetting (small test error on the previous task), while larger
obtuse angles cause harmful forgetting (large test error on
the previous task). Note that a small test loss implies a small
test error, as the loss function in (1.1) penalizes incorrect
classifications more heavily. Based on Theorem 3.2, we
further examine the relationship between forgetting and
cosine similarity in CL with replay.

Theorem 3.3 (Replay-based CL). For any ϵ > 0, un-
der the same conditions as Theorem 3.2, when − 1+C2

2 ≤
cos θ1,2 < 0 and replay buffer size n∗

1 ≥ n2 ·
Θ̃{(− cos θ1,2)

qη2m
−2/q} , then with probability at least

1 − δ, there exists tend = Θ̃(η−1
2 mσ2−q

0 ∥µ2∥−q
2 +

m
2
q η−1

2 ϵ−kq

) such that:

1. The training loss on task T2: LS2
(W(T2,tend)) ≤ ϵC ,

where C = O(1) is a positive constant.

2. The trained CNN achieves a small test loss on task T2:
LD2(W

(T2,tend)) ≤ 6ϵC + exp(−n2
2).

3. The CNN achieves a small test error on task T1:
L0−1
D1

(W(T2,tend)) ≤ exp(−C ·m2q−2n2q/q2).

The first two points of Theorem 3.3 demonstrate that the
CNN trained with replay in CL can achieve small training
and test losses on the current task, similar to Theorem 3.2.
The final point states that if the replay buffer size for task T1

exceeds a certain threshold, the replay method can mitigate
forgetting by expanding the range of angles corresponding
to benign forgetting.

4. Proof Roadmap
In this section, we provide a proof roadmap for Theorem 3.2
and Theorem 3.3. Based on the gradient descent update rule
in (2.1), it can be observed that the weights w(Tk,t)

j,r for task

Tk are a linear combination of the initialization w
(Tk,0)
j,r , the

signal vectors µk, and the noise vectors ξk,i for i ∈ [nk]
and k ∈ [2]. Therefore, for r ∈ [m], the weight vector can
be decomposed as such:

w
(Tk,t)
j,r = w

(Tk,0)
j,r + jγ(µk)

(Tk,t)
j,r

µk

∥µk∥22
+

nk∑
i=1

ρ(ξk)
(Tk,t)
j,r,i

ξk,i
∥ξk,i∥22

.

Further denote ρ(ξk)
(Tk,t)
j,r,i := ρ(ξk)

(Tk,t)
j,r,i 1(ρ(ξk)

(Tk,t)
j,r,i ≥

0), ρ(ξk)
(Tk,t)
j,r,i := ρ(ξk)

(Tk,t)
j,r,i 1(ρ(ξk)

(Tk,t)
j,r,i ≤ 0). Then

w
(Tk,t)
j,r = w

(Tk,0)
j,r + j · γ(µk)

(Tk,t)
j,r · ∥µk∥−2

2 · µk

+

nk∑
i=1

[ρ(ξk)
(Tk,t)
j,r,i + ρ(ξk)

(Tk,t)
j,r,i ] · ∥ξk,i∥−2

2 · ξk,i,
(4.1)

where γ(µk)
(Tk,t)
j,r , ρ(ξk)

(Tk,t)
j,r,i , ρ(ξk)

(Tk,t)
j,r,i represent the

relevant coefficients. We refer to Equation (4.1) as the
signal-noise decomposition of w(Tk,t)

j,r , where ∥µk∥−2
2 and

∥ξk,i∥−2
2 serve as normalization factors. The key aspect

of the signal-noise decomposition model is to simplify the
dynamic process of CNN learning into the dynamic update
of the coefficients, which forms the basis of our analysis.

4.1. Proof Sketch for Continual Learning

Based on the decomposition in (4.1) and gradient descent
update (2.1), the iteration of coefficients are given:

Lemma 4.1. The coefficients γ(µk)
(Tk,t)
j,r , ρ

(Tk,t)
j,r,i , ρ(Tk,t)

j,r,i
in

decomposition (4.1) satisfy the following equations:

γ(µk)
(Tk,0)
j,r , ρ(ξk)

(Tk,0)
j,r,i , ρ(ξk)

(Tk,0)
j,r,i = 0, (4.2)

γ(µk)
(Tk,t+1)
j,r = γ(µk)

(Tk,t)
j,r − ηk

nkm
·

nk∑
i=1

ℓ
′(Tk,t)
k,i

· σ′(⟨w(Tk,t)
j,r , yk,i · µk⟩) · ∥µk∥22, (4.3)

ρ(ξk)
(Tk,t+1)
j,r,i = ρ(ξk)

(Tk,t)
j,r,i − ηk

nkm
· ℓ′(Tk,t)

k,i
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· σ′(⟨w(Tk,t)
j,r , ξk,i⟩) · ∥ξk,i∥22 · 1(yk,i = j), (4.4)

ρ(ξk)
(Tk,t+1)
j,r,i = ρ(ξk)

(Tk,t)
j,r,i +

ηk
nkm

· ℓ′(Tk,t)
k,i

· σ′(⟨w(Tk,t)
j,r , ξk,i⟩) · ∥ξk,i∥22 · 1(yk,i = −j) (4.5)

Lemma 4.1 describes the iteration rule for the coefficients
under gradient descent update. When cos θ1,2 = 0 (right
angle), the absence of interaction between signal vectors en-
sures small test loss on both tasks following the approach of
Cao et al. (2022). We then analyze the convergence, general-
ization, and forgetting in CL under two cases: cos θ1,2 > 0
(acute angle) and cos θ1,2 < 0 (obtuse angle).

Acute angle. When cos θ1,2 > 0, we apply a two-stage
technique to analyze the convergence and generalization on
the current task T2 similarly to Cao et al. (2022). The key
difference is that since task T1 has already been learned, a
component γ(µ1)

(T1,tend)
j,r ∥µ2∥2 cos θ1,2/∥µ1∥2 is present

in the signal vector µ2 during the initial phase of training
task T2. If this component is large, the training process
can skip the first stage and proceed directly to the second
stage. As a result, small training and test losses on task T2

in Theorem 3.2 naturally follow. The complete proof can be
found in Appendix E.2.

After learning task T2, forgetting can be analyzed by exam-
ining the true loss on task T1, i.e., LD1

(W(T2,tend)). Under
the same conditions as Theorem 3.2, Cao et al. (2022) show
that learning a single task can result in a small true loss, i.e.,
LD1(W

(T1,tend)) ≤ 6ϵ + exp(−n2
1). Consequently, we

can bound LD1(W
(T2,tend)) by analyzing its relationship

with LD1
(W(T1,tend)). When cos θ1,2 > 0, due to the posi-

tive interaction between the signal vectors of the two tasks,
the inequalities ⟨w(T2,tend)

y1,r , y1µ1⟩ ≥ ⟨w(T1,tend)
y1,r , y1µ1⟩

and ⟨w(T2,tend)
−y1,r , y1µ1⟩ ≤ ⟨w(T1,tend)

−y1,r , y1µ1⟩ can be estab-
lished, which naturally lead to the following lemma.
Lemma 4.2. Under the same conditions as Theorem 3.2,
when cos θ1,2 > 0, the following bounds hold for tend:

y1f(W
(T1,tend),x1)− y1f(W

(T2,tend),x1) ≤ κ, (4.6)

where κ = Θ(1) is a positive constant.

Note that Eq.(4.6) essentially characterizes the connec-
tion between LD1

(W(T2,tend)) and LD1
(W(T1,tend)) by

the definition LD1
(W(Tk,tend)) = E(x1,y1)∼D1

ℓ[y1 ·
f(W(Tk,tend),x1)] in Subsection 1.1. Then with the prop-
erty of cross-entropy loss that ℓ(z) ≤ exp(−z) for all
z, the test loss on the previous task LD1

(W(T2,tend)) ≤
18ϵ + exp(−n2

1) in Theorem 3.2 naturally follows. The
complete proof is provided in Appendix E.3.

Obtuse angle. Due to the complex interaction between the
signal vectors when cos θ1,2 < 0, a comprehensive analysis
of neuron behavior is required to characterize the conver-
gence and generalization of the current task T2, rather than

studying a subset of neurons for a single task in Cao et al.
(2022). Specifically, Cao et al. (2022) focus on neurons
wj,r for r ∈ Ij,1 = {r ∈ [m] : ⟨w(T1,0)

j,r , jµ1⟩ > 0}. These

neurons induce a negative effect ⟨w(T2,0)
j,r ,−jµ2⟩ during

the initial phase of training task T2. As training progresses,
⟨w(T2,t)

j,r ,−jµ2⟩ gradually decays to 0, and the correspond-

ing γ(µ2)
(T2,tend)
j,r that characterizes signal learning for task

T2 is bounded by −γ(µ1)
(T1,tend)
j,r ∥µ2∥2 cos θ1,2/∥µ1∥2.

In contrast, the neurons wj,r for r ∈ Ij,2 = {r ∈ [m] :

⟨w(T1,0)
j,r , jµ1⟩ ≤ 0} ∩ {r ∈ [m] : ⟨w(T1,0)

j,r , jµ⊥
1 ⟩ > 0},

where µ⊥
1 = µ2 − ∥µ2∥2 cos θ1,2 · µ1/∥µ1∥2, actually

learn the feature µ2 and exhibit increasing inner products
⟨w(T2,t)

j,r , jµ2⟩. The learning of neurons wj,r for r ∈ Ij,2
is key to achieving small training and test losses on task
T2 in Theorem 3.2. Note that while the two-stage signal
learning for the tasks is similar, the neurons responsible for
learning signals µ1 and µ2 are distinct. The complete proof
and detailed explanation can be found in Appendix F.

By the definition of forgetting, L0−1
D1

(W(T2,tend)) =

P(x1,y1)∼D1
[y1 ̸= sign(f(W(T2,tend),x1))] in Subsec-

tion 1.1, we know that forgetting is closely related to the
sign of y1f(W

(T2,tend),x1). Under the condition that
the signal-to-noise ratio nk · SNRq

k = Ω̃(1), the noise
memory |ρ(ξk)(Tk,tend)

j,r,i | will be bounded by σ0σpk

√
d,

which allows us to approximate y1f(W
(T2,tend),x1)

as
∑m

r=1[σ(⟨w
(T2,tend)
y1,r , y1µ1⟩) − σ(⟨w(T2,tend)

−y1,r , y1µ1⟩)].
Through a comprehensive analysis of neuron learn-
ing,

∑m
r=1σ(⟨w

(T2,tend)
y1,r , y1µ1⟩) can be characterized

by Θ(mγ(µ1)y1
(1 − cos2 θ1,2)

q), where γ(µ1)y1
=

1
m

∑
r∈Ij,1

[γ(µ1)
(T1,tend)
j,r ]q for j = y1 represents

the average value of γ(µ1)
(T1,tend)
y1,r corresponding

to the neurons that learn the signal µ1. Sim-
ilarly,

∑m
r=1σ(⟨w

(T2,tend)
−y1,r , y1µ1⟩) can be character-

ized by Θ(mγ(µ2)−y1∥µ1∥q2(− cos θ1,2)
q/∥µ2∥q2), where

γ(µ2)−y1 = 1
m

∑
r∈Ij,2

[γ(µ2)
(T2,tend)
j,r ]q for j =

−y1 represents the average value of γ(µ2)
(T2,tend)
−y1,r

corresponding to the neurons that learn the signal
µ2. Based on the above analysis, the study of
forgetting can be transformed into the study of the
antagonism between

∑m
r=1σ(⟨w

(T2,tend)
y1,r , y1µ1⟩) and∑m

r=1σ(⟨w
(T2,tend)
−y1,r , y1µ1⟩), which is directly related

to cos θ1,2. Specifically, the relationship between∑m
r=1[σ(⟨w

(T2,tend)
y1,r , y1µ1⟩)−σ(⟨w(T2,tend)

−y1,r , y1µ1⟩)] and
cos θ1,2 can be characterized by the following lemma.
Lemma 4.3. Under the same conditions as Theorem 3.2,
when −C1 ≤ cos θ1,2 < 0, it holds that

m∑
r=1

[
σ(⟨w(T2,tend)

y1,r , y1µ1⟩)−σ(⟨w(T2,tend)
−y1,r , y1µ1⟩)

]
≥ C3,
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where C1 < 1 and C3 are positive constants.

In contrast, under the condition that the cosine similar-
ity cos θ1,2 is relatively small, the relationship between∑m

r=1[σ(⟨w
(T2,tend)
−y1,r , y1µ1⟩)−σ(⟨w(T2,tend)

y1,r , y1µ1⟩)] and
cos θ1,2 is described by the following lemma.

Lemma 4.4. Under the same conditions as Theorem 3.2,
when −1 < cos θ1,2 ≤ −C2, it holds that

m∑
r=1

[
σ(⟨w(T2,tend)

−y1,r , y1µ1⟩)−σ(⟨w(T2,tend)
y1,r , y1µ1⟩)

]
≥ C3,

where C1 < C2 < 1 and C3 are positive constants.

Using the antagonistic relationship in Lemma 4.3, along
with the Gaussian concentration of Lipschitz function, we
can directly derive an upper bound for benign forgetting
(the second part of Theorem 3.2), following a similar idea
to the proof of Theorem E.1 in Kou et al. (2023). Similarly,
by Lemma 4.4, the lower bound for harmful forgetting (the
third part of Theorem 3.2) naturally follows. The complete
proof can be found in Appendix F.3.

4.2. Proof Sketch for Replay Methods

We also analyze the replay method using signal-noise de-
composition and a two-stage approach. After applying
signal-to-noise decomposition, we derive the inner prod-
uct of network weights w(T2,t)

j,r and signal vector µ1:

⟨w(T2,t)
j,r , jµ1⟩ = ⟨w(T2,0)

j,r , jµ1⟩+ γ(µ1)
(T2,t)
j,r

+ cos θ1,2
∥µ1∥2
∥µ2∥2

γ(µ2)
(T2,t)
j,r .

From this formula, it is evident that the inner product
⟨w(T2,t)

j,r , jµ1⟩ is influenced by two dynamic coefficients,

γ(µ1)
(T2,t)
j,r and γ(µ2)

(T2,t)
j,r . These coefficients evolve dur-

ing neural network training, and analyzing the changes in
the cross-entropy loss derivatives of task T1 and task T2 is
complex. To simplify the derivative form, we first introduce
the following lemma.

Lemma 4.5. Under Condition 3.1, during task T1 training,
when t = Θ̃(1/ϵ), we have

⟨w(T1,t)
j,r , jµ1⟩ = o(⟨w(T1,t)

j,r∗ , jµ1⟩)

for j ∈ {±1} and r ̸= r∗.

r∗ represents the maximum value of all ⟨w(T1,t)
j,r , jµ1⟩,

where r ∈ [m]. The proof of this lemma relies on
the relationship between infinite series and infinite prod-
ucts, which is detailed in the Appendix G. By this
lemma, we can show that:

∑m
r=1 σ(⟨w

(T1,t)
j,r , jµ1⟩) =

σ(⟨w(T1,t)
j,r∗ , jµ1⟩)[1 + o(1)], indicating that the sum of

inner products is dominated by the largest inner prod-
uct. This allows us to simplify the derivative as follows:
−ℓ

′(T1,t)
1,i = 1/ exp{ 1

mσ(⟨w(T1,t)
j,r∗ , jµ1⟩)}[1 + o(1)]. When

task T1 is trained until the training loss reaches ϵ, we
can estimate ⟨w(T1,tend)

j,r∗ , jµ1⟩ by (m log(1/ϵ))1/q. Con-
sequently, the derivative of task T1 becomes very small.
Thus, when switching to task training T2, neither the coeffi-
cients γ(µ1)

(T2,t)
j,r nor ρ(µ1)

(T2,t)
j,r,i of task T1 will change

significantly. During the initial phase of task T2 train-
ing, the maximum inner product ⟨wT2,t

j,r∗ , jµ1⟩ will ini-
tially decrease and then increase again, a phenomenon we
prove in the Appendix F. Additionally, it is shown that the
changes in ⟨w(T2,t)

j,r , jµ2⟩ are essentially similar to those

in ⟨w(T1,t)
j,r , jµ1⟩, meaning that the largest ⟨w(T2,t)

j,r , jµ2⟩ is
the higher order infinity of the other inner products. The
overall analysis of ⟨w(T2,t)

j,r , jµ2⟩ is also based on the two-
stage approach.

Stage 1. When ⟨w(T2,t)
j,r∗ , jµ2⟩ is large enough, similar

to −ℓ
′(T1,t)
1,i , we can give a rough estimate of −ℓ

′(T2,t)
2,i :

−ℓ
′(T2,t)
2,i ≈ 1/ exp{ 1

mσ(⟨w(T2,t)
j,r∗ , jµ2⟩)}. Thus, when

⟨w(T2,t)
j,r∗ , jµ2⟩ ≤ m

1
q , we can assert that −ℓ

′(T2,t)
2,i = Θ(1).

The following lemma gives our specification of stage 1:

Lemma 4.6. Under the same condition as Theorem 3.3,
there exists time

T+
4 =

C(n∗
1 + n2)2

4m log
(

2m
1
q√

1−(cos θ1,2)2σ0∥µ2∥2

)
η2qn2(1− (cos θ1,2)2)q/2σ

q−2
0 ∥µ2∥q2

such that

• maxr γ(µ2)
(T2,t)
j,r ≥ m

1
q

1−(cosθ1,2)2
for j ∈ {±1}.

• maxj,r,i |ρ(µk)
(T2,t)
j,r,ik

| ≤ σ0σpk

√
d for all j ∈ {±1},

r ∈ [m], ik ∈ [nk] and 0 ≤ t ≤ T+
4 .

Lemma 4.6 gives a significant difference between
γ(µ2)

(T2,t)
j,r∗ and ρ(µk)

(T2,t)
j,r,ik

within time T+
4 , during which

γ(µ2)
(T2,t)
j,r∗ reaches m

1
q

1−(cosθ1,2)2
, while |ρ(µk)

(T2,t)
j,r,ik

| is up-

per bounded by σ0σpk

√
d. After this, as γ(µ2)

(T2,t)
j,r∗ grows,

the derivative −ℓ
′(T2,t)
2,i cannot be maintained at a constant

level so that the training for task T2 enters stage 2.

Stage 2. At this stage, γ(µ2)
(T2,t)
j,r∗ reaches a higher value,

but ρ(µk)
(t)
j,r,ik

is still very different from γ(µ2)
(T2,t)
j,r∗ .

Specifically, γ(µ2)
(T2,t

∗)
j,r∗ reaches a large and reasonable

value k(m log( 1
ϵ ))

1
q

1−(cosθ1,2)2
, where k is a positive constant, and

ρ(µk)
(t)
j,r,ik

can be bounded by 2σ0σpk

√
d. The following

lemma gives some specifications.

6
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Lemma 4.7. Under Condition 3.1, let T+
5 = T+

4 +

Θ̃
(
m

2
q η−1

2 ϵ−kq)
. Then we have maxj,r,i |ρ(µk)

(t)
j,r,ik

| ≤
2σ0σpk

√
d for all T+

4 ≤ t ≤ T+
5 . And we can also

find a time t∗ that γ(µ2)
(T2,t

∗)
j,r∗ ≥ k(m log( 1

ϵ ))
1
q

1−(cosθ1,2)2
, where

T+
4 ≤ t∗ ≤ T+

5 .

In Lemma 4.7, k is a parameter that measures feature learn-
ing on task T2. |ρ(µk)

(t)
j,r,ik

| can be bounded by 2σ0σpk

√
d.

This suggests that the model is far inferior to feature learn-
ing in terms of noise memorization. The time to stop train-
ing for task T2 is the moment when γ(µ2)

(T2,t
∗)

j,r∗ reaches
k(m log( 1

ϵ ))
1
q

1−(cosθ1,2)2
for the first time, which we denote by tend.

At the moment tend, loss of training for task T2 will be
reduced to a minimal level: LS2

(W(T2,tend)) ≤ ϵk
q/2.

Further, we will prove in the Appendix H.5 that when
− 1+C2

2 ≤ cos θ1,2 ≤ 0,
∑m

r=1

[
σ(⟨w(T2,tend)

y1,r , y1µ1⟩) −
σ(⟨w(T2,tend)

−y1,r , y1µ1⟩)
]
≥ C3.

It should be clear that our proof for the replay method is
based on the fact that ⟨w(T2,t)

j,r , ξ1,i⟩ and ⟨w(T2,t)
j,r , ξ2,i⟩ can

be bounded. The following lemma will give this fact.

Lemma 4.8. Under Condition 3.1, when 0 ≤ t ≤ T+
5 =

Θ̃(η−1
2 mσ2−q

0 ∥µ2∥−q
2 +m

2
q η−1

2 ϵ−kq

), we have

⟨w(T2,t)
j,r , ξ1,i⟩, ⟨w(T2,t)

j,r , ξ2,i⟩ ≤ Cξ,

where Cξ = Õ(m−[2/(q−2)]∨1 ·max{nk}−[1/(q−2)]∨1) for
all j ∈ {±1} and r ∈ [m].

In this case, we complete the proof of the replay method.

5. Experiments
Synthetic experiments We validate theoretical findings
with synthetic data as per Definition 1.1, setting training
data size to nk = 100 for k ∈ [2] and dimension d = 100.
Signal vector µ1 for task T1 is ∥µ1∥2 · [1, 0, · · · , 0]⊤ with
∥µ1∥2 = 8, and µ2 for T2 is obtained by rotating µ1 by
angle θ1,2. Noise variance is σpk

= 1 for k ∈ [2].

We sequentially train a two-layer ReLUq CNN defined in
Section 2 on the datasets of the two tasks described above,
where width m = 10 and q = 3. We initialize the model
with a Gaussian distribution with σ0 = 0.02 and train it
using full-batch gradient descent with a learning rate of
0.001 for 3000 iterations on each task.

After training on two tasks, we estimate forgetting (test er-
ror on the previous task T1) using 1000 test data points. In
Figure 2, we see that acute or small obtuse angles are associ-
ated with benign forgetting, while large obtuse angles lead to
harmful forgetting. Moreover, the replay method alleviates
forgetting by expanding the range of angles corresponding

to benign forgetting. These results are attributed to a com-
prehensive analysis of neuron behavior. The second plot
of Figure 2 verifies that ⟨w(T1,t)

j,r , jµ1⟩ = o(⟨w(T1,t)
j,r∗ , jµ1⟩)

holds for j ∈ {±1} and r ̸= r∗ as t approaches Θ̃(1/ϵ)
in Lemma 4.5 during the training of task T1, where r∗ =

argmaxr∈[m]⟨w(T1,t)
j,r , jµ1⟩. The neuron behavior during

task T2 in the case of obtuse angle can be verified by the
third plot of Figure 2. The descending curve corresponds
to neurons wj,r for r ∈ Ij,1, which learn the signal µ1 of
task T1. These neurons initially induce a negative effect
⟨w(T2,0)

j,r ,−jµ2⟩, which gradually decays to 0. The ascend-
ing curve corresponds to neurons wj,r for r ∈ Ij,2, which
learn the signal µ2 of task T2 and exhibit an increasing
⟨w(T2,t)

j,r , jµ2⟩. The sets Ij,1 and Ij,2 are defined as in Sub-
section 4.1. The relationship between forgetting and the
angle θ1,2 arises from the antagonism between these two
types of neurons.

Real-world experiments We validate our conclusions on
the MNIST dataset (LeCun, 1998) using a two-layer ReLUq

CNN for binary classification with labels +1 and −1 (See
Section 1.1). We denote the average flattened image of all
positive labeled examples (label +1) in task T1 as the signal
vector µ1. Similarly, we obtain µ2 for task T2. Then the
angle θ1,2 between the two signal vectors naturally follows.
We conduct the following four sets of experiments:

1. Experiment 1: Task T1: classification of the original
digit 5 (label +1) and its inverted version (label −1).
Task T2: classification of the original digit 8 (label +1)
and its inverted version (label −1). Then the angle
between two tasks θ1,2 = 30.19◦.

2. Experiment 2: Task T1: classification of the original
digit 0 (label +1) and its inverted version (label −1).
Task T2: classification of the original digit 1 (label −1)
and its inverted version (label +1). Then the angle
between two tasks θ1,2 = 102.97◦.

3. Experiment 3: Task T1: classification of the original
digit 2 (label +1) and its inverted version (label −1).
Task T2: classification of the original digit 6 (label −1)
and its inverted version (label +1). Then the angle
between two tasks θ1,2 = 140.26◦.

4. Experiment 4: Task T1: classification of the original
digit 4 (label +1) and its inverted version (label −1).
Task T2: classification of the original digit 9 (label −1)
and its inverted version (label +1). Then the angle
between two tasks θ1,2 = 153.90◦.

Figure 3 illustrates the relationship between test accuracy on
task T1 and the replay buffer size across four settings. For
tasks with acute angles (30.19◦) or smaller obtuse angles
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Figure 2. validation of the relationship between forgetting and the angle θ1,2 between the signal vectors of two tasks under both CL and
CL with replay in Section 3, and we provide experimental support for the key analysis of neuron behavior discussed in Section 4.

(102.97◦), the CNN exhibits benign forgetting even with-
out replay, supporting Theorem 3.2. In contrast, for larger
obtuse angles (140.26◦ and 153.90◦), harmful forgetting
occurs unless sufficient replay data is provided. When the
replay buffer size reaches a threshold, forgetting is signifi-
cantly alleviated, aligning with Theorem 3.3. These results
highlight the angle-dependent effectiveness of replay in mit-
igating forgetting.
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Figure 3. Experimental results of CL on the MNIST dataset with
varying angles between task signal vectors: reported are accuracies
on task T1 for different replay buffer sizes.

Mid-angle sampling: Inspired by our theoretical results,
we can leverage the angle θ1,2 to balance the stability and
plasticity. Instead of random sampling old task examples,
we select examples that have moderate cosine similarity
(mid-angle) with the prototype for each class, which we
refer as mid-angle sampling. Examples with high or low
cosine similarity typically correspond to higher or lower
levels of forgetting during new task training respectively.
In contrast, mid-angle sampling selects examples with a
moderate degree of forgetting, which proves to be a more
cost-effective approach.

We conduct an initial validation of the effectiveness of
mid-angle sampling using a two-layer CNN on the MNIST
dataset, which can be found in Appendix B.1. To further

Table 1. Accuracy comparison on previously trained classes us-
ing different replay buffer sampling methods within the iCaRL
framework on the CIFAR100 dataset (percentage omitted).

Sampling CIFAR100-10 CIFAR100-5

Random 47.17 ± 0.45 56.08 ± 0.12
Small-angle 45.63 ± 0.12 54.36 ± 0.35
Mid-angle 48.02 ± 0.27 56.51 ± 0.06
Big-angle 45.34 ± 0.76 54.77 ± 0.29
Herding 47.40 ± 0.17 56.12 ± 0.20

validate the universality of mid-angle sampling, we conduct
experiments on the CIFAR100 dataset (Krizhevsky et al.,
2009) following the iCaRL replay framework from Rebuffi
et al. (2017). The data is split into T tasks, denoted as
dataset-T. For example, CIFAR100-10 represents 10 tasks,
each containing 10 distinct classes. Specifically, we train a
model f consisting of a feature extractor φ and a classifi-
cation layer e. The prototype of the j-th class is defined as
µj =

1
|Sj |Σxj,i∈Sj

φ(xj,i), where Sj represents the dataset
of class j. Based on the prototype, mid-angle sampling, big-
angle sampling and small-angle sampling for class j can
be performed according to sim(φ(xj,i),µj), where sim(·)
denotes the cosine similarity function. Further details can
be found in Appendix B.2. Table 1 shows the test accuracy
on previously trained classes for the three above sampling
methods, random sampling, and herding. In addition, we in-
clude in Table 2 the average forgetting metric used by Wang
et al. (2024) on previously learned tasks to further validate
the effectiveness of mid-angle sampling. As shown, mid-
angle sampling outperforms the other sampling methods,
aligning with our theoretical predictions.

6. Conclusion and Future Work
This paper establishes a unified theoretical framework for
understanding CL through feature learning theory. By ana-
lyzing neuron behavior, we reveal the relationship between
forgetting and the angle between task signal vectors. Fur-
thermore, we demonstrate that the replay method alleviates

8



Understanding the Forgetting of (Replay-based) Continual Learning via Feature Learning: Angle Matters

Table 2. Average forgetting comparison on previously learned
tasks using different replay buffer sampling methods within the
iCaRL framework on the CIFAR100 dataset (percentage omitted).

Sampling CIFAR100-10 CIFAR100-5

Random 15.72 ± 0.31 11.15 ± 0.46
Small-angle 19.47 ± 0.39 14.10 ± 0.26
Mid-angle 14.84 ± 0.26 10.15 ± 0.28
Big-angle 18.04 ± 0.49 12.50 ± 0.72
Herding 15.51 ± 0.08 10.64 ± 0.13

forgetting by expanding the range of angles associated with
benign forgetting. Our theoretical results also inspire a mid-
angle sampling strategy, which can help the replay method
better mitigate forgetting. As a pioneering study in feature
learning within the context of CL, our theoretical frame-
work is limited to binary classification under a single-head
setting. Moreover, the contribution of mid-angle sampling
is relatively modest. Future work can extend our framework
to more complex task settings and explore more effective
replay methods guided by theoretical insights into how the
angle between task signal vectors influences forgetting.
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A. Related Work
A.1. Feature Learning Theory

Unlike some of the more traditional feature extraction methods, such as recursive feature elimination (Darst et al., 2018),
which typically require the knowledge and experience of domain experts to guide the selection and construction of features,
feature learning theory (Cao et al., 2022) reveals an efficient method to automatically extract useful features from raw data.
It aims to find feature representations that better represent the data by mining the intrinsic structure of the data. Feature
learning theory has a wide range of applications. Cao et al. (2022) and Kou et al. (2023) address the phenomenon of benign
overfitting that may occur in modern deep learning models, and study benign overfitting in two-layer ReLU convolutional
neural networks through a feature learning theoretical approach to reveal changes under different conditions; Huang et al.
(2023) and Pan et al. (2024) establish a unified theoretical foundation for understanding federated learning through feature
learning theory, revealing that federated averaging improves the signal-to-noise ratio to achieve near-zero test error and
weighted federated averaging to solve the problem of data heterogeneity in feature learning; Yang & Hu (2021) point out
that the standard and NTK parameterisations of neural networks cannot reach the infinite-width limit at which feature
learning can take place, and propose a simple modification of the standard parameterisation to achieve feature learning at
the limit, which is found to outperform the neural tangent kernel baseline and finite-width networks, and the finite-width
networks converge to the infinite-width feature learning performance as the width increases; Zou et al. (2023) analyse Mixup
theoretically from the perspective of feature learning, and construct a feature-noise data model to carry out the study, which
reveals that Mixup training can effectively learn rare features from a mixture of rare and common features, while standard
training cannot do so, which in turn leads to the problem of poor generalisation performance; Jelassi et al. (2022); Jiang et al.
(2024) conduct in-depth research on Vision Transformers (ViTs). Given that ViTs can achieve comparable or even better
performance than Convolutional Neural Networks (CNNs) in computer vision without incorporating the visual inductive
bias of spatial locality and can learn spatially localized patterns, the authors aim to provide theoretical explanations for this
phenomenon. In contrast, our research employs feature learning theory to investigate how the angle between task signal
vectors relates to benign and harmful forgetting in continual learning (CL), introducing additional techniques designed
for CL. Furthermore, it reveals the theoretical mechanism underlying replay-based methods, which mitigate forgetting by
expanding the angular range associated with benign forgetting.

