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Abstract

In complex, uncertain environments, individuals must
flexibly integrate multiple sources of information to adapt
to changing task demands. While prior research has pri-
marily focused on confidence formation and rule infer-
ence within a single task, less is known about how in-
formation across multiple tasks is integrated. Here,we
designed an experiment to address this question by ask-
ing participants to infer task rules while switching be-
tween two tasks. We found that participants were able
to maintain cognitive control in the face of task-irrelevant
information, ensuring smooth task performance. How-
ever, when such irrelevant information could potentially
support task rule inference, individuals can flexibly ad-
just their strategies, leveraging this information to op-
timize the decision-making process. Participants’ be-
liefs about the current task rule (rule belief) modulated
this cognitive flexibility, influencing how they prioritized,
processed, and integrated information. Neural data re-
vealed that the dorsal anterior cingulate cortex (dACC)
plays a central role in these processes, specifically in:
(1) encoding both task-relevant and task-irrelevant evi-
dence; (2) updating rule beliefs and (3) modulating func-
tional connectivity with the human fourth visual area and
middle temporal area (hV4/MT). To probe the underlying
mechanisms, we trained a recurrent neural network (RNN)
model. We showed that within a trial, these neurons oper-
ate under an attention bottleneck, which serves as a con-
straint and mimics the potential attention-splitting pro-
cess observed in humans. As with human participants,
the effect of task-irrelevant information on rule belief up-
dating was observed, but with a stronger effect. Together,
these findings reveal a neural process in the human brain,
particularly in the dACC, for integrating and updating be-
liefs about tasks, and how individuals flexibly adjust their
strategies based on both relevant and irrelevant informa-
tion.
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Introduction

Humans are able to adaptively adjust strategies and allocate
cognitive resources to optimize stimulus processing and meet
the ever-changing demands of tasks. For example, when
faced with stimuli containing multiple features, individuals typ-
ically focus their attention on task-relevant dimensions while
suppressing or filtering out task-irrelevant information (Zanto

& Gazzaley| (2009)). However, studies on task belief in uncer-
tain conditions and how such belief interacted with stimulus
processing were lacking.

Previous research has primarily explored how task-relevant
and task-irrelevant information interact within paradigms
where task demands are clearly defined, thereby modulating
cognitive processing (Flesch et al.| (2022),Luo et al.| (2025)).
Studies using task instruction paradigms have revealed how
the brain encodes both task-relevant and task-irrelevant infor-
mation in a context-dependent manner (Moneta et al.| (2023)),
and how these two types of information are represented in
brain regions such as the dorsal anterior cingulate cortex
(dACC) (Ritz & Shenhav| (2024b)) and dorsolateral prefrontal
cortex (DLPFC) (Flesch et al.| (2022)).

However, decision-making in the real world sometimes oc-
curs in situations where task goals need to be inferred rather
than explicitly stated. In such cases, the decision process
involves two interconnected steps: inferring the current task
state (i.e., task belief) and executing the corresponding task
based on that belief. Task beliefs are updated through error-
driven adjustments, influencing confidence in task-relevant in-
formation (Sarafyazd & Jazayeri| (2019)), and dynamically op-
timizing rule beliefs (Xue et al.| (2022)).Such hierarchical rea-
soning shapes the formation of rule beliefs, enabling the inte-
gration of perceptual information into task-relevant rules. Con-
versely, stronger rule beliefs enhance the discrimination of
task-relevant perceptual features while leaving task-irrelevant
features unaffected (Xue et al,| (2022)). This interplay opti-
mizes processing accuracy and promotes the efficient use of
cognitive resources.

Notably, the role of task-irrelevant features in rule inference
merits reconsideration. Traditionally regarded as sources of
cognitive interference, these features may not be entirely irrel-
evant in rule-inference paradigms. They may correspond to
alternative rules or provide valuable information for rule infer-
ence. How task-relevant and task-irrelevant information jointly
contribute to rule-belief formation, and whether rule beliefs
modulate the processing of task-irrelevant features, remains
an unresolved research gap.

