Under review as a conference paper at ICLR 2026

INVBENCH: CAN LILLMS ACCELERATE PROGRAM VER-
IFICATION WITH INVARIANT SYNTHESIS?

Anonymous authors
Paper under double-blind review

ABSTRACT

Program verification relies on loop invariants, yet automatically discovering strong
invariants remains a long-standing challenge. We introduce a principled framework
for evaluating LLMs on invariant synthesis. Our approach uses a verifier-based
decision procedure with a formal soundness guarantee and assesses not only cor-
rectness but also the speedup that invariants provide in verification. We evaluate
7 state-of-the-art LLMs, and existing LL.M-based verifiers against the traditional
solver UAutomizer. While LLM-based verifiers represent a promising direction,
they do not yet offer a significant advantage over UAutomizer. Model capability
also proves critical, as shown by sharp differences in speedups across models, and
our benchmark remains an open challenge for current LLMs. Finally, we show
that supervised fine-tuning and Best-of-N sampling can improve performance:
fine-tuning on 3589 instances raises the percentage of speedup cases for Qwen3-
Coder-480B from 8% to 29.2%, and Best-of-N sampling with N=16 improves
Claude-sonnet-4 from 8.8% to 22.1%. We release our dataset for training and
evaluation at https://anonymous.4open.science/r/InvBench/\

1 INTRODUCTION

Program verification aims to provide formal guarantees that software behaves as intended, with
applications in many safety-critical domains (Fan et al., 2017} [Luckcuck et al., 2019). A long-
standing challenge in this area, studied for more than four decades, is the automatic discovery of
loop invariants. In this work, we investigate whether large language models (LLMs) can accelerate
program verification by generating useful loop invariants.

Loop invariants are conditions that hold before and after each loop iteration, and they are central to
deductive program verification. To accelerate program verification, loop invariants must not only be
correct but also sufficiently strong to prove the assertions. Generating correct invariants is relatively
easy, since any universally true condition qualifies. However, only strong invariants can reduce
verification effort and lead to a speedup. For example, in Figure[T} the invariant z > 0 is correct but
not strong enough to prove the final assertion « # 145, whereas = 3 (mod 7) is both correct and
sufficiently strong.

Discovering such invariants is difficult and undecidable in general, which has motivated a long line
of research. Traditional approaches include constraint solving (Colon et al.,|2003} \Gupta et al.| 2009),
dynamic analysis (Le et al.,[2019), etc. Since invariant discovery is undecidable in general, researchers
have tried a variety of learning-based methods (Li et al.| 2017; Ezudheen et al., 2018)). Building on
this progression, the strong capabilities of LLMs in code generation and program reasoning (Austin
et al.,[2021}|Chen et al.| 2021; Wei et al.,[2025b) naturally motivate a systematic evaluation of their
potential for invariant discovery.

Pei et al.[(2023)) is the first work to evaluate the capabilities of LLMs in invariant generation. However,
their methodology considers only correctness and does not assess how strong the generated invariants
are. As aresult, LLMs may generate correct invariants that perform well under their evaluation metric
but provide no benefit for accelerating the verification process in real-world settings. Furthermore,
their notion of correctness is not based on formal verification. Instead, it is determined by direct
comparison with invariants generated by an existing tool, namely Daikon (Ernst et al.l 2007). Daikon
is a dynamic analysis tool whose invariants are not guaranteed to be sound, since they are inferred
from observed test executions rather than proven across all possible executions. As a result, the

https://anonymous.4open.science/r/InvBench/

Under review as a conference paper at ICLR 2026

(.. N
. int x = 10; o
(it) : while (x < 200) {
iant: assert(x % 7 == 3); Correct
X += 7;

A for (1=0; i<5; i++) {

}

int x = 10; - ~N
g while (x < 200) { He Dog Program
X += 7; \ 1;?1)(= 16; Verified
assert(x != 145); aa CUEERS (e 202)7{” 3y: Speedup
LLM assume(x % 7 == 3);
-) e £
assert(x != 145); ——
\} J

Figure 1: Illustration of InvBench’s evaluation pipeline. The LLM proposes an invariant by specifying
a program location and predicate (e.g., location B with x % 7 == 3). The verification procedure
then incorporates this invariant to prove the property x != 145 using two verifier queries, and we
measure the resulting speedup relative to a baseline without LLM assistance.

ground-truth invariants themselves may be incorrect. Moreover, directly comparing LLM-generated
invariants with Daikon’s output can lead to rejecting many correct invariants. For example, if an LLM
proposes a > 0 for an integer a while Daikon reports a > 1, the evaluation in |Pei et al.| (2023) would
incorrectly classify the LLM’s result as wrong, even though the two are equivalent. Hence, prior
work’s evaluation methodology cannot reliably capture the correctness of LLM-generated invariants,
let alone how useful they are for verification.

A series of follow-up works inspired by [Pei et al.| (2023)) have proposed LLM-based verifiers (Wu
et al., [2024bja; [Kamath et al.,[2024). Instead of evaluating LLMs in isolation, these efforts develop
verification frameworks powered by LLMs. However, each work introduces a custom dataset and
reports results only on it, making cross-comparison difficult and raising concerns about generalization.

Our work, InvBench, introduces a principled methodology for evaluating the capabilities of LLMs
in invariant synthesis. Instead of checking whether LLMs reproduce invariants discovered by other
tools, we employ a verifier-based decision procedure that directly determines the correctness of LLM-
generated invariants, and we prove this procedure to be sound. We formalize the methodology as a
proof calculus, providing a rigorous foundation for invariant evaluation. Unlike previous work that
focuses on optimizing verification performance by designing tailored interactive protocols between
solvers and LLMs (Chakraborty et al.,[2023; Wu et al., [2024bj; [Kamath et al.| 2024} Wu et al., [2024a),
our goal is to develop a simple, first-order verification procedure suitable for evaluating the invariant
generation capability of LLMs. Our formalization provides such a framework, offering a general
solution for invariant evaluation.

Since the purpose of invariant synthesis is to accelerate verification, invariants that are too weak to
aid verification or too difficult to verify as correct offer little practical value. To capture this, we
evaluate the invariants by measuring the speedup they provide in the overall verification process.

To support comparison across solvers and LLMs, we construct a dataset of 226 instances derived
from the most recent edition of the software verification competition SV-Comp (Beyer & Strejcek,
20235)) and use it to evaluate multiple LLM-based verifiers on this common benchmark. In addition,
we assess the state-of-the-art traditional (i.e., non-LLM-based) verifier UAutomizer (Schiissele et al.}
2024)) both on our dataset and on each of the custom datasets introduced in prior work (Wu et al.
2024b; |[Kamath et al., 2024} [Wu et al., 2024a).