A.2. Theoretical Analysis of CL

Since McCloskey & Cohen (1989) first put forward the phenomenon of catastrophic forgetting in continual learning in 1989,
researchers have been committed to finding effective methods to balance the learning plasticity of models on new tasks
and the catastrophic forgetting of old tasks. In recent years, researchers have started from the theory of continual learning
to conduct theoretical interpretations of continual learning and explore new methods. Bennani et al. (2020) proposed
that in over-parameterised neural networks, the OGD algorithm can effectively solve the catastrophic forgetting problem
in continuous learning, and also revealed the need to take into account the effect of NTK variations on the algorithm’s
performance in practical applications. Doan et al. (2021) proposes a task similarity metric based on the neural tangent
kernel (NTK) overlap matrix, analyses how common projected gradient algorithms can mitigate catastrophic forgetting,
and proposes a variant of Orthogonal Gradient Descent (OGD) using Principal Component Analysis (PCA) structured
data, with experimental results supporting the theoretical findings and demonstrating the approach’s forgetting potential.
Evron et al. (2022) studys the problem of catastrophic forgetting when fitting over-parameterised linear models to cope
with sequences of tasks with different input distributions, analysing the extent of forgetting, establishing relevant domain
links and demonstrating a situation-specific upper bound on forgetting and pointing out how it varies when the tasks are
differently ordered. Lin et al. (2023) conducts a theoretical analysis based on an over-parameterised linear model, give
explicit forms of the expected forgetting and generalisation errors under a general CL setting, analyse the effects of relevant
factors on CL forgetting and generalisation errors, and show that some of the insights can be used in practice and can
contribute to the design of CL algorithms through experiments with deep neural networks on real datasets. Ding et al.
(2024) provides a generalised theoretical analysis of forgetting in linear regression models via stochastic gradient descent
(SGD), revealing interesting insights into the relationship between task sequences and algorithm parameters, showing the
impact of task alignment and the choice of an appropriate step size on forgetting in large data volumes. Zhao et al. (2024)
presents a statistical analysis of continuous learning in a sequence of regularisation-based linear regression tasks, compares
the minimum-paradigm estimator with the lower bound of continuous ridge regression to reflect its non-optimality, and
concludes with an experimental validation of its theory.
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B. Supplements for Experiments
B.1. Mid-angle Sampling with a Two-layer CNN on MNIST

We conduct experiments to validate the effectiveness of mid-angle sampling using a two-layer ReLUq CNN with width
m = 256 and q = 3 on the MNIST dataset (LeCun, 1998). We define two tasks, where task T1 involves classifying digits
4 and 5, and task T2 involves classifying digits 8 and 9. We denote the flattened image of the i-th example in the j-th
class as µj,i, and the prototype of the j-th class is represented as µj =

1
|Sj |Σxj,i∈Sj

µj,i, where Sj is the dataset of class
j. We perform sampling based on the cosine similarity sim(µj,i,µj), where sim(·) denotes the cosine similarity function.
Examples with moderate similarity sim(µj,i,µj) are selected for mid-angle sampling, while examples with higher or lower
similarity correspond to small-angle sampling and big-angle sampling respectively. We compare the three sampling methods
above with random sampling in terms of the test accuracy on the previous task T1 in Figure 4. As shown, mid-angle sampling
outperforms the other three methods, which is consistent with our analysis.
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Figure 4. Experimental results on the MNIST dataset using different replay buffer sampling methods: reported are accuracies on task T1

for various replay buffer sizes.

B.2. Experimental Details of Mid-angle Sampling on CIFAR-100

We evaluate five replay buffer sampling methods within the iCaRL framework (Rebuffi et al., 2017): small-angle, mid-angle,
big-angle, random sampling and herding. We rely on PyTorch (Paszke et al., 2019) and train an 18-layers CBAM-ResNet (He
et al., 2016; Woo et al., 2018) as the feature extractor φ, allowing iCaRL to store up to K = 5000 exemplars. Each task is
trained for 100 epochs, with the learning rate starting at 2.0 and divided by 5 after 48, 62 and 80 epochs. The network is
trained via standard backpropagation with minibatches of size 128 and a weight decay of 0.00001.

C. Preliminary Lemmas
Lemma C.1 (Cao et al. (2022)). Suppose that δ > 0 and d = Ω(log(4nk/δ)). Then with probability at least 1− δ,

σ2
pk
d/2 ≤ ∥ξk,i∥22 ≤ 3σ2

pk
d/2,

|⟨ξk,i, ξk′,i′⟩| ≤ 2σpk
σpk′ ·

√
d log(4n2

k/δ)

for i ∈ [nk], i
′ ∈ [nk′ ] and k, k′ ∈ [2].

Lemma C.2 (Cao et al. (2022)). Suppose that d ≥ Ω(log(mnk/δ)), m = Ω(log(1/δ)). Then with probability at least
1− δ,

|⟨w(T1,0)
j,r ,µk⟩| ≤

√
2 log(8m/δ) · σ0∥µk∥2,
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|⟨w(T1,0)
j,r , ξk,i⟩| ≤ 2

√
log(8mnk/δ) · σ0σpk

√
d

for all r ∈ [m], j ∈ {±1} and i ∈ [nk]. Moreover,

σ0∥µk∥2/2 ≤ max
r∈[m]

j · ⟨w(T1,0)
j,r ,µk⟩ ≤

√
2 log(8m/δ) · σ0∥µk∥2,

σ0σpk

√
d/4 ≤ max

r∈[m]
j · ⟨w(T1,0)

j,r , ξk,i⟩ ≤ 2
√

log(8mnk/δ) · σ0σpk

√
d

for all j ∈ {±1} and i ∈ [nk].

D. Signal-noise Decomposition for Task T1
Based on the analysis of training task T1 by Cao et al. (2022) we know that

w
(T2,0)
j,r = w

(T1,tend)
j,r = w

(T1,0)
j,r + j · γ(µ1)

(T1,tend)
j,r · µ1

∥µ1∥22
+

n1∑
i=1

ρ(ξ1)
(T1,tend)
j,r,i · ξ1,i

∥ξ1,i∥22
+

n1∑
i=1

ρ(ξ1)
(T1,tend)
j,r,i · ξ1,i

∥ξ1,i∥22
.

(D.1)

And if n1 · SNR1
q = Ω̃(1), the learned neural network can achieve small training and test losses. So at the beginning of

training task T2, we have following property holds:

• maxr γ(µ1)
(T1,tend)
j,r = O([m log(1/ϵ)]1/q),∀j ∈ {±1}.

• maxj,r,i |ρ(ξ1)(T1,tend)
j,r,i | ≤ σ0σp1

√
d.

We also know that

⟨w(T2,0)
j,r ,µ2⟩ = ⟨w(T1,0)

j,r ,µ2⟩+ j · γ(µ1)
(T1,tend)
j,r · ∥µ2∥2 cos θ1,2

∥µ1∥2

⟨w(T2,0)
j,r , ξ2,i⟩ = ⟨w(T1,0)

j,r , ξ2,i⟩+
n1∑
i′=1

ρ(ξ1)
(T1,tend)
j,r,i · ⟨ξ1,i′ , ξ2,i⟩∥ξ1,i′∥22

By Condition 3.1, Lemma C.1 and C.2, we further have

max
r

|⟨w(T2,0)
j,r ,µ2⟩| = O([m log(1/ϵ)]1/q),∀j ∈ {±1} (D.2)

max
j,r,i

|⟨w(T2,0)
j,r , ξ2,i⟩| ≤ 4

√
log(8mn2/δ) · σ0σp2

√
d (D.3)

E. Learning of Task T2 (Standard CL with Acute Angle)
In this section, we consider continual learning where the signal vectors between task T1 and task T2 form an acute angle,
i.e., ⟨µ1,µ2⟩ > 0. Denote cos θ1,2 = ⟨µ1,µ2⟩/(∥µ1∥2 · ∥µ2∥2). Then we have that cos θ1,2 > 0. We remind the readers
that the proofs in this section are based on the results in Section D, which can achieve small training loss and test loss during
learning task T1.

E.1. Signal-noise Decomposition Analysis

Lemma E.1 (Restatement of Lemma 4.1). The coefficients γ(µ2)
(T2,t)
j,r , ρ(ξ2)

(T2,t)
j,r,i , ρ(ξ2)

(T2,t)
j,r,i in decomposition (4.1)

satisfy the following iterative equations:

γ(µ2)
(T2,0)
j,r , ρ(ξ2)

(T2,0)
j,r,i , ρ(ξ2)

(T2,0)
j,r,i = 0,

γ(µ2)
(T2,t+1)
j,r = γ(µ2)

(T2,t)
j,r − η2

n2m
·

n2∑
i=1

ℓ
′(T2,t)
2,i · σ′(⟨w(T2,t)

j,r , y2,i · µ2⟩) · ∥µ2∥22,
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ρ(ξ2)
(T2,t+1)
j,r,i = ρ(ξ2)

(T2,t)
j,r,i − η2

n2m
· ℓ′(T2,t)

2,i · σ′(⟨w(T2,t)
j,r , ξ2,i⟩) · ∥ξ2,i∥22 · 1(y2,i = j),

ρ(ξ2)
(T2,t+1)
j,r,i = ρ(ξ2)

(T2,t)
j,r,i +

η2
n2m

· ℓ′(T2,t)
2,i · σ′(⟨w(T2,t)

j,r , ξ2,i⟩) · ∥ξ2,i∥22 · 1(y2,i = −j)

for all r ∈ [m], j ∈ {±1} and i ∈ [n].

Proof of Lemma E.1. First, we iterate the gradient descent update rule (2.1) t times and get

w
(T2,t)
j,r = w

(T2,0)
j,r − η2

n2m

t−1∑
s=0

n2∑
i=1

ℓ
′(T2,s)
2,i · σ′(⟨w(T2,s)

j,r , ξ2,i⟩) · jy2,iξ2,i

− η2
n2m

t−1∑
s=0

n2∑
i=1

ℓ
′(T2,s)
2,i · σ′(⟨w(T2,s)

j,r , y2,iµ2⟩) · jµ2.

According to the decomposition (4.1),

w
(T2,t)
j,r = w

(T2,0)
j,r + j · γ(µ2)

(T2,t)
j,r · ∥µ2∥−2

2 · µ2 +

n2∑
i=1

ρ(ξ2)
(T2,t)
j,r,i · ∥ξ2,i∥−2

2 · ξ2,i.

Note that the vectors are linearly independent with probability 1, under which condition we have the unique representation

γ(µ2)
(T2,t)
j,r = − η2

n2m

t−1∑
s=0

n2∑
i=1

ℓ
′(T2,s)
2,i · σ′(⟨w(T2,s)

j,r , y2,iµ2⟩) · ∥µ2∥22, (E.1)

ρ(ξ2)
(T2,t)
j,r,i = − η2

n2m

t−1∑
s=0

ℓ
′(T2,s)
2,i · σ′(⟨w(T2,s)

j,r , ξ2,i⟩) · ∥ξ2,i∥22 · jy2,i.

Now with the notation ρ(ξ2)
(T2,t)
j,r,i := ρ(ξ2)

(T2,t)
j,r,i 1(ρ(ξ2)

(T2,t)
j,r,i ≥ 0), ρ(ξ2)

(T2,t)
j,r,i := ρ(ξ2)

(T2,t)
j,r,i 1(ρ(ξ2)

(T2,t)
j,r,i ≤ 0) and the

fact ℓ′(T2,s)
2,i < 0, we get

ρ(ξ2)
(T2,t)
j,r,i = − η2

n2m

t−1∑
s=0

ℓ
′(T2,s)
2,i · σ′(⟨w(T2,s)

j,r , ξ2,i⟩) · ∥ξ2,i∥22 · 1(y2,i = j), (E.2)

ρ(ξ2)
(T2,t)
j,r,i =

η2
n2m

t−1∑
s=0

ℓ
′(T2,s)
2,i · σ′(⟨w(T2,s)

j,r , ξ2,i⟩) · ∥ξ2,i∥22 · 1(y2,i = −j). (E.3)

Writing out the iterative versions of (E.1), (E.2) and (E.3) completes the proof.

We will prove the Proposition E.2 following Cao et al. (2022), which shows that the coefficients in the signal-noise
decomposition (4.1) stay a reasonable scale for a long time of training. Consider the learning period 0 ≤ t ≤ T ∗, where
T ∗ = poly(η−1

1 , η−1
2 , ϵ−1, ∥µ1∥−1

2 , ∥µ2∥−1
2 , d−1σ−2

p1
, d−1σ−2

p1
, σ−1

0 , n1, n2,m, d) is the maximum admissible iterations.
Note that we can consider any polynomial training time T ∗. Denote α = 4 log(T ∗). Here we list the exact conditions on
η2, σ0, d for the proofs, which are part of Condition 3.1:

η2 = O
(
min{n2m/(qσ2

p2
d), n2m/(q2q+2αq−2σ2

p2
d), n2m/(q2q+2αq−2∥µ2∥22)}

)
, (E.4)

σ0 ≤ [32
√

log(8mn2/δ)]
−1 min{∥µ1∥−1

2 , ∥µ2∥−1
2 , (σp2

√
d)−1}, (E.5)

d ≥ 1024 log(4n2
2/δ)α

2n2
2. (E.6)

Denote β0 = 2maxi,j,r{|⟨w(T1,0)
j,r ,µ2⟩|, |⟨w(T1,0)

j,r , ξ2,i⟩|}. By Lemma C.2, we can upper bound β0 by 4
√
log(8mn2/δ) ·

σ0 ·max{∥µ2∥2, σp2

√
d}. Then, by (E.5) and (E.6), it is straightforward to verify the following inequality:

4max

{
β0, 8n2

√
log(4n2

2/δ)

d
α

}
≤ 1. (E.7)
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Denote β1 = 2maxj,r{|⟨w(T2,0)
j,r ,µ2⟩|}, β2 = 2maxi,j,r{|⟨w(T2,0)

j,r , ξ2,i⟩|}.Then, by (D.2), (D.3) and conditions listed in
(E.5), we have that

β1 = O([m log(1/ϵ)]1/q) (E.8)

β2 ≤ 1

4
(E.9)

Proposition E.2 (Acute-angle Case). Under Condition 3.1, and when cos θ1,2 > 0, for 0 ≤ t ≤ T ∗, we have that

0 ≤ γ(µ2)
(T2,t)
j,r , ρ(ξ2)

(T2,t)
j,r,i ≤ α, (E.10)

0 ≥ ρ(ξ2)
(T2,t)
j,r,i ≥ −β2 − 16n2

√
log(4n2

2/δ)

d
α ≥ −α. (E.11)

for all r ∈ [m], j ∈ {±1} and i ∈ [n2].

We prove Proposition E.2 by induction, first introducing several technical lemmas for the proof.

Lemma E.3 (Cao et al. (2022)). For t ≥ 0, it holds that ⟨w(T2,t)
j,r −w

(T2,0)
j,r ,µ2⟩ = j · γ(µ2)

(T2,t)
j,r for r ∈ [m], j ∈ {±1}.

Lemma E.4 (Cao et al. (2022)). Under Condition 3.1, suppose (E.10) and (E.11) hold at iteration t. Then

ρ(ξ2)
(T2,t)
j,r,i − 8n2

√
log(4n2

2/δ)

d
α ≤ ⟨w(T2,t)

j,r −w
(T2,0)
j,r , ξ2,i⟩ ≤ ρ(ξ2)

(T2,t)
j,r,i + 8n2

√
log(4n2

2/δ)

d
α, j ̸= y2,i,

ρ(ξ2)
(T2,t)
j,r,i − 8n2

√
log(4n2

2/δ)

d
α ≤ ⟨w(T2,t)

j,r −w
(T2,0)
j,r , ξ2,i⟩ ≤ ρ(ξ2)

(T2,t)
j,r,i + 8n2

√
log(4n2

2/δ)

d
α, j = y2,i

for all r ∈ [m], j ∈ {±1} and i ∈ [n2].

Lemma E.5. Under Condition 3.1, suppose (E.10) and (E.11) hold at iteration t. Then

⟨w(T2,t)
j,r , y2,iµ2⟩ ≤ ⟨w(T1,0)

j,r , y2,iµ2⟩,

⟨w(T2,t)
j,r , ξ2,i⟩ ≤ ⟨w(T2,0)

j,r , ξ2,i⟩+ 8n2

√
log(4n2

2/δ)

d
α,

Fj(W
(T2,t)
j ,x2,i) ≤ 1

for all r ∈ [m] and j ̸= y2,i.

Proof of Lemma E.5. For j ̸= y2,i, we have that

⟨w(T2,t)
j,r , y2,iµ2⟩ = ⟨w(T1,0)

j,r , y2,iµ2⟩+ y2,i · j · γ(µ1)
(T1,tend)
j,r · ∥µ2∥2 cos θ1,2

∥µ1∥2
+ y2,i · j · γ(µ2)

(T2,t)
j,r

≤ ⟨w(T1,0)
j,r , y2,iµ2⟩, (E.12)

where the inequality is by γ(µ1)
(T1,tend)
j,r ≥ 0 and γ(µ2)

(T2,t)
j,r ≥ 0. In addition, we have

⟨w(T2,t)
j,r , ξ2,i⟩ ≤ ⟨w(T2,0)

j,r , ξ2,i⟩+ ρ(ξ2)
(T2,t)
j,r,i + 8n2

√
log(4n2

2/δ)

d
α ≤ ⟨w(T2,0)

j,r , ξ2,i⟩+ 8n2

√
log(4n2

2/δ)

d
α, (E.13)

where the first inequality is by Lemma E.4 and the second inequality is due to ρ(ξ2)
(T2,t)
j,r,i ≤ 0. Then we can get that

Fj(W
(T2,t)
j ,x2,i) =

1

m

m∑
r=1

[σ(⟨w(T2,t)
j,r ,−j · µ2⟩) + σ(⟨w(T2,t)

j,r , ξ2,i⟩)]

≤ 2q+1 max
j,r,i

{
|⟨w(T1,0)

j,r ,µ2⟩|, |⟨w(T2,0)
j,r , ξ2,i⟩|, 8n2

√
log(4n2

2/δ)

d
α

}q

≤ 1,

where the first inequality is by (E.12), (E.13) and the second inequality is by (E.7), (E.9).
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Now we are ready to prove Proposition E.2.

Proof of Proposition E.2. Our proof proceeds by induction. The claim is trivially true at t = 0 since all coefficients are
initially zero. Suppose that there exists T̃ ≤ T ∗ such that the results in Proposition E.2 hold for all time 0 ≤ t ≤ T̃ − 1. We
aim to prove that they also hold for t = T̃ .

We first prove that (E.11) holds for t = T̃ , i.e., ρ(ξ2)
(T2,t)
j,r,i ≥ −β2 − 16n2

√
log(4n2

2/δ)
d α for t = T̃ , r ∈ [m], j ∈ {±1}

and i ∈ [n2]. Since ρ(ξ2)
(T2,t)
j,r,i = 0 for j = y2,i, it suffices to consider the case where j ̸= y2,i. When ρ(ξ2)

(T2,T̃−1)
j,r,i ≤

−0.5β2 − 8n2

√
log(4n2

2/δ)
d α, by Lemma E.4 we have that

⟨w(T2,T̃−1)
j,r , ξ2,i⟩ ≤ ρ(ξ2)

(T2,T̃−1)
j,r,i + ⟨w(T2,0)

j,r , ξ2,i⟩+ 8n2

√
log(4n2

2/δ)

d
α ≤ 0,

and thus ρ(ξ2)
(T2,T̃ )
j,r,i = ρ(ξ2)

(T2,T̃−1)
j,r,i ≥ −β2 − 16n2

√
log(4n2

2/δ)
d α by induction hypothesis. When ρ(ξ2)

(T2,T̃−1)
j,r,i ≥

−0.5β2 − 8n2

√
log(4n2

2/δ)
d α, we have that

ρ(ξ2)
(T2,T̃ )
j,r,i = ρ(ξ2)

(T2,T̃−1)
j,r,i +

η2
n2m

· ℓ′(T2,T̃−1)
2,i · σ′(⟨w(T2,T̃−1)

j,r , ξ2,i⟩) · 1(y2,i = −j)∥ξ2,i∥22

≥ −0.5β2 − 8n2

√
log(4n2

2/δ)

d
α−O

(
η2σ

2
p2
d

n2m

)
σ′
(
0.5β2 + 8n2

√
log(4n2

2/δ)

d
α

)
≥ −0.5β − 8n2

√
log(4n2

2/δ)

d
α−O

(
η2qσ

2
p2
d

n2m

)(
0.5β2 + 8n2

√
log(4n2

2/δ)

d
α

)
≥ −β2 − 16n2

√
log(4n2

2/δ)

d
α,

where we use |ℓ′(T2,T̃−1)
2,i | ≤ 1 and ∥ξ2,i∥22 = O(σ2

p2
d) in the first inequality, the second inequality is by 0.5β2 +

8n2

√
log(4n2

2/δ)
d α ≤ 1, and the last inequality is by η2 = O

(
n2m/(qσ2

p2
d)
)

in (E.4).

Next we prove (E.10) holds for t = T̃ . By Lemma E.5, we have

|ℓ′(T2,t)
2,i | = 1

1 + exp{y2,i · [F+1(W
(T2,t)
+1 ,x2,i)− F−1(W

(T2,t)
−1 ,x2,i)]}

≤ exp{−y2,i · [F+1(W
(T2,t)
+1 ,x2,i)− F−1(W

(T2,t)
−1 ,x2,i)]}

≤ exp{−Fy2,i
(W(T2,t)

y2,i
,x2,i) + 1}. (E.14)

Following Cao et al. (2022), let tj,r,i denote the last time t < T ∗ that ρ(ξ2)
(T2,t)
j,r,i ≤ 0.5α. By the update rule of ρ(ξ2)

(T2,t)
j,r,i ,

we have that

ρ
(T2,T̃ )
j,r,i = ρ

(T2,tj,r,i)
j,r,i − η2

n2m
· ℓ′(T2,tj,r,i)

2,i · σ′(⟨w(T2,tj,r,i)
j,r , ξ2,i⟩) · 1(y2,i = j)∥ξ2,i∥22︸ ︷︷ ︸

I1

−
∑

tj,r,i<t<T̃

η2
n2m

· ℓ′(T2,t)
2,i · σ′(⟨w(T2,t)

j,r , ξ2,i⟩) · 1(y2,i = j)∥ξ2,i∥22
︸ ︷︷ ︸

I2

. (E.15)

We first bound I1 as follows,

|I1| ≤ 2qn−1
2 m−1η2

(
ρ(ξ2)

(T2,tj,r,i)
j,r,i + 0.5β2 + 8n2

√
log(4n2

2/δ)

d
α

)q−1

σ2
p2
d ≤ q2qn−1

2 m−1η2α
q−1σ2

p2
d ≤ 0.25α,
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where the first inequality is by Lemmas E.4 and C.1, the second inequality is by β2 ≤ 0.1α and 8n2

√
log(4n2

2/δ)
d α ≤ 0.1α,

the last inequality is by η2 ≤ n2m/(q2q+2αq−2σ2
p2
d).

For tj,r,i < t < T̃ and y2,i = j, applying Lemma E.4 and a technique from Cao et al. (2022), ⟨w(T2,t)
j,r , ξ2,i⟩ is bounded by

0.25α ≤ ⟨w(T2,t)
j,r , ξ2,i⟩ ≤ 2α. Plugging these bounds into I2 yields

|I2| ≤
∑

tj,r,i<t<T̃

η2
n2m

· exp(−σ(⟨w(T2,t)
j,r , ξ2,i⟩) + 1) · σ′(⟨w(T2,t)

j,r , ξ2,i⟩) · 1(y2,i = j)∥ξ2,i∥22

≤ eq2qη2T
∗

n2m
exp(−αq/4q)αq−1σ2

p2
d

≤ 0.25T ∗ exp(−αq/4q)α

≤ 0.25T ∗ exp(− log(T ∗)q)α

≤ 0.25α,

where the first inequality is by (E.14), the second inequality is by Lemma C.1, the third inequality is by η2 =
O
(
n2m/(q2q+2αq−2σ2

p2
d)
)

in (E.4), the fourth inequality is by α = 4 log(T ∗) and the last inequality is by the fact
that log(T ∗)q ≥ log(T ∗). Plugging the bound of I1, I2 into (E.15) completes the proof for ρ. Similarly, using β1 ≤ 0.1α

in (E.8) and η2 = O
(
n2m/(q2q+2αq−2∥µ2∥22)

)
in (E.4), we obtain γ(µ2)

(T2,T̃ )
j,r ≤ α. Therefore Proposition E.2 holds for

t = T̃ , which completes the induction.

E.2. Signal Learning

In this section, we consider the signal learning case under the condition that n2∥µ2∥q2 ≥ Ω̃(σq
p2
(
√
d)q). We remind the

readers that the proofs in this section are based on the results in Section C and D, which hold with high probability. For the
ease of discussion, we decompose µ1 into components along µ2 and the direction orthogonal to µ2. Then by (2.1) and
(4.1), we have that

w
(T2,t)
j,r = w

(T1,0)
j,r + j · [γ(µ1)

(T1,tend)
j,r · ∥µ2∥2 cos θ1,2

∥µ1∥2
+ γ(µ2)

(T2,t)
j,r ] · µ2

∥µ2∥22
+ j · [γ(µ1)

(T1,tend)
j,r · ∥µ2∥2 sin θ1,2

∥µ1∥2
] · µ⊥

2

∥µ⊥
2 ∥22

+

n1∑
i=1

ρ(ξ1)
(T1,tend)
j,r,i · ξ1,i

∥ξ1,i∥22
+

n1∑
i=1

ρ(ξ1)
(T1,tend)
j,r,i · ξ1,i

∥ξ1,i∥22
+

n2∑
i=1

ρ(ξ2)
(T2,t)
j,r,i · ξ2,i

∥ξ2,i∥22
+

n2∑
i=1

ρ(ξ2)
(T2,t)
j,r,i · ξ2,i

∥ξ2,i∥22
,

where µ⊥
2 ∈ span{µ1,µ2} and µ⊥

2 is orthogonal to µ2, with ∥µ⊥
2 ∥2 = ∥µ2∥2. Denote γ̃(µ2)

(T2,t)
j,r = γ(µ1)

(T1,tend)
j,r ·

∥µ2∥2 cos θ1,2/∥µ1∥2 + γ(µ2)
(T2,t)
j,r . By (4.3), then

γ̃(µ2)
(T2,t+1)
j,r = γ̃(µ2)

(T2,t)
j,r − η2

n2m
·

n2∑
i=1

ℓ
′(T2,t)
2,i · σ′(y2,i · ⟨w(T1,0)

j,r ,µ2⟩+ y2,i · j · γ̃(µ2)
(T2,t)
j,r ) · ∥µ2∥22.

We know that if γ̃(µ2)
(T2,0)
j,r = γ(µ1)

(T1,tend)
j,r · ∥µ2∥2 cos θ1,2/∥µ1∥2 < 2, the learning process enters the first stage;

otherwise, it directly proceeds to the second stage.

E.2.1. FIRST STAGE

Lemma E.6 (Cao et al. (2022)). Under the same conditions as Theorem 3.2, in particular if we choose

n2 · SNR2
q ≥ C log(6/σ0∥µ2∥2)22q+6[6 log(8mn2/δ)]

(q−1)/2, (E.16)

where C = O(1) is a positive constant, there exists time

t1 =
C log(6/σ0∥µ2∥2)2q+1m

η2σ
q−2
0 ∥µ2∥q2

such that

• maxr γ̃(µ2)
(T2,t1)
j,r ≥ 2 for j ∈ {±1}.

• |ρ(T2,t)
j,r,i | ≤ σ0σp2

√
d/2 for all j ∈ {±1}, r ∈ [m], i ∈ [n2] and 0 ≤ t ≤ t1.
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E.2.2. SECOND STAGE

By the results in the first stage, the following property holds at the beginning of the second stage:

• maxr γ̃(µ2)
(T2,t1)
j,r ≥ 2,∀j ∈ {±1}.

• maxj,r,i |ρ(T2,t1)
j,r,i | ≤ β̂ where β̂ = σ0σp2

√
d/2.

Lemma 4.1 ensures that the learned feature γ̃(µ2)
(T2,t)
j,r will not deteriorate, i.e., γ̃(µ2)

(T2,t+1)
j,r ≥ γ̃(µ2)

(T2,t)
j,r for t ≥ t1.

Thus, maxr γ̃(µ2)
(T2,t)
j,r ≥ 2. Now we choose W∗ as follows:

w∗
j,r = w

(T1,0)
j,r + 2qm log(2q/ϵ) · j · µ2

∥µ2∥22
+ j · [γ(µ1)

(T1,tend)
j,r · ∥µ2∥2 sin θ1,2

∥µ1∥2
] · µ⊥

2

∥µ⊥
2 ∥22

+

n1∑
i=1

ρ(ξ1)
(T1,tend)
j,r,i · ξ1,i

∥ξ1,i∥22
+

n1∑
i=1

ρ(ξ1)
(T1,tend)
j,r,i · ξ1,i

∥ξ1,i∥22
.

Based on the above definition of W∗, we have the following lemmas.

Lemma E.7 (Cao et al. (2022)). Under the same conditions as Theorem 3.2, let t+ = t1 +
⌊
∥W(T2,t1)−W∗∥2

F

2η2ϵ

⌋
=

t1 + Õ(m3η−1
2 ϵ−1∥µ2∥−2

2 ). Then we have maxj,r,i |ρ(T2,t)
j,r,i | ≤ 2β̂ = σ0σp2

√
d for all t1 ≤ t ≤ t+. Besides,

1

t− t1 + 1

t∑
s=t1

LS2(W
(T2,s)) ≤ ∥W(T2,t1) −W∗∥2F

(2q − 1)η2(t− t1 + 1)
+

ϵ

2q − 1

for all t1 ≤ t ≤ t+, and we can find an iterate tend with training loss smaller than ϵ within t+ iterations.

Lemma E.8 (Cao et al. (2022)). Let t+ and tend be defined in Lemma E.7 respectively. Under the same conditions as
Theorem 3.2, for any 0 ≤ t ≤ t+ with LS2

(W(T2,t)) ≤ 1, it holds that LD2
(W(T2,t)) ≤ 6 · LS2

(W(T2,t)) + exp(−n2
2).

Furthermore, since LS2
(W(T2,tend)) ≤ ϵ, it follows that LD2

(W(T2,tend)) ≤ 6ϵ+ exp(−n2
2).

E.3. Forgetting

Consider a new data point (x1, y1) drawn from the distribution of task T1 defined in Definition 1.1. Without loss of
generality, we suppose that the first patch is the signal patch and the second patch is the noise patch, i.e., x1 = [y1µ1, ξ1].
Moreover, based on the analysis of signal learning we know that

w
(T2,tend)
j,r = w

(T1,0)
j,r + j · γ(µ1)

(T1,tend)
j,r · µ1

∥µ1∥22
+ j · γ(µ2)

(T2,tend)
j,r · µ2

∥µ2∥22

+

n1∑
i=1

ρ(ξ1)
(T1,tend)
j,r,i · ξ1,i

∥ξ1,i∥22
+

n2∑
i=1

ρ(ξ2)
(T2,tend)
j,r,i · ξ2,i

∥ξ2,i∥22
. (E.17)

And at the end of training task T2, we have following property holds:

• maxj,r,i |ρ(ξ1)(T1,tend)
j,r,i | ≤ σ0σp1

√
d.

