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ABSTRACT

Mixup is a widely-adopted data augmentation techniques to mitigates the over-
fitting issue in empirical risk minimization. Current works of modifying Mixup
are modality-specific, thereby limiting the applicability across diverse modalities.
Although alternative approaches try circumventing such barrier via mixing-up
data from latent features based on sampling distribution, they still require domain
knowledge for designing sampling distribution. Moreover, a unified theoretical
framework for analyzing the generalization bound for this line of research remains
absent. In this paper, we introduce OmniMixup, a generalization of prior works
by introducing Mixing-Pair Sampling Distribution (MPSD), accompanied by a
holistic theoretical analysis framwork. We find both theoretically and empirically
that the Mahalanobis distance (M-Score), derived from the sampling distribution,
offers significant insights into OmniMixup’s generalization capabilities. Accord-
ingly, we propose OmniEval, an evaluation framework designed to autonomously
identify the optimal sampling distribution. The empirical study on both images
and molecules demonstrates that 1) OmniEval is adept at determining the appro-
priate sampling distribution for OmniMixup, and 2) OmniMixup exhibits promis-
ing capability for application across various modalities and domains.

1 INTRODUCTION

By creating virtual data from a pair of training samples, Mixup (Zhang et al., 2017; Tokozume et al.,
2018; Zhang et al., 2020) has been shown to bolster the robustness and generalization capacity of
models, yielding non-trivial improvements on various domains, such as image classification (Yun
et al., 2019; Kim et al., 2020; Hong et al., 2021), and Natural Language Processing (NLP) (Yoon
et al., 2021; Kong et al., 2022; Guo et al.; Sun et al., 2020). Conventionally, Mixup is conducted in
input-level, which requires konwledge of data structure in order to delicately design mixup strategy
in sub-data level e.g., image patches (Faramarzi et al., 2022), word tokens (Yoon et al., 2021) , to
reassemble to new samples. However, such technique tend to be specific to certain modalities or
domains, which constrains the broader application of Mixup. The quest for a universally effective
mixup method that accommodates diverse data modalities remains intriguing for the communities.

Accordingly, recent advances proposed to mixing feature instead of the input data (Verma et al.,
2019; Faramarzi et al., 2022; Baena et al., 2022), as data with different modalities and dimensions
can be project into a unified and shared latent space. This line of research primarily focus on cir-
cumventing the so called manifold intrusion and the corresponding modifications can be categorized
into three major directions: 1) modifications to the hidden states used for mixup (Verma et al., 2019;
Faramarzi et al., 2022); 2) adjustments to the sampling of the mixup ratio λ (Guo et al., 2019);
3) modifications to the data sampling distribution (Baena et al., 2022; Yao et al., 2022; Hwang &
Whang, 2021), which stands as the primary focus of this work. Currently, the key idea of this line
of research is to mixup samples based on similarity, thereby preventing erroneous augmented data
caused by out-of-distribution virtual samples. For example, Local-Mix (Baena et al., 2022) and C-
Mixup (Yao et al., 2022) suggest to mixup samples based on data or label similarity, respectively.
However, the application of current approaches suffers from the following limitations: 1) the design
of sampling distribution is based on similarity, which still necessitates domain knowledge; 2) an
holistic theoretical framework for comparing generalization ability of different approaches across
varied domains and modalities remains unexplored.
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As a remedy for solving both limitations together, this paper introduces OmniMixup, a mixup
framework that is capable of encompassing all the related prior works by introducing Mixup-Pair
Sampling Distribution (MPSD), and present a theoretical framework to analyze the generalization
ability of these works all together. Previous work (Zhang et al., 2020) first proposes a theoretical
analysis on the vanilla mixup (Zhang et al., 2017) toward the relation of generalization and the in-
trinsic dimension of dataset, while the question toward various advanced mixup strategies remains
unsolved. Park et al. (2022a) further provides an unifed theoretical framework for Mixup and Cut-
Mix, yet their application remained tethered to image data. In this work, we theoretically analyze the
effectiveness of sampling distribution in feature-based mixup approaches, thereby providing a valu-
able insight for the broader application of Mixup. Buliding upon Zhang et al. (2020)’s foundation,
we find that the expectation of the Mahalanobis distance (M-Score) within MPSDs is informative
to the generalization ability of OmniMixup. Guided by this discovery, we provide a efficient while
effective evaluation framework, OmniEval, for evaluating the effectivness of MPSDs based on in-
formation within the M-Score. OmniEval allow us to identify the MPSD that will lead to a strong
performance of the resulting model. To achieve this, OmniEval overcomes two challenges when
evaluating MPSDs with M-Score. First, it obviates the need for expensive model training with ev-
ery MPSD, requiring only a model trained via ERM; second, OmniEval estimate the M-Score to
circumvent the intractable nature of the calculation of the expected M-Score.

Overall, the contribution of this paper can be summarized as follows:

1. We propose OmniMixup to generalize the vanilla Mixup with arbitrary sampling distribu-
tion and provide an holistic theoretical framework toward their ability in generalization.

2. We present OmniEval based on estimating the expected M-Score under ERM setting to
identify an appropriate MPSD for training models with OmniMixup.

3. We conduct experiments on image classification and molecular property prediction to both
verify the effectiveness and transferability of the proposed framework.

