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ABSTRACT

Intuitive physics understanding in video diffusion models plays an essential role
in building general-purpose physically plausible world simulators, yet accurately
evaluating such capacity remains a challenging task due to the difficulty in dis-
entangling physics correctness from visual appearance in generation. To the end,
we introduce LikePhys, a training-free method that evaluates intuitive physics in
video diffusion models by distinguishing physically valid and impossible videos
using the denoising objective as an ELBO-based likelihood surrogate on a curated
dataset of valid-invalid pairs. By testing on our constructed benchmark of twelve
scenarios spanning over four physics domains, we show that our evaluation metric,
Plausibility Preference Error (PPE), demonstrates strong alignment with human
preference, outperforming state-of-the-art evaluator baselines. We then systemati-
cally benchmark intuitive physics understanding in current video diffusion models.
Our study further analyses how model design and inference settings affect intuitive
physics understanding and highlights domain-specific capacity variations across
physical laws. Empirical results show that, despite current models struggling with
complex and chaotic dynamics, there is a clear trend of improvement in physics
understanding as model capacity and inference settings scale. Our data and code
will be open source.

1 INTRODUCTION

Video diffusion models (VDMs) (Brooks et al., 2024; Google DeepMind, 2025; Polyak et al., 2024)
have achieved impressive results in producing visually compelling videos, but they still often generate
physically implausible outputs (Bansal et al., 2024; Motamed et al., 2025). Ensuring generative
models learn the underlying physics that govern the dynamics of visual data is essential not only
to improve the outputs’ quality (Kang et al., 2024; Li et al., 2025), but also a essential pre-requisit for
them to serve as reliable world models (LeCun, 2022; Ha & Schmidhuber, 2018) with applications
in robotics (Yang et al., 2023) and autonomous driving (Hu et al., 2023; Zhao et al., 2025).

However, it is challenging to evaluate how visual generative models learn and internalise physics.
A classic line of work on general vision models uses the violation-of-expectation paradigm (Spelke,
1985; Baillargeon et al., 1985), which frames intuitive physics understanding as the ability to
judge the plausibility of observed events (Riochet et al., 2018; Weihs et al., 2022), when presented
with unrealistic videos obtained in simulation. However, extending this paradigm to generative
models remains challenging. More recent approaches rely on Vision Language Models (VLMs)
for plausibility judgments (Bansal et al., 2024; Guo et al., 2025) and text-conditioned compliance
measures (Meng et al., 2024a). Although these methods provide valuable insights, they usually fail
to disentangle physics from visual appearance (Motamed et al., 2025) or introduce subjective biases
(Wu & Aji, 2023) and interpretive variance (Gu et al., 2024) through VLM judgments, ultimately
struggling to provide a grounded assessment of intuitive physics understanding.

In this paper we propose an alternative evaluation method named LikePhys, that leverages the VDMs’
density estimation capacity (Li et al., 2023) rather than relying solely on generated outputs, as we
show in Fig. 1. Inspired by the violation-of-expectation paradigm (Riochet et al., 2018), we start from
the assumption that the capacity of a model to assign higher likelihood to physically-plausible visual
sequences is correlated to its intuitive physics understanding. Then, we use a simulator to render paired
videos. In one, we render physically-realistic phenomena, while in the other we introduce a controlled
violation of physics. Importantly, we keep the visual appearance consistent in the pair, ensuring
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Which sample in each pair has the highest probability?

Figure 1: Overview of LikePhys. Our intuition is that a video diffusion model with a well learned
underlying physics distribution should assign higher likelihoods to valid samples that obey physics
laws and lower likelihoods to those invalid samples that violate them. We use Blender to create valid
and invalid sample pairs through controlled physics parameters over multiple physics domains and
scenarios (left). We then compare the diffusion model likelihood estimates over the constructed
dataset to extract a quantitative intuitive physics understanding measure, the Plausibility Preference
Error (PPE) (middle). Hence, we can compute a ranking of average PPE across pre-trained video
diffusion models, that correlates with human preference. Lower values indicate stronger intuitive
physics understanding (right).

that any difference resulting from processing the videos can be attributed solely to the breach of
physics principles. Both rendered videos are then corrupted with noise and processed by the diffusion
denoising network, where noise prediction losses serve as a proxy for sample likelihood (Ho et al.,
2020). We then calculate the Plausibility Preference Error (PPE), i.e. we assume positive scores if the
physically plausible sample has higher likelihood, and negative otherwise. Aggregating PPE results
across pairs yields a single score that quantifies the intuitive physics understanding of a single model.

To enable our evaluation, we construct a synthetic benchmark of twelve scenarios spanning Rigid
Body Mechanics, Continuum Mechanics, Fluid Mechanics, and Optical Effects. Importantly, we
design each physics scenario to be relatively simple, with clearly attributable governing physics
dynamics, and consistent in appearance, so that any likelihood variation due to model preferences for
visual quality cancels out during pairwise preference comparisons. Using this benchmark, we rank the
performance of 12 state-of-the-art VDMs in terms of PPE, based on human preference-based verifica-
tion. Furthermore, we analyse the key factors in model design and inference settings influencing their
intuitive physics understanding, and examine domain-specific capacity variations across the physics
domain and laws to highlight the limitations of current VDMs. Empirical results demonstrate that our
proposed metric is a robust proxy for physics understanding in VDMs, offering actionable insights into
both their current limitations and their potential for progress. Our key contributions are the following:

• We propose LikePhys, a training-free, likelihood-preference evaluation method for intuitive
physics in VDMs with verified alignment to human preference.

• We benchmark pre-trained VDMs with a constructed dataset including twelve physics
scenarios across rigid-body mechanics, continuum mechanics, fluid mechanics, and optical
effects, each designed to isolate a specific physics violation under matched visual conditions.

• We conduct a comprehensive analysis on intuitive physics understanding of state-of-the-art
VDMs, showing how architectural design and inference settings affect physics understanding,
and highlighting variations in capacity across physics domains.

