

000 001 002 003 004 005 INVBENCH: CAN LLMS ACCELERATE PROGRAM VER- 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 INVIFICATION WITH INVARIANT SYNTHESIS?

Anonymous authors

Paper under double-blind review

ABSTRACT

Program verification relies on loop invariants, yet automatically discovering strong invariants remains a long-standing challenge. We introduce a principled framework for evaluating LLMs on invariant synthesis. Our approach uses a verifier-based decision procedure with a formal soundness guarantee and assesses not only correctness but also the speedup that invariants provide in verification. We evaluate 7 state-of-the-art LLMs, and existing LLM-based verifiers against the traditional solver UAutomizer. While LLM-based verifiers represent a promising direction, they do not yet offer a significant advantage over UAutomizer. Model capability also proves critical, as shown by sharp differences in speedups across models, and our benchmark remains an open challenge for current LLMs. Finally, we show that supervised fine-tuning and Best-of-N sampling can improve performance: fine-tuning on 3589 instances raises the percentage of speedup cases for Qwen3-Coder-480B from 8% to 29.2%, and Best-of-N sampling with N=16 improves Claude-sonnet-4 from 8.8% to 22.1%. **We release our dataset for training and evaluation at <https://anonymous.4open.science/r/InvBench/>.**

1 INTRODUCTION

Program verification aims to provide formal guarantees that software behaves as intended, with applications in many safety-critical domains (Fan et al., 2017; Luckcuck et al., 2019). A long-standing challenge in this area, studied for more than four decades, is the automatic discovery of loop invariants. In this work, we investigate whether large language models (LLMs) can accelerate program verification by generating useful loop invariants.

Loop invariants are conditions that hold before and after each loop iteration, and they are central to deductive program verification. To accelerate program verification, loop invariants must not only be correct but also sufficiently strong to prove the assertions. Generating correct invariants is relatively easy, since any universally true condition qualifies. However, only strong invariants can reduce verification effort and lead to a speedup. For example, in Figure 1, the invariant $x > 0$ is correct but not strong enough to prove the final assertion $x \neq 145$, whereas $x \equiv 3 \pmod{7}$ is both correct and sufficiently strong.

Discovering such invariants is difficult and undecidable in general, which has motivated a long line of research. Traditional approaches include constraint solving (Colon et al., 2003; Gupta et al., 2009), dynamic analysis (Le et al., 2019), etc. Since invariant discovery is undecidable in general, researchers have tried a variety of learning-based methods (Li et al., 2017; Ezudheen et al., 2018). Building on this progression, the strong capabilities of LLMs in code generation and program reasoning (Austin et al., 2021; Chen et al., 2021; Wei et al., 2025b) naturally motivate a systematic evaluation of their potential for invariant discovery.

Pei et al. (2023) is the first work to evaluate the capabilities of LLMs in invariant generation. However, their methodology considers only correctness and does not assess how strong the generated invariants are. As a result, LLMs may generate correct invariants that perform well under their evaluation metric but provide no benefit for accelerating the verification process in real-world settings. Furthermore, their notion of correctness is not based on formal verification. Instead, it is determined by direct comparison with invariants generated by an existing tool, namely Daikon (Ernst et al., 2007). Daikon is a dynamic analysis tool whose invariants are not guaranteed to be sound, since they are inferred from observed test executions rather than proven across all possible executions. As a result, the

Figure 1: Illustration of InvBench’s evaluation pipeline. The LLM proposes an invariant by specifying a program location and predicate (e.g., location B with $x \% 7 == 3$). The verification procedure then incorporates this invariant to prove the property $x != 145$ using two verifier queries, and we measure the resulting speedup relative to a baseline without LLM assistance.

ground-truth invariants themselves may be incorrect. Moreover, directly comparing LLM-generated invariants with Daikon’s output can lead to rejecting many correct invariants. For example, if an LLM proposes $a > 0$ for an integer a while Daikon reports $a \geq 1$, the evaluation in Pei et al. (2023) would incorrectly classify the LLM’s result as wrong, even though the two are equivalent. Hence, prior work’s evaluation methodology cannot reliably capture the correctness of LLM-generated invariants, let alone how useful they are for verification.

A series of follow-up works inspired by Pei et al. (2023) have proposed LLM-based verifiers (Wu et al., 2024b;a; Kamath et al., 2024). Instead of evaluating LLMs in isolation, these efforts develop verification frameworks powered by LLMs. **However, each work introduces a custom dataset and reports results only on it, making cross-comparison difficult and raising concerns about generalization.**

Our work, InvBench, introduces a principled methodology for evaluating the capabilities of LLMs in invariant synthesis. Instead of checking whether LLMs reproduce invariants discovered by other tools, we employ a verifier-based decision procedure that directly determines the correctness of LLM-generated invariants, and we prove this procedure to be sound. We formalize the methodology as a proof calculus, providing a rigorous foundation for invariant evaluation. Unlike previous work that focuses on optimizing verification performance by designing tailored interactive protocols between solvers and LLMs (Chakraborty et al., 2023; Wu et al., 2024b; Kamath et al., 2024; Wu et al., 2024a), our goal is to develop a simple, *first-order* verification procedure suitable for evaluating the invariant generation capability of LLMs. Our formalization provides such a framework, offering a general solution for invariant evaluation.

Since the purpose of invariant synthesis is to accelerate verification, invariants that are too weak to aid verification or too difficult to verify as correct offer little practical value. To capture this, we evaluate the invariants by measuring the speedup they provide in the overall verification process.

To support comparison across solvers and LLMs, we construct a dataset of 226 instances derived from the most recent edition of the software verification competition SV-Comp (Beyer & Strejček, 2025) and use it to evaluate multiple LLM-based verifiers on this common benchmark. In addition, we assess the state-of-the-art traditional (i.e., non-LLM-based) verifier UAutomizer (Schüssle et al., 2024) both on our dataset and on each of the custom datasets introduced in prior work (Wu et al., 2024b; Kamath et al., 2024; Wu et al., 2024a).

UAutomizer consistently outperforms prior LLM-based verifiers on both our dataset and their custom datasets across all settings, with the exception of LEMUR (Wu et al., 2024b), which was specifically designed for problems that UAutomizer fails to solve. These results suggest that while LLM-based verifiers are a promising direction, **existing approaches do not yet offer a significant advantage over non-LLM-based approaches in general. Our findings also indicate that the effectiveness of LLM-based verifiers is strongly determined by the underlying symbolic solver they rely on.**

In addition, we evaluate 7 state-of-the-art LLMs. To improve models’ capabilities, we construct a fine-tuning dataset of 3589 instances and show that training on this dataset raises the percentage of

108 speedup cases for Qwen3-Coder-480B from 8% to 29.2%. Similarly, Best-of-N sampling with $N = 16$
 109 improves Claude-sonnet-4 from 8.8% to 22.1%. Our methods, despite the simplicity, establish a new
 110 performance baseline. Our decision procedure enables LLMs to outperform UAutomizer, whereas
 111 prior LLM-based verifiers with significantly more complex designs rarely do so.