• maxj,r,i |ρ(ξ2)(T2,tend)
j,r,i | ≤ σ0σp2

√
d.

Lemma E.9. Under Condition 3.1, we have

1

m

m∑
r=1

σ(⟨w(T2,tend)
−y1,r , y1 · µ1⟩) ≤ 1

Proof of Lemma E.9. We have that

⟨w(T2,tend)
−y1,r , y1 · µ1⟩ = ⟨w(T1,0)

−y1,r , y1 · µ1⟩ − γ(µ1)
(T1,tend)
−y1,r − γ(µ2)

(T2,tend)
−y1,r · ∥µ1∥2 cos θ1,2

∥µ2∥2
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≤ ⟨w(T1,0)
−y1,r , y1 · µ1⟩, (E.18)

where the inequality is by γ(µ1)
(T1,tend)
−y1,r ≥ 0 and γ(µ2)

(T2,tend)
−y1,r ≥ 0. Then we can get that

1

m

m∑
r=1

σ(⟨w(T2,tend)
−y1,r , y1 · µ1⟩) ≤ max

r
|⟨w(T1,0)

−y1,r , y1 · µ1⟩|q

≤ 1,

where the first inequality is by (E.18) and the second inequality is by (E.5) and Lemma C.2.

Lemma E.10 (Cao et al. (2022)). Under the same conditions as Theorem 3.2, with probability at least 1 − 4m ·
exp(−C−1

2 σ−2
0 σ−2

p1
d−1), we have that maxj,r |⟨w(T1,tend)

j,r , ξ1⟩| ≤ 1/2, where C2 = Õ(1).

Lemma E.11. Under the same conditions as Theorem 3.2, with probability at least 1− 4m · exp(−C−1
2 σ−2

0 σ−2
p1

d−1), we

have that maxj,r |⟨w(T2,tend)
j,r , ξ1⟩| ≤ 1/2, where C2 = Õ(1).

Proof of Lemma E.11. Let w̃(T2,tend)
j,r = w

(T2,tend)
j,r − j · γ(µ1)

(T1,tend)
j,r · µ1

∥µ1∥2
2
− j · γ(µ2)

(T2,tend)
j,r · µ2

∥µ2∥2
2

, then we have

that ⟨w̃(T2,tend)
j,r , ξ1⟩ = ⟨w(T2,tend)

j,r , ξ1⟩ and

∥w̃(T2,tend)
j,r ∥2 ≤ Õ(σ0

√
d+ n1σ0 + n2σ0) = Õ(σ0

√
d), (E.19)

where the equality is due to d ≥ Ω̃(m2 ·max{n4
1, n

4
2}) by Condition 3.1. Then similar to Cao et al. (2022), applying the

properties of Gaussian distribution completes the proof.

Lemma E.12. Let tend be defined in Lemma E.7. Under the same conditions as Theorem 3.2, it holds that
LD1(W

(T2,tend)) ≤ 18ϵ+ exp(−n2
1).

Proof of Lemma E.8. By Lemma D.8 in Cao et al. (2022), we know that LD1
(W(T1,tend)) ≤ 6ϵ + exp(−n2

1). We
intend to determine an upper bound for LD1

(W(T2,tend)) by leveraging the relationship between LD1
(W(T2,tend)) and

LD1
(W(T1,tend)). According to the definition of true loss in Two-layer CNNs, we have

LD1(W
(T1,tend)) = E(x1,y1)∼D1

ℓ[y1 · f(W(T1,tend),x1)]

LD1
(W(T2,tend)) = E(x1,y1)∼D1

ℓ[y1 · f(W(T2,tend),x1)].

When y1 · f(W(T2,tend),x1) ≥ y1 · f(W(T1,tend),x1), by ℓ(z) = log(1 + exp(−z)), we have

LD1
(W(T2,tend)) ≤ LD1

(W(T1,tend)) ≤ 6ϵ+ exp(−n2
1).

When y1 · f(W(T2,tend),x1) < y1 · f(W(T1,tend),x1), let event E to be the event that Lemma E.10 and E.11 holds. Then
we can divide LD1

(W(T2,tend)) into two parts:

E
[
ℓ
(
y1f(W

(T2,tend),x1)
)]

= E[1(E)ℓ
(
y1f(W

(T2,tend),x1)
)
]︸ ︷︷ ︸

I1

+E[1(Ec)ℓ
(
y1f(W

(T2,tend),x1)
)
]︸ ︷︷ ︸

I2

. (E.20)

In the following, we bound I1 and I2 respectively.

Bounding I1: By the signal-noise decomposition (D.1) and (E.17), we have

⟨w(T1,tend)
y1,r , y1 · µ1⟩ = ⟨w(T1,0)

y1,r , y1 · µ1⟩+ γ(µ1)
(T1,tend)
y1,r

⟨w(T1,tend)
−y1,r , y1 · µ1⟩ = ⟨w(T1,0)

−y1,r , y1 · µ1⟩ − γ(µ1)
(T1,tend)
−y1,r

⟨w(T2,tend)
y1,r , y1 · µ1⟩ = ⟨w(T1,0)

y1,r , y1 · µ1⟩+ γ(µ1)
(T1,tend)
y1,r + γ(µ2)

(T2,tend)
y1,r · ∥µ1∥2 cos θ1,2

∥µ2∥2
⟨w(T2,tend)

−y1,r , y1 · µ1⟩ = ⟨w(T1,0)
−y1,r , y1 · µ1⟩ − γ(µ1)

(T1,tend)
−y1,r − γ(µ2)

(T2,tend)
−y1,r · ∥µ1∥2 cos θ1,2

∥µ2∥2
.
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Since γ(µ2)
(T2,tend)
j,r ≥ 0 and cos θ1,2 ≥ 0, we know that ⟨w(T2,tend)

y1,r , y1 · µ1⟩ ≥ ⟨w(T1,tend)
y1,r , y1 · µ1⟩ and ⟨w(T2,tend)

−y1,r , y1 ·
µ1⟩ ≤ ⟨w(T1,tend)

−y1,r , y1 · µ1⟩. Then if event E holds, we have that

−y1f(W
(T2,tend),x1) = −y1f(W

(T1,tend),x1) +
1

m

m∑
r=1

[
σ(⟨w(T1,tend)

y1,r , y1 · µ1⟩)− σ(⟨w(T2,tend)
y1,r , y1 · µ1⟩)

]
+

1

m

m∑
r=1

[
σ(⟨w(T2,tend)

−y1,r , y1 · µ1⟩)− σ(⟨w(T1,tend)
−y1,r , y1 · µ1⟩)

]
+

1

m

m∑
r=1

σ(⟨w(T1,tend)
y1,r , ξ1⟩)

+
1

m

m∑
r=1

σ(⟨w(T2,tend)
−y1,r , ξ1⟩)−

1

m

m∑
r=1

σ(⟨w(T1,tend)
−y1,r , ξ1⟩)−

1

m

m∑
r=1

σ(⟨w(T2,tend)
y1,r , ξ1⟩)

≤ −y1f(W
(T1,tend),x1) +

1

m

m∑
r=1

σ(⟨w(T1,tend)
y1,r , ξ1⟩) +

1

m

m∑
r=1

σ(⟨w(T2,tend)
−y1,r , ξ1⟩)

≤ −y1f(W
(T1,tend),x1) +

1

m

m∑
r=1

σ(1/2) +
1

m

m∑
r=1

σ(1/2)

≤ −y1f(W
(T1,tend),x1) + 1, (E.21)

where the second inequality is by maxj,r |⟨w(T1,tend)
j,r , ξ1⟩| ≤ 1/2 in Lemma E.10 and maxj,r |⟨w(T2,tend)

j,r , ξ1⟩| ≤ 1/2 in
Lemma E.11. Therefore, we have that

I1 ≤ E[1(E) exp(−y1f(W
(T2,tend),x1))]

≤ e · E[1(E) exp(−y1f(W
(T1,tend),x1))]

≤ 18ϵ,

where the first inequality is by the property of cross-entropy loss that ℓ(z) ≤ exp(−z) for all z, the second inequality is
by (E.21), and the third inequality is by E[1(E) exp(−y1f(W

(T1,tend),x1))] ≤ 6ϵ in the proof of Lemma D.8 in Cao et al.
(2022).

Bounding I2: Next we bound the second term I2. We choose an arbitrary training data (xi′ , yi′) such that yi′ = y. Then we
have

ℓ
(
y1f(W

(T2,tend),x1)
)
≤ log(1 + exp(F−y1

(W(T2,tend),x1)))

≤ 1 + F−y1
(W(T2,tend),x1))

= 1 +
1

m

m∑
r=1

σ(⟨w(T2,tend)
−y1,r , y1µ1⟩) +

1

m

m∑
r=1

σ(⟨w(T2,tend)
−y1,r , ξ1⟩)

≤ 2 +
1

m

m∑
r=1

σ(⟨w(T2,tend)
−y1,r , ξ1⟩)

≤ 2 + Õ((σ0

√
d)q)∥ξ1∥q, (E.22)

where the first inequality is due to Fy1
(W(T2,tend),x1)) ≥ 0, the second inequality is by the property of cross-entropy loss,

i.e., log(1+exp(z)) ≤ 1+ z for all z ≥ 0, the third inequality is by 1
m

∑m
r=1σ(⟨w

(T2,tend)
−y1,r , y1µ1⟩) ≤ 1 in Lemma E.9, and

the last inequality is due to ⟨w̃(T2,tend)
j,r , ξ1⟩ = ⟨w(T2,tend)

j,r , ξ1⟩ ≤ ∥w̃(T2,tend)
j,r ∥2∥ξ1∥2 ≤ Õ(σ0

√
d)∥ξ1∥2 in (E.19). Then

we further have that

I2 ≤
√
E[1(Ec)] ·

√
E
[
ℓ
(
y1f(W(T2,tend),x1)

)2]
≤

√
P(Ec) ·

√
4 + Õ((σ0

√
d)2q)E[∥ξ1∥2q2 ]

≤ exp[−Ω̃(σ−2
0 σ−2

p1
d−1) + polylog(d)]

≤ exp(−n2
1),
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where the first inequality is by Cauchy-Schwartz inequality, the second inequality is by (E.22), the third inequality is by

the fact that
√
4 + Õ((σ0

√
d)2q)E[∥ξ1∥2q2 ] = O(poly(d)), Lemma E.10 and Lemma E.11, and the last inequality is by our

condition σ0 ≤ Õ(m−2/(q−2)n−1
1 ) · (σp1

√
d)−1 in Condition 3.1. Plugging the bounds of I1, I2 into (E.20) completes the

proof.

F. Learning of Task T2 (Standard CL with Obtuse Angle)
In this section, we consider continual learning where the signal vector of task T1 forms an obtuse angle with the
signal vector of task T2. When the angle between the two task signal vectors 0 ≥ cos θ1,2 ≥ −

√
2 log(8m/δ) ·

σ0∥µ1∥2/([m log(1/ϵ)]1/q), through Condition 3.1, we know that −
√
2 log(8m/δ) · σ0∥µ1∥2/([m log(1/ϵ)]1/q) → 0 and

θ1,2 → π/2. For continual learning where the signal vectors of the two tasks are orthogonal, since the components in
the signal directions γ(µ1) and γ(µ2) do not interfere with each other, the analysis of training task T2 is similar to the
analysis of task T1 by Cao et al. (2022), resulting in a small amount of forgetting. Next, we consider a less extreme scenario
where −1 ≤ cos θ1,2 ≤ −

√
2 log(8m/δ) · σ0∥µ1∥2/([m log(1/ϵ)]1/q). We intend to investigate the mechanisms of signal

learning in task T2 and forgetting on task T1 by conducting a detailed analysis of the behavior of various types of neurons
during the training process of task T2.

F.1. Behavior of Different Types of Neurons

By the decomposition (4.1), we have that

w
(T2,t)
j,r = w

(T2,0)
j,r + j · γ(µ2)

(T2,t)
j,r · ∥µ2∥−2

2 · µ2 +

n2∑
i=1

ρ(ξ2)
(T2,t)
j,r,i · ∥ξ2,i∥−2

2 · ξ2,i +
n2∑
i=1

ρ(ξ2)
(T2,t)
j,r,i · ∥ξ2,i∥−2

2 · ξ2,i.

Next, we intend to categorize the neurons w
(T2)
j,r into three groups based on the following conditions: r ∈ {r ∈ [m] :

⟨w(T1,0)
j,r , jµ1⟩ > 0}, r ∈ {r ∈ [m] : ⟨w(T1,0)

j,r , jµ1⟩ ≤ 0} ∩ {r ∈ [m] : ⟨w(T1,0)
j,r , jµ⊥

1 ⟩ > 0} and r ∈ {r ∈ [m] :

⟨w(T1,0)
j,r , jµ1⟩ ≤ 0} ∩ {r ∈ [m] : ⟨w(T1,0)

j,r , jµ⊥
1 ⟩ ≤ 0}. Subsequently, we will analyze their behavior during the training

process of task T2.

Lemma F.1. Under the same conditions as Theorem 3.2, when r ∈ {r ∈ [m] : ⟨w(T1,0)
j,r , jµ1⟩ ≤ 0}, we have that

γ(µ1)
(T1,tend)
j,r = −⟨w(T1,0)

j,r , jµ1⟩.

Proof of Lemma F.1. We first prove that γ(µ1)
(T1,t)
j,r ≤ −⟨w(T1,0)

j,r , jµ1⟩ for t ≤ tend based on induction. The result is
obvious at t = 0 as all the coefficients are zero. Suppose that there exists t̃ ≤ tend such that the result holds for all time
0 ≤ t ≤ t̃− 1. We aim to prove that it also holds for t = t̃. By the update formula for the signal vector of task T1 similar to
that in Equation (4.3), we have that

γ(µ1)
(T1,t̃)
j,r = γ(µ1)

(T1,t̃−1)
j,r − η1

n1m
·

n1∑
i=1

ℓ
′(T1,t̃−1)
1,i · σ′(⟨w(T1,0)

j,r , y1,i · µ1⟩+ y1,i · j · γ(µ1)
(T1,t̃−1)
j,r ) · ∥µ1∥22

= γ(µ1)
(T1,t̃−1)
j,r − η1

n1m
·

n1∑
y1,i=−j

ℓ
′(T1,t̃−1)
1,i · σ′(−⟨w(T1,0)

j,r , j · µ1⟩ − γ(µ1)
(T1,t̃−1)
j,r ) · ∥µ1∥22.

Denote γ̂(µ1)
(T1,t)
j,r = −γ(µ1)

(T1,t)
j,r − ⟨w(T1,0)

j,r , jµ1⟩, then we have

γ̂(µ1)
(T1,t̃)
j,r = γ̂(µ1)

(T1,t̃−1)
j,r +

η1
n1m

·
n1∑

y1,i=−j

ℓ
′(T1,t̃−1)
1,i · σ′(γ̂(µ1)

(T1,t̃−1)
j,r ) · ∥µ1∥22

≥ γ̂(µ1)
(T1,t̃−1)
j,r − qη1∥µ1∥22

m
· (γ̂(µ1)

(T1,t̃−1)
j,r )q−1

= γ̂(µ1)
(T1,t̃−1)
j,r · [1− qη1∥µ1∥22

m
· (γ̂(µ1)

(T1,t̃−1)
j,r )q−2]
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≥ γ̂(µ1)
(T1,t̃−1)
j,r · [1− qη1∥µ1∥22

m
· (−⟨w(T1,0)

j,r , jµ1⟩)q−2]

≥ 0,

where we use 0 > ℓ
′(T1,t̃−1)
1,i ≥ −1 and γ̂(µ1)

(T1,t̃−1)
j,r ≥ 0 in the first inequality, the second inequality is by γ̂(µ1)

(T1,t̃−1)
j,r ≤

γ̂(µ1)
(T1,0)
j,r = −⟨w(T1,0)

j,r , jµ1⟩, and the last inequality is by η1 ≤ m/(qαq−2∥µ1∥22) in Condition 3.1. Now we know that

γ̂(µ1)
(T1,t)
j,r is monotonically decreasing and bounded below, thus γ̂(µ1)

(T1,t)
j,r must converge to a limit, which we denote by

C. Then we have that

C = C +
η1
n1m

·
n1∑

y1,i=−j

ℓ
′(T1,tend)
1,i · σ′(C) · ∥µ1∥22.

By ℓ
′(T1,tend)
1,i < 0 and C ≥ 0, we know that C must be equal to 0. It follows that γ̂(µ1)

(T1,t)
j,r converges to 0, implying that

γ(µ1)
(T1,tend)
j,r = −⟨w(T1,0)

j,r , jµ1⟩, which completes the proof.

Lemma F.2. Under the same conditions as Theorem 3.2, when r ∈ {r ∈ [m] : ⟨w(T1,0)
j,r , jµ1⟩ > 0}, we have that

⟨w(T2,0)
j,r , jµ2⟩ ≤ 0 and γ(µ2)

(T2,tend)
j,r = −⟨w(T2,0)

j,r , jµ2⟩ for j ∈ {±1}.

proof of Lemma F.2. By (D.1), we have that

⟨w(T2,0)
j,r , jµ2⟩ = ⟨w(T1,0)

j,r , jµ2⟩+ γ(µ1)
(T1,tend)
j,r · ∥µ2∥2 cos θ1,2

∥µ1∥2
≤ ⟨w(T1,0)

j,r , jµ2⟩ −
√
2 log(8m/δ) · σ0∥µ2∥2

≤ 0,

where the first inequality is by cos θ1,2 ≤ −
√
2 log(8m/δ) · σ0∥µ1∥2/([m log(1/ϵ)]1/q), and the second inequality

is by |⟨w(T1,0)
j,r ,µ2⟩| ≤

√
2 log(8m/δ) · σ0∥µ2∥2 in Lemma C.2. Then, we can further prove that γ(µ2)

(T2,tend)
j,r =

−⟨w(T2,0)
j,r , jµ2⟩ by η2 ≤ m/(qαq−2∥µ2∥22) in Condition 3.1, which is analogous to the proof of Lemma F.1.

Lemma F.3. Under the same conditions as Theorem 3.2, when r ∈ {r ∈ [m] : ⟨w(T1,0)
j,r , jµ1⟩ ≤ 0} ∩ {r ∈ [m] :

⟨w(T1,0)
j,r , jµ⊥

1 ⟩ > 0}, we have that ⟨w(T2,0)
j,r , jµ2⟩ = ⟨w(T1,0)

j,r , jµ⊥
1 ⟩, |⟨w(T2,0)

j,r ,µ2⟩| ≤
√

2 log(8m/δ) · σ0∥µ⊥
1 ∥2 and

maxr∈[m]⟨w(T2,0)
j,r , jµ2⟩ ≥ σ0∥µ⊥

1 ∥2/2 for j ∈ {±1}, where µ⊥
1 = µ2−∥µ2∥2 cos θ1,2 · µ1

∥µ1∥2
is orthogonal to the signal

vector µ1.

proof of Lemma F.3. By ⟨w(T1,0)
j,r , jµ1⟩ ≤ 0 and Lemma F.1, we know that γ(µ1)

(T1,tend)
j,r = −⟨w(T1,0)

j,r , jµ1⟩. Then

⟨w(T2,0)
j,r , jµ2⟩ = ⟨w(T1,0)

j,r , jµ2⟩+ γ(µ1)
(T1,tend)
j,r · ∥µ2∥2 cos θ1,2

∥µ1∥2
= ⟨w(T1,0)

j,r , jµ2⟩ − ⟨w(T1,0)
j,r , jµ1⟩ ·

∥µ2∥2 cos θ1,2
∥µ1∥2

= j · ⟨w(T1,0)
j,r ,µ2 − ∥µ2∥2 cos θ1,2 ·

µ1

∥µ1∥2
⟩

= ⟨w(T1,0)
j,r , jµ⊥

1 ⟩
> 0.

By Lemma C.2, we further have that |⟨w(T2,0)
j,r ,µ2⟩| ≤

√
2 log(8m/δ) · σ0∥µ⊥

1 ∥2 and maxr∈[m]⟨w(T2,0)
j,r , jµ2⟩ ≥

σ0∥µ⊥
1 ∥2/2, which completes the proof.

Lemma F.4. Under the same conditions as Theorem 3.2, when r ∈ {r ∈ [m] : ⟨w(T1,0)
j,r , jµ1⟩ ≤ 0} ∩ {r ∈ [m] :

⟨w(T1,0)
j,r , jµ⊥

1 ⟩ ≤ 0}, we have that ⟨w(T2,0)
j,r , jµ2⟩ = ⟨w(T1,0)

j,r , jµ⊥
1 ⟩ ≤ 0 and γ(µ2)

(T2,tend)
j,r = −⟨w(T1,0)

j,r , jµ⊥
1 ⟩ for

j ∈ {±1}, where µ⊥
1 = µ2 − ∥µ2∥2 cos θ1,2 · µ1

∥µ1∥2
is orthogonal to the signal vector µ1.
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proof of Lemma F.4. By Lemma F.3, we have that ⟨w(T2,0)
j,r , jµ2⟩ = ⟨w(T1,0)

j,r , jµ⊥
1 ⟩ ≤ 0. Then, we can further prove that

γ(µ2)
(T2,tend)
j,r = −⟨w(T2,0)

j,r , jµ2⟩ = −⟨w(T1,0)
j,r , jµ⊥

1 ⟩, which is similar to the proof of Lemma F.1.

Proposition F.5 (Obtuse-angle Case). Under Condition 3.1, and when cos θ1,2 < 0, for 0 ≤ t ≤ T ∗, we have that

0 ≤ γ(µ2)
(T2,t)
j,r , ρ(ξ2)

(T2,t)
j,r,i ≤ α,

0 ≥ ρ(ξ2)
(T2,t)
j,r,i ≥ −β2 − 16n2

√
log(4n2

2/δ)

d
α ≥ −α.

for all r ∈ [m], j ∈ {±1} and i ∈ [n2].

Proof of Proposition F.5. It is known that the noise vector is orthogonal to the signal vector, which implies that the proof

for 0 ≤ ρ(ξ2)
(T2,t)
j,r,i ≤ α and 0 ≥ ρ(ξ2)

(T2,t)
j,r,i ≥ −β2 − 16n2

√
log(4n2

2/δ)
d α ≥ −α follows directly from the proof

provided for the Acute Angle Case in Proposition E.2. Therefore, it remains to prove 0 ≤ γ(µ2)
(T2,t)
j,r ≤ α. When

r ∈ {r ∈ [m] : ⟨w(T1,0)
j,r , jµ1⟩ > 0}, by the proof of Lemma F.2, we have that

γ(µ2)
(T2,t)
j,r ≤ −⟨w(T1,0)

j,r , jµ2⟩ − γ(µ1)
(T1,tend)
j,r · ∥µ2∥2 cos θ1,2

∥µ1∥2
≤ α,

where the last inequality is by |⟨w(T1,0)
j,r ,µ2⟩| ≤

√
2 log(8m/δ) · σ0∥µ2∥2 in Lemma C.2 and γ(µ1)

(T1,tend)
j,r ≤ α in

Proposition 5.3 by Cao et al. (2022). When r ∈ {r ∈ [m] : ⟨w(T1,0)
j,r , jµ1⟩ ≤ 0} ∩ {r ∈ [m] : ⟨w(T1,0)

j,r , jµ⊥
1 ⟩ ≤ 0}, by the

proof of Lemma F.4, we have that

γ(µ2)
(T2,t)
j,r ≤ −⟨w(T1,0)

j,r , jµ⊥
1 ⟩ ≤ α,

where the last inequality is by |⟨w(T1,0)
j,r ,µ⊥

1 ⟩| ≤
√
2 log(8m/δ) · σ0∥µ⊥

1 ∥2 in Lemma C.2. When r ∈ {r ∈ [m] :

⟨w(T1,0)
j,r , jµ1⟩ ≤ 0} ∩ {r ∈ [m] : ⟨w(T1,0)

j,r , jµ⊥
1 ⟩ > 0}, by Lemma F.3, we have that

|⟨w(T2,0)
j,r ,µ2⟩| ≤

√
2 log(8m/δ) · σ0∥µ⊥

1 ∥2
max
r∈[m]

⟨w(T2,0)
j,r , jµ2⟩ ≥ σ0∥µ⊥

1 ∥2/2.

Then we can use induction analogous to Proposition 5.3 in Cao et al. (2022), to prove 0 ≤ γ(µ2)
(T2,t)
j,r ≤ α for r ∈ {r ∈

[m] : ⟨w(T1,0)
j,r , jµ1⟩ ≤ 0} ∩ {r ∈ [m] : ⟨w(T1,0)

j,r , jµ⊥
1 ⟩ > 0}, which completes the proof.

F.2. Signal Learning

In this section, we consider the signal learning case under the condition that n∥µ⊥
1 ∥q2 ≥ Ω̃(σq

p2
(
√
d)q). Based on the

analysis of neural behavior in Subsection F.1, we have that

|⟨w(T2,0)
j,r ,µ2⟩| ≤

√
2 log(8m/δ) · σ0∥µ⊥

1 ∥2
max
r∈[m]

⟨w(T2,0)
j,r , jµ2⟩ ≥ σ0∥µ⊥

1 ∥2/2,

for r ∈ {r ∈ [m] : ⟨w(T1,0)
j,r , jµ1⟩ ≤ 0} ∩ {r ∈ [m] : ⟨w(T1,0)

j,r , jµ⊥
1 ⟩ > 0} and j ∈ {±1}, where µ⊥

1 = µ2 −
∥µ2∥2 cos θ1,2 · µ1

∥µ1∥2
is orthogonal to the signal vector µ1. Note that the component of these neurons along the signal

direction exhibits an evolution similar to that of the growing signal component in task T1, as analyzed by Cao et al. (2022)
Furthermore, we know that the noise vector is orthogonal to the signal vector. Thus, similarly to the acute angle case,
we have maxj,r,i |⟨w(T2,0)

j,r , ξ2,i⟩| ≤ 4
√
log(8mn2/δ) · σ0σp2

√
d in D.3. Then we utilize a two-stage technique similar to

Lemma 5.5 and Lemma 5.6 in Cao et al. (2022) to analyze the learning process.
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F.2.1. FIRST STAGE

Lemma F.6 (Cao et al. (2022)). Under the same conditions as Theorem 3.2, in particular if we choose

n2 · ∥µ⊥
1 ∥q2/(σp2

√
d)q ≥ C log(6/σ0∥µ⊥

1 ∥2)22q+6[6 log(8mn2/δ)]
(q−1)/2, (F.1)

where C = O(1) is a positive constant, there exists time

t1 =
C log(6/σ0∥µ⊥

1 ∥2)2q+1m

η2σ
q−2
0 ∥µ⊥

1 ∥q2
such that

• maxr γ(µ2)
(T2,t1)
j,r ≥ 2 for j ∈ {±1}.

• |ρ(T2,t1)
j,r,i | ≤ σ0σp2

√
d/2 for all j ∈ {±1}, r ∈ [m], i ∈ [n2] and 0 ≤ t ≤ t1.

F.2.2. SECOND STAGE

By the results we get in the first stage, the following property holds:

• maxr γ(µ2)
(T2,t1)
j,r ≥ 2,∀j ∈ {±1}.

• maxj,r,i |ρ(T2,t1)
j,r,i | ≤ β̂ where β̂ = σ0σp2

√
d/2.

Now we choose W∗ as follows:

w∗
j,r = w

(T1,0)
j,r + 2qm log(2q/ϵ) · j · µ2

∥µ2∥22
.

Based on the above definition of W∗, we have the following lemmas.

Lemma F.7 (Cao et al. (2022)). Under the same conditions as Theorem 3.2, let t+ = t1 +
⌊
∥W(T2,t1)−W∗∥2

F

2η2ϵ

⌋
=

t1 + Õ(m3η−1
2 ϵ−1∥µ2∥−2

2 ). Then we have maxj,r,i |ρ(T2,t)
j,r,i | ≤ 2β̂ = σ0σp2

√
d for all t1 ≤ t ≤ t+. Besides,

1

t− t1 + 1

t∑
s=t1

LS2
(W(T2,s)) ≤ ∥W(T2,t1) −W∗∥2F

(2q − 1)η2(t− t1 + 1)
+

ϵ

2q − 1

for all t1 ≤ t ≤ t+, and we can find an iterate tend with training loss smaller than ϵ within t+ iterations.

Lemma F.8 (Cao et al. (2022)). Let t+ and tend be defined in Lemma F.7 respectively. Under the same conditions as
Theorem 3.2, for any 0 ≤ t ≤ t+ with LS2(W

(T2,t)) ≤ 1, it holds that LD2(W
(T2,t)) ≤ 6 · LS2(W

(T2,t)) + exp(−n2
2).

Furthermore, since LS2(W
(T2,tend)) ≤ ϵ, it follows that LD2(W

(T2,tend)) ≤ 6ϵ+ exp(−n2
2).

F.3. Forgetting

Similar to the acute-angle case, consider a new data point (x1, y1) with x1 = [y1µ1, ξ1] following the distribution of task
T1 as defined in Definition 1.1. Furthermore, based on the analysis of signal learning, it follows that

w
(T2,tend)
j,r = w

(T1,0)
j,r + j · γ(µ1)

(T1,tend)
j,r · µ1

∥µ1∥22
+ j · γ(µ2)

(T2,tend)
j,r · µ2

∥µ2∥22

+

n1∑
i=1

ρ(ξ1)
(T1,tend)
j,r,i · ξ1,i

∥ξ1,i∥22
+

n2∑
i=1

ρ(ξ2)
(T2,tend)
j,r,i · ξ2,i

∥ξ2,i∥22
. (F.2)

• maxj,r,i |ρ(ξ1)(T1,tend)
j,r,i | ≤ σ0σp1

√
d.

• maxj,r,i |ρ(ξ2)(T2,tend)
j,r,i | ≤ σ0σp2

√
d.
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Lemma F.9. Under the same conditions as Theorem 3.2, when r ∈ {r ∈ [m] : ⟨w(T1,0)
j,r , jµ1⟩ > 0}, we have that

⟨w(T1,tend)
j,r , jµ1⟩ = ⟨w(T1,0)

j,r , jµ1⟩+ γ(µ1)
(T1,tend)
j,r

⟨w(T1,tend)
j,r ,−jµ1⟩ ≤ 0,

for j ∈ {±1}.

Proof of Lemma F.9. By the signal-noise decomposition (D.1), we have that

⟨w(T1,tend)
j,r , jµ1⟩ = ⟨w(T1,0)

j,r , jµ1⟩+ γ(µ1)
(T1,tend)
j,r .

Then we further have that

⟨w(T1,tend)
j,r ,−jµ1⟩ = ⟨w(T1,0)

j,r ,−jµ1⟩ − γ(µ1)
(T1,tend)
j,r

≤ 0,

where the inequality is by ⟨w(T1,0)
j,r , jµ1⟩ ≥ 0 and γ(µ1)

(T1,tend)
j,r ≥ 0, which completes the proof.

Lemma F.10. Under the same conditions as Theorem 3.2, when r ∈ {r ∈ [m] : ⟨w(T1,0)
j,r , jµ1⟩ ≤ 0}, we have that

⟨w(T1,tend)
j,r , jµ1⟩ = 0

⟨w(T1,tend)
j,r ,−jµ1⟩ = 0,

for j ∈ {±1}.