2 RELATED WORK

2.1 VIDEO DIFFUSION MODELS

VDMs have emerged as powerful generative frameworks for producing realistic video sequences
(Esser et al., 2023; Brooks et al., 2024; Zhou et al., 2024; Girdhar et al., 2024). Early approaches
such as VDM (Ho et al., 2022), AnimateDiff (Guo et al., 2024), and ModelScope (Wang et al., 2023)
relied on 3D UNets (Ronneberger et al., 2015) to demonstrate the feasibility of spatio-temporal
modeling. More recent systems, including CogVideoX (Yang et al., 2024), Hunyuan T2V (Kong
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Figure 2: Method Overview. We prepare groups of videos via physics simulations with valid samples
obeying physical laws and invalid samples containing deliberate violations. We then inject Gaussian
noise into these videos and use a diffusion model to predict the noise and compute the denoising loss.
For each valid–invalid pair, we compute a likelihood preference ratio that quantifies how the model
favors physically plausible sequences, serving as a proxy for physics understanding.

et al., 2024), Wan (Wan et al., 2025), and LTX (HaCohen et al., 2024), adopt Transformer-based
backbones in the Diffusion Transformer (DiT) style (Peebles & Xie, 2023; Vaswani et al., 2017),
advancing long-sequence generation, visual quality, and inference efficiency. Despite these advances,
it remains unclear whether current models capture underlying physical principles (Motamed et al.,
2025). In this work, we propose a general evaluation protocol to assess the extent to which VDMs
implicitly learn the laws of physics.

2.2 INTUITIVE PHYSICS UNDERSTANDING

Intuitive physics understanding is fundamental to a model’s ability to reason about and predict scenes
under physics laws (Ates et al., 2020; Bear et al., 2021; Zhan et al., 2024; Meng et al., 2024b). One
important line of work builds on the violation-of-expectation paradigm (Spelke, 1985; Baillargeon
et al., 1985; Margoni et al., 2024), framing physics understanding in general vision models as the
ability to judge the plausibility of observed events (Smith et al., 2019; Riochet et al., 2020; Weihs
et al., 2022; Garrido et al., 2025). For example, IntPhys1/2 (Riochet et al., 2018; Bordes et al., 2025)
assess intuitive physics using tightly controlled synthetic video pairs that differ only by a single
violation of permanence, immutability, spatio-temporal continuity, or solidity to study each physics
principle in isolation. These works are mostly built on simulated data and have been successful in
evaluating the physics understanding of various vision models (Garrido et al., 2025; Bordes et al.,
2025). However, extending this protocol to visual generative models is non-trivial: it typically relies
on context-conditioned generation and pixel reconstruction on target frames as a plausibility proxy,
and it remains unclear how to adapt this setup to text-conditioned video diffusion models that lack
image conditioning and are not naturally discriminative.

2.3 PHYSICS EVALUATION IN VIDEO GENERATIVE MODELS

Some recent works focus on evaluating video generative models. A popular branch of methods (Guo
et al., 2025; Meng et al., 2024a) uses VLM with question–answering templates to assess adherence
to physical laws in generated videos. For example, VideoPhy1/2 (Bansal et al., 2024; 2025) collect
human-annotated synthetic videos and finetune VLM judges to align with human preferences on
physical plausibility. However, these approaches are subject to visual appearance biases across
different generative models (Wu & Aji, 2023) and interpretive variance across prompts and judging
templates (Gu et al., 2024). Physics-IQ (Motamed et al., 2025) and Morpheus (Zhang et al., 2025)
address these issues by comparing generated videos with paired real recordings via pixel/object-mask
analyses and by fitting dynamical models to extract physical quantities, then scoring adherence
to conservation laws, respectively. However, they rely on image conditioned generation, and its
extension to text-to-video generation also remains unclear

To move beyond these limitations and provide an alternative evaluation from a likelihood preference
perspective, we take inspiration from the violation-of-expectation paradigm while removing the
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Figure 3: Evaluation benchmark. We organise 12 scenarios derived from four physical domains
(Rigid Body Mechanics, Fluid Mechanics, Continuum Mechanics, Optical Effects) with their relative
proportions (left). Rows from top to bottom (middle and right) show examples from four optical
phenomena, rigid-body mechanics, continuum mechanics, and fluid mechanics. We display valid
simulation (middle) and corresponding invalid variants (right) for physics violation in each domain.

need for conditional generation or pixel-level alignment. Our method adapts the density estimation
capability (Li et al., 2023) of VDMs and performs pairwise comparisons by directly evaluating
sample likelihoods through the denoising loss proxy. This design keeps the metric model-agnostic
and appearance-agnostic, avoiding confounds from visual artifacts while focusing directly on physics
understanding.

3 METHODOLOGY

We aim to evaluate the intuitive physics understanding of diffusion-based video generative models.
We first define physics understanding from a distributional perspective, starting from preliminary
assumptions (Section 3.1) and then deriving a likelihood preference score that quantifies the model’s
ability to assign a higher probability to physically valid samples than to invalid ones (Section 3.2). For
the evaluation of LikePhys, we generate a comprehensive dataset of controlled video sequences using
simulations (Section 3.3), which we use to test the sensitivity of the model to physical plausibility.

3.1 PRELIMINARIES ON VIDEO DIFFUSION MODELS

Diffusion Probabilistic Models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Nichol & Dhariwal,
2021) learn the data distribution by inverting a forward Markov noising process: q(xt | xt−1) =
N
(
xt;
√
1− βt xt−1, βtI

)
, βt ∈ (0, 1), A parameterised model then learns the reverse process

pθ(xt−1 | xt) = N
(
xt−1; µθ(xt, t), σ

2
t I

)
by minimising a noise prediction loss which serves as an

ELBO-based surrogate for the negative log-likelihood. The noise prediction loss is calculated by
reconstructing the ground truth noise ϵ injected on xt with a denoising network ϵθ, following:

Ldenoise(θ;xt) = Et,ϵ

∥∥ϵ− ϵθ(xt, t)
∥∥2 ≥ Ex0

[
− log pθ(x0)

]
+ const. (1)

VDMs built on the framework that models dynamics in a sequence of frames x0 ∈ RF×C×H×W .
The denoising network is therefore designed to capture both spatial structure within each frame
and temporal relationship across frames, allowing the model to implicitly learn motion dynamics in
addition to appearance.