112 In summary, our contributions are as follows:
 113

- 114 • We propose a verification procedure for evaluating the invariant generation capabilities of
 115 LLMs, assessing both correctness and their effectiveness in accelerating verification.
- 116 • We evaluate 7 state-of-the-art LLMs, and provide comparisons between existing LLM-based
 117 verifiers and the state-of-the-art non-LLM-based solver UAutomizer.
- 118 • We construct a dataset of 3589 instances for training. We demonstrate that both supervised
 119 fine-tuning and Best-of-N sampling can easily improve model performance in accelerating
 120 verification, establishing a new performance baseline.

122 2 RELATED WORK

123 **Traditional Methods for Program Invariant Generation.** A long line of research has explored
 124 invariant synthesis using traditional techniques without machine learning, including model checking
 125 (Flanagan & Qadeer, 2002; Lahiri & Bryant, 2007; Hojjat & Rümmer, 2018; Vediramana Krishnan
 126 et al., 2024), abstract interpretation (Karr, 1976; Cousot & Cousot, 1977; Cousot & Halbwachs,
 127 1978; Cousot & Cousot, 1979), constraint solving (Gulwani et al., 2009; Gupta et al., 2009), Craig
 128 interpolation (Jhala & McMillan, 2006; McMillan, 2010), and syntax-guided synthesis (Fedyukovich
 129 & Bodík, 2018). Prior work evaluating LLM-generated invariants (Pei et al., 2023) has relied on
 130 Daikon (Ernst et al., 2007), a tool for dynamic invariant detection (Echenim et al., 2019; Le et al.,
 131 2019). Daikon executes the program, observes runtime values, and reports properties that consistently
 132 hold over the observed executions. However, such invariants may fail to generalize to all possible
 133 executions, thereby compromising soundness. Our approach instead employs a verifier-based decision
 134 procedure relying on UAutomizer (Schüssele et al., 2024) that ensures soundness.

135 **Learning-Based Method for Invariant Generation.** Machine learning based techniques have
 136 been widely adopted in invariant synthesis, including decision tree (Garg et al., 2014; 2016; Ezudheen
 137 et al., 2018; Riley & Fedyukovich, 2022; Xu et al., 2020), support vector machine (Li et al., 2017;
 138 Sharma et al., 2012), reinforcement learning (Si et al., 2018; Yu et al., 2023), and others (Sharma et al.,
 139 2013; Ryan et al., 2019; Yao et al., 2020). More recently, large language models have demonstrated
 140 strong capabilities in reasoning about code and logic (Wei et al., 2025a;b;c), giving rise to a series of
 141 work that explore using LLMs for finding invariants. Pei et al. (2023) is the first pioneering work that
 142 evaluates LLMs' capabilities in finding invariants, but it is not a sound evaluation. Various techniques
 143 have been proposed to couple LLMs with symbolic solvers, including ranking LLM-generated
 144 invariants (Chakraborty et al., 2023), the “query-filter-reassemble” strategy of LaM4Inv (Wu et al.,
 145 2024a), the back-tracking algorithm in LEMUR (Wu et al., 2024b), and Loopy’s integration of the
 146 classic Houdini algorithm (Kamath et al., 2024). On the dataset side, Liu et al. (2024) introduces
 147 a rule-based method for constructing a fine-tuning corpus, which differs from our verifier-based
 148 approach. In contrast, our work provides a simple and sound evaluation procedure for assessing
 149 LLM-generated invariants and investigates how both fine-tuning and Best-of-N sampling can enhance
 150 LLM performance in invariant synthesis.

152 3 METHOD

153 3.1 PRELIMINARY

154 We formalize the task of loop invariant synthesis using standard Hoare logic (Hoare, 1969). A Hoare
 155 triple $\{P\} S \{Q\}$ specifies that if the precondition P holds before executing a statement S , then
 156 the postcondition Q will hold after its execution. In the context of loops, an invariant I is a logical
 157 proposition that summarizes the state of the program at each iteration, and it is the key to proving the
 158 validity of Hoare triples involving loops. For a loop of the form `while B do S`, the goal of invariant
 159 synthesis is to identify a loop invariant I that satisfies the following inference rule:
 160

162

$$\frac{P \Rightarrow I \quad \{I \wedge B\} S \{I\} \quad I \wedge \neg B \Rightarrow Q}{\{P\} \text{ while } B \text{ do } S \{Q\}}$$

164

166 Here, P is the precondition, Q is the postcondition, B is the loop condition, and S is the loop body.
167 Intuitively, the inference rule requires that the invariant I holds at the beginning of the loop ($P \Rightarrow I$),
168 is preserved across every iteration of the loop body ($\{I \wedge B\} S \{I\}$), and upon termination ensures
169 the postcondition ($I \wedge \neg B \Rightarrow Q$).

170 Invariant synthesis amounts to generating a logical summary I that is both *correct*, meaning it can be
171 verified, and *strong*, meaning it enables verification of the final assertion. Weak but correct invariants
172 contribute little, leaving most of the reasoning to the verifier, whereas strong invariants narrow the
173 search space of program states, reduce solver effort, and yield substantial speedups.

174

175 3.2 VERIFIER-BASED DECISION PROCEDURE

176

177 We formalize our verifier-based procedure for assessing candidate invariants. Let P denote a program.
178 A *property* is written as $p = \langle \varphi, \ell \rangle$, where φ is a state predicate and ℓ is a program location. For
179 a finite set A of properties, let $\text{Asm}(P, A)$ be the program obtained from P by inserting *assume*
180 statements for all elements of A . An execution of $\text{Asm}(P, A)$ that reaches a location where an
181 assumption is violated terminates immediately. We write $P \models_A p$ to indicate that all executions of
182 $\text{Asm}(P, A)$ satisfy the assertion p . The notation $P \models p$ abbreviates $P \models_{\emptyset} p$. Since assumptions
183 restrict behaviors, if $P \not\models_A p$ for some A , then necessarily $P \not\models p$.

184

We assume access to a verifier

$$V(P, A, p) \in \{\mathbf{T}, \mathbf{F}, \mathbf{U}\},$$

185

186 which returns either **T** (proved), **F** (refuted), or **U** (inconclusive). The verifier is required to be sound
187 on conclusive outcomes:

188

$$V(P, A, p) = \mathbf{T} \Rightarrow P \models_A p, \quad V(P, A, p) = \mathbf{F} \Rightarrow P \not\models_A p.$$

189

190 No completeness is assumed for **U**, which may arise from timeouts or incompleteness of the
191 underlying verifier.

192

193 The verification task specifies a target property $p^* = \langle \varphi^*, \ell^* \rangle$. Given P and p^* , a large language
194 model proposes a *candidate invariant* $q = \langle \psi, \ell \rangle$, typically at a loop header. To evaluate the utility of
 q , the procedure issues two verifier queries:

195

$$d_a := V(P, \emptyset, q) \quad (\text{checking whether } q \text{ is a correct predicate}),$$

196

$$d_b := V(P, \{q\}, p^*) \quad (\text{checking whether the target holds under the assumption } q).$$

197

An example of the two verifier queries are given in Figure 1. The outcome of the procedure is
199 expressed as a judgment

200

$$P \Rightarrow \langle p^*, q \rangle \Downarrow d \quad \text{with} \quad d \in \{\mathbf{T}, \mathbf{F}, \mathbf{U}\}.$$

202

The interpretation is as follows: if the judgment yields **T**, then p^* is established on P ; if it yields **F**,
203 then p^* is refuted; and if it yields **U**, the attempt is inconclusive.

