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Abstract

This paper introduces a LArge-scale Video Interpolation Benchmark (LAVIB) for
the low-level video task of Video Frame Interpolation (VFI). LAVIB comprises
a large collection of high-resolution videos sourced from the web through an
automated pipeline with minimal requirements for human verification. Metrics
are computed for each video’s motion magnitudes, luminance conditions, frame
sharpness, and contrast. The collection of videos and the creation of quantitative
challenges based on these metrics are under-explored by current low-level video
task datasets. In total, LAVIB includes 283K clips from 17K ultra-HD videos,
covering 77.6 hours. Benchmark train, val, and test sets maintain similar video
metric distributions. Further splits are also created for out-of-distribution (OOD)
challenges, with train and test splits including videos of dissimilar attributes. 1

1 Introduction

Long uncompressed video streams capture events over varying motion intensities, light conditions,
and color dynamic ranges. Although loading and storing individual videos is rudimentary, processing
and reading large volumes can bottleneck availability. The high-volume transfer of videos
with large filesizes can also result in bandwidth overheads and long decoding times. Low-level
vision tasks such as Video Frame Interpolation (VFI) [3, 10, 16, 19, 21, 30, 41, 42, 44, 50, 75],
Video Super-Resolution (VSR) [5, 13, 17, 18, 22, 28, 31, 54, 63, 65], and Video Denoising
(VD) [14, 32, 33, 53, 58, 61, 64] aim to address such challenges by enabling the storage and
stream of lower-resolution, lower-frame-rate, compressed videos. Despite the wide application of
such approaches to adjacent tasks such as localization and mapping [26, 71], object tracking [74],
novel view synthesis [43, 52], and slow-motion video generation [19, 20], existing datasets for
low-level video tasks [2, 40, 41, 46, 55, 56, 59–61, 72] contain short videos, with a small number
of frames per video. With the exception of [72] most of these datasets only include either a few
hundreds [2, 41, 46, 61] or thousands [40, 55, 56, 59, 60] of videos with limited variations in the
motions, luminance, and object-level sharpness. To address this gap, this paper introduces a LArge
Video Interpolation Benchmark (LAVIB), for learning to interpolate high-resolution videos across
varying motion, blur, luminance, and contrast settings. LAVIB is built on per-frame metrics that
quantitatively measure motion magnitudes, frame sharpness, video contrast, and overall luminance.
In Fig. 1, LAVIB videos are visualized over axes corresponding to the metrics used.
The selected metrics establish a diverse, general, and robust benchmark for VFI as most prior efforts
have focused on specific settings. Seminal works [38, 55] sourced videos from high frame-rate sensors
that are less relevant to videos recorded by commonly used devices. Other works use videos of
standardized resolutions and frame rates. These are either datasets of larger sizes with low-resolution
videos [59, 72] or smaller datasets of high-resolution [41, 55, 56, 60, 61]. Comparisons to other video
datasets across metrics are discussed in §2.
LAVIB contains 283,484 video segments totaling approximately 77.6 hours. The segments are sourced
from 17,204 clips with 3840 × 2160 (4K) resolution and 60 frames-per-second (fps). Statistics are
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Figure 1: LAVIB videos distributed across metrics. Four metrics are computed per video. Average
Flow Magnitude (AFM) quantifies motion . The Average Laplacian Variance (ALV) is used to
describe the sharpness of frames . The Average Root Mean Square (ARMS) is used for contrast .
The Average Relevant Luminance (ARL) relates to the video brightness . The four aforementioned
metrics are used for Out-Of-Distribution (ODD) challenges: Fast → slow and slow →

fast motions. Low → high and high → low sharpness. Low → high and
high → low contrast. Bright → dark and dark → bright luminance.

discussed in §3. Similar to previous efforts comprised of 4K videos [38, 55, 60], LAVIB is compiled
by temporally and spatially cropping tubelets from the 4K videos to fit clips into memory.
The data collection pipeline for LAVIB is detailed in §4. This includes the creation of a vocabulary
of search query terms. Clips are sourced from YouTube videos queried by search terms. Preset
clip sampling intervals are used to standardize durations. Segments are selected from high average
flow magnitude temporal locations calculated with [15]. Spatial locations are selected by tubelets
of high/low metrics values. The final train/val/test sets are constructed by balancing all metrics.
Widely-used VFI methods [16, 23, 75] are benchmarked on the LAVIB val and test sets in §5. Per-
formance is reported across well-adopted evaluation metrics [4, 8, 9, 12, 29, 76]. LAVIB’s large size
and video diversity enables pretraining models of greater generalizability that are in turn evaluated on
test sets of smaller down-stream datasets targeting either scene diversity [72], high frame rates [55],
or high video resolution [38, 41]. In addition to the main benchmark splits, four challenges with two
settings each, are introduced for Out-Of-Distribution (OOD) VFI. Train, val, and test sets with unbal-
anced metric distributions are created for each challenge and setting. Videos are assigned to sets based
on their average motion magnitude, sharpness, contrast, and luminance metrics. These challenges
evaluate model generalizability over diverse domains that are different in the train and test sets.