3.2 PHYSICS UNDERSTANDING AS LIKELIHOOD PREFERENCE

Our intuition is to formalise intuitive physics understanding in a distributional perspective. Let
pphys(x) denote the distribution over videos that strictly obey physical laws, where x is a video
sequence. We define its support asMphys =

{
x ∈ X : pphys(x) > 0

}
. By definition, any valid

sample x+ ∈ Mphys satisfies real-world physical laws, whereas any invalid sample x− /∈ Mphys

violates some of them. We consider a diffusion model pθ that learn has a perfect intuitive physics
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understanding if, for every valid–invalid pair (x+, x−),

pθ(x
+) > pθ(x

−). (2)

Hence, if a diffusion model has learned the distribution correctly, it should assign a higher likelihood
to valid samples when they are paired with visually matched invalid samples. As shown in Eq. (1),
the denoising loss is an ELBO-based likelihood surrogate. Thus, a lower denoising loss corresponds
to a higher likelihood under pθ. For any valid–invalid pair (x+, x−), we therefore have

pθ(x
+) > pθ(x

−)⇐⇒ Ldenoise(θ;x
+) < Ldenoise(θ;x

−). (3)

To evaluate this likelihood–preference protocol in practice, we first identify 12 physics scenarios. For
each scenario, we create R controlled variations to account for variability in both physics parameters
and confounding visual factors (with R = 10 in our benchmark; see Sec. 3.3). For each variation
r ∈ {1, . . . , R}, we collect sets of controlled video pairs following the violation-of-expectation
paradigm (Margoni et al., 2024; Bordes et al., 2025):

V+
r = {x+

r,j}
Mr
j=1, V−

r = {x−
r,k}

Nr

k=1, (4)

where V+
r and V−

r denote valid and invalid samples for variation r, respectively. For all video
samples in V+

r and V−
r , we ensure they are simple and consistent in visual appearance, with the

only differences arising from violations of the governing physics dynamics. This ensures that any
likelihood variation due to model preferences on visual style cancels out, enabling an unbiased
comparison across different video diffusion models.

We then perturb both videos in each pair with the same Gaussian noise at sampled diffusion timesteps,
pass them through the denoising network to predict the noise, and average the loss over timesteps as
in Fig. 2, obtaining a denoising loss Ldenoise(θ;x) for each video. For a given variation r, we say
the model has violated expectation on the pair (x+

r,j , x
−
r,k) if it assigns no greater likelihood (i.e., no

lower denoising loss) to the valid sample than to the invalid one. Aggregating over all N ×M pairs
within each variation and then averaging across variations, we define the Plausibility Preference Error
(PPE):

PPE =
1

R

R∑
r=1

1

Mr Nr

Mr∑
j=1

Nr∑
k=1

1
[
Ldenoise(θ;x

+
r,j) ≥ Ldenoise(θ;x

−
r,k)

]
, (5)

where 1[·] is the indicator function and the inner average corresponds to the rate that a model mis-
assign higher likelihood to invalid video sample for each variation r. A lower PPE indicates that pθ
consistently prefers valid samples across variations, thus measuring the model’s likelihood preference
for physically plausible videos and serving as a proxy for its learned intuitive physics.

3.3 EVALUATION BENCHMARK CONSTRUCTION

To rigorously evaluate the learned physics, we require controlled video pairs that differ only in
physical validity. In practice, it is infeasible to obtain such matched pairs from real-world data,
where physics laws cannot be systematically violated. We therefore construct a synthetic simulation
benchmark spanning 12 physical scenarios across 4 domains, which allows precise control over
physics parameters. All videos are rendered in Blender (Community, 2018) at 512× 512 resolution
with 60 frames. Each scenario is generated with R = 10 variations that vary both physics parameters
and visual factors (e.g., object shape, texture, or environment). Within each variation, we generate
M valid videos that strictly obey the relevant law, and N invalid variants that introduce a single
controlled violation (e.g., superelastic bounces or ghosted shadows). By holding camera angle,
lighting, textures, and object geometry constant within a single variation, the valid and invalid videos
differ only in physical plausibility, ensuring that any measured likelihood gap can be attributed to
physics violations. As shown in Fig. 3, the benchmark composition is as follows (see Apx. B for
more details):

Rigid Body Mechanics: five cases including Ball Collision, Ball Drop, Block Slide, Pendulum
Oscillation, and Pyramid Impact. They cover collision dynamics, periodic motion, gravity, and
energy transfer. Valid examples conserve momentum and energy, follow free-fall under gravity, and
maintain shape and continuity. Invalid variants break these rules through anomalies such as excessive
restitution, teleportation, or implausible energy transfer.
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Table 1: Model ranking. Plausibility Preference Error (%) across twelve controlled physics scenarios
for various video diffusion models. Lower values indicate stronger physics understanding. Models
are ordered by increasing average performance (Avg) across all scenarios. Best and second-best per
scenario are bold and underlined.

Rigid Body Mechanics Cont. Mechanics Fluid Mechanics Optical Effects
Ball

Collision
Ball
Drop

Block
Slide

Pendulum
Oscillation

Pyramid
Impact

Cloth
Drape

Cloth
Waving

Faucet
Flow

Droplet
Fall

River
Flow

Orbit
Shadow

Moving
Shadow Avg.

AnimateDiff 63.3 60.0 65.0 51.7 61.1 52.9 78.6 62.0 63.3 44.0 71.7 56.0 60.8
AnimateDiff SDXL 63.3 66.7 38.3 70.0 68.9 47.1 82.9 54.0 60.0 46.0 43.3 32.0 56.0
ZeroScope 53.3 55.0 46.7 58.3 73.3 38.6 84.3 46.0 61.7 40.0 40.0 42.0 53.3
ModelScope 51.7 53.3 46.7 66.7 78.9 40.0 84.3 40.0 61.7 40.0 33.3 38.0 52.9
Mochi 40.0 50.0 31.7 65.0 84.4 28.6 82.9 38.0 60.0 44.0 58.3 40.0 51.9
CogVideoX–5B 43.3 41.7 61.7 65.0 83.3 38.6 81.4 36.0 53.3 40.0 23.3 30.0 49.8
CogVideoX-2B 40.0 38.3 60.0 63.3 83.3 35.7 81.4 36.0 50.0 40.0 18.3 32.0 48.2
Wan2.1-T2V-1.3B 43.3 53.3 66.7 20.0 40.0 65.7 32.9 60.0 33.3 78.0 23.3 60.0 48.0
LTX v0.9.5 36.7 58.3 35.0 68.3 18.9 47.1 48.6 32.0 28.3 40.0 75.0 48.0 44.7
CogVideoX1.5–5B 61.7 50.0 51.7 31.7 25.6 52.9 22.9 54.0 21.7 68.0 23.3 62.0 43.8
Wan2.1-T2V-14B 41.7 56.7 61.7 13.3 43.3 62.9 34.3 56.0 15.0 64.0 16.7 60.0 43.8
Hunyuan T2V 33.3 51.7 25.0 21.7 50.0 35.7 77.1 38.0 40.0 68.0 38.3 44.0 43.6