204

205

The inference rules defining this judgment are given below. Each rule specifies one possible derivation
206 of the outcome, depending only on the responses of the verifier.

207

208

$$\frac{V(P, \{q\}, p^*) = \mathbf{F}}{P \Rightarrow \langle p^*, q \rangle \Downarrow \mathbf{F}} \text{ (DEC-FALSE)}$$

209

210

$$\frac{V(P, \emptyset, q) = \mathbf{T} \quad V(P, \{q\}, p^*) = d \quad d \neq \mathbf{F}}{P \Rightarrow \langle p^*, q \rangle \Downarrow d} \text{ (DEC-PROP)}$$

211

212

213

$$\frac{V(P, \emptyset, q) \neq \mathbf{T} \quad V(P, \{q\}, p^*) \neq \mathbf{F}}{P \Rightarrow \langle p^*, q \rangle \Downarrow \mathbf{U}} \text{ (DEC-U)}$$

216 Rule DEC-FALSE captures short-circuit refutation: if the goal fails even in the restricted program
 217 $\text{Asm}(P, \{q\})$, then it is false on the original program P . Rule DEC-PROP implements the prove-
 218 then-use strategy: once the candidate invariant q is established, the outcome is exactly the verifier’s
 219 answer on the goal under the assumption q , restricted to $d \in \{\mathbf{T}, \mathbf{U}\}$ so as not to overlap with
 220 DEC-FALSE. Rule DEC-U gives explicit conditions for inconclusiveness: the goal is not refuted
 221 under q and q is not established as an invariant.

222 **Theorem** (Decision Soundness). *If $P \Rightarrow \langle p^*, q \rangle \Downarrow \mathbf{T}$ is derivable, then $P \models p^*$. If $P \Rightarrow \langle p^*, q \rangle \Downarrow \mathbf{F}$
 223 is derivable, then $P \not\models p^*$.*

225 The proof is provided in Section A.1. This theorem establishes that whenever the calculus derives a
 226 conclusive outcome, that outcome is correct. The inconclusive case \mathbf{U} is deliberately conservative: it
 227 makes no claim about the truth or falsity of the property and safely captures verifier incompleteness
 228 or timeouts.

230 3.3 IMPLEMENTATION

232 We describe the implementation of our verifier-based evaluation framework. Given a program P and
 233 a target property p^* , the system must generate candidate invariants q and evaluate them according
 234 to the decision procedure. When proposing an invariant $q = \langle \psi, \ell \rangle$, the model selects a program
 235 location ℓ and supplies the corresponding predicate ψ .

237 **Syntactic Validation.** Before invoking the verifier, we apply syntactic checks to the generated
 238 predicate ψ . These checks ensure that ψ can be safely interpreted as a state predicate and that its
 239 insertion as an assumption does not alter the program state. For instance, expressions that update
 240 variables (e.g., $a += 1$) are rejected. Only Boolean conditions over the program state are accepted.

241 **Parallel Evaluation.** For each candidate q , the procedure issues two verifier queries, namely
 242 $d_a = V(P, \emptyset, q)$ to check whether q is an invariant and $d_b = V(P, \{q\}, p^*)$ to check whether the
 243 target holds under the assumption q . These queries are executed in parallel in our implementation,
 244 which reduces latency and enables speedup when the proposed invariant is useful for verification.
 245 The final outcome is then derived exactly according to the decision calculus.

247 3.4 SUPERVISED FINE-TUNING AND BEST-OF-N SAMPLING

249 We perform supervised fine-tuning using LoRA (Hu et al., 2022). Below, we discuss how we construct
 250 our dataset for fine-tuning and the way we perform Best-of-N sampling.

252 **Synthetic Dataset Generation.** To construct the synthetic dataset, we prompt GPT-4o using the
 253 template in Appendix A.3. The template takes three seed programs as examples and instructs the
 254 model to synthesize a new C program that is compilable and contains both loops and assertions.
 255 To obtain a diverse and large pool of candidates, we repeatedly invoke the model with different
 256 seed programs. To avoid data leakage, these seed programs are randomly drawn from the SV-
 257 COMP pool (Beyer & Strejček, 2025) that is *disjoint* from our evaluation set. Although the prompt
 258 requests compilable programs with loops and assertions, the LLM-generated programs may fail to
 259 compile, include assertions that do not hold, and contain multiple assertions. For programs with
 260 multiple assertions, we split them into separate instances, each retaining only a single assertion while
 261 preserving all loop structures (ensuring at least one loop per instance). We then run UAutomizer on
 262 every program and discard any instance that is non-compilable or whose assertion is invalid. This
 263 filtering step ensures the quality of the dataset, resulting in 3589 synthetic programs.

264 **Extract Invariants Generated from UAutomizer.** When running UAutomizer to prove the asser-
 265 tions in the synthetic programs, the tool also emits the invariants it discovers. From its output, we
 266 extract the loop invariants. Each extracted invariant includes its program location and its predicate.
 267 Although each program contains exactly one assertion, it may include multiple loops, so a single
 268 program can yield multiple loop invariants, all associated with the same assertion. We pair each
 269 program with each of its corresponding loop invariants to form our training dataset. We show an
 example invariant generated from UAutomizer in Appendix A.4.

270 **Best-of-N Sampling.** Best-of-N sampling is an inference-time strategy in which multiple candidate
 271 programs are generated, and the most effective one is selected, a technique shown to improve
 272 performance on code-generation tasks (Ehrlich et al., 2025). In our setting, the best candidate is the
 273 invariant that yields the largest speedup, i.e., the one whose decision procedure finishes earliest. As
 274 described in Section 3.2, evaluating a single candidate requires two verifier queries issued in parallel;
 275 therefore, Best-of-N sampling evaluates $2N$ verifier queries concurrently.

277 4 EXPERIMENTAL SETUP

279 **Dataset from SV-COMP.** We construct our benchmark from SV-COMP (Beyer & Strejček, 2025),
 280 a standard competition in software verification, focusing on problems that require loop invariant
 281 synthesis. We collect a pool of 899 instances and run the state-of-the-art non-LLM verifier UAu-
 282 tomizer (Schüssle et al., 2024) with a 600-second timeout to record the solving time for each. Based
 283 on this runtime, we classify instances into an *easy split* (solved within 30 seconds) and a *hard split*
 284 (solved between 30 and 600 seconds). From this pool, we randomly sample 113 problems from each
 285 split, resulting in 226 instances in the final evaluation set. The selection process is fully automated
 286 with no manual cherry-picking.

288 **Synthetic Dataset.** We construct a
 289 synthetic corpus of verification prob-
 290 lems using GPT-4o. Seed programs
 291 supplied in the prompt are selected
 292 to ensure no overlap with the 226 in-
 293 stances in the evaluation set. Each syn-
 294 thetic program is analyzed by UAu-
 295 tomizer. The invariants extracted from
 296 UAutomizer’s execution output form
 297 our fine-tuning dataset, which con-
 298 tains 3589 problems paired with their invariants.

