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ABSTRACT

High-Level Synthesis (HLS) enables hardware design from C/C++ kernels but
requires extensive transformations, such as restructuring code, inserting prag-
mas, adapting data types, and repairing non-synthesizable constructs, to achieve
efficient FPGA implementations. While large language models (LLMs) show
promise in automating these transformations, progress has been limited by the
absence of large-scale, well-structured datasets. Existing HLS datasets focus pri-
marily on resource estimation, lack paired C and HLS examples with testbenches,
and cover only a narrow set of optimizations. We introduce HLStrans, the first
benchmark-scale dataset for LLM-driven C-to-HLS synthesis. HLStrans con-
tains over 124K paired C and HLS programs for real-world applications, with
full testbenches and synthesis-based annotations of latency and resource usage.
The dataset systematically captures five categories of transformations and is en-
riched by an automated augmentation pipeline combining LLMs, Monte Carlo
Tree Search (MCTS), and Design Space Exploration (DSE). We benchmark state-
of-the-art LLMs on HLStrans, demonstrating that retrieval and fine-tuning signif-
icantly improve success rates and performance.

1 INTRODUCTION

Specialized computing systems, particularly FPGAs, are increasingly deployed to accelerate
compute-intensive workloads in domains such as machine learning, signal processing, and data
analytics. High-Level Synthesis (HLS) has emerged as a key methodology for bridging software
and hardware, allowing engineers to describe functionality in C/C++ and automatically generate
hardware-ready RTL. However, generating high-performance HLS code is far from a direct trans-
lation: it requires structural code refactoring, insertion of optimization pragmas, adaptation of data
types, replacement of functions with hardware-friendly intrinsics, and strict compliance with HLS
coding styles. Therefore, we define the C-to-HLS transformation task as follows: given a sequen-
tial C/C++ kernel, generate a synthesizable HLS implementation that achieves efficient hardware
acceleration on an FPGA platform. This task exemplifies the challenges at the intersection of AI
and EDA, demanding not only correctness but also hardware-aware optimization. The impact of
this task is described in Appendix A.5.

Recent work has demonstrated the potential of large language models (LLMs) for HLS code gen-
eration. Early studies explored direct translation from C++ to synthesizable HLS code, while oth-
ers focused on automating pragma insertion, repairing unsynthesizable constructs, or leveraging
retrieval-augmented and chain-of-thought prompting to improve optimization quality (Collini et al.,
2024; Xiong et al., 2024; Bhattacharyya et al., 2024; Xu et al., 2024; Prakriya et al., 2025). While
promising, these approaches are constrained by the lack of comprehensive benchmarks: existing
evaluations are conducted on small, fragmented collections of kernels, making it difficult to repro-
duce results or compare methods fairly. Without a unified, large-scale dataset, it remains challenging
to systematically assess or advance LLMs on the C-to-HLS task.

Although several datasets for HLS exist, such as HLSsyn (Bai et al., 2023), HLSDataset (Wei et al.,
2023), MLSBench (Goswami et al., 2022), and HLSfactory (Abi-Karam et al., 2024), they fall
short for this purpose. Most are designed for resource estimation rather than code transformation,
are limited in scale (typically a few hundred to a few thousand kernels), and rarely include paired
examples of original C code, optimized HLS code, and testbenches. Moreover, they capture only
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a narrow slice of transformation diversity, focusing mainly on pragma insertion and overlooking
critical steps such as code restructuring, data type adaptation, and repair of unsupported C constructs.
As a result, current datasets cannot serve as a benchmark foundation for training or evaluating LLMs
on realistic C-to-HLS synthesis.

To address these gaps, we present HLStrans1, the first benchmark-scale dataset explicitly designed
for LLM-driven C-to-HLS transformation. HLStrans contains over 124,200 C and HLS pairs drawn
from diverse real-world applications, covering domains such as linear algebra, machine learning,
DSP, image processing, and cryptography. Each entry includes a triple: the original C kernel, an
optimized HLS implementation, and a validation testbench, with annotations of latency and re-
source metrics obtained via synthesis. The dataset systematically captures five categories of trans-
formations: code restructuring, pragma insertion, data type adaptation, function replacement, and
HLS-compliant repair, ensuring broad coverage of hardware-oriented optimizations. To further en-
rich this corpus, we introduce an automated augmentation framework that combines LLMs, Monte
Carlo Tree Search (MCTS), and Design Space Exploration (DSE) to generate diverse, synthesizable
variants guided by synthesis feedback.

In summary, our contributions are threefold:

• We release HLStrans, the first large-scale dataset for C-to-HLS transformation, enabling LLM
training and fair benchmarking;

• We propose a novel augmentation pipeline that produces diverse, high-quality HLS implementa-
tions;

• We provide extensive evaluations of open-source and closed-source LLMs, showing that retrieval
and fine-tuning on HLStrans significantly boost synthesis success rates and performance. By
positioning HLStrans as both a resource and a benchmark, we aim to catalyze progress in LLM-
powered hardware design and accelerate the integration of AI into future EDA workflows.

2 BACKGROUND AND RELATED WORKS

LLM aided C to HLS. There is an increasing body of literature on applying LLMs to generate
HLS design from original C code. Collini et al. (2024) evaluates the basic task of translating naive
C++ into synthesizable HLS C++. Bhattacharyya et al. (2024) demonstrates that LLMs can au-
tomate HLS pragmas and optimizations to produce synthesizable, high-performance RTL from C
on image-processing benchmarks. Xu et al. (2024) presents an LLM-driven HLS program-repair
framework that transforms C/C++ into synthesizable HLS-C. Xiong et al. (2024) extends this ap-
proach with retrieval-augmented generation and chain-of-thought prompting to deliver optimized
HLS implementations across nine applications. However, to date, no work has evaluated LLM’s
capabilities transforming C code to HLS codes on a large-scale dataset.

HLS code dataset. HLSsyn (Bai et al., 2023) focuses on incorporating a diverse set of optimization
pragmas but contains only 42 kernels for training and evaluating design-quality prediction models.
HLSDataset (Wei et al., 2023), which aggregates 34 data sources into roughly 18K samples, targets
power, resource, and timing estimation. MLSBench (Goswami et al., 2022) is an open-source corpus
produced with the Xilinx Vivado HLS flow; it covers 17 C/C++ and 13 SystemC benchmarks, but
provides only HLS log files and reports. DB4HLS (Ferretti et al., 2021) introduced a database
of more than 100,000 HLS design points generated from MachSuite via exhaustive design-space
exploration. Likewise, Dai et al. (2018) released about 1,300 designs created from benchmarks.
Despite these valuable resources, they suffer from three key limitations when used to evaluate LLMs’
ability to translate C code into HLS:

First, prior HLS datasets have primarily targeted quality-of-results (QoR) estimation rather than
C-to-HLS code generation, and the underlying program sources are limited. Though varying tool
configurations can yield many synthesized samples, the scarcity of distinct source programs pre-
vents an LLM from learning diverse program structures needed for C-to-HLS tasks. Moreover, the
selected programs are typically short, making them inadequate for fully assessing LLMs’ capability.

Second, Existing datasets inadequately capture comprehensive C-to-HLS transformations, fo-
cusing largely on pragma insertion. Generating high-performance HLS code from standard C/C++

1https://anonymous.4open.science/r/HLStrans-B578/
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for FPGAs requires a series of systematic transformations to expose parallelism, optimize data
movement, and conform to HLS-friendly coding styles. While the detailed transformations are
in Appendix A.1, these transformations fall into five broad categories, shown in Figure 1.

Void app (float result[ROWS])
{
float max, temp;
L1: for (int i = 0; i < ROWS; i++) {
result[i] = max + temp; 
}
}

Void app(float result[ROWS])
{
float buffer1[TILE_ROWS];
float max, temp;

for (int i = 0; i < ROWS; i += 
TILE_ROWS) {

for (int j=0; j < TILE_ROWS; 
j++ )
{ result[i] [j] = max + temp; 
}
}

Original C/C++

Optimized HLS

Void app(float result[ROWS]) 
{ 
float max, temp;
for (int i = 0; i < ROWS; i += 1) 
{
result[i] = max + temp; 
}
}

Original C/C++

Optimized HLS

Original C/C++

Optimized HLS

Original C/C++

Optimized HLS

Double compute_distance
(double x, double y)  {    
double d = x*x; 
double c = y*y; 
double z = c + d;
return std::sqrt(z); 
}

Double compute_distance
(double x, double y) 
{ 
double d = x*x; 
double c = y*y; 
double z = c + d;
return hls::sqrt(z);
}

T1: loop tiling examples T2: unroll example T3: float to fixed type T4: sqrt function example
Repaired HLS

T5: recursion elimination

Optimize Optimize Optimize Optimize
Void app(float result[ROWS]) 
{ 
float max, temp;
for (int i = 0; i < ROWS; i += 1) 
{
#pragma HLS unroll factor =2 
result[i] = max + temp; 
}
}

Void app(float result[ROWS]) 
{ 
float max;
for (int i = 0; i < ROWS; i += 1) 
{
max = 20.0;
result[i] = max + 1.0; 
} };

Void app(fixed_t result[ROWS]) 
{ 
float max;
for (int i = 0; i < ROWS; i += 1) 
{
max = 20.0;
result[i] = max + (fixed_t) 1.0; 
}
}

Int factorial(int n) {
if (n <= 1) 
return 1;

else
return n * factorial(n -

1); 
}

Original C/C++

Int factorial_iter(int n) {
int result = 1; 
for (int i = 2; i <= n; ++i) 

{
#pragma HLS pipeline
result *= i;

} 
return result;

}

Repair

Figure 1: C/C++ to HLS code transformation examples. T1: Apply loop tiling and local buffering
to improve data locality. T2: Unroll inner loops to increase parallelism and throughput. T3: Convert
floating-point to fixed-point types to reduce resource use and latency. T4: Replace standard math
calls with HLS intrinsics (e.g. hls::sqrt) for synthesizable implementations. T5: Eliminate recursion
by refactoring to iterative code so the design can be synthesized.