2 Related works

Initial VFI benchmarks [2] provided real image sequences and ground truth optical flow annotations
with average resolutions of 640×480. The dataset comprised a small number of videos used primarily
for evaluation. Vid4 [34] is a standardized testing benchmark for VFI and VSR consisting of four
videos of 740 × 480 and 720 × 576 resolutions. Similarly, [73] is also used for VSR with videos
sampled from [68]. Later efforts [39] have also introduced benchmarks for VD in tandem with VSR
and VFI. More recent works [40] included 3.2K HD videos captured with a GOPRO4 Hero Black
with frame averaging to simulate lower shutter speeds. [51] also proposed a synthetic dataset with 3D
objects from [6] and backgrounds from [24, 27]. The trajectories of objects were uniformly sampled
from fixed bounds. Works have also studied VFI for specific domains such as animations [56]. [7]
introduced benchmarks under large motion conditions with 20 240-fps videos sourced from YouTube.
Recently, [55] introduced a high-resolution high-frame rate benchmark for video interpolation and
super-resolution. It includes a total of 4,423 videos recorded with a Phantom Flex4K.
Most similar to LAVIB, adjacent efforts that compile 4K video datasets [38, 41, 55, 60] source videos
from media in which professional equipment are used; e.g. movies [38, 41] or high-resolution video
recordings [55]. Videos from these datasets are primarily recorded with sensors under optimal shutter
speeds and calibrated luminance for capturing specific motion types. In contrast, LAVIB includes
videos from various sensors such as hand-held, action, professional, or drone cameras, and screen
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Table 1: Datasets. Compared to prior efforts, LAVIB provides a large-scale general-purpose dataset
of standardized 4K 60 fps videos. It features a significant variance across Average Flow Magnitude
(AFM), Average Relevant Luminance (ARL), and Average Laplacian Variances (ALV) in videos.

Dataset Dataset statistics Video statistics Average video metrics
Year Tot. Mins Tot. Vids Src Res. FPS AFM ARL ALV

UCF101 [59] 2012 1,600 13,320 240p 25 2.43 ± 1.85 53.37 ± 13.42 53.99 ± 18.37
Xiph [38, 41] 2020 4 19 2160p 60 26.21 ± 25.19 60.64 ± 10.77 95.24 ± 62.32
Inter4K [60] 2021 83 1,000 2160p 60 56.38 ± 14.34 56.79 ± 14.48 25.05 ± 24.05
X4K1KFPS [55] 2021 191 4,423 2160p 960 266.87 ± 178.72 53.95 ± 12.07 135.67 ± 78.19
Vimeo90K [72] 2017 356 91,701 720p 30 49.63 ± 18.32 59.68 ± 20.89 26.26 ± 29.25
LAVIB (ours) 2024 4,660 283,484 2160p 60 63.10 ± 58.41 38.34 ± 28.69 199.78 ± 197.79

Table 2: LAVIB split statistics. Details per metric for each split.
Statistic Train Val Train+Val Test

# Low Flow Mag 19,605 (10.3%) 3,846 (9.3%) 23,451 (10.1%) 4,898 (9.1%)
# High Flow Mag 18,976 (10.1%) 3,891 (9.4%) 22,867 (9.9%) 5,482 (10.2%)

# Low Lap. Var. 18,313 (9.6%) 3,541 (8.6%) 21,854 (9.5%) 6,494 (12.1%)
# High Lap. Var. 17,348 (9.2%) 3,871 (9.4%) 21,219 (9.2%) 7,130 (13.3%)

# Low Perc. Lum. 17,669 (9.3%) 3,638 (8.8%) 21,307 (9.2%) 7,041 (13.1%)
# High Perc. Lum. 19,297 (10.2%) 4,400 (10.7%) 23,697 (10.3 %) 4,652 (8.6%)

# Low RMS Cont. 18,794 (10.0%) 3,657 (8.8%) 22,451 (9.8%) 5,897 (11.0%)
# High RMS Cont. 18,363 (9.7%) 4,036 (9.8 %) 22,399 (9.7%) 5,950 (11.1%)