Proof of Lemma F.10. By the signal-noise decomposition (D.1) and Lemma F.1, we have that ⟨w(T1,tend)
j,r , jµ1⟩ =

⟨w(T1,0)
j,r , jµ1⟩+ γ(µ1)

(T1,tend)
j,r = 0 and ⟨w(T1,tend)

j,r ,−jµ1⟩ = −⟨w(T1,tend)
j,r , jµ1⟩ = 0, which completes the proof.

Lemma F.11. Under the same conditions as Theorem 3.2, when r ∈ {r ∈ [m] : ⟨w(T1,0)
j,r , jµ1⟩ > 0}, we have that

⟨w(T2,tend)
j,r , jµ1⟩ ≥ γ(µ1)

(T1,tend)
j,r · (1− cos2 θ1,2)− Õ(m−1n−1)

⟨w(T2,tend)
j,r ,−jµ1⟩ ≤

√
2 log(8m/δ) · σ0∥µ1∥2

⟨w(T2,tend)
j,r , jµ2⟩ = 0

⟨w(T2,tend)
j,r ,−jµ2⟩ = 0,

for j ∈ {±1}, where n = max{n1, n2} and µ⊥
2 = µ1 − ∥µ1∥2 cos θ1,2 · µ2

∥µ2∥2
is orthogonal to the signal vector µ2.

Proof of Lemma F.11. By Equation (F.2) and Lemma F.2, we have that

⟨w(T2,tend)
j,r , jµ1⟩ = ⟨w(T1,0)

j,r , jµ1⟩+ γ(µ1)
(T1,tend)
j,r + γ(µ2)

(T2,tend)
j,r · ∥µ1∥2 cos θ1,2

∥µ2∥2
= ⟨w(T1,0)

j,r , jµ⊥
2 ⟩+ γ(µ1)

(T1,tend)
j,r · (1− cos2 θ1,2)

≥ γ(µ1)
(T1,tend)
j,r · (1− cos2 θ1,2)− Õ(m−1n−1),

where the inequality is by |⟨w(T1,0)
j,r ,µ⊥

2 ⟩| ≤
√
2 log(8m/δ) ·σ0∥µ1∥2 similar to Lemma C.2 and σ0∥µ1∥2 ≤ Õ(m−1n−1)

in Condition 3.1. Similarly,

⟨w(T2,tend)
j,r ,−jµ1⟩ = ⟨w(T1,0)

j,r ,−jµ⊥
2 ⟩ − γ(µ1)

(T1,tend)
j,r · (1− cos2 θ1,2)

≤
√

2 log(8m/δ) · σ0∥µ⊥
2 ∥2
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≤
√
2 log(8m/δ) · σ0∥µ1∥2,

where the first inequality is by |⟨w(T1,0)
j,r ,µ⊥

2 ⟩| ≤
√
2 log(8m/δ) · σ0∥µ⊥

2 ∥2 similar to Lemma C.2, the second inequality

is by the definition of µ⊥
2 . Then by Equation (4.1) and Lemma F.2, we have that ⟨w(T2,tend)

j,r , jµ2⟩ = ⟨w(T2,0)
j,r , jµ2⟩ +

γ(µ2)
(T2,tend)
j,r = 0 and ⟨w(T2,tend)

j,r ,−jµ2⟩ = ⟨w(T2,0)
j,r ,−jµ2⟩ − γ(µ2)

(T2,tend)
j,r = 0, which completes the proof.

Lemma F.12. Under the same conditions as Theorem 3.2, when r ∈ {r ∈ [m] : ⟨w(T1,0)
j,r , jµ1⟩ ≤ 0} ∩ {r ∈ [m] :

⟨w(T1,0)
j,r , jµ⊥

1 ⟩ > 0}, we have that

⟨w(T2,tend)
j,r , jµ1⟩ ≤ 0

⟨w(T2,tend)
j,r ,−jµ1⟩ = −γ(µ2)

(T2,tend)
j,r · ∥µ1∥2 cos θ1,2

∥µ2∥2
⟨w(T2,tend)

j,r , jµ2⟩ ≥ γ(µ2)
(T2,tend)
j,r

⟨w(T2,tend)
j,r ,−jµ2⟩ ≤ 0,

for j ∈ {±1}, where µ⊥
1 = µ2 − ∥µ2∥2 cos θ1,2 · µ1

∥µ1∥2
is orthogonal to the signal vector µ1.

Proof of Lemma F.12. By Equation (F.2) and Lemma F.1, we have that

⟨w(T2,tend)
j,r , jµ1⟩ = ⟨w(T1,0)

j,r , jµ1⟩+ γ(µ1)
(T1,tend)
j,r + γ(µ2)

(T2,tend)
j,r · ∥µ1∥2 cos θ1,2

∥µ2∥2
= γ(µ2)

(T2,tend)
j,r · ∥µ1∥2 cos θ1,2

∥µ2∥2
≤ 0,

where the inequality is by cos θ1,2 ≤ 0. Similarly,

⟨w(T2,tend)
j,r ,−jµ1⟩ = −γ(µ2)

(T2,tend)
j,r · ∥µ1∥2 cos θ1,2

∥µ2∥2
.

Then by Equation (F.2) and Lemma F.3, we have that

⟨w(T2,tend)
j,r , jµ2⟩ = ⟨w(T1,0)

j,r , jµ⊥
1 ⟩+ γ(µ2)

(T2,tend)
j,r

≥ γ(µ2)
(T2,tend)
j,r ,

where the inequality is by ⟨w(T1,0)
j,r , jµ⊥

1 ⟩ > 0. Then we further have that ⟨w(T2,tend)
j,r ,−jµ2⟩ = −⟨w(T2,tend)

j,r , jµ2⟩ ≤ 0,
which completes the proof.

Lemma F.13. Under the same conditions as Theorem 3.2, when r ∈ {r ∈ [m] : ⟨w(T1,0)
j,r , jµ1⟩ ≤ 0} ∩ {r ∈ [m] :

⟨w(T1,0)
j,r , jµ⊥

1 ⟩ ≤ 0}, we have that

⟨w(T2,tend)
j,r , jµ1⟩ ≤ 0

⟨w(T2,tend)
j,r ,−jµ1⟩ ≤

√
2 log(8m/δ) · σ0∥µ1∥2

⟨w(T2,tend)
j,r , jµ2⟩ = 0

⟨w(T2,tend)
j,r ,−jµ2⟩ = 0,

for j ∈ {±1}, where µ⊥
1 = µ2 − ∥µ2∥2 cos θ1,2 · µ1

∥µ1∥2
is orthogonal to the signal vector µ1.
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Proof of Lemma F.13. Similar to the proof of Lemma F.12, we have that

⟨w(T2,tend)
j,r , jµ1⟩ = γ(µ2)

(T2,tend)
j,r · ∥µ1∥2 cos θ1,2

∥µ2∥2
≤ 0,

⟨w(T2,tend)
j,r ,−jµ1⟩ = −γ(µ2)

(T2,tend)
j,r · ∥µ1∥2 cos θ1,2

∥µ2∥2
= ⟨w(T1,0)

j,r , jµ⊥
1 ⟩ ·

∥µ1∥2 cos θ1,2
∥µ2∥2

≤
√

2 log(8m/δ) · σ0∥µ1∥2,

where the third equality is by Lemma F.4, the inequality is by |⟨w(T1,0)
j,r ,µ⊥

1 ⟩| ≤
√
2 log(8m/δ) · σ0∥µ⊥

1 ∥2 similar

to Lemma C.2 and the definition of µ⊥
1 . Then by Equation (F.2) and Lemma F.4, we have that ⟨w(T2,tend)

j,r , jµ2⟩ =

⟨w(T1,0)
j,r , jµ⊥

1 ⟩+ γ(µ2)
(T2,tend)
j,r = 0 and ⟨w(T2,tend)

j,r ,−jµ2⟩ = −⟨w(T2,tend)
j,r , jµ2⟩ = 0, which completes the proof.

Lemma F.14. Under Condition 3.1, we have that |⟨w(T2,tend)
j,r , ξ1⟩| ≤ 6

√
log (8mn/δ)σ0σp1

√
d for all r ∈ [m] and

j ∈ {±1}, where n = max{n1, n2}.

Proof of Lemma F.14. By (F.2), we have that

⟨w(T2,tend)
j,r , ξ1⟩ = ⟨w(T1,0)

j,r , ξ1⟩+
n1∑
i=1

ρ
(T1,tend)
j,r,i · ∥ξ1,i∥−2

2 · ⟨ξ1,i, ξ1⟩+
n2∑
i=1

ρ
(T2,tend)
j,r,i · ∥ξ2,i∥−2

2 · ⟨ξ2,i, ξ1⟩

≤ 2
√
log (8mn1/δ)σ0σp1

√
d+ (4n1

√
log(4n2

1/δ)

d
+ 1)σ0σp1

√
d+ (4n2

√
log(4n2

2/δ)

d
+ 1)σ0σp1

√
d

≤ 2
√
log (8mn1/δ)σ0σp1

√
d+ 2

√
log (8mn1/δ)σ0σp1

√
d+ 2

√
log (8mn2/δ)σ0σp1

√
d

≤ 6
√
log (8mn/δ)σ0σp1

√
d,

where the first inequality is by maxj,r,i |ρ(ξ1)(T1,tend)
j,r,i | ≤ σ0σp1

√
d and maxj,r,i |ρ(ξ2)(T2,tend)

j,r,i | ≤ σ0σp2

√
d, the second

inequality is due to d ≥ Ω̃(m2 ·max{n4
1, n

4
2}) by Condition 3.1, and the last inequality is by n = max{n1, n2}.

Using a proof technique similar to that in Lemma F.14, we can further prove the following lemma.

Lemma F.15. Under Condition 3.1, we have that |⟨w(T1,tend)
j,r , ξ1,i′⟩| ≤ 6

√
log (8mn/δ)σ0σp1

√
d and

|⟨w(T2,tend)
j,r , ξ2,i′′⟩| ≤ 6

√
log (8mn/δ)σ0σp1

√
d for all r ∈ [m], j ∈ {±1}, i′ ∈ [n1] and i′′ ∈ [n2], where

n = max{n1, n2}.

For ease of discussion, let Ij,1 = {r ∈ [m] : ⟨w(T1,0)
j,r , jµ1⟩ > 0}, Icj,1 = {r ∈ [m] : ⟨w(T1,0)

j,r , jµ1⟩ ≤ 0}, Ij,2 = {r ∈
[m] : ⟨w(T1,0)

j,r , jµ1⟩ ≤ 0} ∩ {r ∈ [m] : ⟨w(T1,0)
j,r , jµ⊥

1 ⟩ > 0} and Ij,3 = {r ∈ [m] : ⟨w(T1,0)
j,r , jµ1⟩ ≤ 0} ∩ {r ∈ [m] :

⟨w(T1,0)
j,r , jµ⊥

1 ⟩ ≤ 0} for j ∈ {±1}, then the following lemma holds.
Lemma F.16 (Cao et al. (2022)). Suppose that δ > 0 and n ≥ 32 log(4/δ). Then with probability at least 1 − δ,
|Ij,1|, |Icj,1| ≥ m/4 and |Ij,2|, |Ij,3| ≥ m/8 for j ∈ {±1}.

Lemma F.17. Under the same conditions as Theorem 3.2, denote γ(µ1)j =
1
m

∑
r∈Ij,1

[γ(µ1)
(T1,tend)
j,r ]q . Then we have

log(
1

ϵ+ o(ϵ)
)− Õ(m−1n−1) ≤ γ(µ1)j ≤ log(

C0

ϵ+ o(ϵ)
) + Õ(m−1n−1),

for j ∈ {±1}, where C0 > 1 is a constant and n = max{n1, n2}.

Proof of Lemma F.17. Since LS1(W
(T1,tend)) ≤ ϵ, there must exist one (x1,i, y1,i) and a constant C0 ≥ 0 such that

ϵ/C0 ≤ ℓ
(
y1,i · f(W(T1,tend),x1,i)

)
≤ ϵ, which implies that

log(
1

ϵ+ o(ϵ)
) ≤ y1,i · f(W(T1,tend),x1,i) ≤ log(

C0

ϵ+ o(ϵ)
).
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By the definition of f(W(T1,tend),x1,i), we have that

y1,i · f(W(T1,tend),x1,i) = Fy1,i
(W(T1,tend)

y1,i
,x1,i)− F−y1,i

(W
(T1,tend)
−y1,i

,x1,i)

=
1

m

m∑
r=1

[
σ(⟨w(T1,tend)

y1,i,r , y1,i · µ1⟩) + σ(⟨w(T1,tend)
y1,i,r , ξ1,i⟩)

]
− 1

m

m∑
r=1

[
σ(⟨w(T1,tend)

−y1,i,r , y1,i · µ1⟩) + σ(⟨w(T1,tend)
−y1,i,r , ξ1,i⟩)

]
=

1

m

m∑
r=1

σ(⟨w(T1,tend)
y1,i,r , y1,i · µ1⟩) +

1

m

m∑
r=1

[
σ(⟨w(T1,tend)

y1,i,r , ξ1,i⟩)− σ(⟨w(T1,tend)
−y1,i,r , ξ1,i⟩)

]
,

where the last equality is by ⟨w(T1,tend)
−y1,i,r , y1,i · µ1⟩ ≤ 0 in Lemma F.9 and Lemma F.10. Then by |⟨w(T1,tend)

j,r , ξ1,i⟩| ≤
6
√
log (8mn/δ)σ0σp1

√
d in Lemma F.15 and σ0σp1

√
d ≤ Õ(m−1n−1) in Condition 3.1, we have that

log(
1

ϵ+ o(ϵ)
)− Õ(m−1n−1) ≤ 1

m

m∑
r=1

σ(⟨w(T1,tend)
y1,i,r , y1,i · µ1⟩) ≤ log(

C0

ϵ+ o(ϵ)
) + Õ(m−1n−1).

By Lemma F.10, we have that

1

m

m∑
r=1

σ(⟨w(T1,tend)
y1,i,r , y1,i · µ1⟩) =

1

m

∑
r∈Iy1,i,1

σ(⟨w(T1,tend)
y1,i,r , y1,i · µ1⟩)

=
1

m

∑
r∈Iy1,i,1

σ(⟨w(T1,0)
y1,i,r , y1,i · µ1⟩+ γ(µ1)

(T1,tend)
y1,i,r ).

Then by |⟨w(T1,0)
j,r ,µ1⟩| ≤

√
2 log(8m/δ) · σ0∥µ1∥2 in Lemma C.2 and σ0∥µ1∥2 ≤ Õ(m−1n−1) in Condition 3.1, we

have that

log(
1

ϵ+ o(ϵ)
)− Õ(m−1n−1) ≤ 1

m

∑
r∈Iy1,i,1

[γ(µ1)
(T1,tend)
y1,i,r ]q ≤ log(

C0

ϵ+ o(ϵ)
) + Õ(m−1n−1),

which completes the proof.

Using a method analogous to that in Lemma F.17, we can prove the following lemma.

Lemma F.18. Under the same conditions as Theorem 3.2, denote γ(µ2)j =
1
m

∑
r∈Ij,2

[γ(µ2)
(T2,tend)
j,r ]q . Then we have

log(
1

ϵ+ o(ϵ)
)− Õ(m−1n−1) ≤ γ(µ2)j ≤ log(

C0

ϵ+ o(ϵ)
) + Õ(m−1n−1),

for j ∈ {±1}, where C0 > 1 is a constant and n = max{n1, n2}.

Lemma F.19. Under the same conditions as Theorem 3.2, when −C1 ≤ cos θ1,2 < 0, we have that

m∑
r=1

[
σ(⟨w(T2,tend)

y1,r , y1µ1⟩)− σ(⟨w(T2,tend)
−y1,r , y1µ1⟩)

]
≥ C3,

where 0 < C1 < 1 and C3 are positive constants.

Proof of Lemma F.19. By Lemma F.12 and Lemma F.13, we have that

m∑
r=1

σ(⟨w(T2,tend)
y1,r , y1µ1⟩) =

∑
r∈Iy1,1

σ(⟨w(T2,tend)
y1,r , y1µ1⟩)
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≥ m

4
· γ(µ1)y1

· (1− cos2 θ1,2)
q − Õ(n−1),

where the inequality is by Lemma F.11 and |Iy1,1| ≥ m/4 in Lemma F.16. Then by Lemma F.11 and Lemma F.13, we have
that

m∑
r=1

σ(⟨w(T2,tend)
−y1,r , y1µ1⟩) ≤

∑
r∈Iy1,2

σ(⟨w(T2,tend)
−y1,r , y1µ1⟩) + Õ(n−1)

≤ m · γ(µ2)−y1
· ∥µ1∥q2 · (− cos θ1,2)

q

∥µ2∥q2
+ Õ(n−1),

where the first inequality is by σ0∥µ1∥2 ≤ Õ(m−1n−1) in Condition 3.1, the second inequality is by Lemma F.12. Then
we have that

m∑
r=1

[
σ(⟨w(T2,tend)

y1,r , y1µ1⟩)− σ(⟨w(T2,tend)
−y1,r , y1µ1⟩)

]
≥ m

4
· γ(µ1)y1 · (1− cos2 θ1,2)

q −m · γ(µ2)−y1 ·
∥µ1∥q2 · (− cos θ1,2)

q

∥µ2∥q2
− Õ(n−1).

By Lemma F.17 and Lemma F.18, we have that(
log( 1

ϵ+o(ϵ) )− Õ(m−1n−1)

log(C0) + log( 1
ϵ+o(ϵ) ) + Õ(m−1n−1)

) 1
q

≤
(
γ(µ2)−y1

γ(µ1)y1

) 1
q

≤
(
log(C0) + log( 1

ϵ+o(ϵ) ) + Õ(m−1n−1)

log( 1
ϵ+o(ϵ) )− Õ(m−1n−1)

) 1
q

.

Then we know that
(
γ(µ2)−y1

/γ(µ1)y1

)1/q
is a constant, denoted as C4. Now we choose C1 as follows:

C1 =
−C4C5 +

√
C2

4C
2
5 + 4− (16C3 + Õ(n−1))/(mq · γ(µ1)y1

1/q
)

2
,

where C5 = 41/q · ∥µ1∥2/∥µ2∥2, γ(µ1)y1
= 1

m

∑
r∈Iy1,1

[γ(µ1)
(T1,tend)
y1,r ]q ≥ log( 1

ϵ+o(ϵ) )− Õ(m−1n−1) by Lemma F.17.
Then when

(1/q)
1

q−1 · ∥µ2∥2
41/q · γ(µ2)−y1

1/q · ∥µ1∥2
≤ − cos θ1,2 ≤ C1,

it is easy to verify that

q[41/q · γ(µ2)−y1

1/q · ∥µ1∥2
∥µ2∥2

· (− cos θ1,2)]
q−1 ≥ 1

γ(µ1)y1

1/q · (1− cos2 θ1,2)− 41/q · γ(µ2)−y1

1/q · ∥µ1∥2
∥µ2∥2

· (− cos θ1,2) ≥
4[C3 + Õ(n−1)]

m
,

where γ(µ2)−y1
= 1

m

∑
r∈I−y1,2

[γ(µ2)
(T2,tend)
−y1,r ]q . Then we have that

m

4
· γ(µ1)y1 · (1− cos2 θ1,2)

q −m · γ(µ2)−y1 ·
∥µ1∥q2 · (− cos θ1,2)

q

∥µ2∥q2
≥ m

4
· q[41/q · γ(µ2)−y1

1/q · ∥µ1∥2
∥µ2∥2

· (− cos θ1,2)]
q−1

·
[
γ(µ1)y1

1/q · (1− cos2 θ1,2)− 41/q · γ(µ2)−y1

1/q · ∥µ1∥2
∥µ2∥2

· (− cos θ1,2)

]
≥ C3 + Õ(n−1),

where the first inequality is by the convexity of ReLUq . Denote h(x) as

h(x) =
m

4
· γ(µ1)y1 · (1− x2)q −m · γ(µ2)−y1 ·

∥µ1∥q2 · xq

∥µ2∥q2
− Õ(n−1), x ∈ (0, 1).
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We know that h(x) is monotonically decreasing. So when

0 < − cos θ1,2 ≤ (1/q)
1

q−1 · ∥µ2∥2
41/q · γ(µ2)−y1

1/q · ∥µ1∥2
,

we have that

m

4
· γ(µ1)y1 · (1− cos2 θ1,2)

q −m · γ(µ2)−y1 ·
∥µ1∥q2 · (− cos θ1,2)

q

∥µ2∥q2
≥ C3 + Õ(n−1).

Then when 0 < − cos θ1,2 ≤ C1, we have that

m∑
r=1

[
σ(⟨w(T2,tend)

y1,r , y1µ1⟩)− σ(⟨w(T2,tend)
−y1,r , y1µ1⟩)

]
≥ C3,

which completes the proof.

Lemma F.20. Under the same conditions as Theorem 3.2, when −1 < cos θ1,2 ≤ −C2, we have that

m∑
r=1

[
σ(⟨w(T2,tend)

−y1,r , y1µ1⟩)− σ(⟨w(T2,tend)
y1,r , y1µ1⟩)

]
≥ C3,

where 0 < C2 < 1 and C3 are positive constants.

Proof of Lemma F.20. By σ(z) ≥ 0, we have that

m∑
r=1

σ(⟨w(T2,tend)
−y1,r , y1µ1⟩) ≥

∑
r∈I−y1,2

σ(⟨w(T2,tend)
−y1,r , y1µ1⟩)

≥ m

8
· γ(µ2)−y1 ·

∥µ1∥q2 · (− cos θ1,2)
q

∥µ2∥q2
,

where the second inequality is by Lemma F.12 and |I−y1,2| ≥ m/8 in Lemma F.16. Then by Lemma F.12 and Lemma F.13,
we have that

m∑
r=1

σ(⟨w(T2,tend)
y1,r , y1µ1⟩) =

∑
r∈Iy1,1

σ(⟨w(T2,tend)
y1,r , y1µ1⟩)

≤ m · γ(µ1)y1
· (1− cos2 θ1,2)

q + Õ(n−1),

where the inequality is by Lemma F.11 and σ0∥µ1∥2 ≤ Õ(m−1n−1) in Condition 3.1. Then we have that

m∑
r=1

[
σ(⟨w(T2,tend)

−y1,r , y1µ1⟩)− σ(⟨w(T2,tend)
y1,r , y1µ1⟩)

]
≥ m

8
· γ(µ2)−y1 ·

∥µ1∥q2 · (− cos θ1,2)
q

∥µ2∥q2
−m · γ(µ1)y1 · (1− cos2 θ1,2)

q − Õ(n−1).

Now we choose C2 as follows:

C2 =
−C4C6 +

√
C2

4C
2
6 + 4 + (32C3 + Õ(n−1))/(81/qmq · γ(µ1)y1

1/q
)

2
,

where C4 =
(
γ(µ2)−y1/γ(µ1)y1

)1/q
, C6 = ∥µ1∥2/(81/q · ∥µ2∥2) and γ(µ1)y1 = 1

m

∑
r∈Iy1,1

[γ(µ1)
(T1,tend)
y1,r ]q ≥

log( 1
ϵ+o(ϵ) )− Õ(m−1n−1) by Lemma F.17. Then when C2 ≤ − cos θ1,2 < 1, using a proof technique similar to that in

Lemma F.19, we have that

m

8
· γ(µ2)−y1 ·

∥µ1∥q2 · (− cos θ1,2)
q

∥µ2∥q2
−m · γ(µ1)y1 · (1− cos2 θ1,2)

q ≥ C3 + Õ(n−1).
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Then when C2 ≤ − cos θ1,2 < 1, we have that

m∑
r=1

[
σ(⟨w(T2,tend)

−y1,r , y1µ1⟩)− σ(⟨w(T2,tend)
y1,r , y1µ1⟩)

]
≥ C3,

which completes the proof.

Lemma F.21. Let C1 be defined in Lemma F.19. Under the same conditions as Theorem 3.2, when −C1 ≤ cos θ1,2 < 0, we
have that P(x1,y1)∼D1

(
y1 ̸= sign(f(W(T2,tend),x1))

)
≤ exp(−C ·m2q−2n2q/q2), where C = O(1).

Proof of Lemma F.21. For the sake of convenience, we use (x1, y1) ∼ D1 to denote the following: data point (x1, y1)
follows distribution D1 of Task T1 defined in Definition 1.1. We can write out the test error as

P(x1,y1)∼D1

(
y1 ̸= sign(f(W(T2,tend),x1))

)
= P(x1,y1)∼D1

(
y1f(W

(T2,tend),x1) ≤ 0
)
.

It therefore suffices to provide an upper bound for P(x1,y1)∼D1

(
y1f(W

(T2,tend),x1) ≤ 0
)
. To achieve this, we write

x1 = (y1µ1, ξ1), and get

y1f(W
(T2,tend),x1) = Fy1(W

(T2,tend)
y1

,x1)− F−y1(W
(T2,tend)
−y1

,x1)

=
1

m

m∑
r=1

[
σ(⟨w(T2,tend)

y1,r , y1µ1⟩) + σ(⟨w(T2,tend)
y1,r , ξ1⟩)

]
− 1

m

m∑
r=1

[
σ(⟨w(T2,tend)

−y1,r , y1µ1⟩) + σ(⟨w(T2,tend)
−y1,r , ξ1⟩)

]
Then

P(x1,y1)∼D1

(
y1f(W

(T2,tend),x1) ≤ 0
)

≤ P(x1,y1)∼D1

( m∑
r=1

[
σ(⟨w(T2,tend)

−y1,r , ξ1⟩)
]
≥

m∑
r=1

[
σ(⟨w(T2,tend)

y1,r , y1µ1⟩)− σ(⟨w(T2,tend)
−y1,r , y1µ1⟩)

])
. (F.3)

Let w̃(T2,t)
j,r = w

(T2,t)
j,r − j · γ(T1,tend)

j,r · µ1

∥µ1∥2
2
− j · γ(T2,t)

j,r · µ2

∥µ2∥2
2

, then we have that ⟨w̃(T2,t)
j,r , ξ1⟩ = ⟨w(T2,t)

j,r , ξ1⟩ and

∥w̃(T2,t)
j,r ∥2 ≤ Õ(σ0

√
d+max{n1, n2} · σ0) = Õ(σ0

√
d), (F.4)

where the equality is due to d ≥ Ω̃(m2 ·max{n1, n2}4) by Condition 3.1. By (F.4), let maxj,r ∥w̃(T2,t)
j,r ∥2 ≤ C7σ0

√
d,

where C7 = Õ(1). Denote g(ξ1) as
∑

r σ(⟨w̃
(T2,tend)
−y1,r , ξ1⟩). According to Theorem 5.2.2 in, we know that for any x ≥ 0 it

holds that

P(g(ξ1)− Eg(ξ1) ≥ x) ≤ exp
(
− cx2

σ2
p1
∥g∥2Lip

)
, (F.5)

where c is a constant. To calculate the Lipschitz norm, we have

|g(ξ)− g(ξ′)| =
∣∣∣∣∣

m∑
r=1

σ(⟨w̃(T2,tend)
−y1,r , ξ⟩)−

m∑
r=1

σ(⟨w̃(T2,tend)
−y1,r , ξ′⟩)

∣∣∣∣∣
≤

m∑
r=1

∣∣σ(⟨w̃(T2,tend)
−y1,r , ξ⟩)− σ(⟨w̃(T2,tend)

−y1,r , ξ′⟩)
∣∣

≤ q(6
√

log (8mn/δ)σ0σp1

√
d)q−1

m∑
r=1

|⟨w̃(T2,tend)
−y1,r , ξ − ξ′⟩|

≤ q(6
√
log (8mn/δ)σ0σp1

√
d)q−1

m∑
r=1

∥∥w̃(T2,tend)
−y1,r

∥∥
2
· ∥ξ − ξ′∥2,
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where the first inequality is by triangle inequality; the second inequality is by the convexity of ReLUq; the last inequality is
by Cauchy-Schwartz inequality. Therefore, we have

∥g∥Lip ≤ q(6
√

log (8mn/δ)σ0σp1

√
d)q−1

m∑
r=1

∥∥w̃(T2,tend)
−y1,r

∥∥
2
, (F.6)

and since ⟨w̃(T2,tend)
−y1,r , ξ1⟩ ∼ N

(
0, ∥w̃(T2,tend)

−y1,r ∥22σ2
p1

)
, we can get

Eg(ξ1) =
m∑
r=1

Eσ(⟨w̃(T2,tend)
−y1,r , ξ1⟩) =

m∑
r=1

2
q−1
2 · Γ( q+1

2 ) · (∥w̃(T2,tend)
−y1,r ∥2σp1

)q√
2π

= C8 ·
σq
p1√
2π

m∑
r=1

∥w̃(T2,tend)
−y1,r ∥q2,

where C8 = 2
q−1
2 · Γ( q+1

2 ) is a constant, with Γ(z) =
∫ +∞
0

tz−1e−t dt denoting the Gamma function. When −C1 ≤
cos θ1,2 < 0, by (F.3) and ⟨w̃(T2,t)

j,r , ξ1⟩ = ⟨w(T2,t)
j,r , ξ1⟩, we have that

P(x1,y1)∼D1

(
y1f(W

(T2,tend),x1) ≤ 0
)

≤ P(x1,y1)∼D1

( m∑
r=1

[
σ(⟨w̃(T2,tend)

−y1,r , ξ1⟩)
]
≥

m∑
r=1

[
σ(⟨w(T2,tend)

y1,r , y1µ1⟩)− σ(⟨w(T2,tend)
−y1,r , y1µ1⟩)

])

= P(x1,y1)∼D1

(
g(ξ1)− Eg(ξ1) ≥

m∑
r=1

[
σ(⟨w(T2,tend)

y1,r , y1µ1⟩)− σ(⟨w(T2,tend)
−y1,r , y1µ1⟩)

]
− C8 ·

σq
p1√
2π

m∑
r=1

∥w̃(T2,tend)
−y1,r ∥q2

)

≤ exp

[
−

c
(∑m

r=1

[
σ(⟨w(T2,tend)

y1,r , y1µ1⟩)− σ(⟨w(T2,tend)
−y1,r , y1µ1⟩)

]
− (C8/

√
2π)

∑m
r=1 σ

q
p1

· ∥w̃(T2,tend)
−y1,r ∥q2

)2

q2
(
6
√
log (8mn/δ)σ0σp1

√
d
)2q−2

·
(∑m

r=1 σp1
·
∥∥w̃(T2,tend)

−y1,r

∥∥
2

)2

]

≤ exp

[ −c

q2
(
6
√
log (8mn/δ)σ0σp1

√
d
)2q−2 ·

(∑m
r=1

[
σ(⟨w(T2,tend)

y1,r , y1µ1⟩)− σ(⟨w(T2,tend)
−y1,r , y1µ1⟩)

]
σp1

∑m
r=1

∥∥w̃(T2,tend)
−y1,r

∥∥
2

− C8/
√
2π

)2]

≤ exp

[
1

q2
(
6
√
log (8mn/δ)σ0σp1

√
d
)2q−2

(
cC2

8

2π
− c

2

(∑m
r=1

[
σ(⟨w(T2,tend)

y1,r , y1µ1⟩)− σ(⟨w(T2,tend)
−y1,r , y1µ1⟩)

]
σp1

∑m
r=1

∥∥w̃(T2,tend)
−y1,r

∥∥
2

)2)]
,

where the second inequality is by (F.5) and (F.6), the third inequality is by σp1∥w̃(T2,tend)
−y1,r ∥2 ≤ Õ(σ0σp1

√
d) according to

(F.5) and σ0σp1

√
d ≤ Õ(m−1n−1) in Condition 3.1, the last inequality is due to the fact that (s− t)2 ≥ s2/2− t2,∀s, t ≥ 0.