Dataset	Split	Avg. #Lines	#Instances
Evaluation	Easy	51	113
	Hard	62	113
Training	–	42	3589

299 Table 1: Dataset statistics of InvBench.

300 **Metrics.** All speedup-related measurements are reported relative to the state-of-the-art non-LLM-
 301 based solver UAutomizer (Schüssle et al., 2024), which serves as the baseline solver. We evaluate
 302 LLMs along two dimensions: the correctness of the generated invariants and the performance
 303 improvements they provide. Correctness is judged by the decision procedure formalized in Section 3
 304 with a timeout set to the problem’s original solving time by UAutomizer. For comparisons between
 305 UAutomizer and other tools, we report the number of solved instances under varying time budgets.
 306 We include the model’s token generation time in all evaluations.

307 **Models.** We benchmark Claude models from Anthropic, GPT models from OpenAI, and the Qwen
 308 family of models (Hui et al., 2024; Yang et al., 2025).

309 **Hardware and OS.** Experiments were conducted on a server with Intel Xeon Platinum 8275CL
 310 CPUs (96 cores), 8 NVIDIA A100 GPUs, and 1.1 TB of memory, running Ubuntu 22.04.

312 5 RESULTS

313 5.1 RESULTS OF LLMs

314 We report the performance of different LLMs on the easy and hard splits of InvBench in Table 2
 315 and Table 3, respectively. On the easy split shown in Table 2, o3 achieves the strongest results, with
 316 a $1.37\times$ speedup over UAutomizer on 28.3% of problems and an overall $1.09\times$ average speedup.
 317 These results indicate that while state-of-the-art LLMs generally struggle to synthesize correct or
 318 sufficiently strong invariants to accelerate program verification, the strongest model o3 can still yield
 319 non-trivial improvements on a meaningful fraction of problems.

320 Table 3 reports results on the hard split of InvBench. In this setting, LLMs show only negligible
 321 improvement over UAutomizer. The only noteworthy exception is gpt-oss-120b, which produces an

Model	% Correct Invariant	% Speedup	Speedup _{>1}	Speedup _{all}
Qwen2.5-72B	4.4%	0.9%	1.20×	1.00×
gpt-oss-120b	8.8%	5.3%	1.10×	1.01×
claude-sonnet-4	15.0%	8.8%	1.06×	1.01×
Qwen3-Coder-480B	14.2%	8.0%	1.09×	1.01×
claude-opus-4.1	18.6%	8.8%	1.23×	1.02×
gpt-5	37.2%	26.5%	1.24×	1.06×
o3	39.8%	28.3%	1.37×	1.09×

Table 2: **InvBench-Easy**: Results on the InvBench dataset (easy split) across models. We report the percentage of instances with verified-correct invariants, the percentage of instances achieving speedup greater than 1, the average speedup over those cases (Speedup_{>1}), and the average speedup across all instances with non-speedups counted as 1 (Speedup_{all}).

Model	% Correct Invariant	% Speedup	Speedup _{>1}	Speedup _{all}
gpt-5	11.5%	0%	1.00×	1.00×
Qwen2.5-72B	12.4%	0%	1.00×	1.00×
o3	29.2%	0%	1.00×	1.00×
Qwen3-Coder-480B	15.9%	0%	1.00×	1.00×
claude-sonnet-4	13.3%	0.9%	3.35×	1.01×
claude-opus-4.1	14.2%	0.9%	2.96×	1.02×
gpt-oss-120b	11.5%	0.9%	29.57×	1.03×

Table 3: **InvBench-Hard**: Results on the InvBench dataset (hard split) across models.

invariant for one problem that delivers a 29.57× speedup. However, overall, such speedup cases are exceedingly rare.

There are three main takeaways from the results. First, generating strong invariants that yield performance speedups is substantially more difficult than merely producing correct invariants, as reflected in the large gap between the percentage of correct invariants and the percentage of speedups. Second, model capability is a key factor, as demonstrated by the sharp differences in speedups reported in Table 2. Third, LLMs remain far from fully addressing the task of invariant synthesis, leaving considerable room for future progress, as shown in Table 3.

5.2 RESULTS OF VERIFIERS ON INV BENCH

We compare the state-of-the-art non-LLM-based tool UAutomizer (Schüssele et al., 2024) with other LLM-based verifiers on both the easy split and the hard split of InvBench.

On the easy split of InvBench, where UAutomizer solves all 113 instances within 30 seconds, it clearly surpasses all LLM-based verifiers. LaM4Inv (Wu et al., 2024a) and Loopy (Kamath et al., 2023) fail to solve any instance within this time limit, while LEMUR (Wu et al., 2024b) solves only 55 instances. These results indicate that none of the LLM-based verifiers provide any advantage over UAutomizer on the easy split.

Figure 2 presents the comparison on the hard split of InvBench. UAutomizer still delivers the best performance across almost all timeouts. UAutomizer consistently and significantly outperforms LaM4Inv and Loopy. In particular, LaM4Inv and Loopy solve fewer than half as many instances as UAutomizer across all timeouts. Notably, within 10 seconds, LEMUR solves more problems than UAutomizer, suggesting that it can accelerate some of the instances. Nevertheless, UAutomizer still outperforms LEMUR with longer timeouts, indicating that although LEMUR can offer early solving advantages on certain challenging instances, its overall capability is still limited compared to UAutomizer.

Given the consistently poor performance of LaM4Inv, which often either fails or times out, we conducted a manual investigation. Our analysis shows that LaM4Inv fails on some examples when applied to external datasets beyond those used in its custom evaluation. However, the preprocessing steps or manual annotations required by the tool are not documented. The official repository does not

Figure 2: Comparison of solved instances on InvBench-Hard by different verifiers.

Verifier	Total Instances	Solved Instances under Different Timeouts			
		10s	100s	300s	600s
LaM4Inv (Wu et al., 2024a)	316	144	286	295	299
UAUTOMIZER	316	299	299	299	299
Loopy (Kamath et al., 2023)	469	0	133	353	403
UAUTOMIZER	469	372	403	411	413
LEMUR (Wu et al., 2024b)	47	2	8	16	19
UAUTOMIZER	47	0	0	0	0

Table 4: Comparison of prior LLM-based verifiers and UAUTOMIZER on their own custom dataset under different timeout budgets.

provide preprocessing scripts, and our attempt to contact the authors has not received a response. For a direct comparison between UAUTOMIZER and LaM4Inv, we also refer readers to Section 5.3, where we evaluate UAUTOMIZER on the dataset released by LaM4Inv.

5.3 RESULTS OF UAUTOMIZER ON PRIOR DATASETS

As shown in Table 4, UAUTOMIZER, the state-of-the-art non-LLM-based verifier, consistently solves more instances than LaM4Inv (Wu et al., 2024a) and Loopy (Kamath et al., 2023), two representative LLM-based tools, on their respective custom datasets. This highlights that prior work omitted an important baseline comparison against UAUTOMIZER.

LEMUR (Wu et al., 2024b) is the only tool that surpasses UAUTOMIZER. However, this is largely explained by its dataset construction: LEMUR evaluates only on problems that UAUTOMIZER cannot solve within 600 seconds. To assess whether this advantage generalizes beyond its own curated benchmark, we conduct an additional analysis presented in Section 6.