To investigate this, we designed a dual-task rule-inference
experiment with measurement of both task confidence and
rule belief using functional magnetic resonance imaging
(fMRYI) (Figure [T). Stimuli consisted of two rule-based fea-
tures, with the chosen rule determining task-relevant features.
We demonstrated that participants maintained robust cogni-
tive control despite interference from task-irrelevant informa-
tion, ensuring effective task execution. Notably, when task-
irrelevant information could help rule inference, participants



utilized both task-relevant and task-irrelevant information to
guide rule-based decisions, which was influenced by rule be-
lief (Figure [2). The fMRI signals in the dACC exhibited sen-
sitivity to (1) task-relevant evidence; (2) task-irrelevant evi-
dence, and (3) rule beliefs. Decoding analyses further re-
vealed that regions Human V4 (HV4) and Middle Temporal
area (MT) encoded both task-relevant and task-irrelevant in-
formation during the task,modulated by rule beliefs. This
collecting and utilizing of task-irrelevant information reflects
proactive counterfactual reasoning, facilitating rule inference.

To test the computational plausibility of this mechanism, we
developed a recurrent neural network (RNN) model with an
attentional bottleneck as a normative model with minimal as-
sumptions. During training, the model mirrored human be-
havior: under rule uncertainty, it proactively explored task-
irrelevant features to seek evidence for alternative rules, sup-
porting the hypothesis of proactive counterfactual reasoning
as an optimal strategy (Figure [2).

Method
Task overview

Forty healthy adult participants (29 females, 11 males) per-
formed a two-rule task during functional magnetic resonance
imaging (fMRI) scanning (Figure [T). One participant was ex-
cluded due to misunderstanding the task button rules, result-
ing in a task accuracy below 50%. The final sample consisted
of 39 participants. The experiment comprised two conditions:
cue and no cue condition. Within each experimental block, the
two rules (motion and color) had a 10% probability of switching
per trial.

In the no-cue condition, participants were required to infer
the task rule based on their judgment. Subsequently, they
were asked to report their confidence in the predicted rule,
with confidence levels ranging from 50% to 100%. In the cue
condition, the task rule for each trial was explicitly instructed,
displayed in a yellow box on the screen. Participants were re-
quired to confirm the cued rule by pressing a key. Following
this confirmation, a randomly selected confidence level (50%
to 100%) was presented as the default value, which partici-
pants were asked to confirm by pressing a key. This keypress
ensured consistency in motor responses across cue and no-
cue conditions, facilitating comparable fMRI measurements.

After the rule-confidence report, a random dot motion stim-
ulus appeared in the center of the screen. Participants were
asked to perform one of two tasks based on the inferred or
cued rule: (1) judge the motion direction (left or right) of the
random dot motion stimulus for the motion rule, or (2) judge
the majority color (red or green) for the color rule.After the per-
ceptual task decision, participants were also asked to report
their confidence (ranging from 50% to 100%)in the decision.
Subsequently, feedback was displayed on the screen, com-
paring the participant’s perceptual decision with the correct
rule and indicating whether the answer was correct.

For each trial, motion direction and color attributes were
independently manipulated. Color consistency (i.e., the per-

centage of dots sharing the same color) and direction consis-
tency (i.e., the percentage of dots moving in the same direc-
tion) were parametrically varied. Stimulus difficulty was cali-
brated during the training phase using a staircase procedure
to achieve a target accuracy of 71%, which served as the in-
termediate difficulty level. Based on this, difficulty was then
linearly adjusted to three levels, corresponding to approximate
accuracy rates of 60%, 70%, and 80%. Consequently, partic-
ipants in the fMRI experiment achieved an average stimulus
accuracy of approximately 70%.

Each participant completed three sets of no-cue tasks and
two sets of cue tasks, each consisting of 80 trials. The task
order was counterbalanced across participants.