Total 188,644 41,345 229,989 53,494

captures. The videos differ in their dynamic range, levels of post-processing, and compression.
LAVIB is intended as a general-purpose dataset and benchmark without being specific to sensor types
or settings. Examples of videos are shown in Fig. 1.
LAVIB is compared in Tab. 1 to adjacent video datasets over different statistics. Dataset statistics
include the number of videos and total running times. Video statistics relate to video information
such as the resolution and frame rate. Average video metrics provide metrics on the variance of
motions, lighting conditions, and frame sharpness. Definitions of the metrics are detailed in §3.
LAVIB has threefold more videos than [72] and equally larger total video running time than [59].
The difference in LAVIB video conditions and recording sensors is reflected by the high variance
across metrics in Tab. 1. With the exception of [55], tailored for videos of fast motions with high
optical flow magnitude, LAVIB has the highest variance per metric across datasets.

3 LAVIB statistics

Four statistics are used to obtain segments, create splits, and define challenges. An overview is shown
in Tab. 2 with the number of videos with the highest/lowest metrics reported.
Frame-pair motion. A significant challenge for VFI methods is learning to model the cross-frame
motion consistency of videos. Thus, the proposed dataset includes videos of diverse magnitudes;
both high camera or object motion, and more static scenes. Motion magnitudes can be quantified
with dense optical flow. FlowFormer [15] is used on each frame pair resulting in 598 frame pairs per
video. The spatial resolution of videos is reduced by ×0.25 to fit frames in memory. The Averaged
Flow Magnitude (AFM) is defined by spatio-temporally averaging optical flow. AFM variances are
reported for all datasets in Tab. 1.
Frame sharpness. Sourced videos vary by the sensors, lens, codex, and camera profiles used.
They can capture different motions, light conditions, and camera focus. All these factors amount
to significant variations in the sharpness of videos. Thus, object edges or sensory noise may
be highlighted or suppressed. The Laplacian of Gaussians (LoG) is a standardized kernel-based
approach for highlighting regions of rapid change in pixel intensities. Given a video V of dimensions
RD=T×H×W , with T frames, H height, and W width, it convolves a kernel with size K over each
frame. ALV is formulated by applying LoG and averaging:
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As the size of the kernel also factors the estimate, an ensemble of kernel sizes N = {3, 5, 7} is used
to calculate the final value 1
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ALV(V, σ,K) with σ = 1.4. Overall, in LAVIB 18,313 train,

3,541 val, and 6,494 test videos are at the upper 10% of the ALV ensemble.
Video contrast. Another characteristic of videos is the contrast between objects and backgrounds
in scenes. The human visual system is more sensitive to the contrast between foreground and back-
ground [37, 49], compared to other adjacent measures such as the perceived luminance (brightness), or
frame sharpness (blurriness). Computationally, contrast relates to the difference between neighboring
raw pixel values. The metric is formulated as the Average Root Mean Square (ARMS) [45] difference
between each pixel from each frame of V and the corresponding pixel in the channel-averaged V.
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LAVIB includes 22,399 videos of high contrast for train and val and, 22,451 videos of low contrast.
Luminance conditions. In addition to the overall video conditions, the perception of light can be
affected by the sensor’s sensitivity or the camera’s processing. In human vision, the perception of
luminance is done over three bands of color. To account for the uneven perception of each band, a
common standard for quantitatively defining luminosity is the relevant luminance [47]. In videos, the
Average Relative Luminance (ARL) can be computed as the weighted sum for each color channel
from video frames based on [47], which in turn is averaged over time. The bottom 10th ARL
percentile in LAVIB includes 17,669 train, 3,638 val, and 7,041 test videos. Similarly, there are
19,297 train, 4,400 val, and 4,652 test high-luminance videos.
As shown in Tab. 2, videos selected for all splits are balanced across metrics. This is done explicitly
for the main benchmark and not the OOD challenges.

4 LAVIB pipeline

The video selection pipeline includes several stages for the collection, extraction, and set assignment.
Initially, videos are searched on YouTube by textual prompts designed to return relevant videos with
4K resolutions and 60 frames per second as overviewed in §4.1. Sourced videos are cropped to
10-second clips standardizing their durations and improving processing speeds in further steps of
the collection pipeline. Segments with high motion magnitudes are selected from the clips and are
cropped to tubelets by their AVL, ARL, ARMS, and AFM statistics as detailed in §4.2. Dataset splits
are balanced between the four statistics, with OOD splits created by assigning videos with the highest
average metric at the test or train set. The dataset pipeline is flexible and can be scaled over large
numbers of videos, requiring manual input only at a few points.