Continuum Mechanics: two cases including Cloth Drape and Cloth Waving. They capture material
deformation under gravity and aerodynamic forces. Valid examples show natural folds and consistent
surface behavior. Invalid variants disrupt realism through penetrations, distortions, or scrambled
temporal sequences.
Fluid Mechanics: three cases including Droplet Fall, Faucet Flow, and River Flow. They address
conservation of mass, viscosity, and surface tension. Valid examples generate continuous and
plausible fluid patterns. Invalid variants introduce reversed flows, discontinuities, spontaneous mass
changes, or temporal glitches.
Optical Effects: two cases including Moving Shadow and Orbit Shadow. They capture light–object
interactions. Valid examples show smooth and consistent shadow behaviour. Invalid variants
break physical plausibility by inverting, erasing, or misaligning shadows or by adding temporal
inconsistencies.

4 EXPERIMENTS

We evaluate the intuitive physics understanding of pre-trained VDMs using LikePhys and perform
a systematic analysis to answer the following key questions: (1) Which models exhibit the strongest
intuitive physics as measured by PPE? (2) How well does PPE align with human preference in
physics correctness of generation? (3) To what extent does PPE disentangle visual appearance from
intuitive physics? (4) What model design and inference factors influence models’ intuitive physics?
(5) Across which physics domains and laws do current models fall short?Settings: We benchmark
pre-trained text-to-video diffusion models including AnimateDiff-SDv1.5/SDXL (Guo et al., 2024),
ModelScope/ZeroScope (Wang et al., 2023), Mochi (Team, 2024), CogVideoX-2B/5B (Yang et al.,
2024), Wan2.1-1.3B/14B (Wan et al., 2025), Hunyuan T2V (Kong et al., 2024) and LTX (HaCohen
et al., 2024). To maximise performance, we adopt each model’s recommended inference settings
from its official repository and resample the frame rate and spatial resolution of generated video
samples to match. We then perform zero-shot evaluation using the proposed LikePhys protocol,
measuring performance via the PPE metric defined in Eq. (5) and ranking models. For each physics
scenario, we report the average error over all valid–invalid pairs. For the likelihood estimation, we
use the same DDIM (Song et al., 2020) scheduler with 10 timesteps uniformly sampled through
the noise scale. We use a fixed prompt template for each physics scenario. More details of the
evaluation implementation (Apx. A), evaluation dataset construction and specification (Apx. B),
inference settings (Apx. C), experiment settings (Apx. D), additional ablation study on design factors
of evaluation method (Apx. E), further applicability to other intuitive physics benchmarks (Apx. F)
and visual samples (Apx. G) are provided in the appendix.

4.1 MAIN RESULTS

Model ranking In Tab. 1, we benchmark twelve VDMs and order them by increasing PPE. The
results reveal large performance gaps across architectures. Early UNet-based models (Ronneberger
et al., 2015) such as AnimateDiff and ZeroScope often record error rates above 50%, reflecting
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Table 2: Correlation to Human Preference. Kendall’s τ correlation between Plausibility Preference
Error and state-of-the-art physics evaluators to human annotation across physics scenarios.

Ball
Collision

Ball
Drop

Block
Slide

Pendulum
Oscillation

Pyramid
Impact

Cloth
Drape

Cloth
Waving

Faucet
Flow

Droplet
Fall

River
Flow

Orbit
Shadow

Moving
Shadow Overall

VideoPhy 20.0 -11.0 26.7 -13.8 -20.9 57.6 15.3 26.3 -6.4 40.8 47.5 -9.6 38.9
VideoPhy2 -19.4 -32.2 -6.8 -15.9 -3.1 51.0 10.5 -20.0 -41.0 6.8 70.4 -33.9 -8.5
Qwen2.5 VL 39.4 59.0 -25.4 -19.4 14.2 49.5 -15.2 29.1 -22.2 26.9 45.2 -33.9 33.3
LikePhys 34.4 42.6 24.3 15.0 55.9 15.4 0.0 51.0 -8.7 16.8 36.4 12.1 44.4

limited ability to distinguish physically valid videos from invalid ones. In contrast, more recent
DiT-based designs (Peebles & Xie, 2023), including the top three performers Hunyuan T2V (43.6%),
Wan2.1–T2V–14B (43.8%), and CogVideoX1.5–5B (43.8%), achieve substantially lower errors
across multiple scenarios (see Sec. 4.2 for further discussion).
Moreover, while there is a clear trend of improvement in recent architectures, only a handful of
models significantly achieve PPE lower than the 50% random-guess threshold in more than a few
scenarios, potentially due to simplicity biases, where physically implausible interactions appear
visually easier to model than valid ones (Shah et al., 2020; Geirhos et al., 2020). These results
highlight that while modern VDMs start to internalise physical principles, their performance varies
substantially across different physics domains (see Sec. 4.3 for further analysis), indicating significant
room for progress in physically-accurate training of video generators.

Alignment to Human Preference Moreover, we conduct a human study to assess how well
PPE serves as a proxy and aligns with human judgments of physics plausibility in downstream
video generation. Specifically, we perform text-to-video generation with model tested in Sec. 4.1,
generating 120 samples per model using the prompts that describe the designed physics scenarios
in Sec. 3.3. Following the VideoPhy annotation protocol (Bansal et al., 2025), human annotators
rate each video on a 1–5 scale, where 1 indicates a severe violation of physics and 5 indicates strong
consistency (see Apx. D.2 for details). We then derive a ranking of models from the aggregated
human scores and compare it against the PPE-based ranking of LikePhys, measuring their agreement
with Kendall’s τ . We note that the VLM-based rankings leverage the dataset of videos generated by
the candidate models, whereas the PPE-based ranking is computed solely on our synthetic benchmark
and does not use any downstream model-generated videos.