T1: Code Restructuring. Refactor algorithms to expose pipelining and dataflow, apply loop tiling,
memory coalescing, ping-pong buffering, and reorganize control logic for parallel or streaming exe-
cution. T2: Directive (Pragma) Insertion. Place HLS pragmas to guide the tool scheduler, such
as data flow, pipeline, loop partition, and interface specifications, to fine-tune performance and
resource usage.T3: Data-Type Adaptation. Replace generic C types with HLS-specific arbitrary-
precision types: convert floating point to fixed point (ap fixed) for resource optimization, standard
integers to bit-accurate (ap int/ap uint), and customize bit widths to match application precision re-
quirements. T4: Transformation of Functions. Transform standard C functions into HLS-optimized
kernels or intrinsics (such as converting the std::sqrt function to the hls::sqrt function) to better
leverage FPGA fabric and specialized accelerators. T5: HLS-Compliant Coding Style. Eliminate
unsupported C constructs such as dynamic memory allocation (malloc/free), recursion, and certain
pointer arithmetic patterns; restructure code to use static arrays, simple loops, and explicit hand-
shaking for communication.

Third, they are not organized as paired C-and-HLS examples and omit the corresponding test-
benches needed for LLM-based HLS code optimization, which are not ready for LLM to verify its
output.

Compared with previous works, Table 1 concludes that our dataset has more kinds of sources and
supports more transformations, making it ready for LLM code generation.

3 HLSTRANS DATASETS CONSTRUCTION

Open-source HLS datasets are scarce and poorly structured, which limits their usefulness for training
LLMs. We propose an automated pipeline to generate high-quality HLS datasets from existing
resources. The pipeline has three stages: (1) collect high-quality human optimized open-source
HLS examples; (2) perform targeted data augmentation on human optimized kernels to produce
many viable candidates; (3) select the efficient HLS implementations from those candidates. Figure
2 shows our dataset construction process.

3.1 DATASET COLLECTION

Firstly, we harvest code from GitHub, selecting repositories with at least ten stars. However, man-
ually optimized codebases often exhibit inconsistent formatting and sparse documentation, which
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Table 1: Comparison of HLS datasets. QoR: quality of result prediction. Transformation: C to HLS
transformations mentioned in Figure 1. 3: included. 7: not included

Attributes Dai M
LSBen

ch

DB4H
LS

HLSdata
set

HLSsyn

HLStra
ns

Samples 1,300 6,000 124,106 18,876 42,000 124,200
Programs 65 30 19 34 42 309
Purpose QoR QoR QoR QoR QoR Code generation
Transformations T2 T2 T2 T1,T2 T2 T1, T2, T3, T4, T5
Testbench No No No No No Yes

Programs
CHStone(Hara et al., 2008) 3 3 7 3 7 3
Polybench(Pouchet & Yuki, 2012) 7 7 7 3 3 3
Rodinia(Che et al., 2009) 7 7 7 7 7 3
Machsuite(Reagen et al., 2014) 3 3 3 3 3 3
Rosetta(Zhou et al., 2018) 7 7 7 3 7 3
C2HLS(Collini et al., 2024) 7 7 7 7 7 3
PP4FPGA(Kastner et al., 2018) 7 7 7 7 7 3
Forgebench(Wanna et al., 2025) 7 7 7 7 7 3
HLSfactory(Abi-Karam et al., 2024) 7 7 7 7 7 3
Others (GitHub) 7 7 7 7 7 3

hinders LLM-driven code generation. Public kernels also frequently depend on unexpanded macros
and bundle extraneous utility functions that obscure the core algorithm. To make C to HLS tasks
readily consumable by LLMs, we package each design with the following files:

• Single original file x that is a slow original C/C++ codes.
• Single optimized HLS file y that implements the kernel, including a top function and, if neces-

sary, any sub-functions and specialized data types. The file must be synthesizable and not exceed
the resources of the platform.

• Self-contained C++ testbench tb includes all test cases and validation logic necessary to verify
the kernel’s outputs against expected results. We manually write all the testbenches and adjust
the optimized HLS code to ensure it passes all tests. The coverage of testbenches are described
in Appendix A.7.

Therefore, we construct triples (x, y, tb). If the original file x is synthesisable, the execution cycles
from synthesis reports of y must be less than x. If the original file x is not synthesisable, y should
be synthesisable.

3.2 DATASET AUGMENTATION

Relying solely on collected repositories is insufficient because high-quality hardware codes are far
scarcer than general software. To generate richer, more useful examples, we designed an automated
dataset-augmentation framework that synthesizes additional C to HLS variants.

We formulate the C to HLS translation as a combinatorial search problem: selecting appropriate
combinations of code transformations to meet performance and resource targets. Our approach
proceeds in two stages. First, an LLM agent guided by Monte Carlo Tree Search (MCTS) proposes
and explores semantic-preserving code transformations that expose parallelism and produce HLS-
friendly structure. Second, for each candidate design we apply automated design-space-exploration

Dataset
collection

Dataset
Augmentation

Dataset
Selection

HLStrans

Figure 2: HLStrans Dataset Construction Process.
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(DSE) tools to tune pragmas and low-level implementation choices. Both stages are evaluated in the
loop using EDA feedback (performance, resource utilization, and compilation outcomes), enabling
MCTS and DSE to efficiently navigate the large, combinatorial action space (see Figure 3).

First, MCTS performs structured exploration by balancing the exploitation of high-reward actions
with the exploration of uncertain or less-visited regions of the search space. The optimization policy
is generated by the retrieval augmentation generation (RAG) module. The search is guided to choose
the suitable policy by both the verification pipeline and a reward model. The reward model incor-
porates detailed feedback from the HLS toolchain, including synthesis success or failure, compile
warnings, and performance metrics such as resource usage, latency, and throughput. This heuristic-
driven strategy enables the agent to iteratively refine transformation sequences and produce more
high-quality, synthesizable HLS designs. Second, HLS directive design space exploration using
genetic algorithms (Ferikoglou et al., 2023) is adopted. It inserts pipeline, unroll, and partition prag-
mas to produce more effective data samples. Through iterative refinement, the framework converges
toward optimized and synthesizable HLS code.

MCTS

Selection
Simulation
Expansion

Backpropagation

Simulation

Feedback

GA-based 
directives 
generator

Pragma 
insertion

Latency
Resources

Agent

Reward

UCT

Chosen Policy

Policy Update

Environment

Input
codes

Multiple 
candidates

MCTS: Code transformations

DSE: Pragma parameter adjustment 

Figure 3: HLStrans Dataset Augmentation Framework.

3.2.1 MONTE CARLO TREE SEARCH (MCTS)

We formulate HLS optimization as an MCTS problem. The environment is the Vitis HLS toolchain,
which provides synthesis, resource, and performance feedback. The agent is an LLM that applies
code transformations. Actions include (i) RAG-based retrieval of known optimization policies and
(ii) ReAct-based reasoning over compiler warnings. The state is the current HLS code, and the
reward follows rule-based shaping: −2 for verification failure, −1 for synthesis/resource failure, 0
if worse, 1 if improved, and 2 if improved with timing met. In our cases, the MCTS agent begins at
the initial state S0 (the root node), which is the naive HLS code. From a state St, the agent applies
a optimization policy π, i.e., an action at ∈ A, transitioning to the subsequent state St+1. This
new state optimizes the existing code sequence by applying the new optimizations. Upon reaching
a terminal state ST , the agent receives a deferred reward R(ST ). N(St), the total number of times
St has been visited.

Selection: We employ the upper confidence bounds for trees (UCT) algorithm (Gelly & Wang,
2006) to choose nodes. The UCT formula includes the average reward for the current state, which
encourages the path that can bring high reward, while U term measures the associated uncertainty,
which encourages the exploration of new paths. This approach effectively balances the trade-off
between exploration and exploitation.

Expansion, simulation and backpropagation: Expansion is to explore the unchosen action. We
leverage LLM to determine the next action from the unexplored. The decision process is driven
by program analysis in conjunction with the history of adopted optimizations, enabling LLM to
accurately assess and select the most promising action. After the analysis of LLM for state st
at time steps t, the next action at+1 will decided by at+1 = llm(st). Simulation employs the
agent to apply transformations and evaluates them via HLS synthesis measuring estimated latency
and resource usage to compute the reward R(st, at); During backpropagation, these rewards are
propagated up the search tree to update node values, refining the agent’s estimates and guiding
future action selection. Once we no longer observe significant improvements, the search process
is halted, and the best-performing rewritten design is selected. The detailed description of MCTS
framework is described in Appendix A.2.
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3.2.2 DESIGN SPACE EXPLORATION

The tool implements an automated HLS design-space explorer that uses a genetic-algorithm op-
timizer to discover effective directive combinations, specifically loop pipelining, loop unrolling,
and array partitioning, that maximize performance and resource utilization. To traverse the solution
space, we utilize the NSGAII algorithm (Deb et al., 2002) implemented in PyMOO library (Blank &
Deb, 2020), known for its ability to bypass local optimal and quickly converge to efficient solutions.
The detail DSE implementation is introduced in Appendix A.2.2.

3.3 DATASET SELECTIONS

After generating multiple dataset candidates, we select the efficient samples. If the input codes can
not be synthesized, we choose the candidates which can be synthesized. If the input codes can be
synthesized, we choose the candidates whose latency is less than input codes. To give the model
clearer guidance, we borrow ideas from Shypula et al. (2023) and attach a “performance tag” and
”resource tag” to each solution during training. Each tag reflects how close that program comes to
the best attainable performance with resources minimized, using a scale from 0 to 10, respectively.