While LaM4Inv and Loopy consistently underperform UAUTOMIZER in terms of the total number of solved instances across time budgets, they nevertheless offer complementary benefits, which we discuss in Section A.2.

We further investigate the distributional differences between datasets. At the 600-second timeout, the performance of prior LLM-based verifiers approaches that of UAUTOMIZER, with LaM4Inv even matching it exactly. In contrast, on InvBench (see Section 5.2), all LLM-based verifiers perform poorly at 600 seconds, suggesting a substantial shift in distribution compared to the custom datasets used in prior work. Our analysis confirms this: programs in InvBench are significantly longer, averaging 62 lines of code in the hard split, compared to only 22 for LaM4Inv, 23 for LEMUR, and 27 for Loopy. Manual inspection shows that InvBench contains features such as multiple loops,

432 functions, arrays, and pointers, which are largely absent from prior datasets. This makes InvBench a
 433 more challenging and realistic benchmark that better distinguishes solver performance.
 434

435 We also note that different LLM-based verification frameworks are built on different base solvers:
 436 LEMUR is built on UAutomizer, Loopy on Frama-C (Cuoq et al., 2012), and LaM4Inv on ES-
 437 BMC (Gadelha et al., 2018). Given the strength of UAutomizer, we believe future work should place
 438 greater emphasis on developing LLM-based verifiers atop state-of-the-art solvers such as UAutomizer
 439 and ensure that comparisons against it are not omitted.
 440

441 5.4 FAILURE MODE ANALYSIS

442 We conducted a detailed breakdown analysis to understand the primary failure modes behind the
 443 lack of speedups. For each model, we categorize failures into four types: 1) Incorrect Invariant: the
 444 candidate invariant is refuted; 2) Assume Timeout: verifying the invariant itself times out; 3) Assert
 445 Timeout: the invariant is verified, but verifying the final assertion under that invariant times out; 4)
 446 Assume + Assert Timeout: both checks time out. The table below summarizes this breakdown for the
 447 top three models on the easy split, showing the number of instances falling into each failure mode.
 448

449 Model	450 Incorrect	451 Assume Timeout	452 Assert Timeout	453 Assume + Assert Timeout
451 claude-opus-4.1	452 10	453 13	454 22	455 58
452 o3	453 29	454 17	455 19	456 17
453 gpt-5	454 20	455 4	456 18	457 65

455 Table 5: Failure mode breakdown on InvBench-Easy.
 456

457 While a portion of failures stems from incorrect invariants, the more fundamental issue is that the
 458 invariants generated by LLMs rarely decompose the verification task into strictly easier subgoals. As
 459 a result, both the solver queries frequently time out, as reflected in the large number of cases in the
 460 “Assume + Assert Timeout” category. This suggests that current models lack an understanding of
 461 what makes a verification query easy or difficult for symbolic solvers.
 462

463 Future work should explore strategies that help models internalize or predict solver difficulty, such as
 464 training reward models, so that they can propose invariants that genuinely simplify the verification
 465 task rather than inadvertently increasing solver burden.
 466

467 5.5 EFFECTIVENESS OF FINE-TUNING

468 We perform supervised fine-tuning using LoRA (Hu et al., 2022) on the training set for 3 epochs.
 469

470 Table 6 reports results on the easy split of InvBench. Fine-tuning leads to substantial gains in
 471 both invariant correctness and runtime speedup. Qwen3-Coder-480B shows the most pronounced
 472 improvements: the proportion of correct invariants increases from 14.2% in the base model to 40.7%,
 473 and the percentage of instances with speedups rises from 8% to 29.2%. For Qwen2.5-72B, the
 474 conditional speedup decreases after fine-tuning, but this is because the baseline conditional speedup
 475 was driven by a single case, whereas fine-tuning yields a larger number of cases with speedups. We
 476 also note that on the hard split, neither of the fine-tuned models shows improvement, demonstrating
 477 that our benchmark contains unsolved challenges.
 478

479 Model	480 % Correct Invariant	481 % Speedup	482 Speedup_{>1}	483 Speedup_{all}
481 Qwen2.5-72B (base)	482 4.4%	483 0.9%	484 1.20×	485 1.00×
482 Qwen2.5-72B (fine-tuned)	483 32.7%	484 26.5%	485 1.13×	486 1.03×
483 Qwen3-Coder-480B (base)	484 14.2%	485 8.0%	486 1.09×	487 1.01×
484 Qwen3-Coder-480B (fine-tuned)	485 40.7%	486 29.2%	487 1.29×	488 1.08×

485 Table 6: Improvement of supervised fine-tuning on InvBench-Easy.

Model	N	% Correct Invariant	% Speedup	Speedup _{>1}	Speedup _{all}
claude-opus-4.1	1	18.6%	8.8%	1.23x	1.02x
claude-opus-4.1	16	37.2%	23.0%	1.15x	1.03x
claude-sonnet-4	1	15.0%	8.8%	1.06x	1.01x
claude-sonnet-4	16	36.3%	22.1%	1.20x	1.04x
o3	1	39.8%	28.3%	1.37x	1.09x
o3	16	50.4%	35.4%	1.39x	1.12x

Table 7: Results of Best-of-N sampling (N = 16) on InvBench-Easy.

5.6 EFFECTIVENESS OF BEST-OF-N SAMPLING

We also evaluated whether repeated sampling improves LLM performance in invariant synthesis. For each problem, we generated 16 samples at a temperature of 0.7, removed duplicate invariants, and verified all candidates in parallel. Table 7 summarizes the results on InvBench’s easy split, demonstrating that repeated sampling leads to consistent gains. For example, o3 improves from 39.8% to 50.4% on correctness, while claude-opus-4.1 improves from 18.6% to 37.2%.

On the hard split, for claude-opus-4.1, with 16 samples, the percentage of instances with correct invariants increases from 14.2% to 15.9%, the percentage of instances with speedup from 0.9% to 2.7%, and the overall average speedup from 1.02x to 1.03x. Similarly, for claude-sonnet-4, the percentage of instances with correct invariants increases from 13.3% to 20.4%, the percentage of instances with speedup from 0.9% to 2.7%, conditional average speedup from 3.35x to 6.12x, and the overall average speedup from 1.01x to 1.07x. These improvements suggest that best-of-N sampling is a promising technique for LLMs to improve invariant synthesis performance.

6 DISCUSSION

Performance Gains with Ground-Truth Invariants. To quantify the potential speedup achievable when providing correct and strong invariants to solvers, we extract the invariants identified by UAutomizer and then measure the resulting speedup when they are supplied to it. On a random sample of 100 problems from our training set, we observe an overall average speedup of 1.86x. This indicates that the invariants discovered by UAutomizer are sufficiently strong for acceleration.

Generalizability of LEMUR. LEMUR (Wu et al., 2024b) reports the best results on its custom dataset, as it targets instances that UAutomizer cannot solve within 600 seconds. To test whether this advantage generalizes, we sampled 50 unsolved instances and found that LEMUR solved 12 within the same timeout of 600 seconds. This suggests that LEMUR’s gains are not solely due to benchmark design but reflect a genuine advantage on harder problems.