2 RELATED WORK

2.1 MIXUP

Mixup is a commonly used data augmentation technique, especially in the field of computer vision
and NLP. Zhang et al. (2020) and Tokozume et al. (2018) first proposed to interpolate training
samples linearly to conduct new augmented samples to address the overfitting issue in empirical
risk minimization. Currently, there are two strands of mixup research works. The predominant
approach encompasses structure-based mixup methods, wherein samples are mixed before being
fed into neural networks. For example, Guo et al. (2019); Yun et al. (2019); Faramarzi et al. (2022);
Beckham et al. (2019); Summers & Dinneen (2019); Hong et al. (2021) proposed mixup strategies
to mix two or more images together to generate new training data, Guo & Mao (2021); Han et al.
(2022); Park et al. (2022b); Navarro & Segarra (2023) edit graph topologically (i.e. modify nodes
and edges) to mix different graphs together. This line of research have stronger performance due
to the fact that it incorporates more domain prior knowledge in the mixup strategy. Moreorever,
it is also modality-specific, which subjects the ability of generalization of the mixup strategy. For
example, mixup strategies for images cannot be used in graph data, and vice versa.

Cocurrently, another line of research focus on mixing the latent features of data. For example,
ManifoldMixup (Verma et al., 2019) proposed to mixup the features in each layer of the deep neural
network to foster smoother decision boundary for classifiers; NFM (Lim et al., 2021) proposes to
add noises before mixing up; k-Mixup (Greenewald et al., 2021) proposed to mixup k samples to
avoid generating points with wrong labels when the data manifold is complicated. This research
aligns with our focus, wherein we endeavor to generalize the vanilla mixup (Zhang et al., 2017)
from MPSD, and provide analysis both theoretically and empirically.

In contrast to the previous work (Baena et al., 2022; Yao et al., 2022) which focus on the design of
MPSD aiming to address the manifold intrusion issue, or improve the robustness of the models, in
this paper, we revisit all of these methods and propose a generalized version of Mixup to summarize
all these methods. This allows us to analyze all these methods in a unified theoretical framework.
Furthermore, the proposed OmniEval framework in the paper can help automously identify the

2



Under review as a conference paper at ICLR 2024

appropriate MPSD from all of these proposed methods, thereby requiring no domain knowledge
in applying OmniMixup in diverse modalities and domains.

2.2 MIXUP IN MODELING MOLECULES

The application of deep learning achieves significant improvement in modeling molecules. How-
ever, compared to images and text, annotating a molecule is more expensive, as generally it take
hours to use DFT to calculate the ground truth label. Data augmentation therefore plays an impor-
tant role in modeling the molecules (Nakata & Shimazaki, 2017). Although recent advances have
focused on mixup approaches for graph data, most of them modify the structure of graph data to
generate new examples. This may be unacceptable for molecules, as a slight modification in atom
or bond may lead to drastic changes in its chemical properties, thereby making mixup labels to be
misleading. However, current approach to apply mixup on molecular data is still from feature lev-
els (Wang et al., 2021). This paper aims at provide an advanced solution of applying mixup for such
situation. Specifically, the proposed OmniMixup and OmniEval proposed in this paper can help
find an appropriate MPSD automatically and gain improvement without prior domain konwledge
for modeling molecules.

3 METHODOLOGY

3.1 PRELIMINARY

In this sub-section, we introduce the notation in our paper, and present preliminary of Empirical
Risk Minimization (ERM) and the vanilla Mixup (Zhang et al., 2017).

Notations. A training dataset is denoted as S = {z1, ..., zn}, where zi = (xi, yi)
i.i.d.∼ Px,y ,

xi ∈ X ⊆ Rp and yi ∈ Y ⊆ R. The mixed sample of zi, zj is denoted as ži,j(λ) =
(mix(xi, xj , λ), mix(yi, yj , λ)), where mix(a, b, λ) = λa + (1 − λ)b. Note that λ ∈ [0, 1]. Fol-
lowing Zhang et al. (2020), we denote the mixture distribution of two distribution D1,D2 is denoted
as pD1 +(1− p)D2, which suggests that the sample is drawn from D1 with probability p, and 1− p
for the another. We denote a model with parameter θ as y = fθ(x). We denote Dx as the uniform
distribution over X .

Empirical Risk Minimization. Under supervised learning, we aim to find a function f such that
it can predict labels well given an input. Given an dataset S = {(xi, yi)}ni=1, where each datapoint
within the dataset is assumed to be i.i.d. sampled from distribution Px,y , and x ∈ X , y ∈ Y .
Therefore, the goal is to learn a mapping from f : X → Y . Generally, to better help finding such
function, a loss function is defined as a mapping of ℓ : Y ×Y → R to evaluate the f . A better f will
generally lead to a smaller loss function. Based on loss function, the population risk (or expected
risk) is defined as follows:

L(f) = E(x,y)∼Px,y
[ℓ(y, f(x))] .

In practice, sometimes it is impractical to access to L(f). Therefore, an alternative approach is to
consider f within a hypothesis class H instead, and calculate the estimation of population risk based
on S, namely the empirical risk, to evaluate f :

L̂(f) = Ln(f ;S) =
1

n

n∑
i=1

ℓ(yi, f(xi)).