RNNs With attention bottleneck

We trained recurrent neural networks (RNNSs) in a supervised
manner to perform a similar task. With unknown and switch-
ing rules, the RNNs was trained to predict the underlying rule
and make task choice based on the chosen rule.With minimal
assumptions, the RNNs were presented as normative models.

As in the experiment, there were two alternating rules
switches with a hazard rate of 0.1 and there were inputs cor-
responding to different rules in each trial. To be detailed, each
trial could be split into 3 phases, 3 steps of preparation phase,
7 steps of task phase, and 5 steps of feedback phase.

Throughout the trial, there would be a rule choice input in-
dicating the chosen rule. During task phase, there would be
stimulus inputs filtered by the attention bottleneck (see below).
For each rule, there would be a correct answer with positive
original strength. At the end of the task phase, RNNs needs
to output a task choice to predict the correct answer based on
the rule choice. During feedback phase, there would be feed-
back inputs based on the underlying rule and the task choice
of RNNs as in the experiment. And at the end out the feed-
back phase, RNNs needs to output a rule choice which would
be applied as the rule choice input of the next trial.

Compared to human participants, RNNs could process two
different sources of information simultaneously unless there
were further constraints. Here, we introduced an attention
bottleneck to serve as a constraint and to mimic potential
attention-splitting process in humans. The stimulus inputs cor-
responding to different rules was encoded in separate chan-
nels, while attention bottleneck was a weighting (summed to
1) on these channels so that channels for different rules had
competing encoding strength. And after passed through the
attention bottleneck, constant noise was applied on the stimu-
lus inputs. This means that paying more attention to a certain
stimulus feature may correspond to less attention to the other
feature, and the feature with less attention would be more cor-
rupted. In this setting, attention served as a bottleneck and the
process of splitting attention actually reflected the “competing”
processing of different features. For each rule, a channel cor-
responding to the ground truth answer would have an original
stimulus strength randomly sampled from U (0,0.3), while the
noises added at each step were sampled from N(0,0.1).



Rule Selection

Isl
+ l_:
Jitter
~3s
0.5s

Task execution Feedback
sl . ITI
— ron
itter | 0T | Jitter
R, ~3s
i 1s

Figure 1: Task and design. Schematic of a dual-task experiment involving motion and color rule-based judgments under cue and
no-cue conditions. No-Cue Condition: Participants predict the rule at the start of each trial and judge the stimulus accordingly.
Cue Condition: Participants are given the rule at the start of each trial as a cue.

Chosen rule . Chosen rule .

Probably wrong rule Probably wrong choice

1
:
Choose l | Choose

1
1

= 1

— :: O
>
Feedbackl @5 Feedback

c 1 €

® 1 9

210

Wrong I Wrong
1
Infer l | Infer

|
1
1

Figure 2: Schema for counterfactual reasoning in the task.
If task-irrelevant information was collected, participants would
be able to infer the validity of the alternative rule to help iden-
tify the ground-truth rule.

40 RNNs were trained to match the number of subjects.
The trained RNNs had 1024 hidden units, ReLU activation and
linear readout for rule choice, task choice and attention, sim-
ple softmax was used to calculate corresponding confidence
and attention weighting. We trained each RNN 2000 epochs
with 100 trials in each epoch, with a batch size of 64.In other
words, we simulated 64 sequences of trials in parallel, and
each sequence had 100 consecutive trials. After each epoch,
we used the ground truth rule and task answer for supervised
learning, i.e. the loss function was loss = [,u. + Wrasklrask
where lz., liask Were cross entropy loss applied at the end of
the feedback phase and task phase respectively and w;,z =
0.1 was a weighting parameter. The weighting parameter was

/\ Rule choice
Pl
»

> o > Supervised
—
» 1w >
Attention bottleneck ]
N
1 N
N
7 N
=P Task phase Feedback
== =P Feedback phase
Supervised

Figure 3: RNN framework.

chosen heuristically so that trained RNNs could both solve
the task and replicate the observed patterns in experiments
(i.e., inferring the rule with the help of currently irrelevant in-
formation). While we admit the importance of the value of
this parameter, it was not optimized as this was not the di-
rect goal of this work. We used Adam optimizer with learning
rate of 0.0001 implemented in PyTorch and gradient clipping
with a maximum norm of 0.1 was also applied. When tested,
300 consecutive trials were simulated and coherence was dis-
cretized into 3 bins to match the 3 coherence levels in experi-
ments post hoc.