UAutomizer consistently outperforms prior LLM-based verifiers on both our dataset and their custom
datasets across all settings, with the exception of LEMUR (Wu et al., [2024b), which was specifically
designed for problems that UAutomizer fails to solve. These results suggest that while LLM-based
verifiers are a promising direction, existing approaches do not yet offer a significant advantage
over non-LL.M-based approaches in general. Our findings also indicate that the effectiveness of
LLM-based verifiers is strongly determined by the underlying symbolic solver they rely on.

In addition, we evaluate 7 state-of-the-art LLMs. To improve models’ capabilities, we construct a
fine-tuning dataset of 3589 instances and show that training on this dataset raises the percentage of

Under review as a conference paper at ICLR 2026

speedup cases for Qwen3-Coder-480B from 8% to 29.2%. Similarly, Best-of-N sampling with N =16
improves Claude-sonnet-4 from 8.8% to 22.1%. Our methods, despite the simplicity, establish a new
performance baseline. Our decision procedure enables LLMs to outperform UAutomizer, whereas
prior LLM-based verifiers with significantly more complex designs rarely do so.

In summary, our contributions are as follows:

* We propose a verification procedure for evaluating the invariant generation capabilities of
LLMs, assessing both correctness and their effectiveness in accelerating verification.

* We evaluate 7 state-of-the-art LLMs, and provide comparisons between existing LLM-based
verifiers and the state-of-the-art non-LLM-based solver UAutomizer.

* We construct a dataset of 3589 instances for training. We demonstrate that both supervised
fine-tuning and Best-of-N sampling can easily improve model performance in accelerating
verification, establishing a new performance baseline.

2 RELATED WORK

Traditional Methods for Program Invariant Generation. A long line of research has explored
invariant synthesis using traditional techniques without machine learning, including model check-
ing (Flanagan & Qadeer; 2002} [Lahiri & Bryant,[2007; [Hojjat & Riimmer, [2018; Vediramana Krishnan|
et al.| 2024), abstract interpretation (Karr, 1976} |[Cousot & Cousot, 1977} |Cousot & Halbwachs),
1978} |Cousot & Cousot, [1979), constraint solving (Gulwani et al., 2009; |Gupta et al.,[2009), Craig
interpolation (Jhala & McMillan| [2006; McMillan|, [2010), and syntax-guided synthesis (Fedyukovich
& Bodikl, [2018). Prior work evaluating LLM-generated invariants (Pei et al., 2023)) has relied on
Daikon (Ernst et al., [2007), a tool for dynamic invariant detection (Echenim et al., 2019} [Le et al,
[2019). Daikon executes the program, observes runtime values, and reports properties that consistently
hold over the observed executions. However, such invariants may fail to generalize to all possible
executions, thereby compromising soundness. Our approach instead employs a verifier-based decision
procedure relying on UAutomizer (Schiissele et al.l [2024)) that ensures soundness.

Learning-Based Method for Invariant Generation. Machine learning based techniques have

been widely adopted in invariant synthesis, including decision tree (Garg et al., 2014; [2016;
et al} 2018} [Riley & Fedyukovich} [2022; [Xu et al.,[2020)), support vector machine (Li et al.,[2017

Sharma et al.,[2012), reinforcement learning (Si et al., 2018} [Yu et al.,[2023)), and others
2013} Ryan et al., 2019} [Yao et al} [2020). More recently, large language models have demonstrated

strong capabilities in reasoning about code and logic (Wei et al.,[2025alblic), giving rise to a series of
work that explore using LLMs for finding invariants. |Pei et al.[(2023)) is the first pioneering work that
evaluates LLMs’ capabilities in finding invariants, but it is not a sound evaluation. Various techniques
have been proposed to couple LLMs with symbolic solvers, including ranking LL.M-generated
invariants (Chakraborty et al}, [2023)), the “query-filter-reassemble” strategy of LaM4Inv

[2024a)), the back-tracking algorithm in LEMUR [2024b), and Loopy’s integration of the
classic Houdini algorithm (Kamath et al} [2024). On the dataset side, (2024) introduces

a rule-based method for constructing a fine-tuning corpus, which differs from our verifier-based
approach. In contrast, our work provides a simple and sound evaluation procedure for assessing
LLM-generated invariants and investigates how both fine-tuning and Best-of-N sampling can enhance
LLM performance in invariant synthesis.

3 METHOD

3.1 PRELIMINARY

We formalize the task of loop invariant synthesis using standard Hoare logic [1969). A Hoare
triple { P} S {Q} specifies that if the precondition P holds before executing a statement S, then
the postcondition) will hold after its execution. In the context of loops, an invariant I is a logical
proposition that summarizes the state of the program at each iteration, and it is the key to proving the
validity of Hoare triples involving loops. For a loop of the form while B do S, the goal of invariant
synthesis is to identify a loop invariant [that satisfies the following inference rule:

Under review as a conference paper at ICLR 2026

P=1 {IABYS{I} IA-B=Q
{P} while B do S {Q}

Here, P is the precondition, () is the postcondition, B is the loop condition, and S is the loop body.
Intuitively, the inference rule requires that the invariant holds at the beginning of the loop (P = I),
is preserved across every iteration of the loop body ({I A B} S {I}), and upon termination ensures
the postcondition (I A =B = Q).

Invariant synthesis amounts to generating a logical summary [that is both correct, meaning it can be
verified, and strong, meaning it enables verification of the final assertion. Weak but correct invariants
contribute little, leaving most of the reasoning to the verifier, whereas strong invariants narrow the
search space of program states, reduce solver effort, and yield substantial speedups.

3.2 VERIFIER-BASED DECISION PROCEDURE

We formalize our verifier-based procedure for assessing candidate invariants. Let P denote a program.
A property is written as p = (i, £), where ¢ is a state predicate and ¢ is a program location. For
a finite set A of properties, let Asm(P, A) be the program obtained from P by inserting assume
statements for all elements of A. An execution of Asm(P, A) that reaches a location where an
assumption is violated terminates immediately. We write P |=4 p to indicate that all executions of
Asm(P, A) satisfy the assertion p. The notation P |= p abbreviates P =4 p. Since assumptions
restrict behaviors, if P [~ 4 p for some A, then necessarily P [~ p.