Empirical Risk Minimization (ERM) refers to the process we train the model by minimizing the
empirical risk defined above. Namely, ERM aims to find an f̂ such that

f̂ = argmin
f∈H

Ln(f ;S).

Note that as in the following part, we mainly consider hypothesis class where function f is fixed,
in the remainder of this paper we will re-write it as Ln(θ;S) to stress the importance of θ to the
empirical risk.
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Mixup training objective. When applying Mixup (Zhang et al., 2017) to train the model, training
samples are used to constructed the mixed samples, and the mixed samples are used to train the
model. Following Zhang et al. (2020), we define the mixup training objective as follows:

Lmix
n (θ,S) = 1

n2

n∑
i,j=1

Eλ∼Dλ
ℓ(θ, žij(λ)) (1)

where Dλ is generally a Beta(α, β) distribution with α = β > 0.

Zhang et al. (2020) proves the relationship between mixup objective and empirical risk minimiza-
tion:
Theorem 1. (Results from Zhang et al. (2020)) Consider the loss function ℓxi,yi(θ) =
h(fθ(xi)) − yifθ(xi). Denote the standard empirical risk minimization objective as Lstd

n (θ,S) =
1
n

∑n
i=1 ℓxi,yi(θ), denote D̃λ = α

α+βBeta(α+1, β)+ β
α+βBeta(β+1, α) the mixture distribution

of λ, denote the dataset Š = {(x̌i, yi)}ni=1, where x̌i = λxi+(1−λ)rx, rx ∼ Dn,x is the empirical
distribution of x, yi is the original labels for the i-th training samples in S. Then,

Lmix
n (θ,S) = Eλ∼D̃λ

Erx∼Dn,x
Lstd
n (θ, Š). (2)

3.2 OMNIMIXUP: A GENERALIZED VERSION OF MIXUP WITH MPSD

In this subection, we propose OmniMixup and show that the recent related works (Zhang et al.,
2017; Yao et al., 2022; Baena et al., 2022) can reduce to special cases under OmniMixup. This
allow us to analyze all these methods within the same theoretical framework.

OmniMixup. For each sample zi = (xi, yi) in the training dataset, OmniMixup defines a
Mixing-Pair Sampling Distribution (MPSD) with parameter zi across the training dataset, i.e.,
rzi = (rxi , ryi) ∼ ψn(zi), zi ∈ S. Here rzi is a random variable with support set S. For simplicity
in the theoretical part, we will directly write rzi ∼ ψn(zi). Then, for each sample zi, OmniMixup
draws another sample in S based on ψn(zi) to construct the mixed samples, which are used in the
following mixup training. Though the definition is concise, OmniMixup is generalized enough to
include many previous related works. We elaborate the empirical risk minimization, vanilla Mixup
and C-Mixup, Local-Mixup and Smooth Local-Mixup as follows:

Example 1 (ERM). ERM is equivalent to OmniMixup with ψn(zj ; zi) = 1(zj = zi) (i.e. Dirac
delta distribution) given a training sample zi ∈ S, namely zi will only sample zi itself.

Example 2 (vanilla Mixup (Zhang et al., 2017)). The vanilla Mixup is equivalent to OmniMixup
with ψn(zj ; zi) = 1/|S| (i.e. Uniform distribution) given a training sample zi ∈ S, namely zi will
sample data equally.

Example 3 (C-Mixup (Yao et al., 2022)). C-Mixup is equivalent to OmniMixup with ψn(zj ; zi) ∝
exp

(
d(yj , yi)/2σ

2
)

given a training sample zi ∈ S . Here d(.) is a pre-defined distance measure
for labels.

Example 4 (Local-Mixup (Baena et al., 2022)). Local-Mixup is equivalent to OmniMixup with
MPSD ψn(zj ; zi) = 1(d(zi, zj)) ≤ ϵ, where ϵ is a cut-off value. Here d(.) is a pre-defined distance
measure for two samples. A smooth version of Local-Mixup is equivalent to OmniMixup with MPSD
ψn(zj ; zi) ∝ exp(−α× d(zi, zj)).

It’s worth noting that the introduction of MPSDs greatly enhances the flexibility of Mixup. This is
because MPSD is not restricted to the similarity-based distribution, which is the previous common
practice, MPSDs from random generation, domain expert prior knowledge, or optimization can all
be included in the generalized form of OmniMixup.

3.3 GENERALIZATION BOUND OF OMNIMIXUP

To theoretically understand MPSD-based mixup strategies, in this subsection, this subsection pro-
vides a theoretical analysis of the generalization bound given by OmniMixup. Here we define ψ(zi)
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as a MPSD whose support set is equivalent to Px,y , and ψn(zi) defined above is the empirical
distribution of ψ(zi).

Inspired by Zhang et al. (2020), this paper proposes to consider the mixup objective as ERM with
a regularization term and analyze its second-order Taylor expansion to analyze the generalization
bound of OmniMixup. The proof sketch of the analysis can be concluded in four steps: Step 1: we
connect the OmniMixup training objective with the empirical risk minimization objective; Step 2:
based on the results of first step, we further obtain the second-order approximation of the regulariza-
tion term between OmniMixup training objective and the ERM objective under Generalized Linear
Model (GLM); Step 3: the empirical Rademancher complexity is calculated assuming the model is
fitted well; Step 4: the generalization bound is directly derived based on the empirical Radmancher
complexity according to Bartlett & Mendelson (2002)’s result. Detailed proofs of all theoretical
analysis are shown in Appendix A.