Inference Overhead of Models. Our evaluation includes LLM serving time as a realistic measure of end-to-end performance. Since the goal is to accelerate verification, inference overhead must be considered alongside solver runtime. Future research may explore how to balance the quality of generated invariants with the inference cost of producing them.

7 CONCLUSION

This work introduced InvBench, a principled framework for evaluating the capabilities of LLMs in invariant synthesis. Our approach employs a verifier-based decision procedure with a formal soundness guarantee and assesses not only correctness but also the speedups that invariants contribute to program verification. Using a benchmark of 226 instances, we conducted a comparison across state-of-the-art LLMs, existing LLM-based verifiers, and the traditional solver UAutomizer. The results show that although LLM-based verifiers represent a promising direction, they do not yet offer significant advantages over non-LLM-based approaches. Model capability proves to be a critical factor, and our benchmark remains an open challenge for current LLMs. At the same time, we demonstrated that supervised fine-tuning and Best-of-N sampling can improve model performance in accelerating verification.

540 LLM USAGE
541542 LLMs are the subject of this study. We additionally used them for polishing the writing.
543544 REFERENCES
545546 Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
547 Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
548 models. *arXiv preprint arXiv:2108.07732*, 2021.
549550 Dirk Beyer and Jan Strejček. Improvements in software verification and witness validation: Sv-comp
551 2025. In *International Conference on Tools and Algorithms for the Construction and Analysis of*
552 *Systems*, pp. 151–186. Springer, 2025.553 Saikat Chakraborty, Shuvendu K Lahiri, Sarah Fakhouri, Madanlal Musuvathi, Akash Lal, Aseem
554 Rastogi, Aditya Senthilnathan, Rahul Sharma, and Nikhil Swamy. Ranking llm-generated loop
555 invariants for program verification. *arXiv preprint arXiv:2310.09342*, 2023.
556557 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
558 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
559 language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.560 Michael Colon, Sriram Sankaranarayanan, and Henny Sipma. Linear invariant generation using
561 non-linear constraint solving. *Computer-aided Verification: Proceedings*, pp. 420, 2003.
562563 Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for static analysis
564 of programs by construction or approximation of fixpoints. In *Proceedings of the 4th ACM*
565 *SIGACT-SIGPLAN symposium on Principles of programming languages*, pp. 238–252, 1977.
566567 Patrick Cousot and Radhia Cousot. Systematic design of program analysis frameworks. In *Proceed-
568 ings of the 6th ACM SIGACT-SIGPLAN symposium on Principles of programming languages*, pp.
569 269–282, 1979.570 Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints among variables
571 of a program. In *Proceedings of the 5th ACM SIGACT-SIGPLAN symposium on Principles of*
572 *programming languages*, pp. 84–96, 1978.
573574 Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris
575 Yakobowski. Frama-c: A software analysis perspective. In *International conference on software*
576 *engineering and formal methods*, pp. 233–247. Springer, 2012.577 Mnacho Echenim, Nicolas Peltier, and Yanis Sellami. Ilinva: Using abduction to generate loop
578 invariants. In *Frontiers of Combining Systems: 12th International Symposium, FroCoS 2019,
579 London, UK, September 4-6, 2019, Proceedings 12*, pp. 77–93. Springer, 2019.
580581 Ryan Ehrlich, Bradley Brown, Jordan Juravsky, Ronald Clark, Christopher Ré, and Azalia Mirho-
582 seini. Codemonkeys: Scaling test-time compute for software engineering. *arXiv preprint*
583 *arXiv:2501.14723*, 2025.584 Michael D Ernst, Jeff H Perkins, Philip J Guo, Stephen McCamant, Carlos Pacheco, Matthew S
585 Tschantz, and Chen Xiao. The daikon system for dynamic detection of likely invariants. *Science*
586 *of computer programming*, 69(1-3):35–45, 2007.
587588 P Ezudheen, Daniel Neider, Deepak D’Souza, Pranav Garg, and P Madhusudan. Horn-ice learning
589 for synthesizing invariants and contracts. *Proceedings of the ACM on Programming Languages*, 2
590 (OOPSLA):1–25, 2018.591 Chuchu Fan, Bolun Qi, Sayan Mitra, and Mahesh Viswanathan. Dryvr: Data-driven verification and
592 compositional reasoning for automotive systems. In *International Conference on Computer Aided
593 Verification*, pp. 441–461. Springer, 2017.

594 Grigory Fedyukovich and Rastislav Bodík. Accelerating syntax-guided invariant synthesis. In *Tools*
 595 *and Algorithms for the Construction and Analysis of Systems: 24th International Conference,*
 596 *TACAS 2018, Held as Part of the European Joint Conferences on Theory and Practice of Software,*
 597 *ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part I 24*, pp. 251–269.
 598 Springer, 2018.

599 Cormac Flanagan and Shaz Qadeer. Predicate abstraction for software verification. In *Proceedings*
 600 *of the 29th ACM SIGPLAN-SIGACT symposium on Principles of programming languages*, pp.
 601 191–202, 2002.

602 603 Mikhail R Gadelha, Felipe R Monteiro, Jeremy Morse, Lucas C Cordeiro, Bernd Fischer, and Denis A
 604 Nicole. Esbmc 5.0: an industrial-strength c model checker. In *Proceedings of the 33rd ACM/IEEE*
 605 *International Conference on Automated Software Engineering*, pp. 888–891, 2018.

606 607 Pranav Garg, Christof Löding, Parthasarathy Madhusudan, and Daniel Neider. Ice: A robust
 608 framework for learning invariants. In *Computer Aided Verification: 26th International Conference,*
 609 *CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22,*
 610 *2014. Proceedings 26*, pp. 69–87. Springer, 2014.

611 612 Pranav Garg, Daniel Neider, Parthasarathy Madhusudan, and Dan Roth. Learning invariants using
 613 decision trees and implication counterexamples. *ACM Sigplan Notices*, 51(1):499–512, 2016.

614 615 Sumit Gulwani, Saurabh Srivastava, and Ramarathnam Venkatesan. Constraint-based invariant infer-
 616 ence over predicate abstraction. In *Verification, Model Checking, and Abstract Interpretation: 10th*
 617 *International Conference, VMCAI 2009, Savannah, GA, USA, January 18-20, 2009. Proceedings*
 618 *10*, pp. 120–135. Springer, 2009.

619 Ashutosh Gupta, Rupak Majumdar, and Andrey Rybalchenko. From tests to proofs. In *International*
 620 *Conference on Tools and Algorithms for the Construction and Analysis of Systems*, pp. 262–276.
 621 Springer, 2009.

622 Charles Antony Richard Hoare. An axiomatic basis for computer programming. *Communications of*
 623 *the ACM*, 12(10):576–580, 1969.

624 Hossein Hojjat and Philipp Rümmer. The eldarica horn solver. In *2018 Formal Methods in Computer*
 625 *Aided Design (FMCAD)*, pp. 1–7. IEEE, 2018.

626 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 627 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

628 Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
 629 Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. *arXiv preprint arXiv:2409.12186*,
 630 2024.

631 Ranjit Jhala and Kenneth L McMillan. A practical and complete approach to predicate refinement. In
 632 *International Conference on Tools and Algorithms for the Construction and Analysis of Systems*,
 633 pp. 459–473. Springer, 2006.