Then by Lemma F.19, we further have that

P(x1,y1)∼D1

(
y1f(W

(T2,tend),x1) ≤ 0
)

≤ exp

[
1

q2
(
6
√
log (8mn/δ)σ0σp1

√
d
)2q−2

(
cC2

8

2π
− 0.5c

(
C3

σp1

∑m
r=1

∥∥w̃(T2,tend)
−y1,r

∥∥
2

)2)]

≤ exp

[
1

q2
(
6
√
log (8mn/δ)σ0σp1

√
d
)2q−2

(
cC2

8

2π
− cC2

3

2m2C2
7 (σ0σp1

√
d)2

)]

≤ exp

[
1

q2
(
6
√
log (8mn/δ)σ0σp1

√
d
)2q−2

(
− cC2

3

4m2C2
3 (σ0σp1

√
d)2

)]

≤ exp

[−C ·m2q−2n2q

q2

]
,

where the second inequality is by maxj,r ∥w̃(T2,t)
j,r ∥2 ≤ C7σ0

√
d, the third inequality is by σ0σp1

√
d ≤ Õ(m−1n−1) in

Condition 3.1. Then we have that

P(x1,y1)∼D1

(
y1 ̸= sign(f(W(T2,tend),x1))

)
≤ exp(−C ·m2q−2n2q/q2),

which completes the proof.
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Lemma F.22. Let C2 be defined in Lemma F.20. Under the same conditions as Theorem 3.2, when −1 < cos θ1,2 ≤ −C2,
we have that P(x1,y1)∼D1

(
y1 ̸= sign(f(W(T2,tend),x1))

)
≥ 1− exp(−C ·m2q−2n2q/q2), where C = O(1).

Proof of Lemma F.22. We can write out the test error as

P(x1,y1)∼D1

(
y1 ̸= sign(f(W(T2,tend),x1))

)
= P(x1,y1)∼D1

(
y1f(W

(T2,tend),x1) ≤ 0
)

= 1− P(x1,y1)∼D1

(
y1f(W

(T2,tend),x1) ≥ 0
)
.

It therefore suffices to provide an upper bound for P(x1,y1)∼D1

(
y1f(W

(T2,tend),x1) ≥ 0
)
. To achieve this, we write

x1 = (y1µ1, ξ1), and get

y1f(W
(T2,tend),x1) = Fy1

(W(T2,tend)
y1

,x1)− F−y1
(W

(T2,tend)
−y1

,x1)

=
1

m

m∑
r=1

[
σ(⟨w(T2,tend)

y1,r , y1µ1⟩) + σ(⟨w(T2,tend)
y1,r , ξ1⟩)

]
− 1

m

m∑
r=1

[
σ(⟨w(T2,tend)

−y1,r , y1µ1⟩) + σ(⟨w(T2,tend)
−y1,r , ξ1⟩)

]
.

Then

P(x1,y1)∼D1

(
y1f(W

(T2,tend),x1) ≥ 0
)

≤ P(x1,y1)∼D1

( m∑
r=1

[
σ(⟨w(T2,tend)

y1,r , ξ1⟩)
]
≥

m∑
r=1

[
σ(⟨w(T2,tend)

−y1,r , y1µ1⟩)− σ(⟨w(T2,tend)
y1,r , y1µ1⟩)

])
.

When −1 < cos θ1,2 ≤ −C2, using a proof technique similar to that in Lemma F.21, by
∑m

r=1

[
σ(⟨w(T2,tend)

−y1,r , y1µ1⟩)−
σ(⟨w(T2,tend)

y1,r , y1µ1⟩)
]
≥ C3 in Lemma F.20, we have that

P(x1,y1)∼D1

(
y1f(W

(T2,tend),x1) ≥ 0
)
≤ exp(−C ·m2q−2n2q/q2).

Then we further have that

P(x1,y1)∼D1

(
y1 ̸= sign(f(W(T2,tend),x1))

)
≥ 1− exp(−C ·m2q−2n2q/q2),

which completes the proof.

G. Insights into Task T1 Learning
In this section, our intention is to present the specific details associated with the learning of task T1. Specifically, the focus
is on the maximum value of the inner product between the convolutional filters within F+1 and µ1, which is denoted as
maxr∈[1,m]⟨w(T1,t)

+1,r ,µ1⟩. If we suppose that r∗ is the value for which the inner product ⟨w(T1,t)
+1,r ,µ1⟩ attains its maximum,

then it follows that ⟨w(T1,t)
+1,r∗ ,µ1⟩ = maxr∈[1,m]⟨w(T1,t)

+1,r ,µ1⟩. Moreover, r∗∗ is the value that results in the second largest

inner product ⟨w(T1,t)
+1,r ,µ1⟩. In such a situation, we can state that ⟨w(T1,t)

+1,r∗∗ ,µ1⟩ = maxr ̸=r∗⟨w(T1,t)
+1,r ,µ1⟩. Similarly, we

can also obtain the values of ⟨w(T1,t)
−1,r∗ ,−µ1⟩ and ⟨w(T1,t)

−1,r∗∗ ,−µ1⟩.
Lemma G.1. Under the previous conditions, we can get that when t tends to infinity

⟨w(T1,t)
j,r∗ , jµ1⟩ → +∞

for j ∈ {±1}.

proof of Lemma G.1. Based on the analysis of training task T1 before, we know the update rule for w(T1,t)
j,r as follows:

w
(T1,t+1)
j,r = w

(T1,t)
j,r − η1 · ∇wj,rLS1(W

(T1,t))
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= w
(T1,t)
j,r +

η1
n1m

n1∑
i=1

(−ℓ
′(T1,t)
1,i ) · σ′(⟨w(T1,t)

j,r , ξ1,i⟩) · jy1,iξ1,i

+
η1
n1m

n1∑
i=1

(−ℓ
′(T1,t)
1,i ) · σ′(⟨w(T1,t)

j,r , y1,iµ1⟩) · µ1

Perform the inner product operation on the vector µ1 on both sides of the equation, we can get

⟨w(T1,t+1)
j,r , jµ1⟩ = ⟨w(T1,t)

j,r , jµ1⟩+
η1∥µ1∥22
n1m

n1∑
i=1

(−ℓ
′(T1,t)
1,i ) · σ′(⟨w(T1,t)

j,r , y1,iµ1⟩).

Then we have

⟨w(T1,t+1)
j,r∗ , jµ1⟩ = ⟨w(T1,t)

j,r∗ , jµ1⟩+
η1∥µ1∥22
n1m

∑
y1,i=j

(−ℓ
′(T1,t)
1,i ) · σ′(⟨w(T1,t)

j,r∗ , jµ1⟩), (G.1)

⟨w(T1,t+1)
j,r∗∗ , jµ1⟩ = ⟨w(T1,t)

j,r∗∗ , jµ1⟩+
η1∥µ1∥22
n1m

∑
y1,i=j

(−ℓ
′(T1,t)
1,i ) · σ′(⟨w(T1,t)

j,r∗∗ , jµ1⟩). (G.2)

Dividing the two equations (G.1) and (G.2), we can get

⟨w(T1,t+1)
j,r∗ , jµ1⟩

⟨w(T1,t+1)
j,r∗∗ , jµ1⟩

=
⟨w(T1,t)

j,r∗ , jµ1⟩+ η1∥µ1∥2
2

n1m

∑
y1,i=j(−ℓ

′(T1,t)
1,i ) · σ′(⟨w(T1,t)

j,r∗ , jµ1⟩)
⟨w(T1,t)

j,r∗∗ , jµ1⟩+ η1∥µ1∥2
2

n1m

∑
y1,i=j(−ℓ

′(T1,t)
1,i ) · σ′(⟨w(T1,t)

j,r∗∗ , jµ1⟩)
(G.3)

we can judge when t tends to infinity, ⟨w(T1,t)
j,r∗ , jµ1⟩ tends to infinity. According to (G.1), we know that ⟨w(T1,t)

j,r∗ ,µ1⟩ is an
increasing sequence, so its limit is either a constant or positive infinity. Assume it converges to a positive constant M , take
the limit of both sides of the equation (G.1) simultaneously, we can get that

M = M + lim
t→+∞

η1∥µ1∥22
n1m

∑
y1,i=j

(−ℓ
′(T1,t)
1,i ) · σ′(⟨w(T1,t)

j,r∗ , jµ1⟩)

By the fact that −ℓ
′(T1,t)
1,i > 0, we can get that

M = M +
η1∥µ1∥22
n1m

∑
y1,i=j

(−ℓ
′(T1,t)
1,i )σ′(M),

then we will come to a wrong conclusion: 0 =
η1∥µ1∥2

2

n1m

∑
y1,i=j(−ℓ

′(T1,t)
1,i )σ′(M), so ⟨w(T1,t)

j,r∗ , jµ1⟩ tends to infinity.

For our further work, we need to review the following mathematical lemma:

Lemma G.2. Let an > 0, then the infinite product
∏+∞

n=1(1 + an) converges if and only if the series
∑+∞

n=1 an converges.

The proof of this lemma can be found in many mathematics books. With this tool, we will prove the following lemma.

Lemma G.3. We can get that when t tends to infinity

⟨w(T1,t)
j,r∗∗ , jµ1⟩ = o(⟨w(T1,t)

j,r∗ , jµ1⟩)

for j ∈ {±1}.

proof of Lemma G.3. If, as t approaches infinity, the inner product ⟨w(T1,t)
j,r∗∗ , jµ1⟩ converges to a positive constant, then the

proof of this lemma becomes straightforward. Subsequently, we will investigate the case where ⟨w(T1,t)
j,r∗∗ , jµ1⟩ approaches

infinity. To simplify the expression, we let at = ⟨w(T1,t)
j,r∗ , jµ1⟩ and bt = ⟨w(T1,t)

j,r∗∗ , jµ1⟩. According to equation (G.3), we
can deduce that:
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at+1

bt+1
=

at
bt

·
1 +

qη1∥µ1∥2
2

n1m

∑
y1,i=j(−ℓ

′(T1,t)
1,i )aq−2

t

1 +
qη1∥µ1∥2

2

n1m

∑
y1,i=j(−ℓ

′(T1,t)
1,i )bq−2

t

.

Let ct = at

bt
, then we have

ct+1 = ct ·
1 +

qη1∥µ1∥2
2

n1m

∑
y1,i=j(−ℓ

′(T1,t)
1,i )aq−2

t

1 +
qη1∥µ1∥2

2

n1m

∑
y1,i=j(−ℓ

′(T1,t)
1,i )bq−2

t

≥ ct,

where the inequality is by at ≥ bt, so it is obvious that ct is an increasing sequence and ct ≥ 1 for all t ≥ 0. Combining
equation (G.1) and the definition of ct, we can obtain

ct+1bt+1 = ctbt +
qη1∥µ1∥22

n1m

∑
y1,i=j

(−ℓ
′(T1,t)
1,i )cq−1

t bq−1
t .

Dividing this equation by (G.2) gives

ct+1

ct
=

bt
bt+1

+
qη1∥µ1∥22

n1m

∑
y1,i=j

(−ℓ
′(T1,t)
1,i )

cq−2
t bq−1

t

bt+1

=
bt +

qη1∥µ1∥2
2

n1m

∑
y1,i=j(−ℓ

′(T1,t)
1,i )cq−2

t bq−1
t

bt +
qη1∥µ1∥2

2

n1m

∑
y1,i=j(−ℓ

′(T1,t)
1,i )bq−1

t

=
1 +

qη1∥µ1∥2
2

n1m

∑
y1,i=j(−ℓ

′(T1,t)
1,i )cq−2

t bq−2
t

1 +
qη1∥µ1∥2

2

n1m

∑
y1,i=j(−ℓ

′(T1,t)
1,i )bq−2

t

.

Next, we analyze the convergence and divergence of the infinite series:

+∞∑
t=0

qη1∥µ1∥2
2

n1m

∑
y1,i=j(−ℓ

′(T1,t)
1,i )(cq−2

t − 1)bq−2
t

1 +
qη1∥µ1∥2

2

n1m

∑
y1,i=j(−ℓ

′(T1,t)
1,i )bq−2

t

≥ cq−2
0 − 1

M

+∞∑
t=0

qη1∥µ1∥22
n1m

∑
y1,i=j

(−ℓ
′(T1,t)
1,i )bq−2

t

=
cq−2
0 − 1

M

+∞∑
t=0

(
bt+1

bt
− 1

)
,

where the inequality is by ct is an increasing sequence, and
∑

y1,i=j(−ℓ
′(T1,t)
1,i )bq−2

t ≤ M−1 because ℓ′ has an exponentially

decaying tail. Since the infinite product
∏+∞

t=0
bt+1

bt
diverges:

+∞∏
t=0

bt+1

bt
=

b+∞
b0

= +∞

according to lemma G.2, the infinite series
∑+∞

t=0

(
bt+1

bt
− 1

)
diverges. Thus, we can conclude that the infi-

nite series
∑+∞

t=0

qη1∥µ1∥22
n1m

∑
y1,i=j(−ℓ

′(T1,t)
1,i )(cq−2

t −1)bq−2
t

1+
qη1∥µ1∥22

n1m

∑
y1,i=j(−ℓ

′(T1,t)
1,i )bq−2

t

diverges. Notice that
1+

qη1∥µ1∥22
n1m

∑
y1,i=j(−ℓ

′(T1,t)
1,i )cq−2

t bq−2
t

1+
qη1∥µ1∥22

n1m

∑
y1,i=j(−ℓ

′(T1,t)
1,i )bq−2

t

=

qη1∥µ1∥22
n1m

∑
y1,i=j(−ℓ

′(T1,t)
1,i )(cq−2

t −1)bq−2
t

1+
qη1∥µ1∥22

n1m

∑
y1,i=j(−ℓ

′(T1,t)
1,i )bq−2

t

+1, so the infinite product
∏+∞

t=0
ct+1

ct
=

∏+∞
t=0

1+
qη1∥µ1∥22

n1m

∑
y1,i=j(−ℓ

′(T1,t)
1,i )cq−2

t bq−2
t

1+
qη1∥µ1∥22

n1m

∑
y1,i=j(−ℓ

′(T1,t)
1,i )bq−2

t
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diverges. Therefore,

c+∞ = c0

+∞∏
t=0

ct+1

ct
= +∞

so limt→+∞
bt
at

= limt→+∞ 1
ct

= 0, that is to say ⟨w(T1,t)
j,r∗∗ , jµ1⟩ = o(⟨w(T1,t)

j,r∗ , jµ1⟩)

In this way we get the relationship between the maximum inner product ⟨w(T1,t)
j,r∗ , jµ1⟩ and other inner products, that is,

⟨w(T1,t)
j,r , jµ1⟩ = o(⟨w(T1,t)

j,r∗ , jµ1⟩), r ̸= r∗. Before the next proof begins, we need to first prove the following Lemma:

Lemma G.4. For j ∈ {±1}, it holds with probability at least 1− δ that∣∣∣∣n1,j −
n1

2

∣∣∣∣ <
√

n1

2
log

2

δ
,

where n1,j := |{(x1,i, y1,i)|y1,i = j, i ∈ [n1]}|.

Proof of Lemma G.4. Note that n1,j =
∑n1

i=1 I[y1,i = j] where y1,i takes label +1 or −1 with equal probability 1
2 ,

according to Hoeffding’s inequality, we have

P
(∣∣∣∣ n1∑

i=1

I[y1,i = j]− E
[ n1∑

i=1

I[y1,i = j]

]∣∣∣∣ ≥ t

)
≤ 2 exp

(
− 2t2

n1

)
, j ∈ {±1},

and it follows that

P
(∣∣∣∣n1,j −

n1

2

∣∣∣∣ ≥ t

)
≤ 2 exp

(
− 2t2

n1

)
, j ∈ {±1},

leading to ∣∣∣∣n1,j −
n1

2

∣∣∣∣ ≤
√

n1

2
log

2

δ

with probability at least 1− δ.

Then we have ∣∣∣∣ n1,j

n1/2
− 1

∣∣∣∣ ≤ √
2

n1
log

2

δ
= Θ

(
1√
n1

)
,

leading to

n1,j =
n1

2

(
1 +

n1,j

n1/2
− 1

)
=

n1

2

(
1±Θ

(
1√
n1

))
=

n1

2
[1 + o(1)],

where the last equation follows by n1 = Ω(polylog(d)). Similarly, under Condition 3.1, we have

n2,j =
n2

2
[1 + o(1)] (G.4)

for j ∈ {±1}. Next, we will prove that the maximum value of the inner product of the positive and negative convolutional
filters is approximately equal, that is,

Lemma G.5. When t tends to infinity, limt→+∞
⟨w(T1,t)

1,r∗ ,µ1⟩
⟨w(T1,t)

−1,r∗ ,−µ1⟩
= 1.
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proof of lemma G.5. Using the lemma G.3, We can simplify the equation (G.1):

⟨w(T1,t+1)
1,r∗ ,µ1⟩ = ⟨w(T1,t)

1,r∗ ,µ1⟩+
η1∥µ1∥22
n1m

∑
y1,i=1

σ′(⟨w(T1,t)
1,r∗ ,µ1⟩)

1 + exp( 1
mσ(⟨w(T1,t)

1,r∗ ,µ1⟩)[1 + o(1)]

= ⟨w(T1,t)
1,r∗ ,µ1⟩+

η1∥µ1∥22
n1m

n1

2
[1 + o(1)]

σ′(⟨w(T1,t)
1,r∗ ,µ1⟩)

1 + exp( 1
mσ(⟨w(T1,t)

1,r∗ ,µ1⟩)[1 + o(1)]

= ⟨w(T1,t)
1,r∗ ,µ1⟩+

η1∥µ1∥22
2m

σ′(⟨w(T1,t)
1,r∗ ,µ1⟩)

1 + exp( 1
mσ(⟨w(T1,t)

1,r∗ ,µ1⟩)
+ o(1), (G.5)

we can also simplify the equation (G.2)

⟨w(T1,t+1)
−1,r∗ ,−µ1⟩ = ⟨w(T1,t)

−1,r∗ ,−µ1⟩+
η1∥µ1∥22
n1m

∑
y1,i=−1

σ′(⟨w(T1,t)
−1,r∗ ,−µ1⟩)

1 + exp[( 1
mσ(⟨w(T1,t)

−1,r∗ ,−µ1⟩)[1 + o(1)]]

= ⟨w(T1,t)
−1,r∗ ,−µ1⟩+

η1∥µ1∥22
n1m

n1

2
[1 + o(1)]

σ′(⟨w(T1,t)
−1,r∗ ,−µ1⟩)

1 + exp[( 1
mσ(⟨w(T1,t)

−1,r∗ ,−µ1⟩)[1 + o(1)]]

= ⟨w(T1,t)
−1,r∗ ,−µ1⟩+

η1∥µ1∥22
2m

σ′(⟨w(T1,t)
−1,r∗ ,−µ1⟩)

1 + exp( 1
mσ(⟨w(T1,t)

−1,r∗ ,−µ1⟩)
+ o(1). (G.6)

We have the function f(x) = xq−1

1+exp ( 1
mxq)

,further we get a derivative of this function f ′(x) = x2q−2

(1+exp ( 1
mxq))2

( q−1
xq +( q−1

xq −
1) exp ( 1

mxq)). When x ≥ (2max{m, q}) 1
q , we have that

q − 1

xq
+ (

q − 1

xq
− 1) exp (

1

m
xq)

≤ q − 1

xq
+ (

q − 1

xq
− 1)(

1

m
xq)

=
q − 1

xq
+

q − 1

m
− 1

m
xq

<
q

xq
+

q

m
− 1

m
xq

≤ q

2m
+

q

m
− 2q

m
< 0,

where the first inequality is due to the fact that ex > x for x > 0, and the last inequality follows by the condition that
x ≥ (2max{m, q}) 1

q . So when x ≥ (2max{m, q}) 1
q , f ′(x) < 0, f(x) decreases monotonically. By Lemma G.1, we

know that at some point in the iteration maxr⟨w(T1,t)
j,r , jµ1⟩ will reach (2max{m, q}) 1

q . Suppose that at some point,

⟨w(T1,t)
1,r∗ ⟩ = ⟨w(T1,t)

−1,r∗⟩+ C, where C = o(1) is a positive constant, then we subtract the two equations (G.5) and (G.6), we
have that

⟨w(T1,t+1)
1,r∗ ,µ1⟩ − ⟨w(T1,t+1)

−1,r∗ ,−µ1⟩ = ⟨w(T1,t)
1,r∗ ,µ1⟩ − ⟨w(T1,t)

−1,r∗ ,−µ1⟩

+
η1∥µ1∥22

2m

σ′(⟨w(T1,t)
1,r∗ ,µ1⟩)

1 + exp( 1
mσ(⟨w(T1,t)

1,r∗ ,µ1⟩)
− η1∥µ1∥22

2m

σ′(⟨w(T1,t)
−1,r∗ ,−µ1⟩)

1 + exp( 1
mσ(⟨w(T1,t)

−1,r∗ ,−µ1⟩)
+ o(1)

< ⟨w(T1,t)
1,r∗ ,µ1⟩ − ⟨w(T1,t)

−1,r∗ ,−µ1⟩
= C,

where the equation is due to the fact that f(x) =
η1∥µ1∥2

2

2m
σ′(x)

1+exp( 1
mσ(x))

is a monotonically decreasing function when
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x ≥ (2max{m, q}) 1
q . So when t tends to infinity, |⟨w(T1,t)

1,r∗ ,µ1⟩ − ⟨w(T1,t)
−1,r∗ ,−µ1⟩| ≤ C, we have that

lim
t→+∞

⟨w(T1,t)
1,r∗ ,µ1⟩

⟨w(T1,t)
−1,r∗ ,−µ1⟩

= lim
t→+∞

⟨w(T1,t)
−1,r∗ ,−µ1⟩

⟨w(T1,t)
−1,r∗ ,−µ1⟩

+ lim
t→+∞

⟨w(T1,t)
1,r∗ ,µ1⟩ − ⟨w(T1,t)

−1,r∗ ,−µ1⟩
⟨w(T1,t)

−1,r∗ ,−µ1⟩
= 1,

which completes the proof.

H. Proof of Replay-based Methods
The replay method here refers to combining the partial data of task Tk−1 and all data of task Tk for model training. The
initial weight of the model is the weight value retained at the end of the previous task: w(0)

j,r = w
(Tk−1,tend)
j,r . Let us consider

the case of two tasks, task T1 and task T2. The signal vectors for the two tasks are µ1 and µ2, and the noise vector are
ξ1,i and ξ2,i. The empirical replay method is mainly to solve the forgetting situation where the angle between two tasks is
obtuse, so we might as well make the angle between the two signal vectors obtuse θ. To simplify the mathematical form, we
let λ represent the − cos θ1,2, expressed in terms of the formula λ = − cos θ1,2. So the inner product of µ1 and µ2 is

⟨µ1,µ2⟩ = −λ∥µ1∥2∥µ2∥2, λ ∈ (0, 1).

Then w
(0)
j,r = w

(T1,tend)
j,r , at this time, the loss function is defined as

LS1∪S2(W) =
1

n∗
1 + n2

(

n∗
1∑

i=1

ℓ[y1,i · f(W,x1,i) +

n2∑
i=1

ℓ[y2,i · f(W,x2,i)])

Moreover, we define a number k, which is expressed by the formula k =

min

{
1−C2

1+C2
, (1−C2)(3+C2)

8(C2+1) , (3+C2)(1−C2)

4
(
8
(

∥µ2∥2
∥µ1∥2

)q
+
(

1+C2
2

)q)1/q

}
∥µ2∥2

∥µ1∥2
, where the C1 and C2 is the same as that in Lemma F.19.

The number k is used to describe the growth of w(T2,t)
j,r on the vector µ2. Then we can verify that when 0 < λ ≤ 1+C2

2 , the
two below inequality holds:

(1− λ2)q−(k
∥µ1∥2
∥µ2∥2

λ)q ≥ (1− (
1 + C2

2
)2)q − (k

∥µ1∥2
∥µ2∥2

1 + C2

2
)q = 2C̃

≥ (1− (
1 + C2

2
)2 − k

∥µ1∥2
∥µ2∥2

1 + C2

2
)q(k

∥µ1∥2
∥µ2∥2

1 + C2

2
)q−1

= O(1), (H.1)

where the first inequality is by the decreasing nature of the function f(λ) = (1− λ2)q − (k ∥µ1∥2

∥µ2∥2
λ)q , the second inequality

is due to the Lagrange Median Theorem, and the last inequality follows by the definition of k, and we denote the positive
constant by 2C̃, and we can obtain

C̃ ≥ 4kq, (H.2)

where the inequality is by the definition of k.

Lemma H.1. The gradient of loss function LS1∪S2
(W(T2,t)) with respect to weight parameters w(T2,t)

j,r is

∇
w

(T2,t)
j,r

LS1∪S2(W
(T2,t)) =

1

(n∗
1 + n2)m

n∗
1∑

i=1

(−ℓ
′(T2,t)
1,i ) · σ′(⟨w(T2,t)

j,r , ξ1,i⟩) · jy1,iξ1,i

+
1

(n∗
1 + n2)m

n2∑
i=1

(−ℓ
′(T2,t)
2,i ) · σ′(⟨w(T2,t)

j,r , ξ2,i⟩) · jy2,iξ2,i

+
1

(n∗
1 + n2)m

n∗
1∑

i=1

(−ℓ
′(T2,t)
1,i ) · σ′(⟨w(T2,t)

j,r , y1,iµ1⟩) · jµ1
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+
1

(n∗
1 + n2)m

n2∑
i=1

(−ℓ
′(T2,t)
2,i ) · σ′(⟨w(T2,t)

j,r , y2,iµ2⟩) · jµ2,

for j = ±1, 1 ≤ r ≤ m, where ℓ′(y1,if(W(t), x1,i)]) = −1/(1 + exp [y1,if(W
(t),x1,i)]) is denoted by ℓ

′(t)
1,i , and

ℓ′(y2,if(W(t), x2,i)]) = −1/(1 + exp [y2,if(W
(t),x2,i)]) is denoted by ℓ

′(t)
2,i .

proof of Lemma H.1. When j = ±1, 1 ≤ r ≤ m,

∇
w

(T2,t)
j,r

ℓ[y1,i · f(W(T2,t),x1,i) = ℓ′(y1,if(W
(T2,t),x1,i)]) · y1,i · ∇w

(T2,t)
j,r

f(W(T2,t),x1,i)

= ℓ
′(T2,t)
1,i · y1,i · (j · σ′(⟨w(T2,t)

j,r , y1,iµ1⟩)y1,iµ1 + j · σ′(⟨w(T2,t)
j,r , ξ1,i⟩)ξ1,i),

∇
w

(T2,t)
j,r

ℓ[y2,i · f(W(T2,t),x2,i) = ℓ′(y2,if(W
(T2,t),x2,i)]) · y2,i · ∇w

(T2,t)
j,r

f(W(T2,t),x2,i)

= ℓ
′(T2,t)
2,i · y2,i · (j · σ′(⟨w(T2,t)

j,r , y2,iµ2⟩)y2,iµ2 + j · σ′(⟨w(T2,t)
j,r , ξ2,i⟩)ξ2,i).

Note that ∇wj,r
LS1∪S2

(W) = 1
n∗
1+n2

(
∑n∗

1
i=1 ∇wj,r

ℓ[y1,i · f(W,x1,i)] +
∑n2

i=1 ∇wj,r
ℓ[y2,i · f(W,x2,i)]), and bringing

the results of our calculations into this equation, we can get that

∇
w

(T2,t)
j,r

LS1∪S2
(W(T2,t)) =

1

(n∗
1 + n2)m

n∗
1∑

i=1

(−ℓ
′(T2,t)
1,i ) · σ′(⟨w(T2,t)

j,r , ξ1,i⟩) · jy1,iξ1,i

+
1

(n∗
1 + n2)m

n2∑
i=1

(−ℓ
′(T2,t)
2,i ) · σ′(⟨w(T2,t)

j,r , ξ2,i⟩) · jy2,iξ2,i

+
1

(n∗
1 + n2)m

n∗
1∑

i=1

(−ℓ
′(T2,t)
1,i ) · σ′(⟨w(T2,t)

j,r , y1,iµ1⟩) · jµ1

+
1

(n∗
1 + n2)m

n2∑
i=1

(−ℓ
′(T2,t)
2,i ) · σ′(⟨w(T2,t)

j,r , y2,iµ2⟩) · jµ2, (H.3)

which completes the proof.

When the model is trained by gradient descent, the update rule can be formulated by

w
(T2,t+1)
j,r = w

(T2,t)
j,r − η2 · ∇wj,rLS1∪S2(W

(T2,t)), (H.4)

for j = ±1 and r ∈ [m]. In the empirical replay method, we place equal emphasis on the laws of change in the inner
products. Specifically, ⟨w(T2,t)

j,r , jµ1⟩ and ⟨w(T2,t)
j,r , jµ1⟩ represent feature learning, while ⟨w(T2,t)

j,r , ξ1,i⟩ and ⟨w(T2,t)
j,r , ξ2,i⟩

pertain to noise memorization. And then we have following lemma for the inner product update rule.