‘We assume access to a verifier
V(P’ A7p) 6 {T7 F7 U}7

which returns either T (proved), F' (refuted), or U (inconclusive). The verifier is required to be sound
on conclusive outcomes:

V(P,A,p)=T = P Eap, V(P,A,p)=F = P }ap.

No completeness is assumed for U, which may arise from timeouts or incompleteness of the
underlying verifier.

The verification task specifies a target property p* = (¢*, ¢*). Given P and p*, a large language
model proposes a candidate invariant ¢ = (1, £), typically at a loop header. To evaluate the utility of
q, the procedure issues two verifier queries:

d, ==V (P,2,q) (checking whether ¢ is a correct predicate),
dy :=V(P,{q},p") (checking whether the target holds under the assumption q).

An example of the two verifier queries are given in Figure [I| The outcome of the procedure is
expressed as a judgment

P = (p*q | d with d e {T,F,U}.

The interpretation is as follows: if the judgment yields T, then p* is established on P; if it yields F,
then p* is refuted; and if it yields U, the attempt is inconclusive.

The inference rules defining this judgment are given below. Each rule specifies one possible derivation
of the outcome, depending only on the responses of the verifier.

V(P {q},p*)=F
k (DEC-FALSE)
P = (p,q) | F

V(P,@,q)=T V(P{q},p")=d d#F
P = (ptq | d

V(P,a,q)#T V(P {q},p*)#F
P = (p,q) | U

(DEC-PROP)

(DEC-U)

Under review as a conference paper at ICLR 2026

Rule DEC-FALSE captures short-circuit refutation: if the goal fails even in the restricted program
Asm(P, {q}), then it is false on the original program P. Rule DEC-PROP implements the prove-
then-use strategy: once the candidate invariant q is established, the outcome is exactly the verifier’s
answer on the goal under the assumption g, restricted to d € {T, U} so as not to overlap with
DEC-FALSE. Rule DEC-U gives explicit conditions for inconclusiveness: the goal is not refuted
under ¢ and q is not established as an invariant.

Theorem (Decision Soundness). If P = (p*,q) || T is derivable, then P |= p*. If P = (p*,q) | F
is derivable, then P = p*.

The proof is provided in Section[A.T] This theorem establishes that whenever the calculus derives a
conclusive outcome, that outcome is correct. The inconclusive case U is deliberately conservative: it
makes no claim about the truth or falsity of the property and safely captures verifier incompleteness
or timeouts.

3.3 IMPLEMENTATION

We describe the implementation of our verifier-based evaluation framework. Given a program P and
a target property p*, the system must generate candidate invariants ¢ and evaluate them according
to the decision procedure. When proposing an invariant ¢ = (¢, £), the model selects a program
location ¢ and supplies the corresponding predicate).

Syntactic Validation. Before invoking the verifier, we apply syntactic checks to the generated
predicate 1. These checks ensure that i) can be safely interpreted as a state predicate and that its
insertion as an assumption does not alter the program state. For instance, expressions that update
variables (e.g., a += 1) are rejected. Only Boolean conditions over the program state are accepted.

Parallel Evaluation. For each candidate ¢, the procedure issues two verifier queries, namely
d, = V(P, 2, q) to check whether ¢ is an invariant and d, = V (P, {q}, p*) to check whether the
target holds under the assumption q. These queries are executed in parallel in our implementation,
which reduces latency and enables speedup when the proposed invariant is useful for verification.
The final outcome is then derived exactly according to the decision calculus.

3.4 SUPERVISED FINE-TUNING AND BEST-OF-N SAMPLING

We perform supervised fine-tuning using LoRA (Hu et al.}[2022]). Below, we discuss how we construct
our dataset for fine-tuning and the way we perform Best-of-N sampling.

Synthetic Dataset Generation. To construct the synthetic dataset, we prompt GPT-40 using the
template in Appendix [A.3] The template takes three seed programs as examples and instructs the
model to synthesize a new C program that is compilable and contains both loops and assertions.
To obtain a diverse and large pool of candidates, we repeatedly invoke the model with different
seed programs. To avoid data leakage, these seed programs are randomly drawn from the SV-
COMP pool (Beyer & StrejCekl [2025)) that is disjoint from our evaluation set. Although the prompt
requests compilable programs with loops and assertions, the LLM-generated programs may fail to
compile, include assertions that do not hold, and contain multiple assertions. For programs with
multiple assertions, we split them into separate instances, each retaining only a single assertion while
preserving all loop structures (ensuring at least one loop per instance). We then run UAutomizer on
every program and discard any instance that is non-compilable or whose assertion is invalid. This
filtering step ensures the quality of the dataset, resulting in 3589 synthetic programs.

Extract Invariants Generated from UAutomizer. When running UAutomizer to prove the asser-
tions in the synthetic programs, the tool also emits the invariants it discovers. From its output, we
extract the loop invariants. Each extracted invariant includes its program location and its predicate.
Although each program contains exactly one assertion, it may include multiple loops, so a single
program can yield multiple loop invariants, all associated with the same assertion. We pair each
program with each of its corresponding loop invariants to form our training dataset. We show an
example invariant generated from UAutomizer in Appendix[A.4]

Under review as a conference paper at ICLR 2026

Best-of-N Sampling. Best-of-N sampling is an inference-time strategy in which multiple candidate
programs are generated, and the most effective one is selected, a technique shown to improve
performance on code-generation tasks (Ehrlich et al.l [2025). In our setting, the best candidate is the
invariant that yields the largest speedup, i.e., the one whose decision procedure finishes earliest. As
described in Section[3.2] evaluating a single candidate requires two verifier queries issued in parallel;
therefore, Best-of-N sampling evaluates 2N verifier queries concurrently.

4 EXPERIMENTAL SETUP

Dataset from SV-COMP. We construct our benchmark from SV-COMP (Beyer & Strejcek, [2025),
a standard competition in software verification, focusing on problems that require loop invariant
synthesis. We collect a pool of 899 instances and run the state-of-the-art non-LLM verifier UAu-
tomizer (Schiissele et al.l 2024) with a 600-second timeout to record the solving time for each. Based
on this runtime, we classify instances into an easy split (solved within 30 seconds) and a hard split
(solved between 30 and 600 seconds). From this pool, we randomly sample 113 problems from each
split, resulting in 226 instances in the final evaluation set. The selection process is fully automated
with no manual cherry-picking.

Synthetic Dataset. We construct a
synthetic corpus of verification prob-

lems using GPT-40. Seed programs Dataset Split Avg. #Lines #Instances
supplied in the prompt are selected Evaluation Easy 51 113
to ensure no overlap with the 226 in- Hard 62 113
stances in the evaluation set. Each syn- Training - 42 3589

thetic program is analyzed by UAu-
tomizer. The invariants extracted from
UAutomizer’s execution output form
our fine-tuning dataset, which con-
tains 3589 problems paired with their invariants.