3.4 HLSTRANS STATISTICS

Overall, we leverage DeepSeek-R1 to generate high-quality synthetic code examples, the AMD
Vitis HLS EDA tool, and DSE tools to validate, annotate, and collect performance/resource metrics
within our framework, yielding an effective HLS code dataset. Our dataset has the following merits:

Diverse Application Coverage. Table 1 shows that HLStrans provides the largest number of HLS
kernels and the longest average lines of code, incorporating commonly used HLS benchmarks as
well as real-world examples. Our curated corpus spans diverse application domains and covers all
six transformation categories listed in Appendix A.1. Figure 4a visualizes the program distribution
across these five tasks, and the source kernels themselves fall into seven distinct application cate-
gories. This rich, well-balanced dataset offers broad coverage of real-world HLS patterns required
to train and evaluate LLMs’ hardware-synthesis capabilities.

Diverse types of transformations. To evaluate the LLM’s ability to assess different C/C++ to HLS
transformations, every transformation shown in Figure 1 must be supported. Each dataset sample
may correspond to one or more types of transformations. Figure 4b illustrates how the number of
samples for each transformation increases after data augmentation.
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Figure 4: (a) Program source distribution. (b) Percentage of different transformations. (c) Speedup
percentiles across dataset.

High quality of dataset samples. To evaluate the quality of the dataset, we measured the execution-
cycle ratio between the original and target codes using reports from Vitis HLS. The speedup is ratio
between the latency of the original design and the generated design, as reported by the synthesis
tool. We then computed the percentile distribution of these speedup values across all pairs. As
shown in the Figure 4c, 100% of the pairs, the target code is ≥ 1.5× faster, and for 25% of the
pairs, it achieves a speedup of ≥ 50.3×. Different samples are annotated with performance and
resource usage tags, allowing the LLM to understand the detailed effects of C-to-HLS transforma-
tions. This enables the LLM to generate code that achieves higher performance while consuming
fewer resources. The detailed information on dataset generation is in Appendix A.2. The datasets
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are released under the MG0-2.0 Non-Commercial (NC) license (Duan et al., 2024).2These licenses
permit both academic and commercial reuse provided that attribution is given. The dataset release
also includes provenance metadata and third-party license notices.

4 EXPERIMENTAL EVALUATION OF LLMS ON OUR DATASET

To evaluate LLM performance on our dataset and assess the dataset’s impact on model capability,
we explore different prompting strategies and fine-tune smaller models using supervised fine-tuning
(SFT) (Ouyang et al., 2022).

4.1 PROMPTING METHODS

Zero-shot Prompting: We craft concise, HLS-specific prompts that instruct the model to perform
code optimization or transformation from its pretrained knowledge, without any additional fine-
tuning or example demonstrations (Liu et al., 2021) (Wei et al., 2021). Chain-of-Thought Prompt-
ing: Building on the chain-of-thought approach of Wei et al. (2022), our prompts first guide the
model through a transformation reasoning phase before asking it to emit the refined code. Retrieval-
Based Prompting: Recent studies (Shrivastava et al., 2023) (Shypula et al., 2023) have shown that
retrieval-based techniques can substantially boost code generation quality in large language models.
In our approach, we first encode each program using CodeBERT (Zhou et al., 2023) to produce rich,
semantically informed embeddings. We then index these vectors with FAISS (Johnson et al., 2019)
(Facebook AI Similarity Search) and perform a K-nearest-neighbors lookup to retrieve the top K
most similar code snippets from our training corpus. Finally, we supply these retrieved examples
alongside the original code as additional context to the LLM, guiding it to produce more accurate
and effective edits. In our experiments, we set K to 1. The detailed prompt information is in Ap-
pendix A.3. The following experiments includes results of Vitis HLS tools. Results of other HLS
tools are shown in Appendix A.6.

4.2 EXPERIMENT SETTING

To evaluate LLMs on our dataset, we have the following evaluation setting. Task setup: Given a
C/C++ kernel, the model must generate an optimized HLS implementation. Success requires not
only functional correctness but also synthesizability under FPGA toolchains. Models: We bench-
mark both closed-source (GPT-5 (Wang et al., 2025), DeepSeek-R1 (Chua & Evans, 2025), Grok 4
(xAI, 2025), Gemini 2.5 Pro (Comanici et al., 2025)) and open-source (Qwen 2.5 Coder (Hui et al.,
2024)) models, under different prompting strategies (zero-shot, chain-of-thought, retrieval) and fine-
tuning. Dataset split: Following standard machine-learning protocol, we reserve 270 applications
for training and validation and hold out 39 applications for evaluation. The held-out set includes
both unsynthesizable designs that require repair and synthesizable designs that require optimization.
Crucially, these 39 held-out applications were excluded from the LLM-based data-augmentation
pipeline to prevent any risk of data leakage into the evaluation. Infrastructure: All synthesis is
conducted with the Xilinx Vitis HLS toolchain targeting a datacenter FPGA (Alveo U55C). Train-
ing was conducted using 2 NVIDIA H100 GPUs, each with 80 GB of memory. The computing
environment was configured with CUDA 12.2 and cuDNN 9.1 to ensure optimal deep learning
performance. Metrics: Unlike conventional code generation benchmarks that stop at functional
correctness, the C-to-HLS task requires models to satisfy both software and hardware constraints.
We therefore report four complementary metrics:

• Functional Accuracy: The share of test programs that preserve the original functionality test-
bench.

• Synthesis Accuracy: Percentage of programs that compile successfully into FPGA-ready hard-
ware.

• Speedup (Latency reduction): Ratio between the latency of the original design and the generated
design, as reported by the synthesis tool.

• Optimization Rate (%OPT): Fraction of generated programs that both pass correctness checks
and achieve speedup > 1×.

2https://www.modelgo.li/.
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Previous works (Li et al., 2022) show that generating multiple program candidates per input and
selecting the optimal one improves code synthesis performance. We generate k program variants
for each input, then select the fastest one that successfully passes all test cases; we refer to this
sampling-and-selection strategy as Best@k.

4.3 EXPERIMENT RESULTS

4.3.1 EVALUATION OF DATA AUGMENTATION FRAMEWORK.

The MCTS component of our framework can produce variable iteration lengths. To quantify this
behavior, we evaluated both runtime and achieved speedup on the PolyBench suite (Pouchet & Yuki,
2012) while sweeping the number of rollouts. Figure 5a reports these results and indicates that 32
rollouts is the “sweet spot”; consequently, we set the rollout count to 32 for subsequent experiments.
We also compared our framework against state-of-the-art approaches on the Rodinia benchmarks
by measuring the runtime of the optimized programs on real FPGA cards. Figure 5b shows the
runtime comparison for five Rodinia benchmarks (Che et al., 2009). With the same base model,
our framework attains more than 5× average speedups than Xiong et al. (2024). We additionally
observed that DeepSeek-R1 produces even better results; therefore, we selected DeepSeek-R1 as the
generator for new data used in later experiments. These findings motivated both our choice of rollout
parameter and our selection of the data-generation model. The detailed experiments comparison
results are in Appendix A.2. The detailed experiments analysis are in Appendix A.9
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Figure 5: Evaluation of our dataset augmentation framework (a) MCTS rollout setting. (b) Rollout
comparison.

4.3.2 RESULTS OF FINE-TUNING MODELS

Both the Qwen2.5 Coder 3B and 7B fine-tuned models show consistent gains in optimization quality,
latency reduction, and synthesis success rate in Table 2. They generate HLS code that not only exe-
cutes faster but also synthesizes more reliably, even though the function-correct rate has slightly
dropped. These results demonstrate that training on our curated dataset significantly boosts an
LLM’s ability to produce correct, high-performance HLS implementations directly from C sources.

Table 2: Fine-Tuning results comparison. Transformation: the T1–T5 transformation in Figure 1
applied to examples that are functionally and synthesis correct.

Speedup Transformation

Method Model Opt Min Avg Max T1 T2 T3 T4 T5 Functional
Accuracy

Synthesis
Accuracy

Pretrain Qwen coder 7B 2.6% 0.27× 1.03× 3.6× 0 5.1% 0 0 2.6% 12.8% 10.3%
Qwen coder 3B 0% 0.38× 0.97× 1× 0 2.6% 0 0 2.6% 7.7% 10.3%

SFT Qwen coder 7B 15.4% 0.6× 4.2× 21.8× 5.1% 20.5% 5.1% 5.1% 2.6% 20.5% 28.2%
Qwen coder 3B 10.3% 0.4× 3.7× 17.2× 5.1% 17.9% 2.6% 5.1% 2.6% 17.9% 20.5%

Efficient HLS kernels require a mix of C to HLS transformations. We measure how our dataset
improves LLM C to HLS optimization: Table 2 demonstrates that fine-tuning on our corpus raises
success rates across transformation types.

4.3.3 RESULTS OF PRETRAINED MODELS

Table 3 reports the Best@1 and Best@5 accuracies for different prompts and models. To evaluate the
utility of our dataset, we constructed retrieval databases from the HLSdataset (Wei et al., 2023) and

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

from our training data, and applied retrieval-based prompting using these two databases to measure
its effect. Overall, incorporating our dataset into retrieval improved pretrained models performance
compared with other prompt methods.

Table 3: Best@1 and Best@5 results for various methods and models.