Lemma H.2. The performance of gradient descent with respect to feature learning and noise memorization can be
formulated by

⟨w(T2,t)
j,r , jµ1⟩ = ⟨w(T2,0)

j,r , jµ1⟩+
η2∥µ1∥22

(n∗
1 + n2)m

t−1∑
s=0

n∗
1∑

i=1

(−ℓ
′(T2,s)
1,i ) · σ′(⟨w(T2,s)

j,r , y1,iµ1⟩)

− λη2∥µ1∥2∥µ2∥2
(n∗

1 + n2)m

t−1∑
s=0

n2∑
i=1

(−ℓ
′(T2,s)
2,i ) · σ′(⟨w(T2,s)

j,r , y2,iµ2⟩), (H.5)

⟨w(T2,t)
j,r , jµ2⟩ = ⟨w(T2,0)

j,r , jµ2⟩ −
λη2∥µ1∥2∥µ2∥2
(n∗

1 + n2)m

t−1∑
s=0

n∗
1∑

i=1

(−ℓ
′(T2,s)
1,i ) · σ′(⟨w(T2,s)

j,r , y1,iµ1⟩)
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+
η2∥µ2∥22

(n∗
1 + n2)m

t−1∑
s=0

n2∑
i=1

(−ℓ
′(T2,s)
2,i ) · σ′(⟨w(T2,s)

j,r , y2,iµ2⟩), (H.6)

⟨w(T2,t)
j,r , ξ1,i⟩ = ⟨w(T2,0)

j,r , ξ1,i⟩+
η2∥ξ1,i∥22

(n∗
1 + n2)m

t−1∑
s=0

n∗
1∑

i=1

(−ℓ
′(T2,s)
1,i ) · σ′(⟨w(T2,s)

j,r , ξ1,i⟩) · jy1,i

+
η2

(n∗
1 + n2)m

t−1∑
s=0

n2∑
i=1

(−ℓ
′(T2,s)
2,i ) · σ′(⟨w(T2,s)

j,r , ξ2,i⟩) · jy2,i⟨ξ1,i, ξ2,i⟩, (H.7)

⟨w(T2,t)
j,r , ξ2,i⟩ = ⟨w(T2,0)

j,r , ξ2,i⟩+
η2

(n∗
1 + n2)m

t−1∑
s=0

n∗
1∑

i=1

(−ℓ
′(T2,s)
1,i ) · σ′(⟨w(T2,s)

j,r , ξ1,i⟩) · jy1,i⟨ξ1,i, ξ2,i⟩

+
η2∥ξ2,i∥22

(n∗
1 + n2)m

t−1∑
s=0

n2∑
i=1

(−ℓ
′(T2,s)
2,i ) · σ′(⟨w(T2,s)

j,r , ξ2,i⟩) · jy2,i. (H.8)

proof of Lemma H.2. From equation (H.4) and lemma H.1, we can get that

w
(T2,t+1)
j,r = w

(T2,t)
j,r − η2 · ∇w

(T2,t)
j,r

LS1∪S2
(W(T2,t))

= w
(T2,t)
j,r +

η2
(n∗

1 + n2)m

n∗
1∑

i=1

(−ℓ
′(T2,t)
1,i ) · σ′(⟨w(T2,t)

j,r , ξ1,i⟩) · jy1,iξ1,i

+
η2

(n∗
1 + n2)m

n2∑
i=1

(−ℓ
′(T2,t)
2,i ) · σ′(⟨w(T2,t)

j,r , ξ2,i⟩) · jy2,iξ2,i

+
η2

(n∗
1 + n2)m

n∗
1∑

i=1

(−ℓ
′(T2,t)
1,i ) · σ′(⟨w(T2,t)

j,r , y1,iµ1⟩) · jµ1

+
η2

(n∗
1 + n2)m

n2∑
i=1

(−ℓ
′(T2,t)
2,i ) · σ′(⟨w(T2,t)

j,r , y2,iµ2⟩) · jµ2. (H.9)

Adding up the left side of the equation (H.9) gives us the following equation:

w
(T2,t)
j,r = w

(T2,0)
j,r +

η2
(n∗

1 + n2)m

t−1∑
s=0

n∗
1∑

i=1

(−ℓ
′(T2,s)
1,i ) · σ′(⟨w(T2,s)

j,r , ξ1,i⟩) · jy1,iξ1,i

+
η2

(n∗
1 + n2)m

t−1∑
s=0

n2∑
i=1

(−ℓ
′(T2,s)
2,i ) · σ′(⟨w(T2,s)

j,r , ξ2,i⟩) · jy2,iξ2,i

+
η2

(n∗
1 + n2)m

t−1∑
s=0

n∗
1∑

i=1

(−ℓ
′(T2,s)
1,i ) · σ′(⟨w(T2,s)

j,r , y1,iµ1⟩) · jµ1

+
η2

(n∗
1 + n2)m

t−1∑
s=0

n2∑
i=1

(−ℓ
′(T2,s)
2,i ) · σ′(⟨w(T2,s)

j,r , y2,iµ2⟩) · jµ2 (H.10)

By doing a vector inner product on each side of the equation, we can get the Lemma H.2. This completes the proof.

We define the coefficients γ(µ1)
(T2,t)
j,r , γ(µ2)

(T2,t)
j,r , ρ(µ1)

(T2,t)
j,r,i , ρ(µ2)

(T2,t)
j,r,i as follows, which satisfy the following iterative

equations:

γ(µ1)
(T2,0)
j,r , γ(µ2)

(T2,0)
j,r , ρ(µ1)

(T2,0)
j,r,i , ρ(µ2)

(T2,0)
j,r,i = 0
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γ(µ1)
(T2,t+1)
j,r = γ(µ1)

(T2,t)
j,r +

η2
(n∗

1 + n2)m

n∗
1∑

i=1

(−ℓ
′(T2,t)
1,i ) · σ′(⟨w(T2,t)

j,r , y1,iµ1⟩) · ∥µ1∥22,

γ(µ2)
(T2,t+1)
j,r = γ(µ2)

(T2,t)
j,r +

η2
(n∗

1 + n2)m

n2∑
i=1

(−ℓ
′(T2,t)
2,i ) · σ′(⟨w(T2,t)

j,r , y2,iµ2⟩) · ∥µ2∥22,

ρ(µ1)
(T2,t+1)
j,r,i = ρ(µ1)

(T2,t)
j,r,i +

η2
(n∗

1 + n2)m
(−ℓ

′(T2,t)
1,i )σ′(⟨w(T2,t)

j,r , ξ1,i⟩)∥ξ1,i∥22jy1,i,

ρ(µ2)
(T2,t+1)
j,r,i = ρ(µ2)

(T2,t)
j,r,i +

η2
(n∗

1 + n2)m
(−ℓ

′(T2,t)
2,i )σ′(⟨w(T2,t)

j,r , ξ2,i⟩)∥ξ2,i∥22jy2,i.

Lemma H.3. By the definition of coefficients γ(µ1)
(T2,t)
j,r , γ(µ2)

(T2,t)
j,r , ρ(µ1)

(T2,t)
j,r,i , ρ(µ2)

(T2,t)
j,r,i as above, We can simplify

the equation (H.10)

w
(T2,t)
j,r = w

(T2,0)
j,r + j · γ(µ1)

(T2,t)
j,r · ∥µ1∥−2

2 µ1 + j · γ(µ2)
(T2,t)
j,r · ∥µ2∥−2

2 µ2

+

n∗
1∑

i=1

ρ(µ1)
(T2,t)
j,r,i ∥ξ1,i∥−2

2 ξ1,i +

n2∑
i=1

ρ(µ2)
(T2,t)
j,r,i ∥ξ2,i∥−2

2 ξ2,i. (H.11)

proof of Lemma H.3. According to the equation, we can easily calculate that

γ(µ1)
(T2,t)
j,r = γ(µ1)

(T2,0)
j,r +

η2
(n∗

1 + n2)m

t−1∑
s=0

n∗
1∑

i=1

(−ℓ
′(T2,s)
1,i ) · σ′(⟨w(T2,s)

j,r , y1,iµ1⟩) · ∥µ1∥22,

γ(µ2)
(T2,t)
j,r = γ(µ2)

(T2,0)
j,r +

η2
(n∗

1 + n2)m

t−1∑
s=0

n2∑
i=1

(−ℓ
′(T2,s)
2,i ) · σ′(⟨w(T2,s)

j,r , y2,iµ2⟩) · ∥µ2∥22,

ρ(µ1)
(T2,t)
j,r,i = ρ(µ1)

(T2,0)
j,r,i +

η2
(n∗

1 + n2)m

t−1∑
s=0

(−ℓ
′(T2,s)
1,i )σ′(⟨w(T2,s)

j,r , ξ1,i⟩)∥ξ1,i∥22jy1,i,

ρ(µ2)
(T2,t)
j,r,i = ρ(µ2)

(T2,0)
j,r,i +

η2
(n∗

1 + n2)m

t−1∑
s=0

(−ℓ
′(T2,s)
2,i )σ′(⟨w(T2,s)

j,r , ξ2,i⟩)∥ξ2,i∥22jy2,i.

Bringing these equations into equation (H.10) completes the proof. Through the action of these four coefficients, we have
succeeded in simplifying the equation (H.10). Further, the inner product update rule can also be simplified, they can be
rewritten as

⟨w(T2,t)
j,r , jµ1⟩ = ⟨w(T2,0)

j,r , jµ1⟩+ γ(µ1)
(T2,t)
j,r − λ

∥µ1∥2
∥µ2∥2

γ(µ2)
(T2,t)
j,r (H.12)

⟨w(T2,t)
j,r , jµ2⟩ = ⟨w(T2,0)

j,r , jµ2⟩+ γ(µ2)
(T2,t)
j,r − λ

∥µ2∥2
∥µ1∥2

γ(µ1)
(T2,t)
j,r (H.13)

⟨w(T2,t)
j,r , ξ1,i⟩ = ⟨w(T2,0)

j,r , ξ1,i⟩+ ρ(µ1)
(T2,t)
j,r,i +

∑
i′ ̸=i

ρ(µ1)
(T2,t)
j,r,i′ ∥ξ1,i′∥−2

2 ⟨ξ1,i′ , ξ1,i⟩+
n2∑
i=1

ρ(µ2)
(T2,t)
j,r,i ∥ξ2,i∥−2

2 ⟨ξ2,i, ξ1,i⟩

⟨w(T2,t)
j,r , ξ2,i⟩ = ⟨w(T2,0)

j,r , ξ2,i⟩+ ρ(µ2)
(T2,t)
j,r,i +

n∗
1∑

i=1

ρ(µ1)
(T2,t)
j,r,i ∥ξ1,i∥−2

2 ⟨ξ1,i, ξ2,i⟩+
∑
i′ ̸=i

ρ(µ2)
(T2,t)
j,r,i′ ∥ξ2,i′∥−2

2 ⟨ξ2,i′ , ξ2,i⟩

When performing training for task T1, let’s assume that we plan to stop training when the training loss reaches ϵ. Then at the
end of the task T1 training, we have that

LS1
(W (T1,tend)) =

1

n1

n1∑
i=1

ℓ(y1,if(W
(T1,tend), x1,i))
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=
1

n1

n1∑
i=1

log(1 + e
− 1

mσ(⟨w(T1,tend)

y1,i,r
∗ ,y1,iµ1⟩)[1+o(1)]

)

∈ [
ϵ

C0
, ϵ], (H.14)

where C0 is a positive constant and C0 > 1. Suppose the maximum value ⟨w(T1,tend)
j,r∗ , jµ1⟩ has reached Λmax, then we can

get

1

n1

n1∑
i=1

log(1 + e−
1
mσ(Λmax)[1+o(1)]) ∈ [

ϵ

C0
, ϵ]

⇒Λmax =
[
m log(

1

eϵ − 1
)
] 1

q

[1 + o(1)] =
[
m log(

1

ϵ
)
] 1

q

[1 + o(1)], (H.15)

where the last equation is due to the fact that eϵ − 1 = ϵ when ϵ converges to 0.

Next we will give a lemma, which will be used in the proof that follows.

Lemma H.4. Under Condition 3.1, if γ(µ1)
(T2,t)
j,r = λ∥µ1∥2

∥µ2∥2
γ(µ2)

(T2,t)
j,r , when t tends to infinity, for r ∈ Ij,2, we have

• maxr γ(µ2)
(T2,t)
j,r → +∞ for j ∈ {±1}.

• γ(µ2)
(T2,t)
j,r = o(γ(µ2)

(T2,t)
j,r∗ ), where r∗ = argmax γ(µ2)

(T2,t)
j,r , r ̸= r∗ and j ∈ {±1}.

• γ(µ2)
(T2,t)
1,r = γ(µ2)

(T2,t)
−1,r [1 + o(1)].

Proof of Lemma H.4. Recall the update rule of γ(µ2)
(T2,t)
j,r , we can get

γ(µ2)
(T2,t+1)
j,r = γ(µ2)

(T2,t)
j,r +

η2
(n∗

1 + n2)m

∑
y2,i=j

(−ℓ
′(T2,t)
2,i ) · σ′(⟨w(T2,0)

j,r , jµ2⟩+ (1− λ2)γ(µ2)
(T2,t)
j,r ) · ∥µ2∥22.

Similar to the analysis of the max⟨w(T2,t)
j,r , jµ1⟩ in the previous section G, using the same proof method, we can prove that

when t tends to infinity

• maxr γ(µ2)
(T2,t)
j,r → +∞ for j ∈ {±1}.

• γ(µ2)
(T2,t)
j,r = o(γ(µ2)

(T2,t)
j,r∗ ), where r∗ = argmax γ(µ2)

(T2,t)
j,r , r ̸= r∗ and j ∈ {±1}.

• γ(µ2)
(T2,t)
1,r = γ(µ2)

(T2,t)
−1,r [1 + o(1)].

Here the proof completes.

Proposition H.5. Under Condition 3.1, for 0 ≤ t ≤ T ∗
2 , we have that

0 ≤ γ(µ1)
(T2,t)
j,r , γ(µ2)

(T2,t)
j,r ≤ α2 (H.16)

for all j ∈ {±1} and r ∈ [m], and

0 ≤ |ρ(µ1)
(T2,t)
j,r,i |, |ρ(µ2)

(T2,t)
j,r,i | ≤ α2 (H.17)

for all j ∈ {±1}, r ∈ [m], i ∈ [n∗
1] and i′ ∈ [n2].

We will use induction to prove Proposition H.5. We will elaborate on the following theorems, which will be used to prove
Proposition H.5.

43



Understanding the Forgetting of (Replay-based) Continual Learning via Feature Learning: Angle Matters

Lemma H.6. For any t ≥ 0, we have that

⟨w(T2,t)
j,r , ξ1,i⟩ ≤ ⟨w(T2,0)

j,r , ξ1,i⟩+ 4n∗
1

√
log(4n2

1/δ)

d
α2 + 4n2

σp1

σp2

√
log(4n2

2/δ)

d
α2,

⟨w(T2,t)
j,r , ξ2,i⟩ ≤ ⟨w(T2,0)

j,r , ξ2,i⟩+ 4n∗
1

σp2

σp1

√
log(4n2

1/δ)

d
α2 + 4n2

√
log(4n2

2/δ)

d
α2,

for any r ∈ [m] and y1,i, y2,i = −j.

Proof of Lemma H.6. Recall the update rule for ⟨w(T2,t)
j,r , ξ1,i⟩:

⟨w(T2,t)
j,r , ξ1,i⟩ = ⟨w(T2,0)

j,r , ξ1,i⟩+ ρ(µ1)
(T2,t)
j,r,i +

∑
i′ ̸=i

ρ(µ1)
(T2,t)
j,r,i′ ∥ξ1,i′∥−2

2 ⟨ξ1,i′ , ξ1,i⟩+
n2∑
i=1

ρ(µ2)
(T2,t)
j,r,i ∥ξ2,i∥−2

2 ⟨ξ2,i, ξ1,i⟩,

so we have

⟨w(T2,t)
j,r , ξ1,i⟩ ≤ ⟨w(T2,0)

j,r , ξ1,i⟩+
∑
i′ ̸=i

ρ(µ1)
(T2,t)
j,r,i′ ∥ξ1,i′∥−2

2 ⟨ξ1,i′ , ξ1,i⟩+
n2∑
i=1

ρ(µ2)
(T2,t)
j,r,i ∥ξ2,i∥−2

2 ⟨ξ2,i, ξ1,i⟩

≤ ⟨w(T2,0)
j,r , ξ1,i⟩+ 4

√
log(4n2

1/δ)

d

∑
i′ ̸=i

ρ(µ1)
(T2,t)
j,r,i′ + 4

σp1

σp2

√
log(4n2

2/δ)

d

n2∑
i=1

ρ(µ2)
(T2,t)
j,r,i

≤ ⟨w(T2,0)
j,r , ξ1,i⟩+ 4n∗

1

√
log(4n2

1/δ)

d
α2 + 4n2

σp1

σp2

√
log(4n2

2/δ)

d
α2,

where the first inequality is by that ρ(µ1)
(T2,t)
j,r,i ≤ 0 when yi,i = −j, the second inequality follows by Lemma C.1 and the

last inequality is due to our induction hypothesis. Similarly, we can prove that

⟨w(T2,t)
j,r , ξ2,i⟩ ≤ ⟨w(T2,0)

j,r , ξ2,i⟩+ 4n∗
1

σp2

σp1

√
log(4n2

1/δ)

d
α2 + 4n2

√
log(4n2

2/δ)

d
α2,

which completes the proof.

Lemma H.7. Under Condition 3.1, for 0 ≤ t ≤ T ∗
2 , we have

Fj(W
(T2,t)
j ,x2,i) ≤ 2q+1(λ

∥µ2∥2
∥µ1∥2

α)q,

for j = −y2,i, where the constant α is defined in Cao et al. (2022)

Proof of Lemma H.7. Firstly, we know that γ(µ1)
(T1,tend)
j,r ≤ α, which is proved in Cao et al. (2022) So when y2,i = −j,

we calculate ⟨w(T2,0)
j,r ,−jµ2⟩ as follows:

⟨w(T2,0)
j,r ,−jµ2⟩ = ⟨w(T1,0)

j,r ,−jµ2⟩+ λ
∥µ2∥2
∥µ1∥2

γ(µ1)
(T1,tend)
j,r ≤ 2λ

∥µ2∥2
∥µ1∥2

α, (H.18)

where the inequality is due to Lemma C.2 that ⟨w(T1,0)
j,r ,−jµ2⟩ ≤

√
2 log(8m/δ) · σ0∥µ2∥2 ≤ λ∥µ2∥2

∥µ1∥2
α. We also have

⟨w(T2,0)
j,r , ξ2,i⟩ = ⟨w(T1,0)

j,r , ξ2,i⟩+
n1∑
i=1

ρ
(T1,t)
j,r,i ∥ξ1,i∥−2

2 · ⟨ξ1,i, ξ2,i⟩

≤ 2
√
log(8mn2/δ) · σ0σp1

√
d+ 4n1

σp2

σp1

√
log(4n2

1/δ)

d
α
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≤ 2λ
∥µ2∥2
∥µ1∥2

α, (H.19)

where the second inequality is by Lemma C.1 and Lemma C.2, the third inequality is due to Condition 3.1 that σ0 ≤
Õ(m−[2/(q−2)]∨1 ·max{n1, n2}−[1/(q−2)]∨1) ·min{(σp1

√
d)−1, ∥µ1∥−1

2 , (σp2

√
d)−1, ∥µ2∥−1

2 } and d = Ω̃(m2∨[4/(q−2)] ·
max{n1, n2}4∨[(2q−2)/(q−2)]). Then we can get

Fj(W
(T2,t)
j ,x2,i) =

1

m

m∑
r=1

[σ(⟨w(T2,t)
j,r ,−jµ2⟩) + σ(⟨w(T2,t)

j,r , ξ2,i⟩)]

≤ 2q+1 max
j,r,i

{
|⟨w(T2,0)

j,r ,−jµ2⟩|, |⟨w(T2,0)
j,r , ξ2,i⟩|, 4n∗

1

σp2

σp1

√
log(4n2

1/δ)

d
α2 + 4n2

√
log(4n2

2/δ)

d
α2

}q

≤ 22q+1(λ
∥µ2∥2
∥µ1∥2

α)q,

where the first inequality is due to (H.18) and (H.19), and the last inequality is by Condition 3.1, which completes the
proof.

Then we will prove Proposition H.5.

Proof of Proposition H.5. When y2,i = j, denote tj,r,i the last time that ρ(µ2)
(T2,t)
j,r,i ≤ 0.5α2, and recall the update rule for

ρ(µ2)
(T2,t)
j,r,i , we have that

ρ(µ2)
(T2,T̃ )
j,r,i ≤ ρ(µ2)

(T2,tj,r,i)
j,r,i +

η2
(n∗

1 + n2)m
· (−ℓ

(T2,tj,r,i)
2,i′ ) · σ′(⟨w(T2,tj,r,i)

j,r , ξ2,i⟩)∥ξ2,i∥22︸ ︷︷ ︸
I1

+
∑

tj,r,i<t<T

η2
(n∗

1 + n2)m
· (−ℓ

(T2,t)
2,i′ ) · σ′(⟨w(T2,t)

j,r , ξ2,i⟩)∥ξ2i∥22︸ ︷︷ ︸
I2

, (H.20)

for any T̃ ≤ T ∗
2 . Then we will give I1 an upper bound:

I1 ≤ η2∥ξ2,i∥22
(n∗

1 + n2)m
σ′(|⟨w(T2,0)

j,r , ξ2,i⟩|+ ρ(µ2)
(T2,tj,r,i)
j,r,i + 4n∗

1

σp2

σp1

√
log(4n2

1/δ)

d
α2 + 4n2

√
log(4n2

2/δ)

d
α2)

≤ 2qqη2σ
2
p2
d

(n∗
1 + n2)m

αq−1
2

≤ 0.25α2,

where the second inequality is due to that |⟨w(T2,0)
j,r , ξ2,i⟩| ≤ 0.1α2, ρ(µ2)

(T2,tj,r,i)
j,r,i ≤ 0.5α2 and 4n∗

1
σp2

σp1

√
log(4n2

1/δ)
d α2 +

4n2

√
log(4n2

2/δ)
d α2 ≤ 0.1α2, and the last inequality follows by Condition 3.1 that η2 ≤ (n1+n2)m

8qσ2
p2

dαq−2
2

. When the time t

reaches tj,r,i, we can lower bound ⟨w(T2,t)
j,r , ξ2,i⟩ as follows,

⟨w(T2,t)
j,r , ξ2,i⟩ ≥ ρ(µ2)

(T2,tj,r,i)
j,r,i − |⟨w(T2,0)

j,r , ξ2,i⟩| − 4n∗
1
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d
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√
log(4n2
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d
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≥ 0.5α2 − 0.1α2 − 0.1α2

≥ 0.25α2,

where the second inequality is due to ρ(µ2)
(T2,tj,r,i)
j,r,i ≥ 0.5α2, |⟨w(T2,0)

j,r , ξ2,i⟩| ≤ 0.1α and 4n∗
1
σp2

σp1

√
log(4n2

1/δ)
d α2 +

4n2

√
log(4n2

2/δ)
d α2 ≤ 0.1α2. Then we will upper bound ⟨w(T2,t)

j,r , ξ2,i⟩ in the same way,

⟨w(T2,t)
j,r , ξ2,i⟩ ≤ ρ(µ2)

(T2,t)
j,r,i + ⟨w(T2,0)

j,r , ξ2,i⟩+ 4n∗
1

σp2

σp1

√
log(4n2

1/δ)

d
α2 + 4n2

√
log(4n2

2/δ)

d
α2
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≤ α2 + 0.1α2 + 0.1α2

≤ 2α2,

where the second inequality is by the induction hypothesis ρ(µ2)
(T2,t)
j,r,i ≤ α2 and ⟨w(T2,0)

j,r , ξ2,i⟩, 4n∗
1
σp2

σp1

√
log(4n2

1/δ)
d α2 +

4n2

√
log(4n2

2/δ)
d α2 ≤ 0.1α2.Then we can plug the lower bound and upper bound of ⟨w(T2,t)

j,r , ξ2,i⟩ into I2:

I2 ≤
∑

tj,r,i<t<T

η2
(n∗

1 + n2)m
exp{−σ(⟨w(T2,t)

j,r , ξ2,i⟩) + 22q+1(λ
∥µ2∥2
∥µ1∥2

α)q} · σ′(2α2)∥ξ2i∥22

≤ T ∗
2

2qqη2σ
2
p2
d

(n∗
1 + n2)m

exp{−αq
2/4

q + 22q+1(λ
∥µ2∥2
∥µ1∥2

α)q}αq−1
2

≤ 0.25T ∗
2 exp{−αq

2/2
2q+1}α2

≤ 0.25T ∗
2 exp{−(log T ∗

2 )
q}α2

≤ 0.25α2,

where the second inequality is by Lemma C.1, the third inequality follows by the definition of α2 = max{32(λ∥µ2∥2

∥µ1∥2
+

1)α, 6 log(T ∗
2 )} and Condition 3.1 on η2, the fourth inequality is due to α2 ≥ 6 log(T ∗

2 ) and the last inequality follows
by the fact that (log T ∗

2 )
q > log T ∗

2 . When y2,i = −j, we can use the similar method in Cao et al. (2022) to prove that
ρ(µ2)

(T2,t)
j,r,i ≥ α2, so as to γ(µ1)

(T2,t)
j,r , γ(µ2)

(T2,t)
j,r and |ρ(µ1)

(T2,t)
j,r,i | for all j ∈ {±1}. Here we complete the proof of

Proposition H.5.

H.1. Noise Analysis

In this subsection, we will give an upper bound for the noise inner product ⟨w(T2,t)
j,r , ξ1,i⟩ and ⟨w(T2,t)

j,r , ξ2,i⟩. At the end of

the task T1 training, we get an upper bound for the maxj,r,i |ρ(T2,t)
j,r,i |:

max
j,r,i

|ρ(µk)
(T2,t)
j,r,ik

| ≤ σ0σpk

√
d,

for all j ∈ {±1}, r ∈ [m], ik ∈ [nk] and k ∈ {1, 2}. We have a similar conclusion when training the experience replay
method.

Lemma H.8. There exists a time T+
1 =

22−q(n∗
1+n2)mσ2−q

0 max{σ−q
p1

,σ−q
p2

}d−q/2

3qη2q[
√

log (8m(n1+n2)/δ)]q−1
, such that

|⟨w(T2,t)
j,r , ξ1,i⟩|, |⟨w(T2,t)

j,r , ξ2,i⟩| ≤ 6
√
log (8m(n1 + n2)/δ) · σ0σp

√
d

for any j ∈ ±1, r ∈ [m], i ∈ [n1] and t ≤ T ∗
1

proof of Lemma H.8. This lemma requires mathematical induction to prove. When the task T1 training ends, we have

|⟨w(T2,0)
j,r , ξ1,i⟩| ≤ |⟨w(T1,0)

j,r , ξ1,i⟩|+max
j,r,i

|ρ(T1,tend)
j,r,i |+

∑
i′ ̸=i

|ρ(T1,tend)
j,r,i | · ∥ξ1,i′∥22 · ⟨ξ1,i′ , ξ1,i⟩|

≤ |⟨w(T1,0)
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j,r,i |+ 4n1

√
log(4n2

1/δ)

d
max
j,r,i
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j,r,i |

≤ 2
√

log (8mn1/δ) · σ0σp1

√
d+ σ0σp1

√
d+ 4n1

√
log(4n2

1/δ)

d
σ0σp1

√
d

≤ 4
√
log (8mn1/δ) · σ0σp1

√
d, (H.21)

where the first inequality is by the absolute value inequality, the second inequality is due to Lemma C.1 and Lemma C.2, the
third inequality follows by maxj,r,i |ρ(T1,tend)

j,r,i | ≤ σ0σp1

√
d proved in Cao et al. (2022), and the last inequality is by the

Condition 3.1 that d ≥ 1024 log(4max{n2
1, n

2
2}/δ)α2

2 max{n2
1, n

2
2}max{σ2

p1

σ2
p2

,
σ2
p2

σ2
p1

}.
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Recall the rules for updating the inner product of the noise vector for the empirical replay method

⟨w(T2,t)
j,r , ξ1,i⟩ = ⟨w(T2,0)

j,r , ξ1,i⟩+
n∗
1∑

i′=1

ρ(µ1)
(T2,t)
j,r,i′ ∥ξ1,i′∥−2

2 ⟨ξ1,i′ , ξ1,i⟩+
n2∑
i=1

ρ(µ2)
(T2,t)
j,r,i ∥ξ2,i∥−2

2 ⟨ξ2,i, ξ1,i⟩.

From the absolute inequality we can get

|⟨w(T2,t)
j,r , ξ1,i⟩| ≤ |⟨w(T2,0)

j,r , ξ1,i⟩|+ |ρ(µ1)
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j,r,i |
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|ρ(µ2)
(T2,t)
j,r,i |∥ξ2,i∥−2

2 |⟨ξ2,i, ξ1,i⟩|. (H.22)

Then we can give |ρ(µ1)
(T2,t)
j,r,i | an upper bound. Firstly we have that

|ρ(µ1)
(T2,t+1)
j,r,i | ≤ |ρ(µ1)
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where the third inequality is by (H.22) and Lemma C.1, and the fourth inequality follows by the induction hypothesis that
ρ(µ1)

(T2,t)
j,r,i ≤ σ0σp1

√
d and Lemma C.1 and Lemma C.2, and the last inequality is due to Condition 3.1 on d, specifically
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When t ≤ T+
1 , we have

|ρ(µ1)
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where the last inequality is by that t ≤ T+
1 , and the last inequality is due to the definition of T+

1 .

Based on the above analysis, we can give ⟨w(t)
j,r, ξ1,i′⟩ an upper bound

|⟨w(T2,t)
j,r , ξ1,i⟩| ≤ 5

√
log (8m(n1 + n2)/δ) · σ0σp1

√
d. (H.23)
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In the same way, we can also give ⟨w(T2,t)
j,r , ξ2,i⟩ an upper bound. We have

|⟨w(T2,0)
j,r , ξ2,i⟩| ≤ |⟨w(T1,0)
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where the first inequality is by the absolute value inequality, the second inequality is due to Lemma C.1 and Lemma C.2, the
third inequality follows by maxj,r,i |ρ(T1,tend)

j,r,i | ≤ σ0σp1

√
d proved in Cao et al. (2022), and the last inequality is by the

Condition 3.1 that d ≥ 1024 log(4max{n2
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}. Further we have
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which can be proved by the update rule of ⟨w(T2,t)
j,r , ξ2,i⟩. Then we can get

|ρ(µ2)
(T2,t+1)
j,r,i | ≤ |ρ(µ2)

(T2,t)
j,r,i |+ η2

(n∗
1 + n2)m

(−ℓ
′(T2,t)
2,i )σ′(⟨w(T2,t)

j,r , ξ2,i⟩)∥ξ2,i∥22

≤ |ρ(µ2)
(T2,t)
j,r,i |+ η2q

(n∗
1 + n2)m

(⟨w(T2,t)
j,r , ξ2,i⟩)∥ξ2,i∥22

≤ |ρ(µ2)
(T2,t)
j,r,i |+ 3η2qσ

2
p2
d

2(n∗
1 + n2)m

(|⟨w(T2,0)
j,r , ξ2,i⟩|+ |ρ(µ2)

(T2,t)
j,r,i |

+

n∗
1∑

i′=1

|ρ(µ1)
(T2,t)
j,r,i′ |∥ξ1,i′∥−2

2 |⟨ξ1,i′ , ξ2,i⟩|+
∑
i′ ̸=i

|ρ(µ2)
(T2,t)
j,r,i′ |∥ξ2,i′∥−2

2 |⟨ξ2,i′ , ξ2,i⟩|)q−1

≤ |ρ(µ2)
(T2,t)
j,r,i |+ 3η2qσ

2
p2
d

2(n∗
1 + n2)m

[4
√

log (8mmax{n1, n2}/δ) · σ0σp2

√
d

+ σ0σp2

√
d+ 4n∗

1

σp2

σp1

√
log(4n2

1/δ)

d
σ0σp1

√
d+ 4n2

√
log(4n2

2/δ)

d
σ0σp2

√
d]q−1

≤ |ρ(µ1)
(T2,t)
j,r,i |+ 3η2qσ

2
pd

2(n∗
1 + n2)m

[5
√

log (8m(n1 + n2)/δ) · σ0σp2

√
d]q−1,

where the third inequality is by (H.24) and Lemma C.1, and the fourth inequality follows by the induction hypothesis that
ρ(µ1)

(T2,t)
j,r,i ≤ σ0σp1

√
d and Lemma C.1 and Lemma C.2, and the last inequality is due to Condition 3.1 on d. Lastly, we

have
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≤ σ0σp2

√
d,

where the last inequality is by that t ≤ T+
1 , and the last inequality is due to the definition of T+

1 . Then we can get that

|⟨w(T2,t)
j,r , ξ2,i⟩| ≤ 5

√
log (8m(n1 + n2)/δ) · σ0σp2

√
d. (H.25)

Here completes the proof.

We have obtained the upper bounds of ⟨w(T2,t)
j,r , ξ1,i⟩ and ⟨w(T2,t)

j,r , ξ2,i⟩, which we can mark as Cξ. The formula to express
this meaning is

Cξ = 6
√

log (8m(n1 + n2)/δ) · σ0 max{σp1
, σp2

}
√
d.