We further compare PPE against state-of-the-art automatic evaluators, including human-aligned
VLM-based metrics such as VideoPhy (Bansal et al., 2024) and VideoPhy2 (Bansal et al., 2025),
as well as Qwen 2.5 VL 7B-Instruct (Bai et al., 2025; Jang et al., 2025) as a general VLM prompted
to evaluate physical correctness. We find that PPE achieves a stronger overall correlation with
human annotations, demonstrating the competitiveness of our zero-shot, training-free approach. In
particular, the resulting correlation of τ = 0.44 indicates that models with lower PPE also tend to
be judged by humans as more physically consistent.

Table 3: Pearson correlation between Plausibility Pref-
erence Error (PPE) and visual quality metrics.

Corr. w. − PPE

Aesthetic Quality -0.05
Subject Consistency -0.01
Background Consistency -0.01
Motion Smoothness 0.15
Temporal Flickering 0.12

Disentanglement of Visual Appearance
While we verify the correlation between PPE
and physics consistency of generated videos,
we examine whether it also correlates with
established visual quality metrics from VBench
(Huang et al., 2024) reported in Tab. 3. By doing
so, we aim to determine whether perceptual
metrics already capture physical plausibility or
represent an independent dimension of evaluation.
As shown in the table, aesthetic quality has
no significant correlation (r = −0.05) to PPE,
indicating our metric targets physical correctness rather than aesthetic appeal. Subject consistency
(r = −0.01) and background consistency (r = −0.01) show very weak correlations, consistent
with the fact that the feature similarity-based metric does not fully capture physics correctness of
dynamic motion. In contrast, motion smoothness (r = 0.15) and temporal flickering (r = 0.12) have
moderate positive correlations with PPE. This is expected, as smooth, flicker-free motion can be
a partial indicator of physical plausibility. Overall, these results confirm that our method evaluates
aspects of physical reasoning that are largely orthogonal to visual quality measures, providing
complementary insights into video generative models’ capabilities and failure modes.
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Figure 4: Analysis on influencing factors. Effect of model size, showing a steady overall decline in
PPE (top left). Effect of training data size, where larger corpora generally yield lower error, though
the correlation is weaker than that of model size (bottom left). Effect of context window size, showing
consistent improvement in physics understanding as the window increases (top right). Effect of
classifier-free guidance (CFG) strength, indicating that physics understanding remains largely stable
across different strengths (bottom right).

4.2 ANALYSIS ON INFLUENCING FACTORS

Architecture and Data. We analyse the physics understanding with respect to the scaling of
model parameters and training data by plotting the average PPE in correlation to model parameters
and training samples. As shown in Fig. 4, larger models consistently outperforms smaller variants.
Largest models are almost exclusively DiT-based, showing the scalability of these architectures
in capturing complex spatiotemporal dependencies. Overall, the average PPE also decreases with
a larger training dataset size, indicating the effectiveness of architecture advancement and scaling
to improve intuitive physics understanding. Please note that Hunyuan T2V does not disclose the
training dataset cardinality.

Role of Number of Frames. Physical dynamics unfold over time, and the number of output frames
is a critical design parameter for a video diffusion model’s physics understanding. As shown in Fig. 4,
most models exhibit a steady decrease in PPE as the number of frames increases. This trend suggests
that providing longer temporal context allows the model to capture more complex interactions and
improves its implicit physical reasoning.

Role of Classifier-free Guidance. Classifier-free guidance (CFG) (Ho & Salimans, 2022) is widely
used to balance fidelity and diversity in diffusion sampling, but its effect on physics understanding
remains unclear. We evaluate models across varying CFG strengths and find that guidance scale
has only a marginal impact on physics understanding. This insensitivity suggests that, unlike visual
quality metrics, physics plausibility is governed primarily by the learned model distribution, while
inference-time calibration of noise prediction plays only a minor role. Consequently, CFG can be
tuned for visual quality without compromising the model’s physics understanding.

4.3 ANALYSIS ACROSS PHYSICS DOMAINS AND LAWS

We investigate VDMs’ physics understanding across different domains and laws presented in Sec. 3.3.
As shown in Fig. 5, we report the average PPE across all models for each of the four proposed
domains. Rigid Body and Continuum Mechanics show moderate errors with tight agreement across
models, while Fluid Mechanics exhibits both higher median error and greater variability, where
faucet flow or droplet fall scenes yield 30 to 40% PPE, but complex river flows often exceed 70%.
Optical Effects incur the lowest errors, likely because large-scale image and video corpora strongly
constrain photometric and geometric regularities. These findings indicate challenges in modelling
nonlinear, multiscale dynamics.
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Figure 5: Analysis across physics domains and laws. On the left, we report detailed PPE across
the four physics domains. Fluid Mechanics cases exhibit both the highest average error, while
Rigid Body and Continuum Mechanics scenarios show moderate errors; Optical Effects cases lie
in between. On the right, we map our domains to seven physics laws for a fine-grained analysis.
Temporal continuity and conservation of energy show wide variation and higher median errors,
whereas geometric invariance and optical consistency are handled more reliably.

We further analyse performance by physics law. Following the mapping in Apx. D.1, we group
common invalid failure modes into seven laws and report the average PPE for each law. As shown in
Fig. 5, temporal continuity shows the largest variance across models, indicating unstable long-range
coherence when motion spans many frames or occlusions occur. Spatial continuity and conservation
principles such as momentum and mass also yield high errors, which is consistent with the absence of
global constraints in standard training objectives and samplers. In contrast, geometric invariance and
optical consistency are better satisfied, likely because they align with priors learned from abundant
static imagery and short clips. Material response remains moderately challenging, reflecting difficulty
at contact events, frictional interactions, and surface compliance that require accurate high-frequency
detail. Overall, models capture several structural and photometric regularities but still struggle with
laws that require global coupling through time and space, suggesting future work on longer context
training, multiscale memory, and physics-aware objectives that promote conservation and continuity.