Table 1: Dataset statistics of InvBench.

Metrics. All speedup-related measurements are reported relative to the state-of-the-art non-LLM-
based solver UAutomizer (Schissele et al., 2024), which serves as the baseline solver. We evaluate
LLMs along two dimensions: the correctness of the generated invariants and the performance
improvements they provide. Correctness is judged by the decision procedure formalized in Section 3]
with a timeout set to the problem’s original solving time by UAutomizer. For comparisons between
UAutomizer and other tools, we report the number of solved instances under varying time budgets.
We include the model’s token generation time in all evaluations.

Models. We benchmark Claude models from Anthropic, GPT models from OpenAl, and the Qwen
family of models (Hui et al.l 2024} Yang et al.| [2025).

Hardware and OS. Experiments were conducted on a server with Intel Xeon Platinum 8275CL
CPUs (96 cores), 8 NVIDIA A100 GPUs, and 1.1 TB of memory, running Ubuntu 22.04.

5 RESULTS

5.1 RESULTS OF LLMS

We report the performance of different LLMs on the easy and hard splits of InvBench in Table 2]
and Table 3] respectively. On the easy split shown in Table 2] 03 achieves the strongest results, with
a 1.37x speedup over UAutomizer on 28.3% of problems and an overall 1.09x average speedup.
These results indicate that while state-of-the-art LLMs generally struggle to synthesize correct or
sufficiently strong invariants to accelerate program verification, the strongest model 03 can still yield
non-trivial improvements on a meaningful fraction of problems.

Table [3] reports results on the hard split of InvBench. In this setting, LLMs show only negligible
improvement over UAutomizer. The only noteworthy exception is gpt-o0ss-120b, which produces an

Under review as a conference paper at ICLR 2026

Model % Correct Invariant % Speedup Speedup-: Speedup.p
Qwen2.5-72B 4.4% 0.9% 1.20x 1.00x
gpt-0ss-120b 8.8% 5.3% 1.10x 1.01x
claude-sonnet-4 15.0% 8.8% 1.06x 1.01x
Qwen3-Coder-480B 14.2% 8.0% 1.09x 1.01x
claude-opus-4.1 18.6% 8.8% 1.23% 1.02x
gpt-5 37.2% 26.5% 1.24x 1.06x
03 39.8% 28.3% 1.37% 1.09%

Table 2: InvBench-Easy: Results on the InvBench dataset (easy split) across models. We report
the percentage of instances with verified-correct invariants, the percentage of instances achieving
speedup greater than 1, the average speedup over those cases (Speedup-1), and the average speedup
across all instances with non-speedups counted as 1 (Speedup,y).

Model % Correct Invariant % Speedup Speedup-.: Speedupan
gpt-5 11.5% 0% 1.00x 1.00x
Qwen2.5-72B 12.4% 0% 1.00x 1.00x
03 29.2% 0% 1.00x 1.00x
Qwen3-Coder-480B 15.9% 0% 1.00x 1.00x
claude-sonnet-4 13.3% 0.9% 3.35% 1.01x
claude-opus-4.1 14.2% 0.9% 2.96x 1.02x
gpt-0ss-120b 11.5% 0.9% 29.57% 1.03%

Table 3: InvBench-Hard: Results on the InvBench dataset (hard split) across models.

invariant for one problem that delivers a 29.57x speedup. However, overall, such speedup cases are
exceedingly rare.

There are three main takeaways from the results. First, generating strong invariants that yield
performance speedups is substantially more difficult than merely producing correct invariants, as
reflected in the large gap between the percentage of correct invariants and the percentage of speedups.
Second, model capability is a key factor, as demonstrated by the sharp differences in speedups
reported in Table 2} Third, LLMs remain far from fully addressing the task of invariant synthesis,
leaving considerable room for future progress, as shown in Table

5.2 RESULTS OF VERIFIERS ON INVBENCH

We compare the state-of-the-art non-LLM-based tool UAutomizer (Schiissele et al.|[2024) with other
LLM-based verifiers on both the easy split and the hard split of InvBench.

On the easy split of InvBench, where UAutomizer solves all 113 instances within 30 seconds, it
clearly surpasses all LLM-based verifiers. LaM4Inv (Wu et al.,|2024a) and Loopy (Kamath et al.,
2023) fail to solve any instance within this time limit, while LEMUR (Wu et al., 2024b)) solves only
55 instances. These results indicate that none of the LLM-based verifiers provide any advantage over
UAutomizer on the easy split.

Figure 2] presents the comparison on the hard split of InvBench. UAutomizer still delivers the best
performance across almost all timeouts. UAutomizer consistently and significantly outperforms
LaM4Inv and Loopy. In particular, LaM4Inv and Loopy solve fewer than half as many instances
as UAutomizer across all timeouts. Notably, within 10 seconds, LEMUR solves more problems
than UAutomizer, suggesting that it can accelerate some of the instances. Nevertheless, UAutomizer
still outperforms LEMUR with longer timeouts, indicating that although LEMUR can offer early
solving advantages on certain challenging instances, its overall capability is still limited compared to
UAutomizer.

Given the consistently poor performance of LaM4Inv, which often either fails or times out, we
conducted a manual investigation. Our analysis shows that LaM4Inv fails on some examples when
applied to external datasets beyond those used in its custom evaluation. However, the preprocessing
steps or manual annotations required by the tool are not documented. The official repository does not

Under review as a conference paper at ICLR 2026

Solved Instances under Different Timeouts

Loopy - + —A
100 1 —— LEMUR
—&— UAutomizer
wn —&— LaMdinv
g 501 R S S ———
C
L]
0 60
£
?
0 404
©
N 20
O om0
50 100 150 200 250 300 350 400 450 500 550 600
Timeout (seconds)
Figure 2: Comparison of solved instances on InvBench-Hard by different verifiers.
Verifier | Total Instances | Solved Instances under Different Timeouts
| | 10s 100s 300s 600s
LaM4Inv (Wu et al.} 2024a) 316 144 286 295 299
UAutomizer 316 299 299 299 299
Loopy (Kamath et al.} 2023) 469 0 133 353 403
UAutomizer 469 372 403 411 413
LEMUR (Wau et al., 2024b) 47 2 8 16 19
UAutomizer 47 0 0 0 0

Table 4: Comparison of prior LLM-based verifiers and UAutomizer on their own custom dataset
under different timeout budgets.

provide preprocessing scripts, and our attempt to contact the authors has not received a response. For
a direct comparison between UAutomizer and LaM4Inv, we also refer readers to Section[5.3] where
we evaluate UAutomizer on the dataset released by LaM4Inv.