634 Adharsh Kamath, Aditya Senthilnathan, Saikat Chakraborty, Pantazis Deligiannis, Shuvendu K
 635 Lahiri, Akash Lal, Aseem Rastogi, Subhajit Roy, and Rahul Sharma. Finding inductive loop
 636 invariants using large language models. *arXiv preprint arXiv:2311.07948*, 2023.

637 Adharsh Kamath, Nausheen Mohammed, Aditya Senthilnathan, Saikat Chakraborty, Pantazis Deli-
 638 giannis, Shuvendu K Lahiri, Akash Lal, Aseem Rastogi, Subhajit Roy, and Rahul Sharma. Leverag-
 639 ing llms for program verification. In *2024 Formal Methods in Computer-Aided Design (FMCAD)*,
 640 pp. 107–118. IEEE, 2024.

641 Michael Karr. Affine relationships among variables of a program. *Acta informatica*, 6(2):133–151,
 642 1976.

643 Shuvendu K Lahiri and Randal E Bryant. Predicate abstraction with indexed predicates. *ACM*
 644 *Transactions on Computational Logic (TOCL)*, 9(1):4–es, 2007.

648 Ton Chanh Le, Guolong Zheng, and ThanhVu Nguyen. Sling: using dynamic analysis to infer
 649 program invariants in separation logic. In *Proceedings of the 40th ACM SIGPLAN Conference on*
 650 *Programming Language Design and Implementation*, pp. 788–801, 2019.

651

652 Jiaying Li, Jun Sun, Li Li, Quang Loc Le, and Shang-Wei Lin. Automatic loop-invariant generation
 653 and refinement through selective sampling. In *2017 32nd IEEE/ACM International Conference on*
 654 *Automated Software Engineering (ASE)*, pp. 782–792. IEEE, 2017.

655

656 Chang Liu, Xiwei Wu, Yuan Feng, Qinxiang Cao, and Junchi Yan. Towards general loop invariant
 657 generation: a benchmark of programs with memory manipulation. *Advances in Neural Information*
 658 *Processing Systems*, 37:129120–129145, 2024.

659

660 Matt Luckcuck, Marie Farrell, Louise A Dennis, Clare Dixon, and Michael Fisher. Formal specifica-
 661 tion and verification of autonomous robotic systems: A survey. *ACM Computing Surveys (CSUR)*,
 662 52(5):1–41, 2019.

663

664 Kenneth L McMillan. Lazy annotation for program testing and verification. In *Computer Aided Verifi-
 665 cation: 22nd International Conference, CAV 2010, Edinburgh, UK, July 15–19, 2010. Proceedings*
 22, pp. 104–118. Springer, 2010.

666

667 Kexin Pei, David Bieber, Kensen Shi, Charles Sutton, and Pengcheng Yin. Can large language models
 668 reason about program invariants? In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
 669 Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *Proceedings of the 40th International*
 670 *Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*, pp.
 671 27496–27520. PMLR, 23–29 Jul 2023. URL <https://proceedings.mlr.press/v202/pei23a.html>.

672

673 Daniel Riley and Grigory Fedyukovich. Multi-phase invariant synthesis. In *Proceedings of the 30th*
 674 *ACM Joint European Software Engineering Conference and Symposium on the Foundations of*
 675 *Software Engineering*, pp. 607–619, 2022.

676

677 Gabriel Ryan, Justin Wong, Jianan Yao, Ronghui Gu, and Suman Jana. Cln2inv: learning loop
 678 invariants with continuous logic networks. *arXiv preprint arXiv:1909.11542*, 2019.

679

680 Frank Schüssele, Manuel Bentele, Daniel Dietsch, Matthias Heizmann, Xinyu Jiang, Dominik
 681 Klumpp, and Andreas Podelski. Ultimate automizer and the abstraction of bitwise operations:
 682 (competition contribution). In *International Conference on Tools and Algorithms for the Construc-
 683 tion and Analysis of Systems*, pp. 418–423. Springer, 2024.

684

685 Rahul Sharma, Aditya V Nori, and Alex Aiken. Interpolants as classifiers. In *International Conference*
 686 *on Computer Aided Verification*, pp. 71–87. Springer, 2012.

687

688 Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex Aiken, and Aditya V Nori. Verification as
 689 learning geometric concepts. In *International Static Analysis Symposium*, pp. 388–411. Springer,
 690 2013.

691

692 Xujie Si, Hanjun Dai, Mukund Raghethaman, Mayur Naik, and Le Song. Learning loop invariants
 693 for program verification. *Advances in Neural Information Processing Systems*, 31, 2018.

694

695 Hari Govind Vediramana Krishnan, YuTing Chen, Sharon Shoham, and Arie Gurfinkel. Global
 696 guidance for local generalization in model checking. *Formal Methods in System Design*, 63(1):
 697 81–109, 2024.

698

699 Anjiang Wei, Jiannan Cao, Ran Li, Hongyu Chen, Yuhui Zhang, Ziheng Wang, Yaofeng Sun, Yuan
 700 Liu, Thiago SFX Teixeira, Diyi Yang, et al. Equibench: Benchmarking code reasoning capabilities
 701 of large language models via equivalence checking. *arXiv e-prints*, pp. arXiv–2502, 2025a.

702

Anjiang Wei, Tarun Suresh, Jiannan Cao, Naveen Kannan, Yuheng Wu, Kai Yan, Thiago S. F. X.
 Teixeira, Ke Wang, and Alex Aiken. CodeARC: Benchmarking reasoning capabilities of LLM
 agents for inductive program synthesis. In *Second Conference on Language Modeling*, 2025b.
 URL <https://openreview.net/forum?id=Q5pVZCrrKr>.

702 Anjiang Wei, Yuheng Wu, Yingjia Wan, Tarun Suresh, Huanmi Tan, Zhanke Zhou, Sanmi Koyejo,
 703 Ke Wang, and Alex Aiken. Satbench: Benchmarking llms' logical reasoning via automated puzzle
 704 generation from sat formulas. *arXiv preprint arXiv:2505.14615*, 2025c.

705

706 Guangyuan Wu, Weining Cao, Yuan Yao, Hengfeng Wei, Taolue Chen, and Xiaoxing Ma. Llm meets
 707 bounded model checking: Neuro-symbolic loop invariant inference. In *Proceedings of the 39th*
 708 *IEEE/ACM International Conference on Automated Software Engineering*, pp. 406–417, 2024a.

709 Haoze Wu, Clark Barrett, and Nina Narodytska. Lemur: Integrating large language models in auto-
 710 mated program verification. In *The Twelfth International Conference on Learning Representations*,
 711 2024b. URL <https://openreview.net/forum?id=Q3YaCghZNt>.

712 Rongchen Xu, Fei He, and Bow-Yaw Wang. Interval counterexamples for loop invariant learning. In
 713 *Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and*
 714 *Symposium on the Foundations of Software Engineering*, pp. 111–122, 2020.

715

716 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 717 Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*,
 718 2025.