4.1 Video web-crawling

The first stage of the data collection pipeline constructs queries to search and identify videos on
YouTube with 4K resolution and 60 fps. The vocabulary of search terms is created from a finite
combination of different categories e.g.; locations, activities, weather conditions, and camera types.
This aims to diversify results over the defined categories with a level of control (See appendix A1 for
a full discussion on vocabulary creation). The vocabulary terms are compiled with three guidelines.
Videos should be in the wild. Retrieved videos should vary by lighting conditions, motions, and
scenes. They should also be recorded with different sensors. Sensor types depend strongly on video
themes; e.g. action cameras are more common for capturing fast-paced scenes in contrast to DSLR
cameras. Conditions are added in the format; rainy walk in New York or night drive. Some
text prompts are also designed to include specific equipment such as GoPro Hero10 or iPhone 13
Pro.
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Figure 2: LAVIB segment selection and challenges pipeline. Candidate 10-second clips are sampled
from a long video based on their embedding similarity. Dense optical flow is computed with [15] and
spatially averaged for the AFM metric. The 1-second clips with the top-20% AFM are selected for
the next step. Clips are further partitioned into four tubelets used in the final dataset based on their
ARL, ALV, ARMS, and AFM. The metrics are also used for video selection in OOD challenges for a.
motion, b. sharpness, c. contrast, d. luminance.

Video content should correspond to raw footage. The dictionary of general search terms aims to
improve control over the video context by retrieving specific video types. Videos with substantial
post-production cuts, or transitions, can be less relevant or usable for VFI. The video types that are
collected focus primarily on raw footage.
Exclusivity of video categories. Vocabulary queries should also include diversity in the themes
present. This is done by constructing verb hierarchies. A balanced number of queries is constructed
for objects/locations that are the focus of the videos.
Each vocabulary search term is combined with ‘4K’ and used as a query on YouTube. The query-
related URLs are scraped from the contents in the response’s script. Candidate videos are downloaded
only if a 4K format with 60 fps is available. This step is needed as YouTube’s search prioritizes video
elements such as titles, tags, and descriptions over metadata.
Limitations. Queries are created from a finite set of search terms. The diversity of locations and
activities is manually defined thus, limitations are expected. As noted above, the selected videos are
more diverse than current VFI benchmarks however, an increased vocabulary can improve this further.

4.2 Segment selection and split assignment

In total, 667 hours of footage are collected over the project’s 31-month duration. This initial list
contained videos of hour-long to minute-long durations. To standardize their durations, 10-second
clips are sampled manually over different interval steps. Clips are extracted consecutively for videos
less than 5 minutes. For the rest of the videos; 10-second sampling intervals are used for videos
with durations between 5-30 minutes, 2-minute intervals for videos between 30 minutes to an hour,
and 10-minute intervals for videos longer than an hour. This selection resulted in a total of 34,408
clips. Clips from the same video are bound to include similarities. To account for this and inspired
by [76], similarities between clips from the same video are measured metrically by their embedding
space distance with highly similar clips being dropped. MViTv2-B [11] is used to encode clips and
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Table 3: LAVIB val and test results using [23] as a baseline across training schemes. Evaluation
metrics are reported for both val and test sets. Best results per metric are denoted in bold.

Pre-train
LAVIB

Pre-train
Vimeo-90K

Fine-tune
Xiph + X4K1KFPS

LAVIB val performance LAVIB test performance
PSNR↑ SSIM↑ LLIPS↓ PSNR↑ SSIM↑ LLIPS↓

✓ 32.86 0.968 3.152e−2 32.10 0.963 3.947e−2

✓ ✓ 31.36 0.952 4.620e−2 31.78 0.948 5.154e−2

✓ 33.72 0.981 2.515e−2 33.44 0.981 2.934e−2

to create a similarity matrix based on the L2 distance of the final layer embeddings. Clips with an
average (row-wise) L2 distance below the entire matrix’s average distance are dropped. This step
resulted in the selection of 17,204 clips.
The final two stages include both temporal and spatial cropping. They are overviewed in Fig. 2.
Temporal segment selection. Segments are compared and selected by their AFM. This selection
aims to drop primarily static segments as they are less relevant to VFI tasks with minimal pixel and
object tracking requirements. FlowFormer [15] is used to calculate AFM over pairs of frames by
spatially averaging flows. Each 10-second sequence is temporally augmented to obtain all available
1-second clips. Clips with the highest 20% magnitudes are selected. This strategy was chosen as it
worked well in a small-scale setting when manually examining a set of 1,000 clips.
Spatial segment selection. The selected high-resolution clips cannot directly fit into the memory
of most current GPUs. Thus, as commonly addressed in the literature [38, 41, 55, 72] the number
of videos is curated with the additional selection of tubelets. Each clip is divided into four tubelets
by a 2 × 2 grid. ALV, ARL, ARMS, and AFM are computed for each tubelet. 80% of the tubelets
are retained by selecting from the low/high values per metric in succession, leaving out the middle
20%. This avoids oversampling from values close to the mean of metrics. Instead, tubelets with more
challenging settings are selected.
Assignment to splits. All train/val/test splits are constructed with a 65-15-20% split. DUPLEX [57]
selection is used for balancing split statistics. Videos with the largest pair-wise distance by their
metrics are initially selected. In turn, videos are iteratively assigned to sets given their distance from
the previously selected videos. A detailed overview of the algorithm is provided in §A2. Recall that
the OOD sets need to be imbalanced across statistics so this is specific to the benchmark splits.
Limitations. No prior work has tackled video collection based on these metrics, so thresholds for
each step are manually defined. This can constrain the final dataset size as the values were selected
empirically to maximize diversity.