Best@1 Best@5
Speedup Speedup

Method Model Opt Min Avg Max Functional
Accuracy

Synthesis
Accuracy Opt Min Avg Max Functional

Accuracy
Synthesis
Accuracy

Zero-shot

Deepseek-R1 20.5% 0.17× 1.82× 16.03× 43.6% 38.5% 23.1% 0.19× 1.97× 16.15× 46.2% 51.3%
GPT-5 20.5% 0.04× 14.32× 506.07× 48.7% 48.7% 23.1% 0.34× 14.35× 506.07× 53.8% 61.5%
Grok-4 20.5% 0.48× 2.35× 46.51× 43.6% 43.6% 33.3% 0.50× 2.46× 46.84× 56.4% 53.8%
Gemini-2.5-pro 25.6% 0.98× 2.74× 35.57× 41.0% 41.0% 30.8% 1.21× 2.89× 36.01× 46.2% 51.3%
Qwen coder 32B 10.3% 0.28× 1.10× 3.71× 56.4% 53.8% 17.9% 0.43× 1.22× 4.09× 59.0% 56.4%

COT

Deepseek-R1 25.6% 0.21× 2.1× 19.01× 48.7% 46.2% 28.2% 0.34× 2.18× 19.07× 51.3% 53.8%
GPT-5 25.6% 0.19× 17.1× 425.07× 53.8% 53.8% 38.5% 0.41× 17.12× 437.07× 56.4% 66.7%
Grok-4 20.5% 0.53× 2.56× 49.77× 48.7% 51.3% 33.3% 0.82× 2.92× 50.12× 61.5% 53.8%
Gemini-2.5-pro 30.8% 0.98× 2.98× 37.57× 46.2% 46.2% 41.0% 1.28× 3.39× 37.58× 51.3% 56.4%
Qwen coder 32B 15.4% 0.37× 1.910× 5.87× 61.5% 59.0% 20.5% 0.52× 2.03× 6.25× 71.8% 66.7%

Retrieval Prompt
(HLSdataset)

Deepseek-R1 20.5% 0.47× 30.10× 953.30× 33.3% 28.2% 23.1% 0.60× 30.28× 954.41× 35.9% 35.9%
GPT-5 18.0% 0.01× 1.96× 31.60× 33.3% 28.2% 30.8% 0.23× 2.04× 33.86× 35.9% 41.0%
Grok-4 12.8% 0.07× 1.59× 19.19× 33.3% 25.6% 25.6% 0.36× 2.32× 26.23× 46.2% 28.2%
Gemini-2.5-pro 18.0% 0.02× 5.57× 137.19× 33.3% 28.2% 28.2% 0.32× 6.39× 137.35× 38.5% 38.5%
Qwen coder 32B 10.3% 0.33× 2.67× 65.31× 35.9% 30.8% 15.4% 0.48× 2.92× 72.97× 46.2% 38.5%

Retrieval Prompt
(HLStrans)

Deepseek-R1 25.6% 0.21× 2.10× 19.01× 48.7% 46.2% 33.3% 0.41× 2.19× 20.40× 53.8% 56.4%
GPT-5 25.6% 0.19× 37.10× 425.07× 53.8% 53.8% 46.2% 0.46× 37.10× 962.12× 66.7% 71.8%
Grok-4 20.5% 0.53× 2.56× 49.77× 64.1% 51.3% 30.8% 0.57× 2.84× 51.85× 51.3% 56.4%
Gemini-2.5-pro 33.3% 0.98× 2.98× 37.57× 46.2% 46.2% 33.3% 1.26× 3.35× 38.62× 51.3% 59.0%
Qwen coder 32B 15.4% 0.37× 1.910× 5.87× 61.5% 59.0% 20.5% 0.63× 2.12× 6.32× 64.1% 64.1%

4.4 RESULTS ANALYSIS

Observation 1. Retrieval-augmented generation and finetuning on HLStrans can improve
model’s performance on C to HLS task. This demonstrates that our dataset by providing a rich
cache of validated pragmas and code transformation examples serves as an indispensable “best prac-
tices” repository, steering LLMs toward hardware-friendly idioms and dramatically reducing syn-
thesis failures.

Observation 2. Sampling diversity substantially boosts results. Allowing up to five candidate
generations per input (Best@5) improves both synthesis success rate and achieved acceleration. For
example, GPT-5 (retrieval prompt with HLStrans) raises synthesis accuracy from 53.8% to 71.8%
under Best@5, underscoring the benefit of n-best generation.

Observation 3. LLM optimization may harm HLS code performance. We observe that some
LLM-optimized kernels actually degrade performance (speedup < 1×). This can happen for two
reasons: First, the restructuring performed by the LLM can introduce new loop dependencies, in-
creasing latency; Second, the pragmas inserted by LLMs may be less effective than the default
optimizations inferred by the HLS compiler. Therefore, it is necessary to set up dataset to guide
LLM’s proper optimizations.

Observation 4. Trade-off between pass rate and optimizations. Applying retrieved, optimized
code examples increases performance but reduces both functional and synthesis accuracy. For ex-
ample, Deepseek-R1 (retrieval prompt with HLSdataset) increase speedup but decrease functional
accuracy from 43.6% to 33.3% compared with zero-shot prompt. This highlights a trade-off between
aggressive optimization and correctness when the LLM’s capability is unchanged.

Observation 5. LLMs perform differently across transformations. As shown in Figure 1, pre-
trained models more easily apply T2 and T5. Fine-tuning on HLStrans improves the success rates
of all the transformations, as reported in Table 2.

5 CONCLUSION

We introduce a novel dataset that transforms C or C++ kernels into richly annotated HLS imple-
mentations, empowering LLMs to learn hardware-aware optimizations such as loop pipelining, un-
rolling, and memory buffering. Our experiments demonstrate that retrieval and fine-tuning on this
dataset significantly boosts both latency reduction and synthesis success rates, proving its effective-
ness in accelerating and automating electronic design flows. By releasing the dataset and training
scripts, we aim to catalyze further exploration at the intersection of LLMs and hardware design.
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ETHICS STATEMENT

We release a dataset that converts C/C++ kernels into richly annotated HLS implementations, to-
gether with training scripts, to accelerate LLM-driven hardware optimizations. While retrieval and
fine-tuning improve latency and synthesis success, automated optimizations can produce incorrect or
biased transformations; therefore the dataset and models are for research-only use and not intended
for safety-critical deployment. Users should apply human review, evaluate functional correctness
and synthesis safety alongside performance gains, and publish datasheets/model cards to promote
transparency. Continued work on verification, robustness, and responsible reporting of failure cases
is strongly encouraged.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our findings. All datasets, code, and
experimental scripts are publicly available at https://anonymous.4open.science/r/
HLStrans-B578/.

LLM USAGE DECLARATION

We used Gemini 2.5 Pro3 to polish grammar and phrasing during the writing process. No part of the
analysis, experimental design, or results was generated by a large language model.
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A APPENDIX

A.1 HLS CODE TRANSFORMATIONS

A.1.1 HLS CODE OPTIMIZATION: CODE RESTRUCTURING.

In our datasets, we apply a suite of code-reconstruction techniques designed to optimize memory ac-
cess patterns, alleviate computational bottlenecks, and resolve loop dependencies. By restructuring
data flow and exploiting hardware parallelism, these methods boost throughput and shorten overall
execution time. Table 4 list the main Code Restructuring adopted in our dataset.

Table 4: HLS Code Reconstruction Methods

Optimization Explanation Performance Benefit

Memory coalescing Merge multiple memory accesses
into one memory transaction.

Reduces memory access latency
and improves bandwidth utilization.

Local tiling Divide loops into tiles to improve
cache reuse and spatial locality.

Enhances data locality
and on-chip buffer efficiency.

Ping pong buffer Alternate between two buffers
for simultaneous load and compute.

Hides memory latency by overlapping
computation with memory access.

Dataflow Separate tasks into pipeline stages
for concurrent execution.

Allows function-level parallelism,
boosting throughput.

Control flow optimization Replace if–else with ternary or
simplified logic conditions.

Reduces combinational path length,
improving timing and synthesis.

A.1.2 HLS CODE OPTIMIZATION: HLS DIRECTIVE (PRAGMA) INSERTION.

Our dataset features an extensive catalog of HLS pragmas ranging from memory-access directives
(array partitioning, streaming) through loop-level transformations (unrolling, merging, tiling) to
fine-grained pipeline controls (initiation interval tuning, dataflow regions). By systematically ap-
plying and combining these pragmas, these directives empower automated HLS flows to tailor
synthesized hardware for domain-specific latency, throughput, and area requirements making our
dataset a valuable reference for exploring pragma-driven performance tuning. Table 5 introduces
these applied pragma optimizations.

Table 5: HLS Directive (Pragma) Insertion Methods

Optimization Explanation Pragma Example

Array partition Split a large array into
multiple smaller memories

#pragma HLS ARRAY PARTITION
variable=arr complete

Memory type Specify the on-chip storage type
(BRAM/URAM/SMALL RAM)

#pragma HLS RESOURCE
variable=buf core=RAM 2P

Loop unroll Replicate loop body to create
parallel compute units

#pragma HLS UNROLL
factor=4

Loop merge Merge consecutive loops to
reduce control overhead #pragma HLS LOOP MERGE

Function inline Inline functions to
eliminate call overhead #pragma HLS INLINE

Pipeline Pipeline loops or functions to
lower initiation interval #pragma HLS PIPELINE II=1

Dataflow Enable task-level
parallelism between functions #pragma HLS DATAFLOW

Dependence Declare data dependencies to
allow safe loop optimizations

#pragma HLS DEPENDENCE
variable=arr inter false

Stream Use streaming interfaces to
transfer data via FIFOs

#pragma HLS STREAM
variable=fifo depth=8

A.1.3 HLS CODE OPTIMIZATION: DATA-TYPE ADAPTATION.

Our dataset also incorporates a comprehensive suite of data-type adaptations optimized for FPGA
synthesis. We translate generic C types (e.g., int, float, struct) into precise HLS constructs
such as ap uint<W>, ap fixed<TOTAL,INT>, and hls::stream<T> to fully exploit on-
chip LUT/FF and DSP resources. These mappings enable fine-grained control over bit-width, data
alignment, and streaming interfaces, ensuring maximal throughput, minimal logic utilization, and
lower power consumption in FPGA deployments. Table 6 lists the specific datatype conversions
applied in our framework.
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Table 6: Adaptation of C Data Types to HLS Data Types

Original C Type HLS Type Purpose

int/short/char ap uint<W> /
ap int<W> Precisely control integer bit-width to save

LUT/FF resources

float/double ap fixed<TOTAL,INT> /
ap ufixed<TOTAL,INT> Replace floating-point with fixed-point to re-

duce DSP usage and power

struct/union struct { ap uint<...> field;}
with bitfields Precisely specify field bit-widths and align-

ment, eliminate padding
pointer/array hls::stream<T> Map to hardware FIFO streams for streaming

transmission

A.1.4 HLS CODE OPTIMIZATION: TRANSFORMATION OF FUNCTIONS

By transforming standard C/C++ functions into their corresponding HLS intrinsics, developers can
leverage highly optimized FPGA kernels. This approach dramatically boosts execution performance
by exploiting dedicated hardware units for math operations and data manipulation. At the same
time, it conserves FPGA resources, reducing logic utilization and power consumption compared to
generic software approximations. Table 7 lists the transformations of standard math functions to
HLS intrinsics.