5 DISCUSSION AND CONCLUSION

In this paper, we introduce LikePhys, a method for evaluating physical understanding in video
diffusion models. By leveraging the violation-of-expectation paradigm together with the density
estimation capability of video diffusion models, we ensure that any difference in denoising loss
within a controlled video pair arises purely from physical implausibility. While our studies show
the effectiveness of LikePhys in evaluating physics understanding, our approach also has limitations.
We further discuss them and open new doors for research.

Empirical Assessment of Physics Understanding. Our method assesses whether the distribution
learned by a video generative model is close to a physics-plausible distribution by comparing the
likelihoods the model assigns to physically valid and invalid video pairs. Several factors can influence
this physics understanding capacity, such as the training data distribution, suboptimal optimisation,
and the training objective. However, we do not make any prior assumption about the cause of this
capacity. Instead, LikePhys provides an empirical assessment of the resulting physics understanding.

Cost of data curation. One limitation of our method is that it relies on controlled physics violations,
which is impossible to obtain in real-world. Extending to a broader range of scenarios would
require additional data curation in simulator or video editing. While this is more costly compared
to text-conditioned generation–based evaluation protocols, our approach offers the unique advantage
of precisely controlling valid–invalid pairs to probe specific laws and failure patterns.

Accessing Noise Prediction Our method requires access to the noise prediction error of the model,
which makes it difficult to evaluate closed-source models (Google DeepMind, 2025; Brooks et al.,
2024). However, this requirement is less restrictive in the open source community. We believe that,
during the development of closed-source models, our proposed method can be used as an indicator
for monitoring training progress and selecting checkpoints during model release, which may require
ranking hundreds of models.
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LLM USAGE

We use LLM for grammar polishing in paper writing. No text, code, or results were accepted without
author verification. All technical content, claims, and conclusions are the authors’ own.

A DETAILS ON EVALUATION PROTOCOL

We provide more details on the implementation of our likelihood-preference evaluation protocol.

Algorithm 1 Likelihood Preference Based Physics Understanding Evaluation

Require: Physics scenario subgroups, each with: V+ = set of M physically valid videos V− = set
of M physically invalid videos; Pretrained diffusion model pθ; Number of diffusion timesteps
Tmax; Number of noise samples per timestep Nϵ;

Ensure: Plausibility Preference Error PPE
1: Initialize error count E ← 0
2: Initialize total comparisons T ← 0
3: for each physics subgroup do
4: Step 1: Compute denoising losses for all videos
5: for each video x ∈ V+ ∪ V− do
6: Ldenoise(x)← 0
7: for t = 1 to Tmax do
8: for n = 1 to Nϵ do
9: Sample noise ϵ ∼ N (0, I)

10: Compute noisy frame
xt ←

√
ᾱt x +

√
1− ᾱt ϵ

11: Predict ϵ̂← ϵθ(xt, t)
12: Accumulate

Ldenoise(x) ← Ldenoise(x) + ∥ϵ− ϵ̂∥22
13: end for
14: end for
15: Normalize:

Ldenoise(x) ←
Ldenoise(x)

Tmax ×Nϵ

16: end for
17: Step 2: Pairwise comparisons between valid and invalid videos
18: for each x+ ∈ V+ do
19: for each x− ∈ V− do
20: T ← T + 1
21: if Ldenoise(x

+) > Ldenoise(x
−) then

22: E ← E + 1 {model prefers invalid over valid}
23: end if
24: end for
25: end for
26: end for
27: Compute error rate:

PPE ← E

T

28: return PPE

B DETAILS ON BENCHMARK DATASET GENERATION

We provide details on each of the constructed physics scenarios, including the settings and the
implementation of how the invalid cases are generated.
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• Ball Collision: Two spheres roll toward each other and collide elastically on a flat surface,
conserving momentum and energy. In invalid variants, restitution is altered (e.g. perfectly
inelastic “sticking” or super-elastic energy amplification); one sphere penetrates the other at
impact; phantom forces are applied during collision; sphere radii change mid-impact; one
sphere teleports through the other; or collision timing is scrambled (temporal disorder).

• Ball Drop: A sphere drops from a fixed height onto a rigid floor and bounces back under
gravitational energy conservation. In invalid variants, the sphere’s color changes mid-flight;
its radius is dynamically rescaled during free fall; it bounces higher than gravity permits
(“over-bounce”); it penetrates the floor; it teleports to a different height; or its temporal
sequence is disrupted (temporal disorder).

• Block Slide: A rectangular block slides down an inclined plane under friction and gravity,
following Newton’s laws. In invalid variants, the block hovers above the plane; it moves
erratically, breaking Newtonian motion; spurious jitter is injected; its dimensions change as
it slides; it teleports partway down the slope; or its time evolution is scrambled (temporal
disorder).

• Cloth Drape: A rectangular cloth drapes over a cylindrical support, responding to gravity
and bending forces while preserving surface continuity. In invalid variants, the cloth’s color
changes mid-simulation; it penetrates the cylinder or ground; it folds in impossible ways,
violating material continuity; it behaves like a rigid sheet with no natural flutter; or its
temporal evolution is scrambled (temporal disorder).

• Cloth Waving: A piece of cloth attached to a vertical pole flutters under a constant wind
force, exhibiting realistic wave propagation and strain. In invalid variants, sections freeze
instantly; fragments shatter mid-wave; parts teleport from one side to the other; an impossible
180° twist is imposed; it explodes outward as if under internal pressure; or its motion breaks
into non-physical jump cuts (temporal disorder).

• Pyramid Impact: A cube drops onto a pyramid of stacked spheres, transferring energy
and knocking spheres off under gravity. In invalid variants, collision energy is artificially
amplified or damped (energy-conservation violation); holes appear in the pyramid (mass
continuity violation); spheres or the cube teleport through each other (spatial discontinuity);
or gravity is negated so objects float unpredictably.

• Pendulum Oscillation: A pendulum bob swings on a rigid rod under constant gravity,
following a consistent periodic arc. In invalid variants, the rod breaks mid-swing (path
discontinuity); the bob disappears for segments; its trajectory deviates from the circular path;
time intermittently freezes (temporal disorder); or the length/frequency varies randomly
(frequency variation).

• Droplet Fall: A single droplet falls under gravity, forming a coherent drop and splash while
conserving mass and momentum. In invalid variants, antigravity forces make the droplet
rise; the stream fragments into disconnected blobs; fluid mass is spontaneously created or
removed (mass-conservation violation); viscosity becomes negative or oscillates; particles
self-attract unnaturally; or its temporal sequence is scrambled (temporal disorder).