Results

Task performance depends on relevant stimulus
difficulty and rule confidence

The relevance and irrelevance of the stimuli were defined
based on whether the stimulus attributes of the perceptual
task were related to the current rule. For example, in tri-
als where participants either judged the rule or received a
color rule cue, stimuli related to color (such as red or green
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Figure 4: Task performance.The influence of relevant and irrelevant evidence on task choice preference (A), task reaction
time (B), and task confidence (C).The regression effect of relevant and irrelevant evidence on task choice preference (D), task
reaction time (E), and task confidence (F).The regression analysis weights of the interaction between rule confidence and
relevant evidence on task choice preference (G) ; the weights of rule confidence in regression analysis on task reaction time(H)

and task confidence(l).

major) were considered relevant, while stimuli related to mo-
tion direction (such as left or right motion) were considered
irrelevant. We found that, under both the no-cue and cue
conditions, participants’ performance on the perceptual task
was only sensitive to relevant information(Figure [4). When
the consistency of relevant information was weak, participants
exhibited lower choice accuracy (no-cue: 73g) = 8.25,p =
5.33x 1071 cue: 7(35) = 9.69, p = 8.08 x 10~ '2), lower con-
fidence (no-cue: 35y = 6.27,p = 2.33 x 1077; cue: f(35) =
8.61,p = 1.81 x 107'9), or slower reaction times (no-cue:
l(3g) = —7.26,p = 1.09 x ]078; cue: t(38) = —6.19,p =
3.16 x 1077). The results indicated no significant differences
between the no-cue and cue conditions (paired-sample t-
test: task accuracy: 7(33) = —1.45, p = 0.15; task confidence:
t38) = —0.08, p =0.93; task reaction time: 733y = —1.31,p =
0.20). Furthermore, the strength of evidence from irrelevant
stimuli did not significantly affect participants’ choice accu-
racy (no-cue: f(3g) = —0.94, p = 0.36; cue: 733y = 0.14,p =

0.88), task confidence (no-cue: #(33) = 0.35,p = 0.73 cue:
t33) = —1.24,p = 0.22), or reaction times (no-cue: f(3g) =
—1.06,p = 0.29; cue: 133y = 0.47,p = 0.48). The anal-
ysis of the no-cue condition showed that participants’ rule
confidence had a significant impact on their task choices (
f33) =3.34,p = 1.9 % 10*3)(FigureG). As rule confidence
increased, participants’ task confidence also significantly im-
proved (f(33) = 3.34,p = 1.9 X 1073)(Figure |4/ 1). Moreover,
when participants had low rule confidence, their reaction times
were slower (#(3g) = —2.38,p = 0.02)(Figure H).

The impact of irrelevant evidence on rule belief
update and switching

In no-cue conditions, we analyzed how relevant and irrelevant
evidence influenced rule switching on the next trial using a re-
gression model. We found that participants were more likely to
stick with the current rule when more relevant evidence sup-
ported the correct answer (f(33) = —5.42, p = 3.55 x 1079),
while they were more likely to switch rules with increased ir-
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Figure 5: Rule performance.(A) Significant regression effect of relevant and irrelevant evidence on rule switch.(B) Significant
regression effect of relevant and irrelevant evidence on rule belief updating.(C) Significant impact of irrelevant information on rule

belief in the subsequent trial under low previous rule belief.