Table 7: Transformation of Standard Functions to HLS Intrinsics

Standard C/C++ Function HLS Intrinsic Purpose

std::sqrt(x) hls::sqrt(x)
Generates a pipelined square root unit
instead of slow software approximation

std::exp(x) hls::exp(x)
Synthesizes an exponential function
hardware block (LUT-based)

std::log(x) hls::log(x)
Provides a hardware-friendly
implementation of natural logarithm

std::sin(x) hls::sin(x)
Efficient sine computation
using CORDIC or LUTs

std::cos(x) hls::cos(x)
Efficient cosine computation
using CORDIC or LUTs

a / b hls::div(a, b)
Replaces division with a
synthesizable divider core

a % b hls::mod(a, b)
Synthesizes modulo operation
in hardware

A.1.5 HLS CODE REPAIR: HLS-COMPLIANT CODING STYLE.

High-level synthesis (HLS) cannot synthesize all idiomatic C constructs directly. To enable hard-
ware generation, we must refactor unsupported patterns like dynamic memory allocation, recursion,
and pointer arithmetic into HLS-compliant coding styles that the tool can analyze and map to on-chip
resources. Table 8 lists these common transformations.

Table 8: Transformation of Unsupported C Constructs for HLS Compatibility

Unsupported C Construct Recommended HLS-Compatible
Transformation

Purpose

Dynamic memory allocations Use static arrays with
fixed size at compile time

HLS tools require compile-time
memory size to synthesize
physical resources (BRAM/LUTRAM)

Recursion Convert to iterative form
using for/while loops

Recursion creates a dynamic
call stack, which is not synthesizable

Pointer arithmetic beyond array indexing Use bounded array indexing Allows compiler to infer memory
access patterns and pipeline-optimize

Function pointers or callbacks Inline or manually instantiate
function variants

HLS requires all control flow to be
static and analyzable at compile time

Variable-length arrays Replace with fixed-size arrays
defined by constants or macros

HLS cannot synthesize dynamically
sized buffers

14
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A.2 DATASET AUGMENTATION

A.2.1 MCTS FRAMEWORK

MCTS enables an agent to learn to navigate the vast space of possible code transformations while
balancing multiple optimization objectives. The agent’s decisions are guided by comprehensive
feedback from the HLS toolchain, including synthesis success, resource utilization, and performance
metrics. Our MCTS has the following elements:

Environment E: The environment is composed of the HLS toolchain, specifically Xilinx Vitis HLS,
which compiles the code and provides critical feedback such as performance estimates.

Agent G: We propose to use an LLM as the agent that leverages its pretrained knowledge of hardware
design and in-context learning abilities.

Action A: At each time step t, the agent selects an action at, which corresponds to a prompt or trans-
formation applied to the current HLS code. We define two complementary action types: RAG-based
actions retrieve optimization policies directly from our pre-built table and accompanying code ex-
amples shown in Figure 6, leveraging retrieval-augmented generation to surface proven transfor-
mations rapidly and reliably. Reasoning-based actions with ReAct prompt (Yao et al., 2023), in
contrast, analyze compiler warnings such as pipeline-interval breaches or loop-unroll violations and
apply targeted code reforms by interpreting warning semantics within the current code context.

Strategies: Loop Tiling
Introduction: partitions large loops into smaller tiles to enhance data locality
and cache reuse.
Examples:   
Baseline:  ”for (int i=0; i<N;i=i+1) { for (int i=0; i<N;i=i+1) { C[i][j] = A[i][j] + B[i][j]; } }”
Optimized: “for (int jj = 0; jj < N; jj += TILE_SIZE) { ….. int localC[TILE_SIZE][TILE_SIZE]; for (int kk = 0; kk < N; kk += 
TILE_SIZE) { int localA[TILE_SIZE][TILE_SIZE]; int localB[TILE_SIZE][TILE_SIZE];  …… }

(a) Loop tiling Code examples by RAG

WARNING: [HLS the outer loop is not a perfect 
loop.

WARNING: [HLS 200-960] Cannot flatten loop … (… nw.cpp:110:32) in function 'store …  
the outer loop is not a perfect loop.
WARNING: [HLS 200-885] The II Violation in module (nw.cpp …) due to limited memory 
ports  (II = 1) 
WARNING: [HLS 200-936] Cannot unroll loop in loop (nw.cpp) due to ….. …….

Environment

Reasoning

Action

(b) LLM reasoning about environment warning and tool hint

Figure 6: Actions design of MCTS

State S: The state St at time step t is defined as the current version of the HLS code after applying
the previous actions.

Reward R: Rule-based reward shaping has proven effective in guiding agent behavior in previous
work Guo et al. (2025). In our framework, the reward function R(st, at) is computed by applying
rule-based scoring to verification results and feedback provided by the HLS tool. A penalty of
−2 is applied when the verification fails, and −1 if synthesis fails or the design exceeds resource
constraints. A neutral reward of 0 is given when the transformed design performs worse than the
original, while a reward of 1 is granted when it performs better. If the design not only surpasses the
original but also meets timing constraints, a higher reward of 2 is assigned.

In our cases, the MCTS begins at the initial state S0 (the root node), which is the naive HLS code.
From a state St, the agent applies an optimization policy π, i.e., an action at ∈ A, transitioning to
the subsequent state St+1. MCTS consists of four key phases: selection, expansion, simulation, and
backpropagation. N(St), the total number of times St has been visited.

Selection: We employ the upper confidence bounds for trees (UCT) (Gelly & Wang, 2006) algorithm
to choose nodes.

π(st) = arg max
at∈A

R(st, at)︸ ︷︷ ︸
reward

+β ×
√

1 +N(st)

1 +N(st, at)︸ ︷︷ ︸
U Term

 .
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Expansion: From the current state st, generate one or more child nodes to explore untried actions.

Simulation: Perform a rollout from the chosen child node by applying at+1, running HLS synthesis
to estimate latency and resource utilization, and computing the reward R(st, at+1).

Backpropagation: Propagate the obtained reward back up the visited path, updating each node’s
statistics (e.g., visit count and value estimate) to improve future selection.

Retrieval-Augmented Generation: To broaden the range of HLS code-transformation techniques
that our LLM can learn, we built an automated framework (see Appendix A.2) that programmatically
generates optimized variants via Monte Carlo Tree Search. Central to this system is a Retrieval-
Augmented Generation (RAG) table of optimization strategies including code-reconstruction pat-
terns, directive (pragma) insertions, data-type adaptations, and function-level transformations each
entry pairing a concise description with a few-shot example illustrating the baseline code and its
optimized counterpart listed in A.1. During search, these RAG-driven actions guide the MCTS
policy to apply specific transformations, yielding a diverse corpus of HLS kernels ready for LLM
fine-tuning and evaluation. One kind of Retrieval-Augmented strategies is shown in Figure 7 and
prompt template is shown in Figure 8.

Strategies: Loop Tiling
Type: Need to refactor the code
Introduction: partitions large loops
into smaller tiles to enhance
data locality and cache reuse.
Examples:   
Baseline:  ”for (int i=0; i<N;i=i+1) { 
for (int i=0; i<N;i=i+1) { C[i][j] = A[i][j] + B[i][j]; } }”
Optimized: “for (int jj = 0; jj < N; jj += TILE_SIZE) 
{ …..

int localC[TILE_SIZE][TILE_SIZE];
for (int kk = 0; kk < N; kk += TILE_SIZE) {
int localA[TILE_SIZE][TILE_SIZE];
int localB[TILE_SIZE][TILE_SIZE];  …… }

Figure 7: Example of Retrieval-Augmented strategies in MCTS framework

You are a FPGA engineer, You should obey Xilinx HLS code guidelines. The name of top_function is 
{function_name}, it can not be changed

The code should have a header(h) file named {top_function}.h and a cpp file named 
{top_function}.cpp The defination of variables, constants and functions are only in header file.

In cpp file, you should firstly give sub functions of code, the codes of top function should 
be at the end of cpp file.

Your aim is to make sure the function of code is right and the pipeline interval from Xilinx 
HLS log to be one to achieve better performance.

You should optimize the following HLS code using these strategies:\n\n''' + 
"\n".join(strategies) 

Figure 8: Prompt Template for the optimization with MCTS framework

Framework Evaluation: We evaluated our dataset-augmentation framework on the widely adopted
Rodinia benchmark suite (Che et al., 2009), using a Xilinx Alveo U55C FPGA board running at a
300 MHz kernel clock. Our goal was to measure how effectively our MCTS-based sampler could
guide Deepseek-R1 and GPT-4o toward highly optimized HLS kernels.

Figure 9 shows the average success rate in the benchmarks. As the figure shows, their success rate is
Qwen32B > Deepseek-R1 > GPT-4o > Qwen7B while Deepseek-R1 can achieve highest average
speedup. The results show performance-increase will degrade the ability of LLM to produce the
correct HLS code.
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Benchmarks Success Rate Comparison among Different Models

GPT-4o Deepseek-R1 Qwen32B Qwen7B

Figure 9: Success rate on different benchmarks with different models.

Table 9 summarizes the Best@1 kernel runtimes (in milliseconds) across twelve diverse applica-
tions, comparing four configurations: Baseline (The unmodified, compiler-generated HLS imple-
mentation), HLSPilot (Xiong et al., 2024) (A recent LLM based optimization framework), GPT-4o
with our framework and Deepseek-R1 with our framework. Our results reveal several key findings:

• Consistent Improvement over previous work. In every benchmark, both of our enhanced
pipelines outperform HLSPilot, demonstrating that the combination of large-model code gen-
erators with MCTS exploration yields more hardware-efficient HLS designs.