Closed-form of OmniMixup training objective. To begin with, we first investigate the closed-
form of the training objective of the proposed OmniMixup. Specifically, we extend the Eq. 2, which
shows the relationship between the vanilla Mixup objective and the ERM objective, to the proposed
OmniMixup.
Corollary 3.1. Under OmniMixup, the relationship between the mixup objective and empirical risk
minimization is:

Lmix
n (θ,S) = Eλ∼D̃λ

[
1

n

n∑
i=1

Erxi
∼ψn(zi) [ℓx̌i,yi(θ)]

]
(3)

Generalized Linear Model. To analyze the generalization bound, in this section we consider a
Generalized Linear Model (GLM), where the model is f(θ;xi) = θ⊤xi, and the empricial training
objective is defined as

Lstdn (θ;S) = 1

n

n∑
i=1

A(θ⊤xi)− yiθ
Txi.

Here, A(.) is a log-partition function.

Besides, the following assumptions is considered for proving the final result:
Assumption 1. θ,X , and Y are all bounded.
Assumption 2. The expectation of rxi

∼ ψ(zi) is 0.

OmniMixup as a regularization term A common practice to consider the relationship between
mixup objective and ERM objective is to view the former one as a ERM objective with a regular-
ization term (Zhang et al., 2020; Park et al., 2022a). Similarly, in this paper, we connect the training
objective of OmniMixup to ERM objective with a regularization term via Lemma 3.1.

Lemma 3.1. Denote Σ̂xi as the estimate of variance of ψ(xi). For a GLM, if A(·) is twice differ-
entiable, then

Lmix
n (θ,S) = Lstd

n (θ,S) +
Eλ∼D̃(1− λ)2

2nλ̄2

n∑
i=1

[
A′′(x⊤

i θ) · θ⊤Σ̂ψ(zi)θ
]

(4)

Generalization bound To analyze the generalization bound of the OmniMixup objective, we adopt
an common approach to first analyze the empirical Radmancher complexity of a given hypothesis
class and the training dataset. Specifically, we first make assumptions about the hypothesis class
considered and the sampling distributions.
Assumption 3. Denote Σψ(zi) as the variance of rxi

∼ ψ(zi), the following hypothesis class is
considered when analyze the Radmancher complexity:

Wγ := {θ | ∀ i ∈ [n],Ex∼ψ(zi)A
′′(θ⊤x) · θ⊤Σψ(zi)θ ≤ γ},

Note that such assumption of the hypothesis class is reasonable, as it considers parameters space
where the regularization term proved in Lemma 3.1 is minimized properly, suggesting that the Om-
niMixup strategy works well during the optimization process.
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Assumption 4. ∀ i ∈ [n], ψ(zi) is ρ-retentive, ρ ∈ (0, 1/2].

The definition of ρ-retentive is defined as below:
Definition 1. A probability distribution p(x) is ρ-retentive if for any non-zero vector v ∈ Rd,[

Ex[A
′′(x⊤v)]

]2 ≥ ρ ·min{1,Ex(x
⊤v)2}.

Accordingly, we have the following lemma providing an upper bound for the empirical Radmancher
complexity.
Lemma 3.2. The Rademacher complexity of Wγ satisfies

Rad(Wγ ,S) ≤
√
η

n
Ez∼Px,y

[x⊤Σ−1
ψ(z)x],

where η = max{(γρ )
1/2, (γρ )}, Σψ(z) is the covariance matrix of distribution ψ(z).

Based on this bound on Rademacher complexity, we can directly obtain the generalization bound.
Theorem 2. Assume A(·) be L-Lipschitz continuous, X , Y and θ are bounded, then there exists
constants L,B > 0, such that ∀ θ ∈ Wγ , which is the regularization induced by Mixup, we have

L(θ) ≤ Lstdn (θ,S) + 2L · LA ·
√
η

n
Ez∼Px,y

[x⊤Σ−1
ψ(z)x] +B

√
log(1/δ)

2n
,

with probability at least 1− δ.

3.4 OMNIEVAL: AN EVALUATION FRAMEWORK FOR MPSDS WITHIN OMNIMIXUP

Algorithm 1 OmniEval
Input: A set of MPSDs Ψn, a training dataset S, a

model fθ with parameters θ.
Output: An MPSD ψn.
1: Step 1: Train a model under ERM and obtain X .
2: Train f over S with ERM and obtain parameters

θ∗.
3: X = {}
4: for z ∈ S do
5: X = X ∪ {xz}, xz is the encoded features

of z before final linear layer in fθ∗ .
6: end for
7: Step 2: Calculate M-Score estimate for each

MPSD.
8: M̂∗

ψn
= ∞.

9: ψ∗
n = NONE.

10: for ψn ∈ Ψn do
11: Access to probability matrix A ∈ R|S|×|S| of

ψn.
12: Σ = weightedCov(X,A)

13: M̂ψn = {}.
14: for xi ∈ X do
15: M̂ψn = M̂ψn ∪ {x⊤

i Σ
−1xi}.