5.3 RESULTS OF UAUTOMIZER ON PRIOR DATASETS

As shown in Table UAutomizer, the state-of-the-art non-LLM-based verifier, consistently solves
more instances than LaM4Inv (Wu et al.| 2024a)) and Loopy (Kamath et al.| 2023, two representative
LLM-based tools, on their respective custom datasets. This highlights that prior work omitted an
important baseline comparison against UAutomizer.

LEMUR (Wu et al} [2024b) is the only tool that surpasses UAutomizer. However, this is largely
explained by its dataset construction: LEMUR evaluates only on problems that UAutomizer cannot
solve within 600 seconds. To assess whether this advantage generalizes beyond its own curated
benchmark, we conduct an additional analysis presented in Section [6]

While LaM4Inv and Loopy consistently underperform UAutomizer in terms of the total number of
solved instances across time budgets, they nevertheless offer complementary benefits, which we
discuss in Section[A2]

We further investigate the distributional differences between datasets. At the 600-second timeout,
the performance of prior LLM-based verifiers approaches that of UAutomizer, with LaM4Inv even
matching it exactly. In contrast, on InvBench (see Section [5.2)), all LLM-based verifiers perform
poorly at 600 seconds, suggesting a substantial shift in distribution compared to the custom datasets
used in prior work. Our analysis confirms this: programs in InvBench are significantly longer,
averaging 62 lines of code in the hard split, compared to only 22 for LaM4Inv, 23 for LEMUR, and
27 for Loopy. Manual inspection shows that InvBench contains features such as multiple loops,

Under review as a conference paper at ICLR 2026

functions, arrays, and pointers, which are largely absent from prior datasets. This makes InvBench a
more challenging and realistic benchmark that better distinguishes solver performance.

We also note that different LLM-based verification frameworks are built on different base solvers:
LEMUR is built on UAutomizer, Loopy on Frama-C (Cuoq et al [2012), and LaM4Inv on ES-
BMC (Gadelha et al[2018)). Given the strength of UAutomizer, we believe future work should place
greater emphasis on developing LLM-based verifiers atop state-of-the-art solvers such as UAutomizer
and ensure that comparisons against it are not omitted.

5.4 FAILURE MODE ANALYSIS

We conducted a detailed breakdown analysis to understand the primary failure modes behind the
lack of speedups. For each model, we categorize failures into four types: 1) Incorrect Invariant: the
candidate invariant is refuted; 2) Assume Timeout: verifying the invariant itself times out; 3) Assert
Timeout: the invariant is verified, but verifying the final assertion under that invariant times out; 4)
Assume + Assert Timeout: both checks time out. The table below summarizes this breakdown for the
top three models on the easy split, showing the number of instances falling into each failure mode.

Model Incorrect Assume Timeout Assert Timeout Assume + Assert Timeout
claude-opus-4.1 10 13 22 58
03 29 17 19 17
gpt-5 20 4 18 65

Table 5: Failure mode breakdown on InvBench-Easy.

While a portion of failures stems from incorrect invariants, the more fundamental issue is that the
invariants generated by LLMs rarely decompose the verification task into strictly easier subgoals. As
a result, both the solver queries frequently time out, as reflected in the large number of cases in the
“Assume + Assert Timeout” category. This suggests that current models lack an understanding of
what makes a verification query easy or difficult for symbolic solvers.

Future work should explore strategies that help models internalize or predict solver difficulty, such as
training reward models, so that they can propose invariants that genuinely simplify the verification
task rather than inadvertently increasing solver burden.

5.5 EFFECTIVENESS OF FINE-TUNING

We perform supervised fine-tuning using LoRA 2022) on the training set for 3 epochs.

Table [6] reports results on the easy split of InvBench. Fine-tuning leads to substantial gains in
both invariant correctness and runtime speedup. Qwen3-Coder-480B shows the most pronounced
improvements: the proportion of correct invariants increases from 14.2% in the base model to 40.7%,
and the percentage of instances with speedups rises from 8% to 29.2%. For Qwen2.5-72B, the
conditional speedup decreases after fine-tuning, but this is because the baseline conditional speedup
was driven by a single case, whereas fine-tuning yields a larger number of cases with speedups. We
also note that on the hard split, neither of the fine-tuned models shows improvement, demonstrating
that our benchmark contains unsolved challenges.

Model % Correct Invariant % Speedup Speedup-: Speedup.y
Qwen2.5-72B (base) 4.4% 0.9% 1.20x 1.00x
Qwen2.5-72B (fine-tuned) 32.7% 26.5% 1.13% 1.03x
Qwen3-Coder-480B (base) 14.2% 8.0% 1.09x 1.01x
Qwen3-Coder-480B (fine-tuned) 40.7% 29.2% 1.29%x 1.08x%

Table 6: Improvement of supervised fine-tuning on InvBench-Easy.

Under review as a conference paper at ICLR 2026

Model N % Correct Invariant % Speedup Speedup-; Speedupan
claude-opus-4.1 1 18.6% 8.8% 1.23x 1.02x
claude-opus-4.1 16 37.2% 23.0% 1.15% 1.03x
claude-sonnet-4 1 15.0% 8.8% 1.06x 1.01x
claude-sonnet-4 16 36.3% 22.1% 1.20x 1.04x
03 1 39.8% 28.3% 1.37x 1.09%
03 16 50.4% 35.4% 1.39x 1.12x

Table 7: Results of Best-of-N sampling (N = 16) on InvBench-Easy.

5.6 EFFECTIVENESS OF BEST-OF-N SAMPLING

We also evaluated whether repeated sampling improves LLM performance in invariant synthesis.
For each problem, we generated 16 samples at a temperature of 0.7, removed duplicate invariants,
and verified all candidates in parallel. Table [/| summarizes the results on InvBench’s easy split,
demonstrating that repeated sampling leads to consistent gains. For example, 03 improves from
39.8% to 50.4% on correctness, while claude-opus-4.1 improves from 18.6% to 37.2%.