5 Benchmarks

Baselines. LAVIB contains 188,644 1-second videos for training, 41,345 videos for validation, and
53,494 videos for testing. Benchmark results are reported in §5.1 across settings. For the baselines,
triplets of frames are defined similarly to [7, 59, 72] for single-frame interpolation with a total of
∼5.7M triplets. In the multi-frame interpolation settings in §5.2, septuplets are also used resulting
in a total of ∼ 2.4M groups of frames. Ablations on varying video resolutions are presented in §5.3.
In §5.4, the video metrics are used to create unbalanced dataset splits. For each of the four metrics,
two challenges are created by sampling videos with either high/low values and assigning them to
the train/test sets. Qualitative results for all three models are shown in §5.5.
Model details. Three VFI methods are benchmarked; RIFE [16], EMA-VFI [75], and FLAVR [23],
which in turn are trained and tested on LAVIB. The official codebases made publicly available by
their respective authors are adjusted and used for LAVIB for all experiments. Adapted training and
test code, and models are available at https://github.com/alexandrosstergiou/LAVIB.
Training details. The training and model settings are imported from the original papers and codebases.
The train batch size is set to 64 for all models and the start learning rate is reduced by ×0.25 for all
models to account for the increased batch size.
Evaluation metrics. Standard image and video quality metrics are used for all tasks and benchmarks.
Quantitative results report the Peak Signal-to-Noise Ratio (PSNR), Structural Similarity (SSIM), and
Learned Perceptual Image Patch Similarity (LPIPS) [76]. In multi-frame interpolation, the average
value over the interpolated frames is reported.
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Table 4: Vimeo-90K perfor-
mance [23] with dif. train sets.
Train set PSNR↑ SSIM↑ LPIPS↓

Vimeo-90K 36.25 0.975 9.280e−3∗

LAVIB 36.68 0.983 4.162e−3

Table 5: Xiph4K perfor-
mance [23] with dif. train sets.
Train set PSNR↑ SSIM↑ LPIPS↓

Vimeo-90K 33.28∗ 0.892∗ 0.236e−1∗

LAVIB 34.51 0.911 0.532e−2

Table 6: X4K1KFPS perfor-
mance [23] with dif. train sets.
Train set PSNR↑ SSIM↑ LPIPS↓

Vimeo-90K 31.25∗ 0.9083∗ 0.383e−1∗

LAVIB 32.44 0.927 0.894e−2

Table 7: Multi-metric evaluation results on LAVIB test. Performance is reported for ⭑image-based
metrics averaged across frames and ⧫video-based metrics.

Model ⭑PSNR↑ ⭑SSIM↑
⭑LPIPS↓ [76] ⭑DISTS↓ [9] ⭑Watson-DFT↑ [8] ⧫VSFA↑ [29] ⧫VFIPS↑ [12]

RIFE 27.88 0.871 1.416e−1 1.870e−1 0.215 0.558 0.561
EMA-VFI 33.14 0.978 3.105e−2 5.076e−2 0.344 0.607 0.638
FLAVR 33.44 0.981 2.934e−2 4.430e−2 0.360 0.626 0.667