16: end for
17: ψ∗

n = ψn if M̂ψn = min(M̂∗
ψn
,M̂ψn).

18: M̂∗
ψn

= min(M̂∗
ψn
,M̂ψn).

19: end for
20: Step 3: Return the best MPSD.
21: return ψ∗

n

In this subsection, we explain the theoretical re-
sult in Theorem 2, and provide an insight of
comparison among different MPSDs for Om-
niMixup. Based on this insight, we propose
OmniEval, an evaluation framework that is able
to measure the effectiveness of a given MPSD,
and automatically search for the best MPSD.
Note that the comparison between the vanilla
Mixup and the ERM has been discussed in pre-
vious work 1, the comparison of OmniMixup
and ERM is therefore beyond the scope of this
work, as we can compare them indirectly via
the vanilla Mixup, which is also a special case
of OmniMixup.

From Theorem 2, it is clear that the upper
bound of the generalization gap is strongly re-
lated to Ez∼Px,y [x

⊤Σ−1
ψ(z)x]. In the remainder

of the paper, we will call this quantity expected
M-Score, as the quantity inside the expectation
is Mahalanobis distance, which is used to mea-
sure the distance between samples and distribu-
tion. This suggests that given a training dataset
S, comparing the generalization ability of dif-
ferent OmniMixup strategies can be reduced to
comparing only the expected M-Score among
different MPSDs.

However, two challenges remain in order to
compare M-Score of different MPSDs. First, as latent features in real applications, x is inacces-
sible unless the model is trained. This make comparison expensive as we have to train models with

1Zhang et al. (2020) showed that the vanilla Mixup approach has tighter generalization upper bound if the
intrinsic dimension of x is small.
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all MPSDs one by one to make comparisons. While once the model is trained, there is no need to
compare the expected M-Score anymore; second, the calculation Ez∼Px,y

[x⊤Σ−1
ψ(z)x] is intractable.

To address these challenges, we propose OmniEval to automatically search for MPSDs that has
great potential effectiveness. Specifically, we propose to train a model with training dataset S first
under ERM fashion and save the features before the final linear layer of all data in S. Then, we
use the saved features to give an Method of Moment (MoM) estimator M̂ = 1

n

∑n
i=1 x

⊤
i Σ

−1
ψ(zi)

xi.

We return the MPSD mixup with the smallest M̂ to use for training the model. The algorithm of
OmniEval is summarized in Algorithm 1.

4 IMPLEMENTATION DETAILS

In this section, we present the implementation details of OmniMixup in our empirical study.

4.1 SETTINGS OF MPSDS

In this subsection, we present the implementation details of MPSD for OmniMixup in data in two
different domains. As the search space of MPSD is huge, it is impractical to search over all the
possible MPSD and calculate its corresponding M-Score. Therefore, we restrict the search space
into several specific sets of MPSDs that we use to search for the best MPSD and train the model.

Image Classification For image classification tasks, inspired by the smooth LocalMixup Baena
et al. (2022), given a batch of images B = {I1, ..., Ib}, we apply the current popular vision-language
model CLIP to obtain the representation of images, denoted as h = {h1, ..., hb}, and design a family
of MPSD as follows:

Ψ = {ψτ,βn |τ ∈ T ;β ∈ B}, where ψτ,βn (Ii) = softmax (τ × exp (−β × dis(hi,h))) ∈ Rb.

Here τ and β are both hyperparameters selected from sets T and B, respectively.

Molecular Property Prediction For molecular property prediction, we restrict MPSD into three
similarity-based families based on either molecular fingerprints and training labels: 1) fingerprint-
MPSD (fp-MPSD); 2) inverse-fingerprint-MPSD (invfp-MPSD); 3) labels, namely C-Mixup.
Specifically, for fp/invfp-MPSD, given a batch of d-dimensional fingerprints m = {m1, ...,mb} ∈
{0, 1}d×b of molecules {M1, ...,Mb} in a mini-batch, the sampling distribution of Mi is defined as
follows:

ψn,fp(Mi) = softmax

(
τ × exp

(
−βManhattan(mi,m)

d

))
∈ Rb.

ψn,invfp(Mi) = softmax

(
τ × exp

(
−β (d− Manhattan(mi,m))

d

))
∈ Rb.

In terms of label-MPSD, suppose yi ∈ Rn, i = 1, ..., b are labels of input data Mi, then the design
of MPSD is motivated by C-Mixup (Yao et al., 2022):

ψn,labels(Mi) = softmax

(
τ × exp

(
−βdis(yi, y)

d

))
∈ Rb.

Following C-Mixup (Yao et al., 2022), we restrict the use of this family for regression tasks only.
In our experiments, we aim to identify the optimal MPSD from the three families. Specifically,
we employ a grid search for τ and β to search for the best combination leading to MPSD with
minimal M-Score. The resulting MPSD is then utilized in training. Although the current search
method prioritizes efficiency over the full exploration of the probability space, it is worth noting that
an optimization-based search might produce a more refined MPSD, which we intend to explore in
future work.
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Figure 1: Relationship between the estimated M-Score and their respective model performances.
The p-value represents the significance level of the association between M-Score and model perfor-
mance.