relevant information (¢3gy = 2.77, p = 8.50 x 10*3)(Figure
A). We observed that both relevant and irrelevant information
significantly influenced the update of participants’ rule con-
fidence(Figure [B] B). Relevant evidence supporting the cor-
rect answer increased participants’ rule confidence ( #3g) =
5.70, p = 1.49 x 10~7), whereas irrelevant evidence support-
ing the correct answer shifted confidence toward the alterna-
tive rule ( 733y = —2.94,p = 5.50 x 1073)(Figure .We fur-
ther analyzed how irrelevant information affected rule con-
fidence in the subsequent trial, depending on the previous
trial's rule confidence. When participants had lower confi-
dence in the current rule, irrelevant information supporting the
correct option increased uncertainty and decreased rule con-
fidence(Figure [5 C). In contrast, high rule confidence made
updates less susceptible to irrelevant information ( rzg) =
—0.36,p=1.41x 10*2)(Figure. Specifically, when the pre-
vious trial’s rule was correct, stronger irrelevant information
led to a decrease in rule confidence, but only when rule con-
fidence was low. This suggests that rule confidence plays a
key role in how irrelevant information influences updates to
rule confidence.

dACC encoding of relevant and irrelevant evidence
in decision-making

Our task design enabled us to investigate whether relevant
and irrelevant information are encoded within the same re-
gion or whether they are processed separately during the task
phases. Through a whole-brain generalized linear analysis,
we observed that the dACC encodes both relevant and ir-
relevant information during task performance. The activation
strength in the dACC showed a significant negative correla-
tion with the strength of evidence from both relevant and irrel-
evant information (Figure [6). To investigate whether specific
brain regions contribute to task-response confidence, we iden-
tified the dorsal anterior cingulate cortex (dACC) (MNI152:
12, 21, 42) as a region of interest (ROI), based on its signifi-
cant negative correlation with task-response confidence (Fig-
ure [C). We extracted the neural activity time series from
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Figure 6: dACC representation in the Task Phase. (A)(B)(C)
Representation of relevant evidence, irrelevant evidence and
task response confidence, respectively. (D) Regression coef-
ficients of relevant and irrelevant information on dACC

this ROI. Regression analysis revealed that task-relevant evi-
dence was associated with a significantly negative beta coef-
ficient for dACC activity related to rule-belief strength (7(35) =
—6.47,p = 1.30 x 1077), whereas task-irrelevant evidence
showed no significant effect ( 735y = 0.94,p = 0.94). This
finding suggests that the dACC plays a crucial role in decision-
making by facilitating the integration of different types of evi-
dence.

dACC encodes rule confidence in task decisions,
feedback, and rule decisions

Behaviorally, we observed that rule confidence influences task
performance. We conducted a univariate analysis of rule-
belief strength, examining whole-brain fMRI activity across the
task decision, feedback, and rule decision phases. This analy-
sis controlled for response confidence,reaction time, and feed-
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Figure 7: Conjunction of dACC’s Representation of Rule Belief
Across Phases

back. Additionally, we employed conjunction analyses to iden-
tify shared neural correlates of rule confidence across these
three stages. The results revealed that fMRI activity in the
dACC was negatively correlated with rule confidence (z > 2.6,
P < 0.05, after cluster-level family-wise error (FWE) correc-

tion; (Figure[7)).

Decoding irrelevant sensory information and the
modulatory effect of rule confidence