On the hard split, for claude-opus-4.1, with 16 samples, the percentage of instances with correct
invariants increases from 14.2% to 15.9%, the percentage of instances with speedup from 0.9%
to 2.7%, and the overall average speedup from 1.02x to 1.03x. Similarly, for claude-sonnet-4, the
percentage of instances with correct invariants increases from 13.3% to 20.4%, the percentage of
instances with speedup from 0.9% to 2.7%, conditional average speedup from 3.35x to 6.12x%, and the
overall average speedup from 1.01x to 1.07x. These improvements suggest that best-of-N sampling
is a promising technique for LLMs to improve invariant synthesis performance.

6 DISCUSSION

Performance Gains with Ground-Truth Invariants. To quantify the potential speedup achievable
when providing correct and strong invariants to solvers, we extract the invariants identified by
UAutomizer and then measure the resulting speedup when they are supplied to it. On a random
sample of 100 problems from our training set, we observe an overall average speedup of 1.86x. This
indicates that the invariants discovered by UAutomizer are sufficiently strong for acceleration.

Generalizability of LEMUR. LEMUR (Wu et al.,|2024b) reports the best results on its custom
dataset, as it targets instances that UAutomizer cannot solve within 600 seconds. To test whether this
advantage generalizes, we sampled 50 unsolved instances and found that LEMUR solved 12 within
the same timeout of 600 seconds. This suggests that LEMUR’s gains are not solely due to benchmark
design but reflect a genuine advantage on harder problems.

Inference Overhead of Models. Our evaluation includes LLM serving time as a realistic measure
of end-to-end performance. Since the goal is to accelerate verification, inference overhead must be
considered alongside solver runtime. Future research may explore how to balance the quality of
generated invariants with the inference cost of producing them.

7 CONCLUSION

This work introduced InvBench, a principled framework for evaluating the capabilities of LLMs
in invariant synthesis. Our approach employs a verifier-based decision procedure with a formal
soundness guarantee and assesses not only correctness but also the speedups that invariants contribute
to program verification. Using a benchmark of 226 instances, we conducted a comparison across
state-of-the-art LLMs, existing LLM-based verifiers, and the traditional solver UAutomizer. The
results show that although LLM-based verifiers represent a promising direction, they do not yet offer
significant advantages over non-LL.M-based approaches. Model capability proves to be a critical
factor, and our benchmark remains an open challenge for current LLMs. At the same time, we
demonstrated that supervised fine-tuning and Best-of-N sampling can improve model performance in
accelerating verification.

10

Under review as a conference paper at ICLR 2026

LLM USAGE

LLMs are the subject of this study. We additionally used them for polishing the writing.

REFERENCES

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Dirk Beyer and Jan Strejcek. Improvements in software verification and witness validation: Sv-comp
2025. In International Conference on Tools and Algorithms for the Construction and Analysis of
Systems, pp. 151-186. Springer, 2025.

Saikat Chakraborty, Shuvendu K Lahiri, Sarah Fakhoury, Madanlal Musuvathi, Akash Lal, Aseem
Rastogi, Aditya Senthilnathan, Rahul Sharma, and Nikhil Swamy. Ranking llm-generated loop
invariants for program verification. arXiv preprint arXiv:2310.09342, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Michael Colon, Sriram Sankaranarayanan, and Henny Sipma. Linear invariant generation using
non-linear constraint solving. Computer-aided Verification: Proceedings, pp. 420, 2003.

Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In Proceedings of the 4th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages, pp. 238-252, 1977.

Patrick Cousot and Radhia Cousot. Systematic design of program analysis frameworks. In Proceed-
ings of the 6th ACM SIGACT-SIGPLAN symposium on Principles of programming languages, pp.
269-282, 1979.

Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints among variables
of a program. In Proceedings of the 5th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pp. 84-96, 1978.

Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris
Yakobowski. Frama-c: A software analysis perspective. In International conference on software
engineering and formal methods, pp. 233-247. Springer, 2012.

Mnacho Echenim, Nicolas Peltier, and Yanis Sellami. Ilinva: Using abduction to generate loop
invariants. In Frontiers of Combining Systems: 12th International Symposium, FroCoS 2019,
London, UK, September 4-6, 2019, Proceedings 12, pp. 77-93. Springer, 2019.

Ryan Ehrlich, Bradley Brown, Jordan Juravsky, Ronald Clark, Christopher Ré, and Azalia Mirho-
seini. Codemonkeys: Scaling test-time compute for software engineering. arXiv preprint
arXiv:2501.14723, 2025.

Michael D Ernst, Jeff H Perkins, Philip J Guo, Stephen McCamant, Carlos Pacheco, Matthew S
Tschantz, and Chen Xiao. The daikon system for dynamic detection of likely invariants. Science
of computer programming, 69(1-3):35-45, 2007.

P Ezudheen, Daniel Neider, Deepak D’Souza, Pranav Garg, and P Madhusudan. Horn-ice learning
for synthesizing invariants and contracts. Proceedings of the ACM on Programming Languages, 2
(OOPSLA):1-25, 2018.

Chuchu Fan, Bolun Qi, Sayan Mitra, and Mahesh Viswanathan. Dryvr: Data-driven verification and

compositional reasoning for automotive systems. In International Conference on Computer Aided
Verification, pp. 441-461. Springer, 2017.

11

Under review as a conference paper at ICLR 2026

Grigory Fedyukovich and Rastislav Bodik. Accelerating syntax-guided invariant synthesis. In Tools
and Algorithms for the Construction and Analysis of Systems: 24th International Conference,
TACAS 2018, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part I 24, pp. 251-2609.
Springer, 2018.

Cormac Flanagan and Shaz Qadeer. Predicate abstraction for software verification. In Proceedings
of the 29th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pp.
191-202, 2002.

Mikhail R Gadelha, Felipe R Monteiro, Jeremy Morse, Lucas C Cordeiro, Bernd Fischer, and Denis A
Nicole. Esbmc 5.0: an industrial-strength ¢ model checker. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, pp. 888—891, 2018.

Pranav Garg, Christof Loding, Parthasarathy Madhusudan, and Daniel Neider. Ice: A robust
framework for learning invariants. In Computer Aided Verification: 26th International Conference,
CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22,
2014. Proceedings 26, pp. 69—-87. Springer, 2014.

Pranav Garg, Daniel Neider, Parthasarathy Madhusudan, and Dan Roth. Learning invariants using
decision trees and implication counterexamples. ACM Sigplan Notices, 51(1):499-512, 2016.

Sumit Gulwani, Saurabh Srivastava, and Ramarathnam Venkatesan. Constraint-based invariant infer-
ence over predicate abstraction. In Verification, Model Checking, and Abstract Interpretation: 10th
International Conference, VM CAI 2009, Savannah, GA, USA, January 18-20, 2009. Proceedings
10, pp. 120-135. Springer, 2009.