4.2 BASELINE

For both domains, we compare the OmniMixup with ERM and the vanilla Mixup under the same
backbone models. In terms of the backbone models, we select PreActResNet18 (He et al., 2016),
WideResNet28-19 (Zagoruyko & Komodakis, 2016), and DenseNet190 (Huang et al., 2017) for
our experiments. For molecular property prediction, we take Uni-Mol (Zhou et al., 2023) as the
backbone model. The baselines presented in this paper are all re-implemented with recommended
hyperparameter settings from the original papers.

5 EXPERIMENTS

In this section, we empirically investigate whether the framework proposed in this paper can resolve
challenges mentioned in § 1. Specifically, we want to answer the following research questions:

• RQ1: Can we use the estimated M-Score presented in theoretical analysis to obtain insight
about the potential effectiveness of designed MPSD? This research question is used to
verify the effectiveness of OmniEval;

• RQ2: Can OmniMixup selected from OmniEval be easily applied across different modal-
ities and domains? This research question is used to verify whether OmniMixup can be
applied to diverse situations without prior knowledge.

5.1 A1: ESTIMATED M-SCORE PROVIDE POTENTIAL INSIGHT TOWARD THE EFFECTIVENESS
OF MPSD

To answer the first research question, we conduct experiments to investigate the relationship be-
tween the M-Score of MPSD and the corresponding performance. Specifically, we train ResNet18
and WideResNet28-10 over CIFAR-10 and CIFAR100. Specifically, we apply the MPSDs family
presented in § 4.1 with fixed τ and β sampled from [0, 1] to investigate the relationship between
M-Score and the effectiveness of the model. The results are shown in Figure 1.

From the result, it is clear to find out that: 1) the estimated M-Score of MPSD is significantly nega-
tively associated with the performance of models trained under the corresponding mixup strategies.
Specifically, a higher M-Score is generally associated with poorer performance; 2) a weaker associ-
ation appears in Figure 1, suggesting that the informative values may also be restricted by the poor
performance capacity of the model. This finding is actually aligned with the Assumption 3, which
assumes that the models should fit well on the mixed virtual data.

5.2 A2: THE PROPOSED OMNIMIXUP CAN BE EASILY APPLIED TO DIFFERENT MODALITIES
AND DOMAINS.

To verify whether our proposed method can be easily applied to various modalities and domains, we
apply OmniMixup with OmniEval pipeline on image classification benchmarks mentioned above
and eight molecular property prediction tasks selected from MoleculeNet (Wu et al., 2018). The
experimental results are shown in Table 1 and Table 2.
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Table 1: Overall performance of OmniMixup on image classification benchmarks.

ResNet18 WideResNet28-10 DenseNet190
CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

ERM 94.4 75.7 95.5 78.9 95.9 80.9
Mixup 95.8 78.6 96.7 81.9 97.2 83.9
OmniMixup 96.1 78.8 96.9 82.5 97.5 83.7

Table 2: Overall performance of Mixup approaches on the molecular property prediction benchmark.
All experiments are mean of 3 runs. Numbers within parentheses are standard deviations of the
performances.

Classification (Higher is better) Regression (Lower is better)

Dataset BACE BBBP ClinTox SIDER ESOL FreeSolv Lipo QM7

Uni-Mol 0.862
(0.004)

0.737
(0.005)

0.932
(0.004)

0.658
(0.020)

0.812
(0.016)

1.605
(0.058)

0.606
(0.003)

42.94
(0.158)

Mixup 0.876
(0.008)

0.740
(0.003)

0.899
(0.012)

0.662
(0.002)

0.796
(0.010)

1.571
(0.074)

0.590
(0.003)

43.43
(1.124)

OmniMixup 0.886
(0.011)

0.742
(0.008)

0.949
(0.013)

0.673
(0.004)

0.795
(0.023)

1.574
(0.102)

0.589
(0.015)

41.41
(2.064)

Table 3: Values of the estimated M-Score.

Dataset BACE BBBP ClinTox SIDER ESOL FreeSolv Lipo QM7

Mixup 31.126 30.012 36.835 31.898 40.354 694.761 25.546 28.721
OmniMixup 31.059 29.949 35.221 31.850 40.280 645.604 25.450 28.553

From Table 1, the OmniMixup consistently outperforms the vanilla Mixup and the ERM baseline
across almost all different datasets and different models. In terms of the molecular property pre-
diction benchmark in Table 2, the performance of OmniMixup surpasses the Uni-Mol baseline and
the vanilla Mixup approach. Both results demonstrate that 1) the proposed OmniEval pipeline can
efficiently search MPSD based on M-Score and gain improvement for the model’s performance; 2)
the OmniEval pipeline is suitable for general use across modalities and domains.

5.3 ANALYSIS OF M-SCORE

Additionally, in this subsection, we provide the estimates of the M-Score of the vanilla mixup and
the M-Score of the best MPSD mixup we identified in Table 3. We find that: 1) within the defined
families, although search space is limited, we consistently identified mixups with an M-Score
lower than the vanilla mixup, which indicates that the vanilla mixup is still far from the op-
timal one. We look forward to exploring more powerful search methods in future work; 2) there
appears to be a relationship between the M-Score difference and the final performance of the
model. There is a large difference between the M-Score of vanilla mixup and MPSD mixup in the
Clintox dataset, so as the final model performance; 3) finally, we find that while the gap in M-Score
for SIDER is insignificant, the model effect gap amounts to 1.1%. In contrast, though we gain a
large improvement on M-Score in FreeSolv, the resulting performance is conversely bad, compared
to the vanilla mixup. We consider this inaccurate information can also originate from Assumption 3,
which we have elaborated in § 5.1.