To further investigate the neural representation of relevant and
irrelevant evidence in the brain, we conducted a multivoxel
pattern analysis (MVPA) based on neural activity sequences.
The neural activity in the human V4 (hV4) and the middle tem-
poral area (MT) was derived by computing the mean differ-
ence in neural activity between the color task and the mo-
tion direction task under cue conditions (i.e., color task mi-
nus direction task). These two regions were selected as the
task-processing ROls related to the color task (hV4: MNI152:
(x22, -57, -16)) and the direction task (MT: MNI152: (£52, -60,
7)).We used 80% of the correctly performed trials under the
cue condition as the training set, with the remaining 20% as
the test set, and all trials under the no-cue condition as the test
data. During training, we sorted the trials based on irrelevant
key presses to ensure the training focused on irrelevant infor-
mation, thus minimizing the influence of relevant information
on the decoding process. We found that the neural activity in
hV4 and MT could predict the relevant stimulus attributes with
AUC above chance in both cue and no-cue conditions. How-
ever, only under the no-cue condition did neural activity in hV4
and MT significantly predict irrelevant stimulus attributes (Fig-
ure[8|A). Moreover, in MT, this prediction AUC was significantly
higher than that under the cue condition ( 735y = 2.55,p =
1.6 x 10~2)(Figure [8| B). Additionally, decoding analyses of
task stimuli in the human fourth visual area (hV4) and mid-
dle temporal area (MT) under no-cue conditions revealed dis-
tinct patterns modulated by rule-belief strength. In high rule-
belief states, the area under the curve (AUC) for task-relevant
feature discrimination was significantly higher than in low
rule-belief states (MT:7(3g) =2.29,p = 2.8 X 10*2,HV4:z(38) =
2.23,p = 3.3 x 1072)(Figure [8 E). Conversely, in low rule-
belief states, the AUC for task-irrelevant feature discrimination
in MT was significantly higher than in high rule-belief states

(MTig) = —2.5,p = 1.7 X% 10~2)(Figure |8 E). These find-
ings suggest that rule-belief strength modulates the neural
processing of task-relevant and task-irrelevant features.

To examine whether rule confidence modulates dACC'’s
processing of irrelevant information to MT and hV4, we con-
ducted a psychophysiological interaction (PPI) analysis.We
found that under high rule confidence, functional connectiv-
ity between dACC and hV4/MT was enhanced when process-
ing relevant information. In contrast, under low rule confi-
dence, functional connectivity between dACC and hV4/MT
was enhanced when processing irrelevant information (paired
ttest: hV4: 135) =4.39, p = 8.48 X 1077;MT:735) = 6.01, p =
5.01 x 10~7). This suggests that, when rule confidence is
low, dACC may be more involved in processing task-irrelevant
stimuli (Figure [8 D).

RNNs showed similar behavior patterns

Compared to human participants, RNNs had generally better
performance and the task-irrelevant information also showed
minimal effect on task performance while it could be signifi-
cantly decoded (Figure [9] A,C). In fact, training the RNNs in
a harder setting would lead to focusing on the relevant task
which was different from the human pattern (See Figure[S7]in
supplementary material). It might reflect a different normative
strategy.

A core pattern of human behavior was the effect of task-
irrelevant information on rule belief updating. It corresponded
to a normative explanation of counterfactual reasoning by test-
ing the validity of the alternative rule. As the human partic-
ipants, such effect was observed but with a stronger effect
(Figure 9] D).

We were expecting a positive effect of rule belief on at-
tention on task-relevant feature, as suggested by the human
results. However, here the interaction term of previous rule
belief and evidence showed a different pattern from human
participants (See Figure[S6]in supplementary material), which
might be a result of generally high performance — where feed-
back might dominate rule belief updating, and attention had
only slight effect on performance. However, following analysis
of RNN attention pattern confirmed the proposed rule belief
modulation in humans also existed in RNNs.

Attention patterns revealed by RNNs

Despite no access to the actual attention pattern of human
participants, the trained RNNs provided a chance to investi-
gate the normative attention pattern in a similar setting.
Specifically, a positive effect of rule confidence on attention
to relevant information was observed in the RNNs (12 RNNs
with attention on relevant information > 0.99 excluded,?(7) =
2.90,p = 7.4 x 1073 Figure [10| right), which was consistent
with the observed rule confidence modulation in human partic-
ipants. This effect could reflect a proactive information seek-
ing and counterfactual reasoning when the uncertainty is high.
Furthermore, RNNs tended to focus on the relevant task
first and then switched to the irrelevant one (Figure[T0]A). Ad-
ditionally, the difficulty of the relevant task seemed to affect the
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Rule Belief PPl Analysis.(A) The human fourth visual area
(hV4) significantly decodes color as task-relevant under both
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cantly decodes motion direction as task-relevant under both
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serves as the psychological measure for psycho-physiological
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Figure 9: RNN behavior. (A) model task choice. (B) model
task confidence. (C) model accuracy statistics. (D) model rule
belief regression result.

attention-splitting, suggesting it is a dynamic process evolved
together with decision-making (Figure [T0] B).