• Faucet Flow: A faucet pours water into a transparent tank, forming a continuous stream that
collects and splashes, conserving mass and momentum. In invalid variants, fluid color shifts
mid-flow; the stream fractures into non-coalescing droplets; viscosity becomes negative or
oscillates; fluid mass is injected or removed arbitrarily (mass-conservation violation); phase
shifts alternate liquid-gas instantly; particles self-attract unnaturally; droplets teleport across
the tank; or temporal order is scrambled (temporal disorder).

• River Flow: Water flows steadily downstream along a riverbed, exhibiting realistic laminar
or turbulent patterns under gravity. In invalid variants, the flow fractures into isolated
droplets; an invisible barrier blocks water without visual cues; fluid mass vanishes mid-flow;
phases shift liquid→solid→liquid; or timestamps jump (temporal disorder).

• Moving Shadow: A solid object moves across a ground plane under fixed illumination,
producing a consistent, smoothly moving shadow. In invalid variants, the shadow inverts
onto the ceiling; it vanishes entirely; it appears without its caster; its shape mismatches the
object; it teleports away; or its temporal sequence is scrambled (temporal disorder).
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• Orbit Shadow: A shadow orbits around an object under fixed lighting, tracing a smooth
circular path. In invalid variants, the shadow inverts direction or plane; it vanishes mid-orbit;
it detaches from its caster; its geometry distorts implausibly; it teleports along its path; or its
temporal order is scrambled (temporal disorder).

C ADDITIONAL DETAILS OF INFERENCE SETTINGS

Our evaluation leverages off-the-shelf video diffusion pipelines in a zero-shot setting. For each model,
we adopt the officially recommended spatial and temporal resolutions as shown in Tab. 4 and apply
a uniform noise scheduler (Euler discrete) over a fixed number of timesteps (T = 10) as uniform
sampling found optimal in Diffusion Classifier (Li et al., 2023).

Each input clip is first uniformly sampled to the prescribed frame count and resized to the model’s
native (H ×W ) resolution. The resulting sequence is encoded into a latent representation by the
model’s VAE. To approximate the model’s internal likelihood, we inject Gaussian noise at T evenly
spaced timesteps, run the noised latent through the diffusion backbone (with classifier-free guidance
at the specified scale), and record the mean-squared error between the true noise and the network’s
prediction. Averaging these per-step errors yields a scalar loss that serves as a proxy for − log pθ(x).

For each physics scenario, valid and invalid variants are processed identically, and their losses are
compared pairwise. The Plausibility Preference Error is computed as the fraction of valid–invalid
pairs in which the invalid sample attains a lower denoising loss than the valid one. All sources of
randomness (Python, NumPy, PyTorch, CUDA/cuDNN) are fixed for the video-pairs but different
across subgroups via a global seed to ensure full reproducibility.

Table 4: Spatial and temporal settings for zero-shot inference.

Model Height Width FPS #Frames

AnimateDiff 512 512 16 16
AnimateDiff SDXL 1024 1024 16 16
CogVideoX 2/5B 480 720 16 49
Zeroscope / ModelScope 320 576 16 24
Wan2.1-T2V (1.3B/14B) 480 832 16 33
Hunyuan (I2V / T2V) 320 512 16 61
LTX variants 480 704 25 161

All the model evaluated are text-conditioned video diffusion models, we use a prompt tem-
plate for each scenario that describes the physically valid event, and a shared negative prompt
to discourage spurious artifacts: "worst quality, inconsistent motion, blurry,
jittery, distorted".

• Ball Collision: "two balls colliding with each other"

• Ball Drop: "ball dropping and colliding with the ground, in
empty background"

• Block Slide: "a block sliding on a slope"

• Pendulum Oscillation: "a pendulum swinging"

• Pyramid Impact: "a cube crash into a pile of spheres"

• Cloth Drape: "a piece of cloth dropping to the obstacle on the
ground"

• Cloth Waving: "a piece of cloth waving in the wind"

• Droplet Fall: "a droplet falling"

• Faucet Flow: "fluid flowing from a faucet"

• River Flow: "fluid flowing in a tank with obstacles"
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• Moving Shadow: "light source moving around an object showing
its shadow"

• Orbit Shadow: "camera moving around an object"

D ADDITIONAL EXPERIMENTAL SETTING DETAILS

D.1 CLASSIFICATION OF PHYSICS LAWS

We provide details on how we classify and summarise specific physics laws in Tab. 5.

D.2 HUMAN STUDY EXPERIMENT DETAILS

For the human study experiment, we generate 10 samples per physics scenario per model using the
same prompts as shown in Apx. C with prompt enhancement from GPT5. Human annotators are
asked to rate each video on a scale of 1–5, following the annotation protocol of VideoPhy2 (Bansal
et al., 2025), where higher scores indicate stronger physical consistency.

For baseline physics evaluator comparison, we leverage VideoPhy1 (Bansal et al., 2024), which rates
videos on Physics Consistency (PC) and Semantic Adherence (SA) using a 0–1 scale. Following the
official evaluation protocol (Bansal et al., 2024), we obtain per-model scores by filtering out samples
with PC ≤ 0.5 or SA ≤ 0.5, and then computing the proportion of samples that pass this joint
criterion. For VideoPhy2, which rates PC and SA on a 1–5 scale, we follow the official evaluation
practice (Bansal et al., 2025) by filtering out samples with Physics Consistency ≤ 4 or Semantic
Adherence ≤ 4, and then calculating the proportion of valid samples after filtering. For Qwen2.5-VL
(Bai et al., 2025), we follow the evaluation protocol of DreamGen (Jang et al., 2025). Each video is
rated on a 0–1 scale using the following prompt:

Does the video show good physics dynamics and showcase
a good alignment with the physical world? Please be
a strict judge. If it breaks the laws of physics,
please answer 0. Answer 0 for No or 1 for Yes. Reply
only 0 or 1.