• Deepseek-R1 with our framework achieves up to average 28× reduction in real execution time
compared to the baseline.GPT-4o with our framework attains up to average 20× reduction in real
execution time.

• Robust Gains Across Diverse Kernels. From compute-bound codes such as kmeans, mgvf, and
streamcluster, to memory-sensitive workloads like hotspot and nw, our framework consistently
identifies and applies scheduling, pipelining, and data-partitioning transformations that exploit
the parallelism and memory hierarchy of the Alveo U55C.

Table 9: Runtime (ms) of different benchmarks across models.

Application Baseline HLSPilot Xiong et al. (2024) Ours

GPT-4o GPT-4o Deepseek-R1

cfd flux 13 6.71 4.57 1.61
hotspot 1879.1 712.7 300.5 22.3
kmeans 2243.2 65.9 17.9 15.7
knn 17.0 2.8 0.83 0.82
dilate 48.8 16 0.75 1.64
gicov 107.0 93 82.3 30.7
mgvf 8047.5 3212 1231 446
lud 226.4 112 81.2 52.6
nw 206.4 145 73 13
pathfinder 7.8 5.9 1.09 1.51
srad 35.7 9.4 6.4 6.6
streamcluster 16173 9388 8162.3 3966

A.2.2 DESIGN SPACE EXPLORATION.

The tool is an automated HLS design-space explorer that employs a genetic-algorithm optimizer
to discover effective directive combinations—specifically loop pipelining, loop unrolling, and array
partitioning—that maximize performance and resource efficiency. We traverse the search space
with the NSGA-II algorithm (Deb et al., 2002) as implemented in the PyMOO library (Blank & Deb,
2020), chosen for its ability to escape local optima and rapidly converge to high-quality solutions.
NSGA-II is executed for 24 generations with a population size of 40. Each generation performs three
steps: (1) generate or initialize the population, (2) apply each candidate configuration to the source
code using compiler B2 and synthesize with Xilinx Vitis, and (3) return the synthesis metrics
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to NSGA-II. Configurations that exceed device resources or demand prohibitive HLS runtimes (e.g.,
& 1 hour) are deemed infeasible and discarded. Genetic operators are configured as follows: random
sampling/selection (mutation sampling probability = 0.1), simulated binary crossover (probability
= 1.0, η = 15), and polynomial mutation (η = 20); all other operator parameters use PyMOO
defaults.

A.2.3 DATASET EXAMPLES

This section presents three real HLS code transformation pair examples: performance optimiza-
tion (Code restructuring and Directive insertion), synthesizability correction (Code repair), and
adaptation from C-style to HLS-style code (Data-type adaptation and transformation of func-
tions). The dataset is hosted at https://huggingface.co/datasets/qingyun777yes/
HLStrans.

1. Performance Optimization Figures 10a and 10b show a simple K-Nearest Neighbors (KNN)
implementation before and after HLS optimization. The optimized version achieves better perfor-
mance due to improved pipelining, parallelism, and memory optimization.

2. Synthesizability Transformation Figures 11a and 11b illustrate the transformation from a
non-synthesizable function into a valid HLS-compatible version.

3. C-style to HLS-style Conversion Figures 12a and 12b demonstrate how C-style data types and
functions can be adapted into HLS-friendly forms.

A.3 PROMPT DETAILS

We explore three types of prompts used for HLS code transformation: zero-shot, chain-of-thought,
and retrieval-augmented.
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extern "C"{
void workload(

float inputQuery[NUM_FEATURE],
float searchSpace[NUM_PT_IN_SEARCHSPACE*NUM_FEATURE],
float distance[NUM_PT_IN_SEARCHSPACE]

){
#pragma HLS INTERFACE m_axi port=inputQuery offset=slave bundle=gmem
#pragma HLS INTERFACE s_axilite port=inputQuery bundle=control
#pragma HLS INTERFACE m_axi port=searchSpace offset=slave 

bundle=gmem
#pragma HLS INTERFACE s_axilite port=searchSpace bundle=control
#pragma HLS INTERFACE m_axi port=distance offset=slave bundle=gmem
#pragma HLS INTERFACE s_axilite port=distance bundle=control
#pragma HLS INTERFACE s_axilite port=return bundle=control

float sum;
float feature_delta;

L1:    for(int i = 0; i < NUM_PT_IN_SEARCHSPACE; ++i){
sum = 0.0;

L2:        for(int j = 0; j < NUM_FEATURE; ++j){
feature_delta = searchSpace[i*NUM_FEATURE+j] - inputQuery[j];
sum += feature_delta*feature_delta;

}
distance[i] = sum;

}
return;

}
}

(a) Unoptimized KNN implementation

```

…
void workload(
float inputQuery[NUM_FEATURE],
INTERFACE_WIDTH searchSpace[NUM_PT_IN_SEARCHSPACE*NUM_FEATURE/WIDTH_FACTOR],
INTERFACE_WIDTH distance[NUM_PT_IN_SEARCHSPACE/WIDTH_FACTOR]
){
#pragma HLS INTERFACE m_axi port=inputQuery offset=slave bundle=gmem
#pragma HLS INTERFACE s_axilite port=inputQuery bundle=control
#pragma HLS INTERFACE m_axi port=searchSpace offset=slave bundle=gmem
#pragma HLS INTERFACE s_axilite port=searchSpace bundle=control
#pragma HLS INTERFACE m_axi port=distance offset=slave bundle=gmem
#pragma HLS INTERFACE s_axilite port=distance bundle=control
#pragma HLS INTERFACE s_axilite port=return bundle=control

L7: float local_inputQuery[NUM_FEATURE];
L8: INTERFACE_WIDTH local_searchSpace_0[NUM_PT_IN_BUFFER*NUM_FEATURE/WIDTH_FACTOR];
L9: INTERFACE_WIDTH local_searchSpace_1[NUM_PT_IN_BUFFER*NUM_FEATURE/WIDTH_FACTOR];
L10: INTERFACE_WIDTH local_distance_0[NUM_PT_IN_BUFFER/WIDTH_FACTOR];
L11: INTERFACE_WIDTH local_distance_1[NUM_PT_IN_BUFFER/WIDTH_FACTOR];
L12: LOAD_INPUTQUERY: for (int i(0); i<NUM_FEATURE; ++i){
#pragma HLS UNROLL
local_inputQuery[i] = inputQuery[i];
}
L13: TILED_PE: for (int tile_idx(0); tile_idx<NUM_TILES+2; ++tile_idx){
#pragma HLS pipeline
int load_flag = tile_idx >= 0 && tile_idx < NUM_TILES;
int compute_flag = tile_idx >= 1 && tile_idx < NUM_TILES + 1;
int store_flag = tile_idx >= 2 && tile_idx < NUM_TILES + 2;
if (tile_idx % 2 == 0) {
load(load_flag, tile_idx, searchSpace, local_searchSpace_0);
compute(compute_flag, local_inputQuery, local_searchSpace_1, local_distance_1);
store(store_flag, tile_idx-2, local_distance_0, distance);
}
else {
load(load_flag, tile_idx, searchSpace, local_searchSpace_1);
compute(compute_flag, local_inputQuery, local_searchSpace_0, local_distance_0);
store(store_flag, tile_idx-2, local_distance_1, distance);
}
}
return;
} 
}

(b) Optimized KNN implementation

Figure 10: Comparison of KNN implementations: (a) Unoptimized and (b) Optimized for high
performance.
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#include <stdlib.h>
#include <stdio.h>
#include <string.h>
long long compute_sum(int *din, int N, int width) {

long long *out_accum = malloc(sizeof(long long));
int *array_local = malloc(64 * sizeof(int));
for (int i = 0; i < N; i++) {

if (i < width) array_local[i] = din[i];
else           array_local[i] = din[i] >> 2;

}
*out_accum = 0;
for (int j = 0; j < N; j++) {

*out_accum += array_local[j];
}
long long result = *out_accum;
free(out_accum);
free(array_local);
return result;

}

(a) Original non-synthesizable code

#include <stdlib.h>

long long compute_sum(int *din, int N, int width) {
#ifdef NO_SYNTH

long long *out_accum = malloc(sizeof(long long));
int *array_local = malloc(64 * sizeof(int));

#else
long long _out_accum;
int _array_local[64];
long long *out_accum = &_out_accum;
int *array_local = _array_local;

#endif

#pragma HLS ARRAY_PARTITION variable=_array_local complete
LOOP_SHIFT: for (int i = 0; i < N; i++) {

#pragma HLS PIPELINE II=1
array_local[i] = (i < width) ? din[i] : (din[i] >> 2);

}
*out_accum = 0;
LOOP_ACCUM: for (int j = 0; j < N; j++) {

#pragma HLS PIPELINE II=1
*out_accum += array_local[j];

}
return *out_accum;

}

(b) Modified synthesizable code

Figure 11: Transformation from non-synthesizable code to synthesizable code: (a) Original and (b)
Modified version.
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#include <math.h>
#include <ap_fixed.h>

#define C 64
#define H 28
#define W 28

void tanh(float input[C][H][W], float output[C][H][W]) 
{

for (int c = 0; c < C; ++c) {
for (int h = 0; h < H; ++h) {

for (int w = 0; w < W; ++w) {
output[c][h][w] = std::tanhf(input[c][h][w]);  

}
}

}
} 

(a) Original C-style code using standard data types

…
typedef ap_fixed<16, 5> data_t;
void store_feature_map(data_t output_buffer[C][H][W], data_t
output_dram[C][H][W])
{

#pragma HLS inline off
for (int c = 0; c < C; c++)
{

for (int h = 0; h < H; h++)
{

for (int w = 0; w < W; w++)
{

output_dram[c][h][w] = output_buffer[c][h][w];
}

}
}

}
void compute_exp(data_t input[C][H][W], data_t output[C][H][W])
{

#pragma HLS inline off
for (int i = 0; i < C; i++)
{

for (int j = 0; j < H; j++)
{

for (int k = 0; k < W; k++)
{

output[i][j][k] = hls::exp(input[i][j][k]);
}

}
}

}  …

(b) Transformed HLS-style code using synthesizable types

Figure 12: Transformation from traditional C-style to HLS-style coding: (a) Original code and (b)
Synthesizable HLS code.
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If the program can not be synthesized, please turn it into 
synthesizable codes. If it is a slow high level synthesis FPGA 
program, optimize their performance with minimal resource.

### program : {src_code}

Must Only return the code use the format. \n
Example response format:

```cpp \n
// implementation content here
```

Figure 13: Zero-shot prompt used for HLS code transformation.

Let's think step by step to optimize the HLS code.
Example 2:
Q: This is a slow HLS FPGA program. Please optimize it with array partitioning and loop unrolling to improve 
parallelism. 
```cpp
void vector_add(const int A[32], const int B[32], int C[32]) { for (int i = 0; i < 32; i++) { C[i] = A[i] + B[i]; } }
```
1. Identify memory contention: single-port arrays limit one access per cycle.
2. Partition arrays: use #pragma HLS ARRAY_PARTITION variable=A/B/C cyclic factor=4 to split each into 4 banks 
for parallel access.
3. Unroll the loop: add #pragma HLS UNROLL factor=4 so 4 additions execute in one cycle, matching the 4-way 
partition.
4. Keep pipelining: you may optionally add #pragma HLS PIPELINE II=1 for consistency.
```cpp
void vector_add(const int A[32], const int B[32], int C[32]) {
#pragma HLS ARRAY_PARTITION variable=A cyclic factor=4\n #pragma HLS ARRAY_PARTITION variable=B cyclic 
factor=4
#pragma HLS ARRAY_PARTITION variable=C cyclic factor=4\n for (int i = 0; i < 32; i++) { #pragma HLS UNROLL 
factor=4

C[i] = A[i] + B[i]; } }
```
Now apply the same step-by-step reasoning to the following slow HLS code and provide the fully annotated, 
optimized version:'’’
If the program can not be synthesized, please turn it into synthesizable codes. If it is a slow high level synthesis 
FPGA program, optimize their performance with minimal resource.
### program : {src_code}

Must Only return the code use the format. \n
Example response format:

```cpp \n
// implementation content here       
```

Figure 14: Chain-of-thought prompt for step-by-step transformation.

A.4 DETAILED EXPERIMENT RESULTS

Unlike traditional software code, which need only pass functional correctness tests, HLS-generated
kernels must also successfully synthesize and implement via the Vitis HLS toolchain to be deploy-
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Let's think step by step to optimize the HLS code.
Q: This is a slow HLS FPGA program, which is similar to the current unoptimized codes. 
Retrieval codes {Retrieval codes }

Now apply the same step-by-step reasoning to the following slow HLS code and provide the fully annotated, 
optimized version:'’’
If the program can not be synthesized, please turn it into synthesizable codes. If it is a slow high level synthesis 
FPGA program, optimize their performance with minimal resource.
### program : {src_code}

Must Only return the code use the format. \n
Example response format:

```cpp \n
// implementation content here       

```

Figure 15: Retrieval-augmented prompt for enhanced transformation.

able on FPGA hardware. Below, we briefly describe how we leverage synthesis results for design
evaluation. Also, we introduce the fine tuning results during training.

A.4.1 HLS SYNTHESIS RESULTS EXAMPLE

While HLS synthesis cannot yield perfectly accurate timing or resource-utilization numbers, it pro-
vides essential estimates for comparing design variants. Figures 16a and 16b show the synthesis re-
ports for the unoptimized and optimized KNN kernels, respectively, targeting a Xilinx Alveo U55C
accelerator at a 300 MHz kernel clock.

The optimized design trades increased resource usage more DSP slices, flip-flops (FFs), and lookup
tables (LUTs) for a dramatic fourfold reduction in latency cycles (from 2,097,324 cycles down to
508,479 cycles). In a real FPGA deployment, this corresponds to an end-to-end runtime of ap-
proximately 3.2 ms versus roughly 17 ms for the unoptimized kernel, while still remaining within
resource budgets. We report acceleration based on the estimated latency cycles from the synthe-
sis reports. However, HLS synthesis itself can be time-consuming, particularly for large or highly
optimized designs.

(a) Unoptimized KNN HLS synthesis results
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(b) Optimized KNN HLS synthesis results

Figure 16: (a) Unoptimized and (b) optimized KNN implementations after HLS synthesis.
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A.4.2 FINETUNE RESULTS

(a) Validation results for Qwen2.5-Coder-3B-Instruct
during fine-tuning.

(b) Validation results for Qwen2.5-Coder-7B-Instruct
during fine-tuning.

Figure 17: Validation performance of Qwen2.5-Coder models during fine-tuning on the held-out
dataset.

With our real-world corpus, we reserve two C programs for the repair task and another 39 programs
for the optimization task. The remaining 270 programs are split into training and validation sets.
Figure 17a presents the validation loss curve for Qwen2.5-Coder-3B-Instruct, while Figure 17b
shows the corresponding curve for Qwen2.5-Coder-7B-Instruct during fine-tuning. In both cases, the
steadily decreasing loss demonstrates that fine-tuning effectively adapts the models to our dataset.

A.5 IMPACT OF C TO HLS TASK

While HLS is syntactically close to C, we believe the task has the following meaning.

Impact for reducing performance gap. HLS is designed to accelerate hardware design, but there
remains a substantial gap between plain C code and high-performance HLS code. In our experi-
ments, LLM-generated samples can achieve up to hundreds of speedup over the original code.

Impact for reducing coding budget. To obtain high-quality HLS code, developers must perform
non-trivial semantic transformations—such as loop tiling, bitwidth narrowing, converting buffer-
based designs to streaming, or repairing code to satisfy synthesis constraints. These transformations
are time-consuming and require HLS expertise. A fine-tuned LLM can automate or assist with many
of these steps, significantly reducing development effort and turnaround time.

Impact for agile hardware design with HLS. Agile hardware design that starts from HLS en-
ables software engineers to develop hardware accelerators more easily. However, understanding
the hardware-specific transformations required for optimization is non-trivial. Our dataset and fine-
tuned LLM help software engineers better design hardware accelerators.

Real Case study: C to HLS task. We use a genomics application as a real-world case study for the
C-to-HLS conversion task Cong et al. (2022) in Table 10. High-performance HLS implementations
include several components Cong et al. (2022). Converting C to HLS consumes 41% of the engi-
neering effort, covering compiler directives, double buffering, and related transformations, whereas
the function-level C code accounts for 59%. These conversion steps can require days to finish Cong
et al. (2022), indicating that C-to-HLS conversion is a challenging problem that merits deeper study.

A.6 TRANSFERRING ON DIFFERENT PLATFORMS

To clarify our claim: constructing high-performance HLS implementations from C typically requires
the five transformations illustrated in Figure 1. These transformations are common across modern
HLS toolchains such as Vitis HLS, SmartHLS, and Bambu HLS. Table 11 lists some examples of
five transformations for different HLS tools including SmartHLS, Vitis HLS and Bambu HLS.
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Table 10: Breakdown of effort for a real-world C-to-HLS conversion task.

Category Sub-category LOC Percentage

Functionality code 308 59%
Optimizations code 216 41%
Optimizations code Compiler directives 48 22%

Double buffering 46 21%
Frequency optimization 38 18%
PE duplication 32 15%
Others 52 24%

Table 11: Common HLS transformations and examples in different toolchains

Transformation Why needed (in HLS) Vitis HLS ex-
ample

SmartHLS
example

Bambu HLS
example

T1: Code Re-
structuring

Expose data locality and so on loop tiling,
dataflow

loop tiling,
dataflow

loop tiling,
dataflow

T2: Directive
(Pragma) Inser-
tion

Increase parallelism and so on #pragma HLS
UNROLL

#pragma HLS
loop unroll

#pragma HLS
unroll

T3: Data-Type
Adaptation

Adapt to platform ap_int<64> ap_int<64> ap_int<64>

T4: Trans-
formation of
Functions

Hardware implementations for
expensive math or others

sqrt sqrt sqrt

T5: HLS-
Compliant
Coding Style

Recursion or dynamic memory
allocation not synthesizable

recursion recursion recursion

The augmentation techniques and the benchmarking methodology operate at the level of HLS trans-
formations and therefore generalize across modern HLS toolchains. To substantiate this claim, we
evaluate the generality of our approach on two additional HLS toolchains: Bambu and SmartHLS
(LegUp).

We apply our augmentation pipeline to transform C programs into high-performance HLS designs by
performing the five targeted transformations described in Figure 1. For each benchmark/toolchain
we report two metrics: Speedup, the relative performance improvement of the optimized design
over the baseline; and Pass rate, the fraction of generated designs that both pass the functional tests
and successfully synthesize. These results in Table 12 and 13 demonstrate that our augmentation
techniques produce measurable performance gains across multiple, independently developed HLS
toolchains, supporting the claim that the pipeline and evaluation methodology generalize beyond a
single vendor.

Table 12: Augmentation pipeline evaluation for Bambu HLS

Metric cfd flux dilate gicov hotspot kmeans knn nw pathfinder srad streamcluster

Speedup 2.31 24.5 1.06 4.10 41.7 9.52 2.72 3.36 2.91 1.20
Pass rate 0.29 0.19 0.21 0.21 0.30 0.20 0.47 0.46 0.16 0.27

Table 13: Augmentation pipeline evaluation for SmartHLS

Metric cfd flux dilate gicov hotspot kmeans knn nw pathfinder srad streamcluster

Speedup 2.8 30.1 1.3 5.2 50.1 11.6 3.4 4.2 3.7 1.5
Pass rate 0.36 0.24 0.27 0.27 0.37 0.26 0.59 0.59 0.21 0.35
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We evaluate our benchmarks on two additional HLS toolchains, Bambu HLS and SmartHLS
(LegUp), using multiple LLMs. Table 14 and Table 15 report the zero-shot best@1 prompting
results and error breakdown for Bambu HLS; Table 16 and Table 17 provide the corresponding
results for SmartHLS. Metrics are defined in Section 4.2 of the manuscript. “Speed/Opt” denotes
the fraction of cases with any improvement (reported as percentage), “Min/Avg/Max” are relative
speedups, “Functional Accuracy” is the fraction of outputs passing functional tests, and “Synthesis
Accuracy” is the fraction that both pass functional tests and successfully synthesize.

Table 14: Benchmark results of Bambu HLS

Model Opt (%) Min Avg Max Functional Accuracy Synthesis Accuracy

Deepseek-R1 12.8% 0.10× 1.10× 10.2× 30.8% 28.2%
GPT-5 15.4% 0.03× 8.20× 310.5× 33.3% 33.3%
Grok-4 12.8% 0.30× 1.50× 30.3× 28.2% 28.2%
Gemini-2.5-pro 17.9% 0.60× 1.90× 21.2× 25.6% 25.6%
Qwen coder 32B 10.3% 0.20× 0.70× 2.5× 38.5% 35.9%

Table 15: Error analysis of Bambu HLS.

Model Compiler
Errors (%)

Output
Errors (%)

Runtime
Exceptions
(%)

Resource
Errors (%)

Directive
Errors (%)

32B 40 8 15 15 22
Deepseek-R1 41 9 17 13 20
Gemini25 52 8 8 15 17
GPT-5 34 11 21 11 23

Table 16: Benchmark results of SmartHLS (LegUp).

Model Opt (%) Min Avg Max Functional Accuracy Synthesis Accuracy

Deepseek-R1 15.4% 0.08× 0.90× 9.0× 25.6% 23.1%
GPT-5 12.8% 0.02× 7.50× 200.0× 35.9% 35.9%
Grok-4 10.3% 0.25× 1.20× 25.0× 23.1% 25.6%
Gemini-2.5-pro 15.4% 0.70× 2.10× 25.0× 28.2% 25.6%
Qwen coder 32B 12.8% 0.25× 0.80× 3.0× 33.3% 38.5%

Table 17: Error analysis of SmartHLS.

Model Compiler
Errors (%)

Output
Errors (%)

Runtime
Exceptions
(%)

Resource
Errors (%)

Directive
Errors (%)

32B 38 9 16 14 23
Deepseek-R1 39 10 16 12 23
Gemini25 43 7 9 14 27
GPT-5 33 12 20 12 23

A.7 TESTBENCH GENERATIONS

We report the coverage results, lines, branches, tokens, and calls collected from gcov for our
dataset, as shown in Table 18. While full (100%) coverage is not attainable, the table demonstrates
that our testbench nevertheless yields robust, high-quality coverage for evaluation.
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Table 18: Coverage results collected from gcov for our dataset.

Range Lines (%) Branches (%) Tokens (%) Calls (%)

100% 94.82 94.82 79.29 92.88
[75%,100%) 4.85 4.85 10.03 0.65
[50%,75%) 0.00 0.32 9.71 6.47
[25%,50%) 0.32 0.00 0.97 0.00
< 25% 0.00 0.00 0.00 0.00

A.8 CODE STRUCTURE ANALYSIS

For the code structure analysis we computed per-sample statistics including lines of code (LoC),
number of functions, number of loops, and cyclomatic complexity in Table 19.

From these tables, we conclude that the dataset covers a wide variety of code styles and complexity
levels, and is therefore appropriate for evaluating LLM performance on HLS-related tasks.

Table 19: Dataset distributions for code-structure metrics. Each cell shows the bin range (top) and
the percentage of samples falling in that bin (bottom).

Metric Bin1
(Range)

Bin2
(Range)

Bin3
(Range)

Bin4
(Range)

Bin5
(Range)

Lines of Code (LoC) [3.00, 44.40]
39.51% [44.40, 85.80]

32.33%
[85.80, 127.20]

10.35%
[127.20, 168.60]

10.22%
[168.60, 210.00]

7.60%

Function number [0.00, 2.00]
57.74%

[2.00, 4.00]
27.84%

[4.00, 6.00]
8.99%

[6.00, 8.00]
3.07%

[8.00, 10.00]
2.36%

Loop number [0.00, 7.80]
41.88%

[7.80, 15.60]
27.34% [15.60, 23.40]

15.79%
[23.40, 31.20]

10.75%
[31.20, 39.00]

4.23%

Cyclomatic complexity [1.00, 14.00]
48.95% [14.00, 27.00]

27.58%
[27.00, 40.00]

11.60%
[40.00, 53.00]

6.23%
[53.00, 66.00]

4.63%

A.9 EXPERIMENTAL ANALYSIS

A.9.1 DETAILED ERROR ANALYSIS

We perform a fine-grained analysis of the failures produced by LLM-generated HLS designs and
identify five dominant error categories: Compiler Errors, Directive Errors, Runtime Exceptions,
Resource Errors, and Output Errors. Across both Bambu HLS and SmartHLS (LegUp), directive-
related errors are particularly prevalent: models commonly emit Vitis-style pragmas even when the
target tool requires a different pragma syntax. We attribute this behavior to the relative abundance
and higher quality of Vitis HLS examples in training data.

Compiler Errors. These errors reflect syntactic or structural problems that prevent the HLS front-
end from accepting the program (e.g., malformed C, undefined identifiers, or unsupported language
constructs). Because such errors occur before downstream HLS passes, they represent a primary
bottleneck in the overall workflow and indicate fragile tool compatibility.

Directive Errors. This category captures incorrect or unsupported pragma usage (e.g., wrong
pragma names, invalid parameters, incorrect placement, or mixing pragmas intended for differ-
ent tools). Directive errors show that models lack fine-grained tool-awareness: even small syntax
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differences between toolchains (Vitis vs. Bambu vs. LegUp/SmartHLS) cause a large fraction of
failures.

Runtime Exceptions. A nontrivial fraction of generated programs compile but fail during sim-
ulation (exceptions, timeouts, memory faults, or sandbox interruptions). These failures indicate
difficulties in producing correct hardware control-path logic and robust testable code, beyond purely
numerical computation.

Resource Errors. Resource-related failures occur when aggressive transformations (e.g., excessive
unrolling or partitioning) push designs beyond the target device’s resource budgets. Although less
frequent than compiler or directive errors, resource errors are critical for practical deployability and
show that models tend to over-parallelize without awareness of device constraints.

Output Errors. Semantic mismatches (wrong algorithmic behavior, off-by-one/boundary mistakes,
or incorrect output format) are the least common error type. This suggests that, once a design
compiles and simulates, LLMs generally preserve core algorithmic behavior reasonably well — i.e.,
functional correctness is easier to achieve than tool-specific syntactic and compilation constraints.

A.9.2 SPEEDUP ANALYSIS

We analyze how model-generated transformations affect performance, focusing on the two stages
with the largest impact: T2 (pragma/directive insertion) and T1 (code restructuring). Below we
report the empirical distribution of optimization actions extracted from generated programs and
summarize observed performance patterns.

Breakdown of T2 (pragma / directive insertion): Table 20–22 summarize the relative proportion
of common T2 actions observed for each toolchain. Note that proportions reflect the fraction of
generated designs that include a given action; a single design may include multiple actions, so row
sums can exceed 100%.

Table 20: T2 (Vitis HLS) distribution of pragma/directive actions (proportions).

Action Pragmas Array-part MemType Unroll Merge Inline Pipeline Dataflow Dep/Stream

Proportion 43.6% 12.8% 53.8% 5.1% 28.2% 82.1% 10.3% 10.3% 10.3%

Table 21: T2 (Bambu HLS) distribution of pragma/directive actions (proportions).

Action Pragmas Unroll Inline Dataflow / Cache

Proportion 30.8% 69.2% 10.3% 87.2%

Table 22: T2 (SmartHLS) distribution of pragma/directive (proportions).

Action Pragmas Unroll Inline Dataflow Pipeline / Partition

Proportion 53.8% 17.9% 10.3% 84.6% 43.6%

Breakdown of T1 (code restructuring): Table 23 reports the observed distribution of common
T1 restructuring patterns. These transformations are closely related to memory-bound performance
improvements.

Table 23: T1 code restructuring distribution.

Action Memory coalescing Local tiling Ping-pong buffer Dataflow Control-flow opt.

Percentage 0.0% 23.1% 7.7% 2.6% 28.2%
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A.9.3 OBSERVATIONS

• Optimization can degrade performance. Some LLM-generated transformations yield <1×
speedup. Two common causes are (i) restructuring that introduces additional loop dependencies
(increasing latency), and (ii) pragmas that are less effective than the tool’s default optimizations.
This observation underscores the need for dataset and reward signals that encourage correct
(tool-aware) optimizations rather than aggressive but counterproductive rewriting.

• T1 correlates with memory-bound gains. For memory-intensive kernels, speedups are pri-
marily driven by T1 transformations that improve memory behavior: memory coalescing (better
burst efficiency), local tiling (reduced off-chip bandwidth), and ping-pong buffering (overlap of
compute and memory).

• T2 impact depends on application class. Pipeline and Dataflow pragmas are most beneficial for
streaming and stencil kernels where concurrency is the bottleneck. Unroll and Partition pragmas
are critical for compute-bound kernels (e.g., KNN, GEMM). Inline and loop-merge transforma-
tions matter more in control-heavy applications by reducing scheduling overhead and enabling
deeper pipelining.

• Tool-specific defaults shape effectiveness. The observed T2 distribution differs across
toolchains because each HLS tool applies different default transformations and heuristics; con-
sequently, identical pragma insertions can produce different outcomes across tools. This further
motivates our claim that benchmarking at the transformation level (rather than at a single tool’s
syntax) yields more robust conclusions.
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