Here, note that the RNNs were presented with fixed-
duration stimuli and had no explicit reaction time, which was
different from the human participants. Also, note that there
were some trained RNNs only focusing on the relevant task
(Figure[10] C), which might indicate diversity of strategies.

In summary, the RNNs demonstrated the proposed proac-
tive counterfactual rule inference by splitting attention. Since
the RNN results were generally consistent with human results,
it suggested that humans also performed similar computation.
And as the RNNs were proposed as a normative model, they
showing attention-splitting behaviors modulated by rule belief
suggested that these behaviors reflected an optimal strategy.

Discussion

We examined how individuals perform rule-inference deci-
sions in noisy, task-uncertain environments, uncovering both
behavioral strategies and underlying neural mechanisms. We
found that the participants were able to maintain sufficient
cognitive control in the presence of irrelevant information inter-
ference to complete the task. This seemed to be different from
former studies where distractor information interfere with cur-
rent task, but a more difficult task setting and longer reaction
time may explain for this |Ritz & Shenhav| (2024a). However,
when such irrelevant information could positively influence
task decisions, participants flexibly adjusted their strategies
and used this information to optimize their decision-making
process. Our decoding analysis further suggests that the
hV4 and MT regions are involved in encoding rule-irrelevant
information during task decisions, modulated by rule belief
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rule confidence corresponded to more attention on task-relevant information.

strength. The relationship between the representation of this
irrelevant information and relevant information in the brain is
reflected in the study by Moneta et al.|(2023). They found that,
in value-based decision making, vmPFC signals represent not
only the relevant expected value, but also the irrelevant value
from alternative contexts, with competition between the repre-
sentations of relevant and irrelevant values. Furthermore, re-
garding the role of the dACC in the decision-making process,
we observed that the dACC is not only involved in rule updat-
ing, but also plays a crucial role in regulating input connec-
tions. Specifically, high rule belief improves HV4-dACC con-
nectivity for the color rule, while low rule belief enhances HV4-
dACC connectivity for the motion rule, with a similar pattern
observed in the MT region. We also found that the dACC rep-
resentation of irrelevant information during task phases may
be involved in the monitoring process.This suggests that the
dACC supports individuals in making more flexible and adap-
tive decisions in the face of environmental uncertainty.

As the modulation of context signals on task feature pro-
cessing has been generally observed and discussed (Mon-
eta et al.| (2023); |[Xue et al.| (2022); |Luo et al.| (2025)), this
attention-splitting explanation underscores the question of
how context modulation relates to flexible decision-making.
Typically, when rule inference was not required as in the cue
condition, context modulation could be an inhibitory suppres-
sion of task-irrelevant information (Langdon & Engel| (2025)).
However, when rule inference was needed as in the no-cue
condition and task-irrelevant information might help, different
strategies and complex trade-off might exist. In such cases,
the roles and interpretations of task interference, information
seeking, cognitive control and all other related components
need further investigation.

Using RNNs constrained by additional attention bottle-
neck, we replicated the core pattern of human behavior -
task-irrelevant evidence did not interfere decision-making task
while did help rule inference, suggesting a similar attention-
splitting process in human flexible decision-making. Further-

more, RNNs were presented as a normative model with min-
imal assumptions. They naturally showed attention splitting
behavior through training and demonstrated the proposed
idea of proactive counterfactual inference as paying more at-
tention to irrelevant feature to collect information when rule
confidence was low. These results indicated that human be-
havior patterns and the modulation of rule belief on task fea-
tures might originate from an optimal strategy.