5.1 Baseline results

Baselines. Tab. 3 reports SSIM, PSNR, and LPIPS scores on both LAVIB val and test sets across
three training settings; pre-training on Vimeo-90K, fine-tuning on a joint set from Xiph [38, 41]
and X4K1KFPS [55] of exclusively 4K videos, and pre-training with LAVIB. FLAVR [23] is used
as the baseline model due to its fast processing times, strong results, and open-source codebase.
Finetuning on Xiph + X4K1KFPS suffers as both datasets are small in size although they are sourced
by videos with the same resolution as LAVIB. Pre-training only on Vimeo-90K slightly improves
results. Pre-training on LAVIB gives the best performance overall increasing PSNR, and SSIM by
+1.08 and +0.015 on average on both sets.
Generalization to related small-scale datasets. VFI benchmarks include multiple datasets [38, 41,
55, 72]. LAVIB is unique in having the largest number of diverse videos of both high resolution and
high frame rates. The generalization benefits of using LAVIB as the pre-training dataset are compared
to the previously widely-used Vimeo-90K [72]. Tab. 4 shows performance improvements in the test
set of Vimeo-90K when the model is trained on LAVIB. Similar score increases are also observed for
the Xiph4K and X4K1KFPS test sets in Tabs. 5 and 6 with +1.23 and +1.19 improvements on the
PSNR. LAVIB’s large variance across videos enables learning VFI over different conditions which
can benefit performance in smaller domain-specific benchmark datasets.
Multi-metric results. As human judgment of the perceptual quality depends on high-order image
structures and context [36, 67], an ensemble of metrics is reported in Tab. 7 to provide a complete
evaluation of each methods’ performance on the LAVIB test set. In addition to standard quality
metrics, scores over recently-proposed metrics including DISTS [9], Watson-DFT [8], VSFA [29],
and VFIPS [12] are also reported. Across statistics, both EMA-VFI and FLAVR perform comparably.
A decrease in performance is observed with RIFE as its limited complexity can not adequately address
VFI with large variations in settings across videos. Compared to FLAVR, the PSNR and SSIM scores
decrease by -5.56 and -1.10 respectively, and the LPIPS loss increases from 0.029 to 0.146.

5.2 Multi-frame interpolation results

This section ablates the number of frames interpolated and evaluated over different schemes with;
×2 interpolation being equivalent to interpolating 30fps videos to 60fps, ×3 interpolating 20fps to
60fps, and ×4 interpolating 15fps to 60fps. Triplets and septuplets of frames as input are also ablated.
Results are reported in Tab. 8. FLAVR trained on Vimeo-90K is used as a baseline in all settings.
Varying number of interpolated frames. The LAVIB-trained model [23] consistently outperforms
the baseline trained on Vimeo-90K across different numbers of interpolated frames. An average
-1.19/-0.02 PSNR/SSIM drop is observed across {×2,×3,×4} interpolations when septuplets of
frames are used. This drop is more significant for triplets with -1.75/-0.078 PSNR/SSIM.
Varying number of input frames. Two settings are used for defining inputs. In triplets, models
input a single proceeding and a single succeeding frame with the interpolation target being the in-
between frame. In septuplets, two proceeding and two succeeding frames are used as inputs. Models
trained with septuplets demonstrate only moderate PSNR/SSIM performance improvements across
interpolation settings. This shows that regardless of the input settings the dataset remains challenging.

∗Inhouse evaluation from author provided model.
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Table 8: Multi-frame interpolation scores over triplets, and septuplets across different numbers of
interpolated frames. Increase in video duration due to interpolation is denoted with {×2,×3,×4}.

Model triplet septuplets
×2 ×3 ×4 ×2 ×3 ×4

PSNR↑/SSIM↓ PSNR↑/SSIM↓ PSNR↑/SSIM↓ PSNR↑/SSIM↓ PSNR↑/SSIM↓ PSNR↑/SSIM↓

Baseline 32.10/0.963 31.58/0.952 30.42/0.937 32.69/0.976 32.10/0.972 31.95/0.918
FLAVR 33.44/0.981 33.07/0.975 32.86/0.968 33.62/0.985 33.41/0.980 33.28/0.962

Table 9: Results on ×2 interpolation
with different target fps. Main results
default settings in gray.

Model 15fps → 30fps 30fps → 60fps
PSNR↑ SSIM↑ PSNR↑ SSIM↑

FLAVR 33.21 0.978 33.44 0.981

Table 10: LAVIB test set scores across frame resolutions
with FLAVR on different training schemes. Main results
default settings in gray.

Train set 112 × 112 256 × 256
PSNR↑ SSIM↑ LLIPS↓ PSNR↑ SSIM↑ LLIPS↓

Video90K 30.14 0.943 4.638e−2 32.10 0.963 3.947e−2

LAVIB 32.57 0.965 3.781e−2 33.44 0.981 2.934e−2

Table 11: Frame resolutions ablations. Best results per metric are denoted in bold and best results
per model are underlined.