Ashutosh Gupta, Rupak Majumdar, and Andrey Rybalchenko. From tests to proofs. In International
Conference on Tools and Algorithms for the Construction and Analysis of Systems, pp. 262-276.
Springer, 2009.

Charles Antony Richard Hoare. An axiomatic basis for computer programming. Communications of
the ACM, 12(10):576-580, 1969.

Hossein Hojjat and Philipp Riimmer. The eldarica horn solver. In 2018 Formal Methods in Computer
Aided Design (FMCAD), pp. 1-7. IEEE, 2018.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Ranyjit Jhala and Kenneth L McMillan. A practical and complete approach to predicate refinement. In
International Conference on Tools and Algorithms for the Construction and Analysis of Systems,
pp. 459-473. Springer, 2006.

Adharsh Kamath, Aditya Senthilnathan, Saikat Chakraborty, Pantazis Deligiannis, Shuvendu K
Lahiri, Akash Lal, Aseem Rastogi, Subhajit Roy, and Rahul Sharma. Finding inductive loop
invariants using large language models. arXiv preprint arXiv:2311.07948, 2023.

Adharsh Kamath, Nausheen Mohammed, Aditya Senthilnathan, Saikat Chakraborty, Pantazis Deli-
giannis, Shuvendu K Lahiri, Akash Lal, Aseem Rastogi, Subhajit Roy, and Rahul Sharma. Leverag-
ing llms for program verification. In 2024 Formal Methods in Computer-Aided Design (FMCAD),
pp- 107-118. IEEE, 2024.

Michael Karr. Affine relationships among variables of a program. Acta informatica, 6(2):133-151,
1976.

Shuvendu K Lahiri and Randal E Bryant. Predicate abstraction with indexed predicates. ACM
Transactions on Computational Logic (TOCL), 9(1):4—es, 2007.

12

Under review as a conference paper at ICLR 2026

Ton Chanh Le, Guolong Zheng, and ThanhVu Nguyen. Sling: using dynamic analysis to infer
program invariants in separation logic. In Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 788-801, 2019.

Jiaying Li, Jun Sun, Li Li, Quang Loc Le, and Shang-Wei Lin. Automatic loop-invariant generation
and refinement through selective sampling. In 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE), pp. 782-792. IEEE, 2017.

Chang Liu, Xiwei Wu, Yuan Feng, Qinxiang Cao, and Junchi Yan. Towards general loop invariant
generation: a benchmark of programs with memory manipulation. Advances in Neural Information
Processing Systems, 37:129120-129145, 2024.

Matt Luckcuck, Marie Farrell, Louise A Dennis, Clare Dixon, and Michael Fisher. Formal specifica-
tion and verification of autonomous robotic systems: A survey. ACM Computing Surveys (CSUR),
52(5):1-41, 2019.

Kenneth L McMillan. Lazy annotation for program testing and verification. In Computer Aided Verifi-
cation: 22nd International Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings
22, pp. 104-118. Springer, 2010.

Kexin Pei, David Bieber, Kensen Shi, Charles Sutton, and Pengcheng Yin. Can large language models
reason about program invariants? In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp.
27496-27520. PMLR, 23-29 Jul 2023. URL https://proceedings.mlr.press/v202/
pei23a.html.

Daniel Riley and Grigory Fedyukovich. Multi-phase invariant synthesis. In Proceedings of the 30th
ACM Joint European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, pp. 607-619, 2022.

Gabriel Ryan, Justin Wong, Jianan Yao, Ronghui Gu, and Suman Jana. Cln2inv: learning loop
invariants with continuous logic networks. arXiv preprint arXiv:1909.11542, 2019.

Frank Schiissele, Manuel Bentele, Daniel Dietsch, Matthias Heizmann, Xinyu Jiang, Dominik
Klumpp, and Andreas Podelski. Ultimate automizer and the abstraction of bitwise operations:
(competition contribution). In International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems, pp. 418-423. Springer, 2024.

Rahul Sharma, Aditya V Nori, and Alex Aiken. Interpolants as classifiers. In International Conference
on Computer Aided Verification, pp. 71-87. Springer, 2012.

Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex Aiken, and Aditya V Nori. Verification as
learning geometric concepts. In International Static Analysis Symposium, pp. 388—411. Springer,
2013.

Xujie Si, Hanjun Dai, Mukund Raghothaman, Mayur Naik, and Le Song. Learning loop invariants
for program verification. Advances in Neural Information Processing Systems, 31, 2018.

Hari Govind Vediramana Krishnan, YuTing Chen, Sharon Shoham, and Arie Gurfinkel. Global
guidance for local generalization in model checking. Formal Methods in System Design, 63(1):
81-109, 2024.

Anjiang Wei, Jiannan Cao, Ran Li, Hongyu Chen, Yuhui Zhang, Ziheng Wang, Yaofeng Sun, Yuan
Liu, Thiago SFX Teixeira, Diyi Yang, et al. Equibench: Benchmarking code reasoning capabilities
of large language models via equivalence checking. arXiv e-prints, pp. arXiv—2502, 2025a.

Anjiang Wei, Tarun Suresh, Jiannan Cao, Naveen Kannan, Yuheng Wu, Kai Yan, Thiago S. F. X.
Teixeira, Ke Wang, and Alex Aiken. CodeARC: Benchmarking reasoning capabilities of LLM
agents for inductive program synthesis. In Second Conference on Language Modeling, 2025b.
URL https://openreview.net/forum?id=Q5pVZCrrKr.

13

https://proceedings.mlr.press/v202/pei23a.html
https://proceedings.mlr.press/v202/pei23a.html
https://openreview.net/forum?id=Q5pVZCrrKr

Under review as a conference paper at ICLR 2026

Anjiang Wei, Yuheng Wu, Yingjia Wan, Tarun Suresh, Huanmi Tan, Zhanke Zhou, Sanmi Koyejo,
Ke Wang, and Alex Aiken. Satbench: Benchmarking llms’ logical reasoning via automated puzzle
generation from sat formulas. arXiv preprint arXiv:2505.14615, 2025c.

Guangyuan Wu, Weining Cao, Yuan Yao, Hengfeng Wei, Taolue Chen, and Xiaoxing Ma. LIm meets
bounded model checking: Neuro-symbolic loop invariant inference. In Proceedings of the 39th
IEEE/ACM International Conference on Automated Software Engineering, pp. 406417, 2024a.