6 CONCLUSION

We proposes OmniMixup, a versatile mixup technique that is applicable across modalities and do-
mains. OmniMixup generalizes the vanilla Mixup (Zhang et al., 2017) and thereby includes previ-
ous related works into a holistic framework. A theoretical analysis is further conducted based on the
unified framework to investigate the generalization ability of the OmniMixup. Based on the theoret-
ical result, an evaluation pipeline OmniEval based on M-Score is developed to identify the optimal
MPSD for OmniMixup. The empirical study shows that: 1) M-Score in OmniEval is insightful
about the generalization ability of OmniMixup; 2) along with OmniEval, OmniMixup can provide
improvement in performance for models regardless of modalities of data and domains of tasks.
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A PROOFS

A.1 PROOF OF COROLLARY 3.1

Proof.

Lmix
n (θ,S) = Eλ∼D̃λ

Erx∼Dn,x
Lstd
n (θ, Š)

= Eλ∼D̃λ
Erx∼Dn,x

1

n

n∑
i=1

ℓx̌i,yi(θ)

= Eλ∼D̃λ

[
1

n

n∑
i=1

Erx∼Dn,x
[ℓx̌i,yi(θ)]

]
.

The result can be proved by substituting x ∼ Dn,x with data-specific random variables rxi
∼ ψn(xi)

in x̌i and take expectation correspondingly.

A.2 PROOF OF LEMMA 3.1

Note that Lemma A.1 and Lemma A.2 are needed for proving the result.

Proof. As GLM is invariant of scaling, here we use a normalized mixup training dataset S̃ =
{(x̃i, yi)}ni=1 with x̃i =

1
λ̄
(λxi + (1− λ)rxi) accordingly to simplify the proof.

According to Corollary 3.1,

Lmix
n (θ,S)− Lstd

n (θ,S) = Eλ∼D̃λ

[
1

n

n∑
i=1

Erxi
∼ψn(xi) [ℓx̃i,yi(θ)]

]
− 1

n

n∑
i=1

ℓxi,yi(θ)

= Eλ∼D̃λ

[
1

n

n∑
i=1

Erxi
∼ψn(xi) [ℓx̃i,yi(θ)− ℓxi,yi(θ)]

]

= Eξ

[
1

n

n∑
i=1

[ℓx̃i,yi(θ)− ℓxi,yi(θ)]

]

Here ξ = (λ, rx1
, ..., rxn

) just for simplicity. From above we know that

1

n

n∑
i=1

ℓx̃i,yi(θ)− ℓxi,yi(θ) =
1

n

n∑
i=1

−
(
yix̃

⊤
i θ −A(x̃⊤

i θ)
)
− 1

n

n∑
i=1

−
(
yix

⊤
i θ −A(x⊤

i θ)
)

=
1

n

n∑
i=1

(yix
⊤
i θ − yix̃

⊤
i θ) +

1

n

n∑
i=1

(A(x̃⊤
i θ)−A(x⊤

i θ))

We can prove that Eξ
[
1
n

∑n
i=1(yix

⊤
i θ − yix̃

⊤
i θ)

]
= 0. For each i ∈ [n] of second term, taking

taylor expansion on x̃i = xi, we have

A(x̃⊤
i θ)−A(x⊤

i θ) ≈ A′(x⊤
i θ)(x̃i − xi)

⊤θ +
1

2
A′′(x⊤

i θ)θ
⊤(x̃i − xi)(x̃i − xi)

⊤θ (5)

Taking expectation over Eq. (5), we have

Eξ[A(x̃⊤
i θ)−A(x⊤

i θ)] =
Eλ∼D̃(1− λ)2

2λ̄2
A′′(x⊤i θ)θ

⊤Σ̂xiθ.

Plugging in back to above proves the result.
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Lemma A.1. Eξ[x̃i − xi] = 0.

Proof. Based on the assumption of Dxi
, we have

Eξ[x̃i] = Eξ
[
λxi + (1− λ)rxi

λ̄

]
=

Eξ[λ]xi + (1− Eξ[λ])Eξ[rxi
]

λ̄
= xi.

Lemma A.2. Eξ[(x̃i − xi)(x̃i − xi)
⊤] = Eλ(1−λ)2

λ̄
Σ̂xi

, where Σ̂xi
:= V ar(rxi

) = E[rxi
r⊤xi

].

Proof. Accordingly, we know that the LHS equals to

LHS = Eξ
[
x̃ix̃

⊤
i − xix̃

⊤
i − xix̃

⊤
i + xix

⊤
i

]
= Eξ

[
1

λ̄2
(λxi + (1− λ)rxi

)(λxi + (1− λ)rxi
)⊤
]
− xix

⊤
i

= Eξ
[
1

λ̄2
λ2xix

⊤
i +

(1− λ)2

λ̄2
rxir

⊤
xi

]
− xix

⊤
i

=
Eλ[(1− λ)2]

λ̄2
Erxi

∼Dxi
[rxir

T
xi
]

=
Eλ[(1− λ)2]

λ̄2
Σ̂xi .