In addition, the models predicted a pattern of normative at-
tention. For example, they predicted evolving attention within
trials and modulation of relevant task difficulty across trials.
This reflected a process of real-time monitoring and attention-
splitting, potentially linked to dACC. Hopefully, this idea could
inspire advances in machine learning studies on the rule infer-
ence problem (Sommers et al.| (2025)). Despite the complex-
ity of decision-making strategies, future work could investigate
the attention pattern with further experiments to test whether
it is consistent with trained RNNs. However, it is worth not-
ing that gaps between human behavior and RNNs still exist,
which might indicate other unexplored characteristics of hu-
man cognition.

Altogether, our results suggested that participants may
proactively collect and exploit the task-irrelevant information
to support rule inference, probably through attention-splitting.
These findings support the hypothesis of counterfactual rea-
soning, which enables individuals to selectively attend to rele-
vant and irrelevant information depending on task demands.
In dynamic environments, individuals exhibit high flexibility
and adaptability, adjusting cognitive strategies to optimize de-
cision outcomes in response to task complexity and uncer-
tainty(Gilbert & Wilson| (2007)).
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Supplementary material

The previous RNN employed a shared neuron population for perceptual decision-making and rule inference. However, in human
subjects, these functions correspond to separate brain regions. To achieve better structural alignment between the RNN model
and human subjects, we developed a Decision-Inference RNN model (Figure[ST). Compared to the earlier model, the Decision-
Inference RNN model includes two distinct neuron populations: one for the decision module and another for the inference
module. We retained the attention bottleneck to simulate human attention allocation constraints, while keeping the training tasks
unchanged.Due to the separation of the perceptual decision-making and rule inference modules, the dependency between [,
and /s in the loss function decreases. Therefore, the loss function does not require weighted adjustment, and the training loss
is simply loss = Lye + Lask-

attention
cue 0/ no_cue
rule
W LW y@’ '/@/'
—_—
1-W —\VI\IA\//
Decision Inference
feedback
task choice

Figure S1: Decision-Inference RNN framework

Compared to human participants, RNNs generally exhibit better performance, and task-irrelevant information can be signifi-
cantly decoded (Figure . We also observe the effect of counterfactual reasoning by testing the validity of the alternative rule
(Figure@. We calculated the average activation of each neuron at different time points under motion context and color context,
sorted the neurons by the time of their peak activation, and plotted heatmaps for the decision module and inference module. The
results show a clear separation of rule representations in the two modules(Figure [S5).
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Figure S2: Model accuracy statistics
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Figure S4: Model rule belief regression result



Regression coefficients(a.u.)

motion context color context motion context color context

i _1.0 _1.0 _10
-~ |-0.8 -0.8 -0.8
i — ——3
§ 0.6 0.6 0.6
3
GCJ —
0.4 0.4 0.4
0.2 0.2 0.2
Eﬁ
0.0 =-0.0 D, pF—— 0.0
time step
decision inference
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Figure S6: Rule switch and Updated rule belief regression analysis
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Figure S7: RNN results when trained in a harder setting (maximum coherence of 0.1). Despite better performance than human
participants, trained models paid all attention to the relevant feature and no effect of irrelevant evidence could be seen. We think
this might reflect a discrepancy of effort-accuracy relationship between human participants and RNN models. While RNN models
could easily accumulate more evidence to make more accurate decisions in our setting, it might not be the case for humans.
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Figure S8: RNN switch GLM results. The analysis of rule switching of RNNs might be inappropriate as it was unbalanced (with a
switch rate about 0.1). We think the rule belief could be a better metric in such analysis. Anyway,in such analysis the main effect
of irrelevant evidence became insignificant (with an outlier), but the significant interaction term indicated the potential influence
of irrelevant evidence.
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