Recall the definition in the subsection F.1, we categorize the neurons w
(T1,0)
j,r into three sets: Ij,1 = {r ∈ [m] :

⟨w(T1,0)
j,r , jµ1⟩ > 0}, Icj,1 = {r ∈ [m] : ⟨w(T1,0)

j,r , jµ1⟩ ≤ 0}, Ij,2 = {r ∈ [m] : ⟨w(T1,0)
j,r , jµ1⟩ ≤ 0} ∩ {r ∈ [m] :

⟨w(T1,0)
j,r , jµ⊥

1 ⟩ > 0} and Ij,3 = {r ∈ [m] : ⟨w(T1,0)
j,r , jµ1⟩ ≤ 0} ∩ {r ∈ [m] : ⟨w(T1,0)

j,r , jµ⊥
1 ⟩ ≤ 0} for j ∈ {±1}. Before

doing the next analysis of the changes in the following three neurons, we first want to show that at within a period of time
from the start of training for task T2, the value of −ℓ

′(T2,t)
1,i is very small. We have that

−ℓ
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≤ ϵC̃ , (H.26)

for j = y1,i,the equation is the specific formula of −ℓ
′(T2,t)
1,i , the first inequality is by the upper bound of ⟨w(T2,t)

j,r , ξ1,i⟩
and ⟨w(T2,t)

j,r , ξ2,i⟩ proved before, the third inequality follows by the definition of Λmax, and the last inequality is by H.1.
The proof of upper bounds for derivatives is based primarily on induction and will be addressed in subsequent proofs for
correctness and specific details.

H.2. The First Type of Neuron

The first class of neurons is those belonging to the set Ij,1, which is expressed by the formula as follows:

⟨w(T1,0)
j,r , jµ1⟩ > 0.

By the previous analysis, we can get that

⟨w(T2,0)
j,r , jµ1⟩ > 0, ⟨w(T2,0)

j,r , jµ2⟩ < 0.

Then, we will first study the maximum value of the inner product maxr⟨w(T1,tend)
j,r , jµ1⟩ of this set, which is denoted as

⟨w(T1,tend)
j,r∗ , jµ1⟩. Then we can get the value of the inner product ⟨w(T1,tend)

j,r∗ , jµ2⟩.
Lemma H.9.

⟨w(T1,tend)
j,r , jµ2⟩ = −λΛmax[1 + o(1)],

for j ∈ {±1}.

proof of Lemma H.9. We know that for the maximum inner product,

⟨w(T1,tend)
j,r∗ , jµ1⟩ = max

r
⟨w(T1,tend)

j,r , jµ1⟩ = Λmax > 0, (H.27)
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And as for task T1, recall that ⟨w(T1,t)
j,r , jµ1⟩ = ⟨w(T1,0)

j,r , jµ1⟩+ γ(µ1)
(T1,t)
j,r , so we have
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]

= Λmax[1 + o(1)],

where the last equation is by that maxr⟨w(T1,0)
j,r , jµ1⟩ is a definite constant.

Then, we can do a calculation of the value of the inner product ⟨w(T1,tend)
j,r∗ , jµ2⟩:

⟨w(T1,tend)
j,r∗ , jµ2⟩ = max

r
⟨w(T1,tend)

j,r , jµ2⟩

= max
r

⟨w(T1,0)
j,r , jµ2⟩+ γ(µ1)

(T1,tend)
j,r ∥µ∥−2

2 ⟨µ1,µ2⟩

= max
r

⟨w(T1,0)
j,r , jµ2⟩ − λ

∥µ2∥2
∥µ1∥2

γ(µ1)
(T1,tend)
j,r

= −λ
∥µ2∥2
∥µ1∥2

γ(µ1)
(T1,tend)
j,r · [1 +

maxr⟨w(T1,0)
j,r , jµ2⟩

−λ∥µ2∥2

∥µ1∥2
γ(µ1)

(T1,tend)
j,r

]

= −λ
∥µ2∥2
∥µ1∥2

Λmax[1 + o(1)],

this completes the proof.

Lemma H.10. There exists time

T+
2 =

m
1
2q (n∗

1 + n2)ϵ
−C̃/2

3qη2n∗
1∥µ1∥22

(H.28)

such that

• ⟨w(T2,t)
j,r∗ , jµ1⟩ = (1− λ2)Λmax[1 + o(1)],

• ⟨w(T2,t)
j,r∗ , jµ2⟩ = o(1),

for j ∈ {±1} and 0 ≤ t ≤ T+
2 .

proof of Lemma H.10. In this case, the update method of the γ(µ1)
(T2,t)
j,r , γ(µ2)

(T2,t)
j,r is as follows

γ(µ1)
(T2,t+1)
j,r = γ(µ1)

(T2,t)
j,r

+
η2

(n∗
1 + n2)m

∑
y1,i=j

(−ℓ
′(T2,t)
1,i ) · σ′(Λmax + γ(µ1)

(T2,t)
j,r − λ

∥µ1∥2
∥µ2∥2

γ(µ2)
(T2,t)
j,r ) · ∥µ1∥22,

γ(µ2)
(T2,t+1)
j,r = γ(µ2)

(T2,t)
j,r

+
η2

(n∗
1 + n2)m

∑
y2,i=−j

(−ℓ
′(T2,t)
2,i ) · σ′(λ

∥µ2∥2
∥µ1∥2

Λmax[1 + o(1)]− γ(µ2)
(T2,t)
j,r + λ

∥µ2∥2
∥µ1∥2

γ(µ1)
(T2,t)
j,r ) · ∥µ2∥22.

Firstly, we will use induction to show that when t ≤ T+
2 , γ(µ1)

(T2,t)
j,r has a very little change

γ(µ1)
(T2,T̃ )
j,r ≤ m− 1

2q .
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By the definition, we know that γ(µ1)
(T2,0)
j,r = 0. According to the inductive hypothesis (H.26), we can get an upper bound

for −ℓ
′(T2,t)
1,i . Thus, plugging the upper bound of −ℓ

′(T2,t)
1,i into γ(µ1)

(T2,t+1)
j,r update rule gives

γ(µ1)
(T2,t+1)
j,r = γ(µ1)

(T2,t)
j,r +

η2∥µ1∥22
(n∗

1 + n2)m

n∗
1∑

yi=j

(−ℓ
′(T2,t)
1,i )σ′(⟨w(T2,0)

j,r , jµ1⟩+ γ(µ1)
(T2,t)
j,r − λ

∥µ1∥2
∥µ2∥2

γ(µ2)
(T2,t)
j,r )

≤ γ(µ1)
(T2,t)
j,r +

3η2∥µ1∥22qn∗
1

4(n∗
1 + n2)m

ϵC̃(Λmax + γ(µ1)
(T2,t)
j,r )q−1

≤ γ(µ1)
(T2,t)
j,r +

3η2∥µ1∥22qn∗
1

2(n∗
1 + n2)m

ϵC̃Λq−1
max

≤ γ(µ1)
(T2,t)
j,r +

3η2∥µ1∥22qn∗
1

(n∗
1 + n2)m1/q

ϵC̃ log(1/ϵ)1−1/q, (H.29)

where the first inequality is by the upper bound of −ℓ
′(T2,t)
1,i , and the last inequality is by the induction. For any 0 ≤ T̃ ≤ T+

2 ,
taking a telescoping sum over t = 0, 1, . . . , T̃ − 1 then gives

γ(µ1)
(T2,T̃ )
j,r ≤ γ(µ1)

(T2,0)
j,r +

T̃−1∑
t=0

3η2∥µ1∥22qn∗
1

(n∗
1 + n2)m1/q

ϵC̃ log(1/ϵ)1−1/q

≤ γ(µ1)
(0)
j,r + T̃

3η2∥µ1∥22qn∗
1

(n∗
1 + n2)m1/q

ϵC̃ log(1/ϵ)1−1/q

≤ T+
2

3η2∥µ1∥22qn∗
1

(n∗
1 + n2)m1/q

ϵC̃/2

≤ m− 1
2q ,

where the third inequality follows by the T̃ ≤ T+
2 in our induction hypothesis and ϵC̃/2 log(1/ϵ)1−1/q ≤ 1 for 1

ϵ ≥
exp{C̃eC̃}, and the last inequality is due to the definition of T+

2 .

Secondly, we are going to analyze update changes of γ(µ2)
(T2,t)
j,r .

Lemma H.11. Under Condition 3.1, we suppose γ(µ2)
(T2,t)
j,r∗ ≤ m1/q

1−λ2 . Then there exists a time

T+
3 =

4(n∗
1 + n2)m

q log(λ∥µ2∥2

∥µ1∥2
mΛmax)

qn2η2C ′
2∥µ2∥22

such that ⟨w(T2,tend)
j,r , jµ2⟩ = o(1) for all r ∈ Ij,1.

Proof of Lemma H.11. When t ≤ T ∗, we have

−ℓ
′(T2,t)
2,i = 1/(1 + e

1
m

∑
r(σ(⟨w

(T2,t)
j,r ,y2,iµ2⟩)+σ(⟨w(T2,t)

j,r ,ξ2,i⟩))− 1
m

∑
r(σ(⟨w

(T2,t)
−j,r ,−y2,iµ1⟩)+σ(⟨w(T2,t)

−j,r ,ξ2,i⟩)))

≥ 1/(1 + e
1
mσ(⟨w(T2,t)

j,r∗ ,jµ2⟩))[1 + o(1)]

≥ 1/(1 + e
1
mσ((1−λ2)γ(µ2)

(T2,t)

j,r∗ ))[1 + o(1)]

≥ 1

2(1 + e)
= C ′

2,

where the second inequality is by Lemma H.4, and we denote 1
2(1+e) by C ′

2. Within the T+
2 , γ(µ1)

(T2,t)
j,r is no more than

m− 1
2q , so we have

γ(µ2)
(T2,t+1)
j,r = γ(µ2)

(T2,t)
j,r +

η2∥µ2∥22
(n∗

1 + n2)m

∑
y2,i=−j

(−ℓ
′(T2,t)
2,i ) · σ′(λ

∥µ2∥2
∥µ1∥2

(Λmax + γ(µ1)
(T2,t)
j,r )− γ(µ2)

(T2,t)
j,r )
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= γ(µ2)
(T2,t)
j,r +

η2
(n∗

1 + n2)m

∑
y2,i=−j

(−ℓ
′(T2,t)
2,i ) · σ′(λ

∥µ2∥2
∥µ1∥2

Λmax[1 + o(1)]− γ(µ2)
(T2,t)
j,r ) · ∥µ2∥22.

From this equation, we can see that γ(µ2)
(T2,t)
j,r is an increasing sequence. In order to simplify the form, we order

λ∥µ2∥2

∥µ1∥2
Λmax[1 + o(1)]− γ(µ2)

(T2,t)
j,r = at, so that

at+1 = at −
η2

(n∗
1 + n2)m

∑
y2,i=−j

(−ℓ
′(T2,t)
2,i ) · σ′(at) · ∥µ2∥22.

Giving the specific conditions for Theorem 3.3 n∗
1 ≥ n2 ·

{
2(− cos θ1,2)

q∥µ2∥q2∥µ1∥2−q
2 η2qm

−2/q
[
log

(
1
ϵ

)]1/q − 1
}

, the
inequality (n∗

1+n2)m

η2q∥µ2∥2
2n2

≥ 2(λ∥µ2∥2

∥µ1∥2
Λmax)

q−2 holds, we have that

at+1 = at −
η2

(n∗
1 + n2)m

∑
y2,i=−j

(−ℓ
′(t)
2,i ) · σ′(at) · ∥µ2∥22

≥ at −
η2

(n∗
1 + n2)m

∑
y2,i=−j

·σ′(at) · ∥µ2∥22

≥ at −
ηqn2∥µ2∥22
(n∗

1 + n2)m
(at)

q−1

≥ 0,

where the last inequality is due to that at ≤ a0 = λ∥µ2∥2

∥µ1∥2
Λmax[1 + o(1)]. If 0 ≤ at ≤ λ∥µ2∥2

∥µ1∥2
Λmax, we can have that

0 ≤ at+1 ≤ λ∥µ2∥2

∥µ1∥2
Λmax for that at is a decreasing series. Since a0 = λ∥µ2∥2

∥µ1∥2
Λmax[1 + o(1)], according to the iterative

method, we can know that at ≥ 0 for t ≥ 0. Denoting by T̃ the last time in [0, T ∗] that satisfying at ≥ 1
m , then for

0 ≤ t ≤ T̃ , we have

at+1 = at −
η2

(n∗
1 + n2)m

∑
y2,i=−j

(−ℓ
′(t)
2,i ) · σ′(at) · ∥µ2∥22

≤ at −
qη2n2C

′
2∥µ2∥22

4(n∗
1 + n2)m

(at)
q−1

≤ at(1−
qη2n2C

′
2∥µ2∥22

4(n∗
1 + n2)mq

),

where the first inequality is by (−ℓ
′(t)
2,i ) ≥ C ′

2, and the last inequality is due to the assumption that at ≥ 1
m . Taking a

telescoping multiplication over t = 0, 1, ..., t− 1 for all t ≤ T̃ , we obtain

at ≤ a0(1−
qη2n2C

′
2∥µ2∥22

4(n∗
1 + n2)mq

)t

≤ λ
∥µ2∥2
∥µ1∥2

Λmax(1−
qη2n2C

′
2∥µ2∥22

4(n∗
1 + n2)mq

)t,

where the last inequality is by a0 ≤ λ∥µ2∥2

∥µ1∥2
Λmax. So when t =

⌊
log(λ

∥µ2∥2
∥µ1∥2

mΛmax)

log(1/(1− qη2n2C′
2∥µ2∥22

4(n∗
1+n2)mq ))

⌋
, we have that at ≤ 1

m . We can

verify that

T+
3 =

4(n∗
1 + n2)m

q log(λ∥µ2∥2

∥µ1∥2
mΛmax)

qn2η2C ′
2∥µ2∥22

≥
⌊

log(λ∥µ2∥2

∥µ1∥2
mΛmax)

log(1/(1− qη2n2C′
2∥µ2∥2

2

4(n∗
1+n2)mq ))

⌋
,

where the inequality is by log( 1
1−x ) ≥ x for x > 0. By the definition of T̃ , we have T̃ ≤ T+

3 . Now let us sort

out the time relationship. By ϵ ≤
{

[log (8m(n1+n2)/δ)]
(q−1)/2 min{σq

p1
,σq

p2
}∥µ2∥q

2

24−2qm
1− 1

2q ∥µ1∥2
2σ

q
p2

SNRq
2σ

2−q
0

} 2

C̃

, we have T+
2 ≥ T+

1 . By σ0 ≤
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O

(
n2m

1−q max{σ−q
p1

,σ−q
p2

}d−q/2∥µ2∥2
2

23q [
√

log (8m(n1+n2)/δ)]q−1 log(λ
∥µ2∥2
∥µ1∥2

mΛmax)

) 1
q−2

, we have T+
1 ≥ T+

3 . Here we would like to make it clear that these

two inequalities imply when λ∥µ2∥2

∥µ1∥2
Λmax[1 + o(1)] − γ(µ2)

(T2,t)
j,r down to 1

m , maxj,r,i |ρ(µk)
(T2,t)
j,r,ik

| ≤ σ0σpk

√
d and

γ(µ1)
(T2,t)
j,r ≤ m− 1

2q still hold. Here we complete the proof.

Then we can calculate ⟨w(T2,t)
j,r∗ , jµ1⟩ and ⟨w(T2,t)

j,r∗ , jµ2⟩:

⟨w(T2,t)
j,r∗ , jµ1⟩ = ⟨w(T1,0)

j,r∗ , jµ1⟩+ γ(µ1)
(T2,t)
j,r∗ − λ

∥µ1∥2
∥µ2∥2

γ(µ2)
(T2,tend)
j,r∗

= ⟨w(T1,0)
j,r∗ , jµ1⟩+ Λmax[1 + o(1)]− λ2Λmax[1 + o(1)]

= (1− λ2)Λmax[1 + o(1)],

⟨w(T2,t)
j,r∗ , jµ2⟩ = ⟨w(T1,0)

j,r∗ , jµ2⟩+ γ(µ2)
(T2,t)
j,r∗ − λ

∥µ2∥2
∥µ1∥2

γ(µ1)
(T2,tend)
j,r∗

≤ 1

m
+O(m− 1

2q )

= o(1).

Here the proof of Lemma H.10 is completed.

When γ(µ1)
(T2,t)
j,r ≤ m− 1

2q no longer holds, we still have

⟨w(T2,t)
j,r∗ , jµ1⟩ = ⟨w(T1,0)

j,r∗ , jµ1⟩+ γ(µ1)
(T2,t)
j,r∗ − λ

∥µ1∥2
∥µ2∥2

γ(µ2)
(T2,tend)
j,r∗

≥ (1− λ2)Λmax(1 + γ(µ1)
(T2,t)
j,r∗ )[1 + o(1)]

≥ (1− λ2)Λmax[1 + o(1)].

From here, we can see that ⟨w(T2,t)
j,r∗ , jµ1⟩ will enter the re-ascending phase again. And we still have ⟨w(T2,tend)

j,r∗ , jµ2⟩ =
o(1). As for the other neurons inside the set Ij,1, using the similar method in our previous section G, we can get
⟨w(T2,tend)

j,r , jµ1⟩ = o(⟨w(T2,tend)
j,r∗ , jµ1⟩) and ⟨w(T2,tend)

j,r , jµ2⟩ = o(1) for r ̸= r∗.

H.3. The Second Type of Neuron

The second class of neurons is those belonging to the set Ij,2, which is expressed by the formula as follows:

⟨w(T1,0)
j,r , jµ1⟩ < 0, ⟨w(T1,0)

j,r , jµ⊥
1 ⟩ > 0.

By the previous analysis, we can get that

⟨w(T2,0)
j,r , jµ1⟩ = −C1 < 0, ⟨w(T2,0)

j,r , jµ⊥
1 ⟩ = C2 > 0.

In this case, the update method of the γ(µ1)
(T2,t)
j,r , γ(µ2)

(T2,t)
j,r is as follows

γ(µ1)
(T2,t+1)
j,r = γ(µ1)

(T2,t)
j,r +

η2
(n∗

1 + n2)m

∑
y1,i=−j

(−ℓ
′(T2,t)
1,i ) · σ′(C1 − γ(µ1)

(T2,t)
j,r + λ

∥µ1∥2
∥µ2∥2

γ(µ2)
(T2,t)
j,r ) · ∥µ1∥22,

γ(µ2)
(T2,t+1)
j,r = γ(µ2)

(T2,t)
j,r +

η2
(n∗

1 + n2)m

∑
y2,i=j

(−ℓ
′(T2,t)
2,i ) · σ′(C2 + γ(µ2)

(T2,t)
j,r − λ

∥µ2∥2
∥µ1∥2

γ(µ1)
(T2,t)
j,r ) · ∥µ2∥22.

The following lemma shows that with a certain time, γ(µ1)
(T2,t)
j,r changes little for r ∈ Ij,2. First of all, similar to the proof

of Lemma H.11, we have γ(µ1)
(T2,t)
j,r = λ∥µ1∥2

∥µ2∥2
γ(µ2)

(T2,t)
j,r + ⟨w(T2,0)

j,r , jµ1⟩, plugging this into γ(µ2)
(T2,t)
j,r update rule,
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we can obtain

γ(µ2)
(T2,t+1)
j,r = γ(µ2)

(T2,t)
j,r − η2∥µ2∥22

(n∗
1 + n2)m

∑
y2,i=j

ℓ
′(T2,t)
2,i · σ′(⟨w(T1,0)

j,r , j(µ2 + λ
∥µ2∥2
∥µ1∥2

µ1)⟩+ (1− λ2)γ(µ2)
(T2,t)
j,r )

= γ(µ2)
(T2,t)
j,r +

η2
(n∗

1 + n2)m

∑
y2,i=j

(−ℓ
′(T2,t)
2,i ) · σ′(C2 + (1− λ2)γ(µ2)

(T2,t)
j,r ) · ∥µ2∥22.

Then we can estimate ⟨w(T2,t)
j,r , jµ2⟩ by γ(µ2)

(T2,t)
j,r , we have

⟨w(T2,t)
j,r∗ , jµ2⟩ = ⟨w(T2,0)

j,r∗ , jµ2⟩+ γ(µ2)
(T2,t)
j,r∗ − λ

∥µ2∥2
∥µ1∥2

γ(µ1)
(T2,t)
j,r∗

= (1− λ2)γ(µ2)
(T2,t)
j,r∗ [1 + o(1)],

where the equation is due to Lemma H.4 that γ(µ2)
(T2,t)
j,r∗ → +∞ and ⟨w(T2,0)

j,r∗ , jµ2⟩, γ(µ1)
(T2,t)
j,r∗ ≤ O(1). Then by Lemma

H.4 we can get

−ℓ
′(T2,t)
2,i = 1/(1 + e

1
m

∑
r(σ(⟨w

(T2,t)
j,r ,y2,iµ2⟩)+σ(⟨w(T2,t)

j,r ,ξ2,i⟩))− 1
m

∑
r(σ(⟨w

(T2,t)
−j,r ,−y2,iµ1⟩)+σ(⟨w(T2,t)

−j,r ,ξ2,i⟩)))

= 1/(1 + e
1
mσ(⟨w(T2,t)

j,r∗ ,jµ2⟩))[1 + o(1)]

= 1/(1 + e
1
mσ((1−λ2)γ(µ2)

(T2,t)

j,r∗ ))[1 + o(1)].

Lemma H.12. With probability at least 1− δ,√
1− λ2σ0∥µ2∥22 < max

r∈[m]
⟨w(T1,0)

j,r , j(µ2 + λ
∥µ2∥2
∥µ1∥2

µ1)⟩

for all j ∈ {±1}.

Proof of Lemma H.12. Similar to the previous proof of Lemma C.2, we have for each r ∈ [m], ⟨w(T1,0)
j,r , j(µ2+λ∥µ2∥2

∥µ1∥2
µ1)⟩

is a Gaussian random variable with mean zero and variance (1−λ2)σ2
0∥µ2∥22. And, P(

√
1− λ2σ0∥µ2∥2 > ⟨w(T1,0)

j,r , j(µ2+

λ∥µ2∥2

∥µ1∥2
µ1)⟩) is an absolute constant, and therefore by the condition on m, we have

P(
√

1− λ2σ0∥µ2∥2 < max
r∈[m]

⟨w(T1,0)
j,r , j(µ2 + λ

∥µ2∥2
∥µ1∥2

µ1)⟩)

= 1− P(
√

1− λ2σ0∥µ2∥2 > max
r∈[m]

⟨w(T1,0)
j,r , j(µ2 + λ

∥µ2∥2
∥µ1∥2

µ1)⟩)

= 1− P(
√

1− λ2σ0∥µ2∥2 > ⟨w(T1,0)
j,r , j(µ2 + λ

∥µ2∥2
∥µ1∥2

µ1)⟩)m

≥ 1− δ,

here we completes the proof.

Lemma H.13. Under Condition 3.1, if we choose

n2SNRq
2 ≥ C

23q+2 min{σq
p1
, σq

p2
}

(1− λ2)q/2σq
p2

log

(
2m

1
q

√
1− λ2σ0∥µ2∥2

)
[log(8m(n1 + n2)/δ)]

(q−1)/2, (H.30)

where C = O(1) is a positive constant, there exists time

T+
4 =

C(n∗
1 + n2)2

4m log
(

2m
1
q√

1−λ2σ0∥µ2∥2

)
η2qn2(1− λ2)q/2σq−2

0 ∥µ2∥q2
such that
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• maxr γ(µ2)
(T2,t)
j,r ≥ m

1
q

1−λ2 for j ∈ {±1}.

• maxj,r,i |ρ(µk)
(T2,t)
j,r,ik

| ≤ σ0σpk

√
d for all j ∈ {±1}, r ∈ [m], ik ∈ [nk] and 0 ≤ t ≤ T+

4 .

Proof of Lemma H.13. Denote by T̃5

+
the last time satisfying that γ(µ2)

(T2,t)
j,r∗ ≤ m

1
q

(1−λ2) . Thus, we can have an upper

bound for −ℓ
′(T2,t)
2,i :

−ℓ
′(T2,t)
2,i = 1/(1 + e

1
mσ((1−λ2)γ(µ2)

(T2,t)

j,r∗ ))[1 + o(1)] ≥ 1

2(1 + e
1
mσ((1−λ2)γ(µ2)

(T2,t)

j,r∗ ))
≥ 1

2(1 + e)
= C ′

2,

where the second inequality is by our hypothesis, and we denote 1
2(1+e) as C ′

2. Thus we get C ′
2 as the upper bound for

−ℓ
′(T2,t)
2,i . Then we compute the growth of γ(µ2)

(T2,t)
j,r as below:

γ(µ2)
(T2,t+1)
j,r = γ(µ2)

(T2,t)
j,r +

η2∥µ2∥22
(n∗

1 + n2)m

∑
yi=j

(−ℓ
′(T2,t)
2,i )σ′(C2 + γ(µ2)

(T2,t)
j,r − λ

∥µ2∥2
∥µ1∥2

γ(µ1)
(T2,t)
j,r )

= γ(µ2)
(T2,t)
j,r +

η2∥µ2∥22
(n∗

1 + n2)m

∑
yi=j

(−ℓ
′(T2,t)
2,i )σ′(C2 + (1− λ2)γ(µ2)

(T2,t)
j,r (1 + o(1))

≥ γ(µ2)
(T2,t)
j,r +

η2C
′
2q∥µ2∥22n2

8(n∗
1 + n2)m

(C2 + (1− λ2)γ(µ2)
(T2,t)
j,r )q−1,

where the inequality is by (G.4) and −ℓ
′(T2,t)
2,i ≥ C ′

2. Let A(t)
j = maxr{C2 + (1− λ2)γ(µ2)

(T2,t)
j,r }, then we have that

A
(t+1)
j ≥ A

(t)
j +

η2(1− λ2)C ′
2q∥µ2∥22n2

8(n∗
1 + n2)m

(A
(t)
j )q−1

≥ A
(t)
j

[
1 +

η2(1− λ2)C ′
2q∥µ2∥22n2

8(n∗
1 + n2)m

(A
(t)
j )q−2

]
≥ A

(t)
j

[
1 +

η2(1− λ2)C ′
2q∥µ2∥22n2

8(n∗
1 + n2)m

(A
(0)
j )q−2

]
≥ A

(t)
j

[
1 +

η2(1− λ2)C ′
2q∥µ2∥22n2

8(n∗
1 + n2)m

(
√
1− λ2σ0∥µ2∥2)q−2

]
,

where the third inequality is due to that A(t)
j is an increasing sequence, and the last inequality follows by Lemma H.12 and

A
(0)
j = ⟨w(T1,0)

j,r , j(µ2 + λ∥µ2∥2

∥µ1∥2
µ1)⟩. Then we have

A
(t)
j ≥ A

(t−1)
j

[
1 +

η2(1− λ2)C ′
2q∥µ2∥22n2

8(n∗
1 + n2)m

(
√
1− λ2σ0∥µ2∥2)q−2

]
≥ A

(0)
j

[
1 +

η2(1− λ2)C ′
2q∥µ2∥22n2

8(n∗
1 + n2)m

(
√
1− λ2σ0∥µ2∥2)q−2

]t
≥ A

(0)
j exp

{η(1− λ2)C ′
2q∥µ2∥22n2

16(n∗
1 + n2)m

(
√

1− λ2σ0∥µ2∥2)q−2t
}

≥ exp
{η2(1− λ2)C ′

2q∥µ2∥22n2

16(n∗
1 + n2)m

(
√

1− λ2σ0∥µ2∥2)q−2t
}√

1− λ2σ0∥µ2∥2,

where the second inequality is due to the cumulative product of the series A(t)
j , the third inequality is by 1 + x ≥ e

x
2 for

x ≤ 2 and our condition of η2 and σ0 listed in Condition 3.1, and the last inequality follows by Lemma H.12. Therefore

A
(t)
j will reach 2m

1
q within T+

4 =
16(n∗

1+n2)m log
(

2m
1
q√

1−λ2σ0∥µ2∥2

)
η2C′

2qn2(1−λ2)q/2σq−2
0 ∥µ2∥q

2

iterations. Therefore, we can get γ(µ2)
(T2,t)
j,r∗ =

Aj−C
1−λ2 ≥
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2m
1
q −C

1−λ2 ≥ m
1
q

1−λ2 . By (H.30), we can obtain that T+
4 ≤ T+

1 . By σ0 ≤ O

(
m1−q∥µ2∥2−q

2 log
(

2m
1
q√

1−λ2σ0∥µ2∥2

)
(1−λ2)q/2 log(λ

∥µ2∥2
∥µ1∥2

mΛmax)

) 1
q−2

, we have

T+
4 ≥ T+

3 , so Lemma H.11 hypothesis holds and maxj,r,i |ρ(µk)
(T2,t)
j,r,ik

| ≤ σ0σpk

√
d obviously holds. Here the proof

completes.

Lemma H.14. Under Condition 3.1, let T+
5 = T+

4 +

⌊
6(n∗

1+n2)(a
∗−a

T
+
2

)2

η2∥µ2∥2
2n2ϵk

q

⌋
= T+

4 + Θ̃
(
m

2
q η−1

2 ϵ−kq)
. Then we have

maxj,r,i |ρ(µk)
(t)
j,r,ik

| ≤ 2σ0σpk

√
d for all T+

4 ≤ t ≤ T+
5 . And we can also find a time t∗ that γ(µ2)

(T2,t
∗)

j,r∗ ≥ kΛmax,
where T+

4 ≤ t∗ ≤ T+
5 .

Proof of Lemma H.14. When γ(µ2)
(T2,t)
j,r∗ reaches m

1
q

1−λ2 , we have

γ(µ2)
(T2,t+1)
j,r∗ = γ(µ2)

(T2,t)
j,r∗ +

η2∥µ2∥22
(n∗

1 + n2)m

∑
yi=j

(−ℓ
′(T2,t)
2,i )σ′(C2 + γ(µ2)

(T2,t)
j,r∗ − λ

∥µ2∥2
∥µ1∥2

γ(µ1)
(T2,t)
j,r )

= γ(µ2)
(T2,t)
j,r∗ +

qη2∥µ2∥22n2

2(n∗
1 + n2)m

((1− λ2)γ(µ2)
(T2,t)
j,r∗ )q−1

1 + e
1
m ((1−λ2)γ(µ2)

(T2,t)

j,r∗ )q
[1 + o(1)],

where the last equation is by (G.4). Let at = (1− λ2)γ(µ2)
(T2,t)
j,r∗ , and function ℓ̃(x) = log(1 + exp(− 1

mxq)), then we can
verify that

at+1 = at −
η2∥µ2∥22n2

2(n∗
1 + n2)

ℓ̃′(at).