A.3 PROOF OF LEMMA A.3

Proof. We prove from the definition of empirical Radmancher complexity.

By definition, given n i.i.d. Rademacher r.v. ξ1, ..., ξn, the empirical Rademacher complexity is

Rad(Wγ ,S) = Eξ

[
sup

θ∈Wγ

1

n

n∑
i=1

ξiθ
⊤xi

]
.

Let x̃i = Σ
−1/2
xi xi, ai(θ) = Ex∼ψ(xi)[A

′′(x⊤θ)] and vi = Σ
1/2
xi θ, then ρ-retentiveness con-

dition implies ai(θ)2 ≥ ρ · min{1,Ex∼ψ(xi)(θ
⊤x)2} ≥ ρ · min{1,θ⊤Σxi

θ} and therefore
ai(θ) · θ⊤Σxi

θ ≤ γ implies that ∥vi∥2 = θ⊤Σxi
θ ≤ max{(γρ )

1/2, γρ} = β.

Hence,
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Rad(Wγ ,S) =Eξ sup
θ∈Wγ

1

n

n∑
i=1

ξiθ
⊤xi

=Eξ sup
θ∈Wγ

1

n

n∑
i=1

ξiv
⊤
i x̃i

≤Eξ sup
∥vi∥2≤η

1

n

n∑
i=1

ξiv
⊤
i x̃i

≤Eξ sup
∥vi∥2≤η

1

n

n∑
i=1

∥vi∥ · ∥ξix̃i∥ (Cauchy-Schwarz Inequality)

≤
√
η

n
· Eξ∥

n∑
i=1

ξix̃i ∥

≤
√
η

n
·

√√√√(Eξ∥ n∑
i=1

ξix̃i ∥

)2

≤
√
η

n
·

√√√√Eξ∥
n∑
i=1

ξix̃i ∥2 (Jensen’s Inequality)

≤
√
η

n
·

√√√√ n∑
i=1

x̃⊤
i x̃i . (Triangle Inequality)

Taking expectation over the whole dataset, we have

Rad(Wγ ,S) = ES [Rad(Wγ ,S)] ≤
√
η

n
·

√√√√ n∑
i=1

Ez∼Px,y [x̃
⊤
i x̃i] (Jensen’s Inequality)

≤
√
η

n
Ez∼Px,y [x

⊤Σ−1
ψ(z)x].

A.4 PROOF OF THEOREM 2

Proof. This results is directly proved by applying Lemma A.3.

Lemma A.3 (Result from Bartlett & Mendelson (2002)). For any B-uniformly bounded and L-
Lipchitz function ζ, for all ϕ ∈ Φ, with probability at least 1− δ,

Eζ(ϕ(xi)) ≤
1

n

n∑
i=1

ζ(ϕ(xi)) + 2LRad(Φ,S) +B

√
log(1/δ)

2n
.

B EXPERIMENTAL DETAILS

B.1 DATASET

In this subsection, we provide details of the datasets used in experiments. For image classifica-
tion tasks, we utilize the CIFAR-10 and CIFAR-100 datasets, which are frequently utilized in re-
cent Mixup works. For the molecular domain, we conduct experiments on eight tasks in Molecu-
leNet (Wu et al., 2018) benchmark: BACE, BBBP, ClinTox, SIDER, ESOL, FreeSolve, Lipo, QM7.
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A primary reason for selecting these datasets is their limited training data size. For molecular prop-
erty prediction, we follow Zhou et al. (2023) to split the datasets into train/validation/test splits.

B.2 HYPERPARAMETER SETTING

In this subsection, we present the hyperparameter settings used for our empirical study.

For the image classification benchmarks, we follow the hyperparameter settings from the vanilla
mixup (Zhang et al., 2017) except that we select α from [0, 2]. For the molecular property prediction
benchmark, we follow the hyperparameter setting of Zhou et al. (2023) to re-implement baselines.
We grid search learning rate from {0.0003, 0.0001, 8e − 05, 5e − 05, 3e − 05, 2e − 05, 1e − 05},
batch size from {8, 16, 32, 64, 128}, α from {0.1, 0.2, 0.5, 1, 2}. All the experiments are run three
times and report the mean and standard variance.

15


	Introduction
	Related Work
	Mixup
	Mixup in modeling molecules

	Methodology
	Preliminary
	OmniMixup: A Generalized Version of Mixup with MPSD
	Generalization Bound of OmniMixup
	OmniEval: An Evaluation Framework for MPSDs within OmniMixup

	Implementation Details
	Settings of MPSDs
	Baseline

	Experiments
	A1: estimated M-Score provide potential insight toward the effectiveness of MPSD
	A2: The proposed OmniMixup can be easily applied to different modalities and domains.
	Analysis of M-Score

	Conclusion
	Proofs
	Proof of Corollary 3.1
	Proof of Lemma 3.1
	Proof of Lemma A.3
	Proof of Theorem 2

	Experimental Details
	Dataset
	Hyperparameter Setting