Model 112 × 112 224 × 224 256 × 256
PSNR↑ SSIM↑ LLIPS↓ PSNR↑ SSIM↑ LLIPS↓ PSNR↑ SSIM↑ LLIPS↓

EMA-VFI 32.26 0.954 4.130e−2 33.01 0.972 3.211e−2 33.14 0.978 3.105e−2

FLAVR 32.57 0.965 3.781e−2 33.28 0.973 3.086e−2 33.44 0.981 2.934e−2

Varying frame sampling. LAVIB’s standardized 60fps also enables works to explore VFI over more
challenging settings with multiple temporal resolutions. Tab. 9 reports performance on 30fps targets
created by sampling every 2 frames to form triplets. Results show consistency between densely
sampling frames sequentially (30fps → 60fps) and sampling with a step of 2 (15fps → 30fps).

5.3 Varying frame resolution results

An important factor for VFI is the clarity of the objects. Different computational budgets can limit
availability in training schemes and memory use.
Resolutions across models. Results on different training set resolutions are reported in Tab. 11. As
in [16, 23, 75], 256 × 256 is the standard resolution used for training all models. A proportional
decrease in performance is observed at lower resolutions. However, these reductions remain small
with an average −0.14/−0.01 in PSNR/SSIM when using 224 × 224 and −0.87/−0.02 when using
112 × 112. Thus, LAVIB can be a suitable benchmark for evaluating low-compute VFI models.
Frame resolutions across training schemes. Tab. 10 reports performances across varying resolutions
with different dataset training sets. Compared to the LAVIB-trained model, performance degrades
significantly at lower resolutions with the smaller and less diverse Vimeo-90K. The large and varying
LAVIB training set can be an effective alternative for training on lower compute resources in which
full-resolution videos do not fit in memory.

5.4 OOD Challenges

OOD challenges aim to test the generalizability of models to domains different from the ones trained.
In low to high challenges, train sets include videos of low AFM, ALV, ARMS, or ARL values and the
remaining videos of high-value metrics are used for testing. For high to low challenges, train sets
have high AFM, ALV, ARMS, or ARL values and test sets have low values.
Low/High AFM. As shown in Tab. 12a, existing VFI models cannot effectively interpolate frames
when trained on videos with low motion magnitudes. Compared to the benchmark results in Tab. 7
a −2.64 and −0.04 drop is observed for PSNR and SSIM. The embedding distance to ground truth
frames also increases by +9.825e−2. In contrast, when models are trained on high motion magnitudes,
VFI is easier for the target domain of primarily low magnitudes. The imbalance in performance
shows the sensitivity of current models to the motion magnitudes of the training data.
Low/High ALV. Sharpness-based comparisons are reported in Tab. 12b. Testing on low-sharpness
settings is more challenging for VFI models as object edges are more difficult to define. However,
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Table 12: PSNR,SSIM, and LPIPS scores on OOD challenges. Flow-based challenges are denoted
by → for low train and high test AFM and → for high train to low test. For blur-based
→ denotes low and high and → denotes high and low. → and → denote low/high,
and high/low ARMS respectively. → and → denote low/high, and high/low ARL.

(a) AFM

Model
→ →

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

RIFE 25.34 0.832 3.816e−1 28.75 0.926 8.709e−2

EMA-VFI 30.21 0.936 6.420e−2 34.89 0.929 1.705e−2

FLAVR 30.67 0.959 5.094e−2 35.66 0.991 1.342e−2

(b) ALV

Model
→ →

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

RIFE 26.52 0.873 1.823e−1 29.31 0.906 9.644e−2

EMA-VFI 31.26 0.948 2.947e−2 34.30 0.972 2.703e−2

FLAVR 31.78 0.962 2.942e−2 34.67 0.975 2.627e−2

(c) ARMS

Model
→ →

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

RIFE 26.28 0.836 1.766e−1 25.42 0.855 2.358e−1

EMA-VFI 32.79 0.964 2.930e−2 30.65 0.951 4.467e−2

FLAVR 33.02 0.982 2.561e−2 31.11 0.977 3.024e−2

(d) ARL

Model
→ →

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

RIFE 26.83 0.872 1.743e−1 26.95 0.865 1.627e−1

EMA-VFI 33.55 0.974 2.723e−2 33.41 0.968 3.031e−2

FLAVR 33.97 0.980 2.543e−2 34.20 0.976 2.875e−2

models trained on low-sharpness videos can interpolate high-sharpness videos with an average +2.93
and +0.023 increase in the PSNR and SSIM scores compared to the low-to-high task.
Low/High ARMS. Results on contrast-based OOD challenges are presented in Tab. 12c. The domain
gap between these two settings is significant. Training on low contrast shows robustness when the
domain shifts to high contrast at testing. However, the same generalization is not observed for the
inverse with models trained on high-contrast videos and tested on low-contrast VFI. Compared to
low-to-high ARMS, high-to-low ARMS shows a -1.65 drop in PSNR.
Low/High ARL. Tab. 12d reports performances over brightness settings. Overall, models from either
setting show comparable performance and generalization robustness to the target domain. Minor
performance improvements are shown for the high to low task with high luminance training being
more effective in cross-domain generalization.