D.3 INFLUENCING FACTOR EXPERIMENT DETAILS

We conduct two ablation experiments on protocol design factors: context-window length and classifier-
free guidance strength. We select five representative scenarios (Ball Drop, Block Slide, Fluid, Cloth
and Shadow) from our taxonomy, and five exemplar models: AnimateDiff, ModelScope, CogVideoX,
Hunyuan T2V and LTX. For number of frame experiment, we vary the number of input frames in {8,
16, 24, 32, 40, 48, 56, 64}. AnimateDiff supports up to 32 frames, so we limit its trials accordingly.
For CFG experiment, we evaluate multiple classifier-free guidance scales from 1.0 to 8.0 to measure
how guidance scale affects the model’s ability to discriminate valid from invalid physics cases.

E ABLATION ON EVALUATION PROTOCOL DESIGN

Beyond analysing model capacity, we also assess the robustness of our evaluation protocol by
examining two key design factors that influence implicit physics understanding.

Timestep Selection. To accurately approximate the likelihood, we inject Gaussian noise at multiple
timesteps. To adopt a proper sampling strategy, we investigate the denoising loss difference between
valid and invalid sample pairs for four representative scenarios across the entire noise schedule. We
found that (1) the overall preference trend is consistent across most timesteps for each model, and (2)
the timesteps at which valid–invalid separation peaks vary by model and scenario. These observations
imply that oversampling any single region could bias our estimate; therefore, we adopt uniform
sampling of ten timesteps per paired comparison, striking a balance between computational efficiency
and stable estimation.

Prompt Robustness. For text-to-video diffusion models, we also evaluate sensitivity to the choice of
text prompt. For the same four scenarios, we create eight representative prompt variants. We then
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Figure 6: Ablation on Evaluation Protocol Design Factors. Left: Denoising loss differences be-
tween valid and invalid sample pairs across 1000 uniformly sampled timesteps for four representative
physics scenarios. Right: PPE across multiple text-prompt variants, demonstrating robustness to
prompt choice.

report the mean plausibility-preference error across prompts, with the standard deviation capturing
sensitivity to prompt choice. As shown in Fig. 6, we observe no significant change in discriminative
performance when varying the prompt. This indicates that using the likelihood estimation from the
text-conditioned distribution under different reasonable prompts would give similar performance. This
robustness arises from our controlled data-generation process, which isolates only the physical-law
compliance variable as the only error source.

F APPLICABILITY TO OTHER INTUITIVE PHYSICS BENCHMARKS

Table 6: IntPhys Dev (O1/O2/O3) with LikePhys.
We report PPE (%, lower is better) for each block and
the average across blocks.

Model O3 O1 O2 Avg.

Animatediff SDXL 45.8 59.2 48.3 51.1
Wan2.1-T2V-14B 48.3 51.7 52.5 50.8
LTX v0.9.5 46.7 49.2 46.7 47.5
ModelScope 40.0 52.5 49.2 47.2
ZeroScope 42.5 48.3 50.8 47.2
CogVideoX 43.3 49.2 46.7 46.4
Animatediff 45.0 43.3 43.3 43.9
CogVideoX-5B 40.0 45.8 45.0 43.6
Hunyuan T2V 35.8 30.0 25.8 30.5

We further demonstrate that LikePhys ap-
plies beyond our main setups by evaluat-
ing on the IntPhys Development split (Ri-
ochet et al., 2018). The Dev split con-
tains three blocks including O1 (object per-
manence), O2 (shape constancy), and O3
(spatio-temporal continuity). Each con-
structed as matched pairs of possible against
impossible events. We run LikePhys un-
changed and report PPE per block and av-
eraged across blocks. As shown in Tab. 6,
models exhibit distinct profiles across princi-
ples (e.g., some perform better on continuity
in O3 than on permanence in O1), mirroring
the domain-specific trends we observed on
our rigid-body and optics evaluations. This
supports the portability of LikePhys and its
ability to surface principle-level strengths
and weaknesses without task-specific tun-
ing.

G VISUAL SAMPLES

We further provide visual samples in the constructed benchmark for each scenario as mentioned in
Apx. B. As shown in Fig. 7, Fig. 8, and Fig. 9. We show one valid and two invalid cases for each
scenario for illustration.
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Figure 7: Visual samples from Ball Drop, Ball Collision, Pendulum Oscillation, and Block Slide
scenarios.
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Table 5: Classification Criterion for Each Physics Law

Law / Principle Scenario Variation key

Temporal Continuity
Ball Collision temporal disorder
Ball Drop temporal disorder
Block Slide temporal disorder
Cloth Drape temporal disorder
Faucet Flow temporal disorder
Cloth Waving temporal disorder
Droplet Fall temporal disorder
Pendulum Oscillation temporal disorder
Pyramid Impact temporal disorder
River Flow temporal disorder
Moving Shadow temporal disorder
Orbit Shadow temporal disorder

Spatial Continuity
Ball Collision teleportation
Ball Drop teleportation
Block Slide teleportation
Cloth Waving flag teleport
Pyramid Impact teleporting spheres
River Flow invisible wall
Faucet Flow teleporting fluid

Conservation of Energy
Ball Drop over bounce
Ball Collision momentum amplification
Ball Collision phantom force
Ball Drop dynamic scaling
Cloth Waving elastic explosion
Droplet Fall self attracting
Pyramid Impact momentum multiplication
Droplet Fall non-conservation momentum

Conservation of Mass
Droplet Fall non-conservation fluid
Droplet Fall matter creation
Droplet Fall negative viscosity
Faucet Flow fracturing fluid
Droplet Fall phase shifting fluid
River Flow non-conservation fluid

Geometric Invariance
Ball Collision size change
Block Slide size changing
Pyramid Impact phase shifting
Pyramid Impact sphere fusion
Orbit Shadow varying size

Optical Consistency
Moving Shadow inverted shadow
Moving Shadow no shadow
Moving Shadow no object
Moving Shadow wrong shadow shape
Orbit Shadow impossible reflection

Material Response
Cloth Drape impossible folding
Cloth Drape rubber cloth
Cloth Drape ground penetration
Block Slide hovering
Block Slide irregular motion
Block Slide jittering
Cloth Waving flag shatter
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Figure 8: Visual sample from Droplet Fall, Faucet Flow, Cloth Drape, Cloth waving scenarios.
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Figure 9: Visual sample from River Flow, Moving Shadow, Pyramid Impact, Orbit Shadow scenario.
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