719 Jianan Yao, Gabriel Ryan, Justin Wong, Suman Jana, and Ronghui Gu. Learning nonlinear loop
 720 invariants with gated continuous logic networks. In *Proceedings of the 41st ACM SIGPLAN*
 721 *Conference on Programming Language Design and Implementation*, PLDI 2020, pp. 106–120,
 722 New York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450376136. doi:
 723 10.1145/3385412.3385986. URL <https://doi.org/10.1145/3385412.3385986>.

724 Shiwen Yu, Ting Wang, and Ji Wang. Loop invariant inference through smt solving enhanced
 725 reinforcement learning. In *Proceedings of the 32nd ACM SIGSOFT International Symposium on*
 726 *Software Testing and Analysis*, pp. 175–187, 2023.

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A APPENDIX**757 **A.1 PROOF**

760 **Theorem** (Decision Soundness). *If $P \Rightarrow \langle p^*, q \rangle \Downarrow \mathbf{T}$ is derivable, then $P \models p^*$. If $P \Rightarrow \langle p^*, q \rangle \Downarrow \mathbf{F}$ is derivable, then $P \not\models p^*$.*

763 *Proof.* For the \mathbf{T} case, the final rule must be DEC-PROP with $d = \mathbf{T}$. The premises yield
 764 $V(P, \emptyset, q) = \mathbf{T}$ and $V(P, \{q\}, p^*) = \mathbf{T}$. By verifier soundness, $P \models q$ and $P \models_{\{q\}} p^*$. Since q
 765 holds on all executions of P , introducing the assumption $\{q\}$ does not remove executions relevant to
 766 p^* ; thus $P \models p^*$.

767 For the \mathbf{F} case, the final rule must be DEC-FALSE. Its premise $V(P, \{q\}, p^*) = \mathbf{F}$ implies
 768 $P \not\models_{\{q\}} p^*$ by soundness. Assumptions restrict behaviors; hence, a violation under assumptions
 769 entails a violation without them, yielding $P \not\models p^*$. \square

771 **A.2 COMPLEMENTARY RESULTS OF LLM-BASED SOLVERS**

773 As shown in Table A1, all three LLM-based tools solve instances that remain unsolved by UAutomizer
 774 within the 600-second budget. LaM4Inv and Loopy each contribute additional solved cases, and
 775 LEMUR is able to handle 19 problems that UAutomizer cannot solve at all, underscoring the
 776 complementary strengths of LLM-based approaches.

778 Verifier	779 Solved Instances	780 Δ Solved
781 LaM4Inv	299	13
782 Loopy	403	40
783 LEMUR	19	19

784 Table A1: LLM-based verifiers complement UAutomizer by solving problems beyond its reach. We
 785 report the total numbers of solved problems, and “ Δ Solved” is the number of instances uniquely
 786 solved that are unsolved by UAutomizer.

787 **A.3 PROMPT TEMPLATE USED FOR TRAINING DATASET GENERATION**

788 Table A2 shows the prompt template used for synthesizing training programs from seed programs.

789 **A.4 AN EXAMPLE FROM THE FINE-TUNING DATASET**

793 Figure A1 shows an example from the fine-tuning dataset with the program to the UAutomizer and
 794 the generated loop invariant.

795 The loop invariant holds at Line 6 (the beginning of the loop). It is a disjunction of two clauses, and
 796 can be written as $I \equiv P \vee Q = ((i + 1) \bmod 2 = 0 \wedge x < 2 + i + y \wedge x < 2 + y + 2i \wedge x <$
 797 $N + y + 1 \wedge 1 \leq N) \vee (i \bmod 2 = 0 \wedge x < 2 + i + y \wedge x < 2 + y \wedge 1 \leq N)$.

798 By inspecting the loop, we can derive an exact relationship between x , y , and i at the beginning of
 799 each iteration. Since x accumulates all even numbers less than i and y accumulates all odd numbers
 800 less than i , we obtain:

$$802 \quad \text{if } i \text{ is even: } x - y = -\frac{i}{2}, \quad \text{if } i \text{ is odd: } x - y = \frac{i - 1}{2}.$$

804 Using this relationship, it is straightforward to verify that the invariant I produced by UAutomizer is
 805 correct. Moreover, I is strong enough to prove the final assertion $x - y \leq N$.

807 To show that the assertion holds at loop termination, we can check the following verification condition

$$808 \quad I \wedge (i = N) \Rightarrow (x - y \leq N),$$

809 where $i = N$ denotes the loop’s exit condition.

810
 811 You will be shown 3 example C programs. Please gain inspiration from the following
 812 programs to create a new high-quality C program. Do not simply copy from any of them.
 813
 814 Requirements for the generated program:
 815 1. The program MUST contain non-trivial loops (for or while).
 816 2. The program MUST contain assertions.
 817 3. The program MUST be compilable, self-contained, and reasonably complex (not trivial or
 818 overly short).
 819 4. Only output the new C program.
 820
 821 Example snippets:
 822 **Program 1:**
 823 {SEED_PROGRAM_1}
 824 **Program 2:**
 825 {SEED_PROGRAM_2}
 826 **Program 3:**
 827 {SEED_PROGRAM_3}
 828
 829 Output format: The generated program must be wrapped strictly in the following format:
 830 ````c
 831 <NEW_C_PROGRAM>
 832 ````
 833

Table A2: **Prompt template for synthetic data generation.**

834
 835
 836 **Case 1: N is odd.** Instantiating the invariant with $i = N$ activates the P disjunct of I , from which
 837 we obtain

$$x - y < N + 1.$$

838 Since $x - y$ is an integer, this directly implies $x - y \leq N$.
 839

840 **Case 2: N is even.** In this case, the Q disjunct applies. From the clause $x < 2 + y$ contained in Q ,
 841 we derive

$$x - y < 2.$$

842 Because $x - y$ is an integer and $N \geq 1$ and even (hence $N \geq 2$), we conclude
 843

$$x - y \leq 1 \leq N,$$

844 establishing the desired post-condition.
 845

846 Thus, the invariant I indeed suffices to prove the final assertion.
 847

848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863

```
864
865
866
867
868
869
870
871
872
873
874
875
```

Original Program (Input to UAutomizer)

```
876 1 int main() {
877 2     int N = __VERIFIER_nondet_int();
878 3     assume_abort_if_not(N >= 1 && N < 100);
879 4     int x = 0, y = 0;
880 5     for (int i = 0; i < N; i++) {
881 6         if (i % 2 == 0) {
882 7             x += i;
883 8         } else {
884 9             y += i;
885 10        }
886 11    }
887 12    int diff = x - y;
888 13    __VERIFIER_assert(diff <= N);
889 14    return 0;
890 15 }
```

```
890
891
```

Loop Invariant Generated by UAutomizer:

```
891 Line Number: 6
892 Predicate:
893 (
894     (i + 1) % 2 == 0 &&
895     x < 2 + i + y &&
896     x < 2 + y + 2 * i &&
897     x < N + y + 1 &&
898     1 <= N
899 )
900 ||
901 (
902     i % 2 == 0 &&
903     x < 2 + i + y &&
904     x < 2 + y &&
905     1 <= N
906 )
```

```
907
908
909
910
911
912
913
914
915
916
917
```

Figure A1: An example from the fine-tuning dataset: program and its loop invariant generated by UAutomizer.