Haoze Wu, Clark Barrett, and Nina Narodytska. Lemur: Integrating large language models in auto-
mated program verification. In The Twelfth International Conference on Learning Representations,
2024b. URL https://openreview.net/forum?id=03YaCghZNt.

Rongchen Xu, Fei He, and Bow-Yaw Wang. Interval counterexamples for loop invariant learning. In
Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pp. 111-122, 2020.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025.

Jianan Yao, Gabriel Ryan, Justin Wong, Suman Jana, and Ronghui Gu. Learning nonlinear loop
invariants with gated continuous logic networks. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2020, pp. 106-120,
New York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450376136. doi:
10.1145/3385412.3385986. URL https://doi.orqg/10.1145/3385412.3385986.

Shiwen Yu, Ting Wang, and Ji Wang. Loop invariant inference through smt solving enhanced
reinforcement learning. In Proceedings of the 32nd ACM SIGSOFT International Symposium on
Software Testing and Analysis, pp. 175-187, 2023.

14

https://openreview.net/forum?id=Q3YaCghZNt
https://doi.org/10.1145/3385412.3385986

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 PROOF

Theorem (Decision Soundness). If P = (p*,q) || T is derivable, then P |= p*. If P = (p*,q) | F
is derivable, then P = p*.

Proof. For the T case, the final rule must be DEC-PROP with d = T. The premises yield
V(P,2,q) = T and V(P,{q},p*) = T. By verifier soundness, P |= q and P =, p*. Since q
holds on all executions of P, introducing the assumption {¢q} does not remove executions relevant to
p*; thus P = p*.

For the F case, the final rule must be DEC-FALSE. Its premise V (P, {¢q},p*) = F implies
P %4 p* by soundness. Assumptions restrict behaviors; hence, a violation under assumptions
entails a violation without them, yielding P [~ p*. O

A.2 COMPLEMENTARY RESULTS OF LLM-BASED SOLVERS

As shown in Table[AT] all three LLM-based tools solve instances that remain unsolved by UAutomizer
within the 600-second budget. LaM4Inv and Loopy each contribute additional solved cases, and
LEMUR is able to handle 19 problems that UAutomizer cannot solve at all, underscoring the
complementary strengths of LLM-based approaches.

Verifier Solved Instances A Solved
LaM4Inv 299 13
Loopy 403 40
LEMUR 19 19

Table Al: LLM-based verifiers complement UAutomizer by solving problems beyond its reach. We
report the total numbers of solved problems, and “A Solved” is the number of instances uniquely
solved that are unsolved by UAutomizer.

A.3 PROMPT TEMPLATE USED FOR TRAINING DATASET GENERATION

Table[A2]shows the prompt template used for synthesizing training programs from seed programs.

A.4 AN EXAMPLE FROM THE FINE-TUNING DATASET

Figure [AT|shows an example from the fine-tuning dataset with the program to the UAutomizer and
the generated loop invariant.

The loop invariant holds at Line 6 (the beginning of the loop). It is a disjunction of two clauses, and
canbe writtenas [= PV Q = ((i+1)mod2 =0Az <24+ i+yAz <2+4+y+2iAz <
N+y+1A1<N)V(imod2=0Az<2+i+yAz<2+yAl<N).

By inspecting the loop, we can derive an exact relationship between z, y, and ¢ at the beginning of

each iteration. Since x accumulates all even numbers less than ¢ and y accumulates all odd numbers
less than 7, we obtain:

. 1
if 7 is even: :Jc—y:—%7 if ¢ is odd: x—y:ZT.

Using this relationship, it is straightforward to verify that the invariant I produced by UAutomizer is
correct. Moreover, I is strong enough to prove the final assertion x —y < N.

To show that the assertion holds at loop termination, we can check the following verification condition
IAN(GE=N)= (x—y<N),

where ¢ = N denotes the loop’s exit condition.

15

Under review as a conference paper at ICLR 2026

You will be shown 3 example C programs. Please gain inspiration from the following
programs to create a new high-quality C program. Do not simply copy from any of them.

Requirements for the generated program:

1. The program MUST contain non-trivial loops (for or while).

2. The program MUST contain assertions.

3. The program MUST be compilable, self-contained, and reasonably complex (not trivial or
overly short).

4. Only output the new C program.

Example snippets:
Program 1:
{SEED_PROGRAM_1}

Program 2:
{SEED_PROGRAM_2}

Program 3:
{SEED_PROGRAM_3}

Output format: The generated program must be wrapped strictly in the following format:

C
<NEW_C_PROGRAM>

Table A2: Prompt template for synthetic data generation.

Case 1: N is odd. Instantiating the invariant with ¢ = [V activates the P disjunct of I, from which
we obtain

r—y<N+1.

Since x — y is an integer, this directly implies x — y < N.

Case 2: N is even. In this case, the) disjunct applies. From the clause < 2 + y contained in @),
we derive

r—y <2
Because x — y is an integer and N > 1 and even (hence N > 2), we conclude
r—y<1<N,
establishing the desired post-condition.

Thus, the invariant I indeed suffices to prove the final assertion.

16

© ® NN R W N —

Under review as a conference paper at ICLR 2026

Original Program (Input to UAutomizer)

int main() {
int N = _ VERIFIER_nondet_int ();
assume_abort_if not (N >= 1 && N < 100);
int x = 0, yv = 0;

r
for (int i = 0; i < N; i++) |
if (1 $ 2 == 0) {
X += 1;
} else {
y = 1;

int diff = x - y;
_ VERIFIER_assert (diff <= N);
return 0O;

Loop Invariant Generated by UAutomizer:

Line Number: 6

Predicate:

(
(i +1) 2 == 0 &&
X < 2+ 1+ vy &&
X <2+y+2 x1ié&&
Xx <N+ vy+ 1 ss
1 <= N

)

I

(
i % 2 =0 &&
x <2+ 1+ vy s&s
X < 2 + vy &&
1 <= N

Figure Al: An example from the fine-tuning dataset: program and its loop invariant generated by
UAutomizer.

17

	Introduction
	Related Work
	Method
	Preliminary
	Verifier-Based Decision Procedure
	Implementation
	Supervised Fine-Tuning and Best-of-N Sampling

	Experimental Setup
	Results
	Results of LLMs
	Results of Verifiers on InvBench
	Results of UAutomizer on Prior Datasets
	Failure Mode Analysis
	Effectiveness of Fine-Tuning
	Effectiveness of Best-of-N Sampling

	Discussion
	Conclusion
	Appendix
	Proof
	Complementary Results of LLM-based Solvers
	Prompt Template Used for Training Dataset Generation
	An Example from the Fine-Tuning Dataset