Firstly, we will give an upper bound for (ℓ̃′(x))2:

(ℓ̃′(x))2 =

( q
mxq−1

1 + exp( 1
mxq)

)2

≤
q2

m2x
2q−2

1 + exp( 1
mxq)

ℓ̃(x) ≤ O(ℓ̃(x)), (H.31)

where the second inequality is due to 1
1+x ≤ log(1 + 1

x ) for x > 0, and the last inequality is by x2q−2

1+exp( 1
mxq)

< +∞ for

x > 0. Denote max

{[
m log 3

ϵk
q

]1/q
, 2kΛmax

}
by a∗, then we have

(a∗ − at)
2 − (a∗ − at+1)

2 = (at+1 − at)(2a
∗ − at − at+1)

= −η2∥µ2∥22n2

2(n∗
1 + n2)

ℓ̃′(at)

(
2a∗ − 2at +

η2∥µ2∥22n2

2(n∗
1 + n2)

ℓ̃′(at)

)
=

η2∥µ2∥22n2

(n∗
1 + n2)

ℓ′(at)(at − a∗)[1 + o(1)]−
(
η2∥µ2∥22n2

2(n∗
1 + n2)

ℓ̃′(at)[1 + o(1)]

)2

≥ 3η2∥µ2∥22n2

4(n∗
1 + n2)

ℓ̃(at)−
3η2∥µ2∥22n2

4(n∗
1 + n2)

ℓ̃(a∗)−
(
η2∥µ2∥22n2

(n∗
1 + n2)

)2

O(ℓ̃(at))

≥ η2∥µ2∥22n2

2(n∗
1 + n2)

ℓ̃(at)−
3η2∥µ2∥22n2

4(n∗
1 + n2)

ℓ̃(a∗),

where the first inequality follows by the convexity of ℓ̃(x) and (H.31), and the last inequality is by Condition 3.1 that
η2 ≤ Õ(min{∥µ2∥−2

2 , σ−2
p2

d−1}). Taking a summation over t = T+
4 , T+

4 + 1, ..., T+
5 , we have

T+
5∑

t=T+
4

ℓ̃(at) ≤ 2(T+
5 − T+

4 + 1)ℓ̃(a∗) +
2(n∗

1 + n2)

η2∥µ2∥22n2
(a∗ − aT+

4
)2

≤ 2(T+
5 − T+

4 + 1)ℓ̃(a∗) +
2(n∗

1 + n2)

η2∥µ2∥22n2
(a∗ − aT52+)

2
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≤ 2(T+
5 − T+

4 + 1)ℓ̃(a∗) +
2(n∗

1 + n2)

η2∥µ2∥22n2
Θ̃(m

2
q ),

where the last inequality is by (a∗−aT+
4
)2 = Θ̃(m

2
q ). Let T+

5 = T+
4 +

⌊
6(n∗

1+n2)(a
∗−a

T
+
2

)2

η2∥µ2∥2
2n2ϵk

q

⌋
= T+

4 +Θ̃

(
(n∗

1+n2)m
2
q

η2∥µ2∥2
2n2ϵk

q

)
,

then dividing T+
5 − T+

4 + 1 on both side of the last inequality gives us

1

T+
5 − T+

4 + 1

T∗
6∑

t=T+
4

ℓ̃(at) ≤ 2ℓ̃(a∗) +
2(n∗

1 + n2)

η2∥µ2∥22n2(T
+
5 − T+

4 + 1)
Θ̃(m

2
q )

≤ 2

3
ϵk

q

+
1

3
ϵk

q

≤ ϵk
q

,

where the second inequality is by log(1 + x) ≤ x for x > 0 and the definition of a∗. Since the mean is less than ϵk
q

, there
must exist a t∗ (T+

4 ≤ t∗ ≤ T+
5 ) such that

ℓ̃(at∗) ≤ ϵk
q

,

and we can obtain that γ(µ2)
(T2,t

∗)
j,r∗ ≥ kΛmax

1−λ2 . By the definition of T+
5 , we can obtain

T+
5∑

t=T+
4

ℓ̃(at) ≤ 2(T+
5 − T+

4 + 1)ℓ̃(a∗) +
2(n∗

1 + n2)

η2∥µ2∥22n2
Õ(m

2
q ) = Θ̃

(
(n∗

1 + n2)m
2
q

η2∥µ2∥22n2

)
. (H.32)

Letting Ψ(µ1)
(t) = maxj,r,i |ρ(µ1)

(t)
j,r,i|, obviously we have Ψ(µ1)

(t) ≤ σ0σp1

√
d ≤ 2σ0σp1

√
d. Now suppose that there

exists T̃ ∈ [T+
4 , T+

5 ] such that Ψ(µ1)
(t) ≤ 2σ0σp1

√
d for all t ∈ [T+

4 , T̃ − 1]. Then for t ∈ [T+
4 , T̃ − 1], we have

Ψ(µ1)
(t+1) ≤ Ψ(µ1)

(t) +max

{
η2

(n∗
1 + n2)m

(−ℓ
′(T2,t)
2,i )σ′(⟨w(T2,t)

j,r , ξ2,i⟩)∥ξ2,i∥22
}

≤ Ψ(µ1)
(t) +

3η2qσ
2
p1
d

2(n∗
1 + n2)m

·max
j,r,i

{
(−ℓ

′(T2,t)
2,i )

(
|⟨w(T2,0)

j,r , ξ1,i′⟩|+ |ρ(µ1)
(T2,t)
j,r,i |

+
∑
i̸=i′

|ρ(µ1)
(T2,t)
j,r,i |∥ξ1,i∥−2

2 |⟨ξ1,i, ξ1,i′⟩|+
n2∑
i=1

|ρ(µ2)
(T2,t)
j,r,i |∥ξ2,i∥−2

2 |⟨ξ2,i, ξ1,i′⟩|
)q−1}

≤ Ψ(µ1)
(t) +

3η2qσ
2
p1
dϵC̃

2(n∗
1 + n2)m

[4
√

log (8mmax{n1, n2}/δ) · σ0σp1

√
d

+Ψ(µ1)
(t) + 4n∗

1

√
log(4n2

1/δ)

d
Ψ(µ1)

(t) + 4n2
σp1

σp2

√
log(4n2

2/δ)

d
Ψ(µ1)

(t)]q−1,

where the the second inequality is by Lemma C.1, and the last inequality follows by (H.26) and Lemma C.1. Taking a
telescoping sum over t = T+

4 , T+
4 + 1, ..., T̃ − 1, we have

Ψ(µ1)
(T̃ ) ≤ Ψ(µ1)

(T+
4 ) +

η2qϵ
C̃

(n∗
1 + n2)m

T̃−1∑
T+
4

Õ(σ2
p1
d)(σ0σp1

√
d)q−1

≤ Ψ(µ1)
(T+

4 ) +
η2qϵ

C̃

(n∗
1 + n2)m

(T+
5 − T+

4 )Õ(σ2
p1
d)(σ0σp1

√
d)q−1

≤ σ0σp1

√
d+ Õ

{
ϵC̃−kq σ2

p1

σ2
p2

m2/q−1n−1
2 SNR−2

2 (σ0σp1

√
d)q−2

}
σ0σp1

√
d

≤ σ0σp1

√
d+ Õ

{
ϵC̃−kq σ2

p1

σ2
p2

m2/q−1n
2/q−1
2 (σ0σp1

√
d)q−2

}
σ0σp1

√
d
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≤ 2σ0σp1

√
d,

where the first inequality follows by the assumption that d ≥ 1024 log(4max{n2
1, n

2
2}/δ)α2

2 max{n2
1, n

2
2}max{σ2

p1

σ2
p2

,
σ2
p2

σ2
p1

},

the second inequality is by T̃ ≤ T+
5 , the third inequality is due to Lemma H.8, the fourth inequality is due to n2SNRq

2 = Ω̃(1)
and the last inequality is by Condition 3.1 on σ0. Similarly we will use the same way to obtain that Ψ(µ2)

(t) ≤ 2σ0σp2

√
d

for all T+
4 ≤ t ≤ T+

5 . Obviously we have Ψ(µ2)
(T+

4 ) ≤ σ0σp2

√
d ≤ 2σ0σp2

√
d. Now suppose that there exists

T̃ ∈ [T+
4 , T+

5 ] such that Ψ(µ1)
(t) ≤ 2σ0σp1

√
d for all t ∈ [T+

4 , T̃ − 1]. Then for t ∈ [T+
4 , T̃ − 1], we have

Ψ(µ2)
(t+1) ≤ Ψ(µ2)

(t) +max
j,r,i

{
η2

(n∗
1 + n2)m

(−ℓ
′(T2,t)
2,i )σ′(⟨w(T2,t)

j,r , ξ2,i⟩)∥ξ2,i∥22
}

≤ Ψ(µ2)
(t) +max

j,r,i

{
3η2qσ

2
p2
d

2(n∗
1 + n2)m

(−ℓ
′(T2,t)
2,i )

(
|⟨w(T2,0)

j,r , ξ2,i⟩|+ |ρ(µ2)
(T2,t)
j,r,i |

+

n∗
1∑

i′=1

|ρ(µ1)
(T2,t)
j,r,i′ |∥ξ1,i′∥−2

2 |⟨ξ1,i′ , ξ2,i⟩|+
∑
i′ ̸=i

|ρ(µ2)
(T2,t)
j,r,i′ |∥ξ2,i′∥−2

2 |⟨ξ2,i′ , ξ2,i⟩|
)q−1}

≤ Ψ(µ2)
(t) +

3η2qσ
2
p2
d

2(n∗
1 + n2)m

max
i

{−ℓ
′(T2,t)
2,i }

(
4
√
log (8mmax{n1, n2}/δ) · σ0σp2

√
d

+ σ0σp2

√
d+ 4n∗

1

σp2

σp1

√
log(4n2

1/δ)

d
Ψ(µ2)

(t) + 4n2

√
log(4n2

2/δ)

d
Ψ(µ2)

(t)

)q−1

,

where the the second inequality and the last inequality follows by (H.26) and Lemma C.1. Taking a telescoping sum over
t = T+

4 , T+
4 + 1, ..., T̃ − 1, we have

Ψ(µ2)
(T̃ ) ≤ Ψ(µ2)

(T+
4 ) +

3η2qσ
2
p2
d

2(n∗
1 + n2)m

Õ((σ0σp2

√
d)q−1)

T̃−1∑
T+
4

max
i

{−ℓ
′(T2,t)
2,i }

≤ Ψ(µ2)
(T+

4 ) +
3η2qσ

2
p2
d

2(n∗
1 + n2)m

Õ((σ0σp2

√
d)q−1)Õ

(
(n∗

1 + n2)m
2
q

η2∥µ2∥22n2

)
≤ σ0σp2

√
d+ Õ

{
m2/q−1n−1

2 SNR−2
2 (σ0σp2

√
d)q−2

}
σ0σp2

√
d

≤ σ0σp2

√
d+ Õ

{
m2/q−1n

2/q−1
2 (σ0σp2

√
d)q−2

}
σ0σp2

√
d

≤ 2σ0σp2

√
d,

where the first inequality is by the assumption that d ≥ 1024 log(4max{n2
1, n

2
2}/δ)α2

2 max{n2
1, n

2
2}max{σ2

p1

σ2
p2

,
σ2
p2

σ2
p1

}, the

second inequality is due to (H.32), the third inequality is due to Lemma H.8, the fourth inequality is due to n2SNRq
2 = Ω̃(1)

and the last inequality is by Condition 3.1 on σ0. Therefore, Ψ(µk)
(t) ≤ σ0σpk

√
d for k ∈ {1, 2} and T+

4 ≤ t ≤ T+
5 ,

which completes the proof.

Moreover, we can bound ⟨w(T2,t)
j,r , ξ1,i⟩ and ⟨w(T2,t)

j,r , ξ2,i⟩ by Cξ. When T+
4 ≤ t ≤ T+

5 , we have

|⟨w(T2,t)
j,r , ξ1,i⟩| ≤ |⟨w(T2,0)

j,r , ξ1,i⟩|+ |ρ(µ1)
(T2,t)
j,r,i |

+
∑
i′ ̸=i

|ρ(µ1)
(T2,t)
j,r,i′ |∥ξ1,i′∥−2

2 |⟨ξ1,i′ , ξ1,i⟩|+
n2∑
i=1

|ρ(µ2)
(T2,t)
j,r,i |∥ξ2,i∥−2

2 |⟨ξ2,i, ξ1,i⟩|

≤ 4
√

log (8mmax{n1, n2}/δ) · σ0σp1

√
d

+ 2σ0σp1

√
d+ 4n∗

1

√
log(4n2

1/δ)

d
2σ0σp1

√
d+ 4n2

σp1

σp2

√
log(4n2

2/δ)

d
2σ0σp2

√
d
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≤ 6
√
log (8mmax{n1, n2}/δ) · σ0σp1

√
d,

where the second inequality is by Lemma C.1, and the last inequality follows by d ≥
1024 log(4max{n2

1, n
2
2}/δ)α2

2 max{n2
1, n

2
2}max{σ2

p1

σ2
p2

,
σ2
p2

σ2
p1

}. Thus, when T+
4 ≤ t ≤ T+

5 , we can bound the

⟨w(T2,t)
j,r , ξ1,i⟩ by Cξ. Using the same method, we can also bound the ⟨w(T2,t)

j,r , ξ2,i⟩ by Cξ.

H.4. The Third Type of Neuron

The first class of neurons is those belonging to the set Ij,3, which is expressed by the formula as follows:

⟨w(T1,0)
j,r , jµ1⟩ < 0, ⟨w(T1,0)

j,r , jµ⊥
1 ⟩ < 0

By the previous analysis, we can get that

⟨w(T2,0)
j,r , jµ1⟩ = −C1 = −O(1) < 0, ⟨w(T2,0)

j,r , jµ2⟩ = −C2 = −O(1) < 0.

Lemma H.15. For any t ≥ 0, we have the following bounds

0 ≤ γ(µ1)
(T2,t)
j,r ≤ ∥µ2∥2C1 + λ∥µ1∥2C2

(1− λ2)∥µ2∥2
,

0 ≤ γ(µ2)
(T2,t)
j,r ≤ ∥µ1∥2C2 + λ∥µ2∥2C1

(1− λ2)∥µ1∥2
.

We will prove this lemma by mathematical induction.

proof of Lemma H.15. In this case, the update method of the γ(µ1)
(T2,t)
j,r , γ(µ2)

(T2,t)
j,r is as follows

γ(µ1)
(T2,t+1)
j,r = γ(µ1)

(T2,t)
j,r +

η2
(n∗

1 + n2)m

∑
y1,i=−j

(−ℓ
′(T2,t)
1,i ) · σ′(C1 − γ(µ1)

(T2,t)
j,r + λ

∥µ1∥2
∥µ2∥2

γ(µ2)
(T2,t)
j,r ) · ∥µ1∥22,

γ(µ2)
(T2,t+1)
j,r = γ(µ2)

(T2,t)
j,r +

η2
(n∗

1 + n2)m

∑
y2,i=−j

(−ℓ
′(T2,t)
2,i ) · σ′(C2 − γ(µ2)

(T2,t)
j,r + λ

∥µ2∥2
∥µ1∥2

γ(µ1)
(T2,t)
j,r ) · ∥µ2∥22

When t = 0, the inequality clearly holds. Suppose that the inequality holds true when 0 ≤ t ≤ T − 1, then we can get that

γ(µ1)
(T2,t+1)
j,r ≤ γ(µ1)

(T2,t)
j,r +

η2∥µ1∥22
(n∗

1 + n2)m

∑
y1,i=−j

(−ℓ
′(T2,t)
1,i ) · σ′(C1 + λ

∥µ2∥2C1 + λ∥µ1∥2C2

(1− λ2)∥µ1∥2
− γ(µ1)

(T2,t)
j,r )

≤ γ(µ1)
(T2,t)
j,r +

η2∥µ1∥22
(n∗

1 + n2)m

∑
y1,i=−j

(−ℓ
′(T2,t)
1,i ) · σ′(

∥µ2∥2C1 + λ∥µ1∥2C2

(1− λ2)∥µ2∥2
− γ(µ1)

(T2,t)
j,r )

≤ γ(µ1)
(T2,t)
j,r +

η2qn
∗
1∥µ1∥22

(n∗
1 + n2)m

(
∥µ2∥2C1 + λ∥µ1∥2C2

(1− λ2)∥µ2∥2
− γ(µ1)

(T2,t)
j,r )q−1, (H.33)

where the first inequality follows by the induction hypothesis H.10, the second inequality is by the fact that σ′(x) is a
monotonically increasing function, and the last inequality is by the fact that

∑
y1,i=−j ≤ n∗

1 and −ℓ
′(T2,t)
1,i ≤ 1. After the

same derivation, we can get that

γ(µ2)
(T2,t+1)
j,r ≤ γ(µ2)

(T2,t)
j,r +

η2qn2∥µ2∥22
(n∗

1 + n2)m
(
∥µ1∥2C2 + λ∥µ2∥2C1

(1− λ2)∥µ1∥2
− γ(µ2)

(T2,t)
j,r )q−1.

In order to prove the lemma H.10, we need more mathematical transformations. Let’s make at =
∥µ2∥2C1+λ∥µ1∥2C2

(1−λ2)∥µ2∥2
−

γ(µ1)
(t)
j,r, then according to the inequality (H.33), we can have

at+1 ≥ at −
η2qn

∗
1∥µ1∥22

(n∗
1 + n2)m

(at)
q−1 (H.34)
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Then, we will use the inductive method to prove at ≥ 0. This is known from the γ(µ1)
(T2,t)
j,r ’s iterative equation, γ(µ1)

(T2,t)
j,r

is an increasing sequence, so at ≥ at+1. When 0 ≤ at ≤ [
(n∗

1+n2)m

η2qn∗
1∥µ1∥2

2
]q−1, it can be seen from the inequality H.34, we have

that at+1 ≥ 0. And because 0 ≤ a0 = ∥µ1∥2C2+λ∥µ2∥2C1

(1−λ2)∥µ1∥2
≤

[ (n∗
1+n2)m

η2qn∗
1∥µ1∥2

2

]q−1
, which can be proved by Condition 3.1 on η2.

Then by induction, we can know that at+1 ≥ 0, for any t ≥ 0. So it is obvious that 0 ≤ γ(µ1)
(T2,t)
j,r ≤ ∥µ2∥2C1+λ∥µ1∥2C2

(1−λ2)∥µ2∥2
.

In the same way, we can get 0 ≤ γ(µ2)
(T2,t)
j,r ≤ ∥µ1∥2C2+λ∥µ2∥2C1

(1−λ2)∥µ1∥2
.

Taking it a step further, we can bound the inner products ⟨w(T2,t)
j,r , jµ1⟩ and ⟨w(T2,t)

j,r , jµ2⟩ as follows.

Lemma H.16. for any t ≥ 0,

|⟨w(T2,t)
j,r , jµ1⟩| ≤ O(1),

|⟨w(T2,t)
j,r , jµ2⟩| ≤ O(1).

proof of Lemma H.16. Combining Lemma H.16 and the two equations (H.12) and (H.13), we are able to derive that

⟨w(T2,t)
j,r , jµ1⟩ = ⟨w(T2,0)

j,r , jµ1⟩+ γ(µ1)
(T2,t)
j,r − λ

∥µ1∥2
∥µ2∥2

γ(µ2)
(T2,t)
j,r

≤ −C1 + γ(µ1)
(T2,t)
j,r

≤ −C1 +
∥µ2∥2C1 + λ∥µ1∥2C2

(1− λ2)∥µ2∥2
= O(1), (H.35)

where the first inequality is by the fact that γ(µ2)
(T2,t)
j,r ≥ 0 and the second is by known result that γ(µ1)

(T2,t)
j,r ≤

∥µ2∥2C1+λ∥µ1∥2C2

(1−λ2)∥µ2∥2
.Further, we can get that

⟨w(T2,t)
j,r , jµ1⟩ = ⟨w(T2,0)

j,r , jµ1⟩+ γ(µ1)
(T2,t)
j,r − λ

∥µ1∥2
∥µ2∥2

γ(µ2)
(T2,t)
j,r

≥ −C1 − λ
∥µ1∥2
∥µ2∥2

γ(µ2)
(T2,t)
j,r

≥ −C1 − λ
∥µ1∥2
∥µ2∥2

∥µ1∥2C2 + λ∥µ2∥2C1

(1− λ2)∥µ1∥2
= −O(1), (H.36)

where the first inequality is by the fact that γ(µ1)
(T2,t)
j,r ≥ 0 and the second is by known result that γ(µ2)

(T2,t)
j,r ≤

∥µ1∥2C2+λ∥µ2∥2C1

(1−λ2)∥µ1∥2
.The proof for ⟨w(T2,t)

j,r , jµ2⟩ is similar, we can prove that −O(1) ≤ ⟨w(T2,t)
j,r , jµ2⟩ and ⟨w(T2,t)

j,r , jµ2⟩ ≤
O(1), which completes the proof.

We denote the time to stop training for task T2 by tend, which represents the first time γ(µ2)
(T2,t)
j,r∗ reaches kΛmax, and we

know T+
4 ≤ tend ≤ T+

5 .

For Ij,1, we can calculate the following summation of the neuron output:∑
r∈Ij,1

σ(⟨w(T2,tend)
j,r , jµ1⟩) = σ(⟨w(T2,tend)

j,r∗ , jµ1⟩) +
∑
r ̸=r∗

σ(⟨w(T2,tend)
j,r , jµ1⟩) = [(1− λ2)Λmax]

q[1 + o(1)],

and ∑
r∈Ij,1

σ(⟨w(T2,tend)
j,r , jµ2⟩) =

∑
r∈Ij,1

σ(o(1)) = o(m).
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We also have ∑
r∈Ij,1

σ(⟨w(T2,tend)
j,r ,−jµ1⟩) = o(m),

and ∑
r∈Ij,1

σ(⟨w(T2,tend)
j,r ,−jµ2⟩) =

∑
r∈Ij,1

σ(o(1)) = o(m).

Now we obtain the neurons in the set Ij,1 output values in task T1 and T2.

For Ij,2, we can calculate the following summation of the neuron output:∑
r∈Ij,2

σ(⟨w(T2,tend)
j,r , jµ1⟩),

∑
r∈Ij,2

σ(⟨w(T2,tend)
j,r ,−jµ1⟩),

∑
r∈Ij,2

σ(⟨w(T2,tend)
j,r ,−jµ2⟩) = o(m),

and ∑
r∈Ij,2

σ(⟨w(T2,tend)
j,r , jµ2⟩) = σ(⟨w(T2,tend)

j,r∗ , jµ2⟩) +
∑
r ̸=r∗

σ(⟨w(T2,tend)
j,r , jµ2⟩) = [kΛmax]

q[1 + o(1)].

Now we obtain the neurons in the set Ij,2 output values in task T1 and T2.

For Ij,3, we can calculate the following summation of the neuron output:∑
r∈Ij,3

σ(⟨w(T2,tend)
j,r , jµ1⟩) =

∑
r∈Ij,3

σ(O(1)) = O(m),

and ∑
r∈Ij,3

σ(⟨w(T2,tend)
j,r , jµ2⟩) =

∑
r∈Ij,3

σ(O(1)) = O(m).

We also have ∑
r∈Ij,3

σ(⟨w(T2,tend)
j,r ,−jµ1⟩) =

∑
r∈Ij,3

σ(O(1)) = O(m),

and ∑
r∈Ij,3

σ(⟨w(T2,tend)
j,r ,−jµ2⟩) =

∑
r∈Ij,3

σ(O(1)) = O(m).

Now we obtain the neurons in the set Ij,3 output values in task T1 and T2.

H.5. Loss Analysis

In the previous section, we divided the neurons into three sets: Ij,1, Ij,2 and Ij,3. For the set Ij,1, we conclude that∑
r∈Ij,1

σ(⟨w(T2,tend)
j,r , jµ1⟩) = [(1− λ2)Λmax]

q[1 + o(1)],
∑

r∈Ij,1

σ(⟨w(T2,tend)
j,r , jµ2⟩) = o(m),

∑
r∈Ij,1

σ(⟨w(T2,tend)
j,r ,−jµ1⟩) = o(m),

∑
r∈Ij,1

σ(⟨w(T2,tend)
j,r ,−jµ2⟩) = o(m),
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for j ∈ ±1.

For the set Ij,2, we conclude that∑
r∈Ij,2

σ(⟨w(T2,tend)
j,r , jµ1⟩) = o(m),

∑
r∈Ij,2

σ(⟨w(T2,tend)
j,r , jµ2⟩) = [kΛmax]

q[1 + o(1)],

∑
r∈Ij,2

σ(⟨w(T2,tend)
j,r ,−jµ1⟩) = o(m),

∑
r∈Ij,2

σ(⟨w(T2,tend)
j,r ,−jµ2⟩) = o(m),

for j ∈ ±1.

For the set Ij,3, we conclude that∑
r∈Ij,3

σ(⟨w(T2,tend)
j,r , jµ1⟩) = O(m),

∑
r∈Ij,3

σ(⟨w(T2,tend)
j,r , jµ2⟩) = O(m),

∑
r∈Ij,3

σ(⟨w(T2,tend)
j,r ,−jµ1⟩) = O(m),

∑
r∈Ij,3

σ(⟨w(T2,tend)
j,r ,−jµ2⟩) = O(m),

for j ∈ ±1.

Then we can calculate the
∑m

r=1σ(⟨w
(T2,tend)
j,r , j · µ1⟩),

∑m
r=1σ(⟨w

(T2,tend)
−j,r , j · µ1⟩),

∑m
r=1σ(⟨w

(T2,tend)
j,r , j · µ2⟩) and∑m

r=1σ(⟨w
(T2,tend)
−j,r , j · µ2⟩):

m∑
r=1

σ(⟨w(T2,tend)
j,r ,j · µ1⟩)

=
∑

r∈Ij,1

σ(⟨w(T2,tend)
j,r , j · µ1⟩) +

∑
r∈Ij,2

σ(⟨w(T2,tend)
j,r , j · µ1⟩) +

∑
r∈Ij,3

σ(⟨w(T2,tend)
j,r , j · µ1⟩)

= [(1− λ2)Λmax]
q[1 + o(1)] +O(m) +O(m)

= [(1− λ2)Λmax]
q[1 + o(1)],

m∑
r=1

σ(⟨w(T2,tend)
−j,r ,j · µ1⟩)

=
∑

r∈I−j,1

σ(⟨w(T2,tend)
−j,r , j · µ1⟩) +

∑
r∈I−j,2

σ(⟨w(T2,tend)
−j,r , j · µ1⟩) +

∑
r∈I−j,3

σ(⟨w(T2,tend)
−j,r , j · µ1⟩)

= o(m) + o(m) +O(m)

= O(m),

m∑
r=1

σ(⟨w(T2,tend)
j,r ,j · µ2⟩)

=
∑

r∈Ij,1

σ(⟨w(T2,tend)
j,r , j · µ2⟩) +

∑
r∈Ij,2

σ(⟨w(T2,tend)
j,r , j · µ2⟩) +

∑
r∈Ij,3

σ(⟨w(T2,tend)
j,r , j · µ2⟩)

= o(m) + [kΛmax]
q[1 + o(1)] +O(m)

= [kΛmax]
q[1 + o(1)],

m∑
r=1

σ(⟨w(T2,tend)
−j,r ,j · µ2⟩)

=
∑

r∈I−j,1

σ(⟨w(T2,tend)
−j,r , j · µ2⟩) +

∑
r∈I−j,2

σ(⟨w(T2,tend)
−j,r , j · µ2⟩) +

∑
r∈I−j,3

σ(⟨w(T2,tend)
−j,r , j · µ2⟩)
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= o(m) + o(m) +O(m)

= O(m),

As for task T1, note that LS1
(W(T2,tend)) = 1

n1

∑n1

i=1ℓ[y1,i · f(W(T2,tend),x1,i)], when y1,i = j, we have

y1,i · f(W(T2,tend),x1,i)

= Fj(W
(T2,tend)
j ,x1,i)− F−j(W

(T2,tend)
−j ,x1,i)

=
1

m

m∑
r=1

[
σ(⟨w(T2,tend)

j,r , j · µ1⟩) + σ(⟨w(T2,tend)
j,r , ξ1,i⟩)

]
− 1

m

m∑
r=1

[
σ(⟨w(T2,tend)

−j,r , j · µ1⟩) + σ(⟨w(T2,tend)
−j,r , ξ1,i⟩)

]
≥ 1

m
[(1− λ2)Λmax]

q[1 + o(1)]− 2Cq
ξ ,

where the last inequality is by ⟨w(T2,tend)
−j,r , ξ1,i⟩ ≤ Cξ for j ∈ {±1}. As for task T2, note that LS2

(W(T2,tend)) =
1
n2

∑n2

i=1ℓ[y2,i · f(W(T2,tend),x2,i)], when y2,i = j, we can also get

y2,i · f(W(T2,tend),x2,i)

= Fj(W
(T2,tend)
j ,x2,i)− F−j(W

(T2,tend)
−j ,x2,i)

=
1

m

m∑
r=1

[
σ(⟨w(T2,tend)

j,r , j · µ2⟩) + σ(⟨wj,r, ξ2,i⟩)
]
− 1

m

m∑
r=1

[
σ(⟨w(T2,tend)

−j,r , j · µ2⟩) + σ(⟨w−j,r, ξ2,i⟩)
]

≥ 1

m
[kΛmax]

q[1 + o(1)]− 2Cq
ξ ,

leading to

LS2
(W(T2,tend)) =

1

n2

n2∑
i=1

ℓ[y2,i · f(W(T2,tend),x2,i)]

≤ ℓ(
1

m
[kΛmax]

q[1 + o(1)]− 2Cq
ξ)

≤ ℓ(
1

2m
[kΛmax]

q) = log(1 + ϵk
q/2)

≤ ϵk
q/2, (H.37)

where the third inequality is due to ϵ ≤ e−8Cq
ξ , and the last inequality follows by log(1 + x) ≤ x where x ≥ 0. Applying a

proof technique similar to subsection D.3 in Cao et al. (2022), we can obtain LD2
(W(T2,tend)) ≤ 6ϵk

q/2 + exp(−n2
2).

Similar to Lemma F.19, we have that

Lemma H.17. Under the same conditions as Theorem 3.3, when − 1+C2

2 ≤ cos θ1,2 ≤ 0, we have that

m∑
r=1

[
σ(⟨w(T2,tend)

y1,r , y1µ1⟩)− σ(⟨w(T2,tend)
−y1,r , y1µ1⟩)

]
≥ C3,

where C1 and C3 are the same constants as that in the Lemma F.19.

Proof of Lemma H.17. we have that

m∑
r=1

[
σ(⟨w(T2,tend)

y1,r , y1µ1⟩)− σ(⟨w(T2,tend)
−y1,r , y1µ1⟩)

]
=

1

m
[(1− λ2)Λmax]

q[1 + o(1)].

So when − 1+C2

2 ≤ cos θ1,2 ≤ 0, that is 0 ≤ λ ≤ 1+C2

2 , we have

1

m
[(1− λ2)Λmax]

q[1 + o(1)]
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≥ 1

m
Λq
max

[
(1− λ2)q − (k

∥µ1∥2
∥µ2∥2

λ)q
]
[1 + o(1)]

≥ 1

2m
m log(

1

ϵ
)
[
(1− (

1 + C2

2
)2)q − (k

∥µ1∥2
∥µ2∥2

1 + C2

2
)q
]

= C̃ log(
1

ϵ
)

> C3,

where C4 is a positive constant, the first inequality is by that the function f(λ) = (1− λ2)q − (k ∥µ1∥2

∥µ2∥2
λ)q is a decreasing

function, and the last inequality is by ϵ ≤ e−C3/C̃ . Here the proof completes.

Under the same conditions as in Lemma F.21, it can be concluded that when − 1+C2

2 ≤ cos θ1,2 < 0, the probability
P(x1,y1)∼D1

(
y1 ̸= sign(f(W(T2,tend),x1))

)
is less than or equal to exp(−C · m2q−2n2q/q2), where C = O(1) is a

positive constant. Moreover, since 1+C2

2 > C2, it can be inferred that the replay method is capable of expanding the angular
range corresponding to benign forgetting.
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