5.5 Qualitative results

Fig. 3 shows interpolated frames from the LAVIB test sets. Frame regions from videos of the LAVIB
benchmark interpolated with RIFE, EMA-VFI, and FLAVR are shown in the top three row (a-i). Re-
gions shown vary by size and reconstruction error. LAVIB is challenging for current VFI methods as
they cannot fully interpolate all parts of objects (b,i) or fine details (c,f,g). Objects in scenes affected by
high motions are shown to be the most prone to interpolation artifacts as seen with the fine details be-
ing missed (d) and the high cross-frame relative displacement (e). This also becomes apparent more in
high-motion scenes (h) where large distortions in the scene dynamics can be observed. For OOD chal-
lenges models also struggle to correctly interpolate the high contrast between objects and backgrounds
(k,l,n), distinct patterns (j), and details or objects (m,o). Further qualitative results are provided in §A5.

6 Conclusions and future directions

This paper introduces LAVIB, a large-scale general-purpose dataset and benchmark for VFI. LAVIB
consists of 283,484 clips collected from 4K videos at 60fps with metrics computed per video specific
to motions, sharpness, contrast, and luminance. With the release of the videos and the OOD challenges
splits, LAVIB can be used as a robust benchmark and allow the community to investigate VFI under
a diverse range of video settings, captured with different equipment, and across various domains.
LAVIB further encourages exploring new avenues for efficiency improvements in future VFI works.
Frame-level quantization. A number of works have explored video inference acceleration through
frame quantization for temporal redundancy reduction [1, 62]. Learning to truncate videos by varying
quantization precision is important for the real-world applicability of methods in streams. LAVIB
provides a diverse set of high-resolution videos with standardized frame rates that can be used both
as a benchmark as well as a pre-training dataset.
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Figure 3: Examples from the LAVIB benchmark and OOD test sets (best viewed digitally).
Zoomed regions on the right of each frame show interpolations with RIFE, EMA-VFI, and FLAVR.
The top row shows results for videos from the benchmark test split. The bottom two rows are video
frames from test splits from OOD challenges. The challenge is denoted at the top right of each ground
truth frame. The ground truth is shown as a reference at the top left of the zoomed-in region grid.

Knowledge distillation. Transferring knowledge about the video structure can enable more efficient
models. Several works [25, 35, 48] have distilled representations from teacher models trained on
high-resolution videos. A natural extension of the proposed dataset would be its use for training
high-resolution teacher models and evaluating low-resolution student models.
Salient frame sampling. The selection of informative frames has been another domain of interest for
real-time video processing [66, 69, 70]. The standardized framerate of LAVIB can provide a robust
benchmark for testing sampling approaches over different granularities.
Based on these adjacent video tasks, LAVIB can be imported and adapted as a general-purpose
dataset and benchmark.
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Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section TODO.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] The paper introduces a dataset, video selection pipeline,
and challenges. Both the main paper and appendix, thoroughly describe the annotation
pipeline, metrics used, results obtained, and comparison made to other datasets.

(b) Did you describe the limitations of your work? [Yes] Limitations at each step of the
data collection are discussed in §4.1 and §4.2.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] A section
in the appendix is devoted to potential data biases and resulting models.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] Train/val/test
splits for the benchmark and all OOD challenges and settings are publicly available:
https://alexandrosstergiou.github.io/datasets/LAVIB. The code is pub-
lished on GitHub.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Model settings and training details and splits are discussed in
Section 5. Further details on the training settings are discussed in §A3 of the appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running ex-
periments multiple times)? [No] Experiments are too computationally costly to do
multiple runs. Due to the size of the dataset, only small variations in performance are
expected with different seeding. Reported results form baselines for which stronger
future methods are expected to outperform.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Compute resources are detailed at
§A3 of the appendix.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] LAVIB is sourced

from YouTube videos. Baselines use models and the codebases of RIFE [16], EMA-
VFI [75], and FLAVR [23]. The adjusted codebases for running LAVIB are available
at https://github.com/alexandrosstergiou/LAVIB.

(b) Did you mention the license of the assets? [No] All spatiotemporal cropped video
segments used are from publicly available data, following the Terms of Service users
agreed to when uploading to YouTube. Codebases for the models used include open-
source licenses.
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(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] Videos are publicly available. §A6 contains more details.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] Some videos include recordings of people,
albeit occasionally, they can sometimes include their faces briefly. This is discussed
further in §A6.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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