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ABSTRACT

The recent success of Transformers in the language domain has motivated adapting
it to a multimodal setting, where a new visual model is trained in tandem with
an already pretrained language model. However, due to the excessive memory
requirements from Transformers, existing work typically fixes the language model
and train only the vision module, which limits its ability to learn cross-modal infor-
mation in an end-to-end manner. In this work, we focus on reducing the parameters
of multimodal Transformers in the context of audio-visual video representation
learning. We alleviate the high memory requirement by sharing the parameters of
Transformers across layers and modalities; we decompose the Transformer into
modality-specific and modality-shared parts so that the model learns the dynamics
of each modality both individually and together, and propose a novel parameter
sharing scheme based on low-rank approximation. We show that our approach
reduces parameters of the Transformers up to 97%, allowing us to train our model
end-to-end from scratch. We also propose a negative sampling approach based
on an instance similarity measured on the CNN embedding space that our model
learns together with the Transformers. To demonstrate our approach, we pretrain
our model on 30-second clips (480 frames) from Kinetics-700 and transfer it to
audio-visual classification tasks.

1 INTRODUCTION

Learning multimodal representation from unlabeled videos has received considerable attention (Bal;
trusaitis et al., |2018). Audio-visual learning is of particular interest due to the abundance of videos
with natural audio-visual co-occurrence (Owens & Efros| 2018; |(Owens et al., [2018}; |Arandjelovic
& Zisserman, 2018 |[Ephrat et al., [2018; |Gao & Grauman, 20195 |Alwassel et al.,[2019). However,
existing approaches learn localized representations from short videos (hundreds of milliseconds to
just under a few seconds), capturing only short-term dependencies in data. While this is useful for
certain applications, e.g., source separation (Ephrat et al.,|2018)) and atomic action recognition (Gu
et al.||2018), learning representation that captures long-term dependencies is equally important, e.g.,
for activity recognition (Kay et al., 2017;|Carreira et al., 2019} Sigurdsson et al.,2016). Unfortunately,
processing long videos requires large memory resource and capturing long-term dependencies is a
long-standing problem (Hochreiter & Schmidhuber,|1997;|Cho et al., 2014} |Vaswani et al., [2017)).

In language understanding, strong progress has been made in large-scale learning of contextualized
language representations using Transformers (Vaswani et al., 2017; |Howard & Ruder, [2018;; [Peters
et al.,2018; |Radford et al.| 2018} 2019; [Devlin et al., 2019; [Liu et al.l 2019; |Yang et al.,[2019). Riding
on the success of Transformers, several recent works have extended it to the multimodal setting
by adding an additional vision module to the Transformer framework (Sun et al.,|2019b; [Lu et al.,
2019). However, these models are typically not end-to-end trained; they rely on a language-pretrained
BERT (Devlin et al.l 2019)), which is fixed throughout, and train only the visual components. While
the pretrained BERT helps accelerate convergence and brings reliable extra supervision signal to the
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Figure 1: (Left) Our model consists of CNNs encoding short-term dynamics of each modality and
Transformers encoding long-term dynamics of audio-visual information from videos. (Right) To
alleviate excessive memory requirements, we propose an efficient parameter sharing scheme based on
matrix decomposition with low-rank approximation, which allows us to train our model end-to-end.

Same Color = Shared Parameters

vision component, this partial learning setup can be undesirable if the text data comes from different
distributions (of topics, dialects, or foreign languages) or if we want to apply it to different modalities
(e.g., audio-visual). Unfortunately, end-to-end training of such multimodal Transformer architectures
is challenging for most existing compute environments due to the excessive memory requirement.

In this work, we make three key contributions. First, we propose an end-to-end trainable bidirectional
transformer architecture that learns contextualized audio-visual representations of long videos. Our
model, shown in FigureE], consists of audio/visual CNNs, audio/visual Transformers, and a multi-
modal Transformer. The CNNs operate on short (e.g., one second) video clips and are intended to
capture short-term dynamics within each modality. The Transformer layers operate on long video se-
quences (e.g., 30 seconds), capturing long-term dynamics. To enable end-to-end training, we propose
a novel parameter reduction technique that shares parts of weight parameters across Transformers and
across layers within each Transformer. We show that this results in up to 97% parameter reduction,
enabling end-to-end training of our model, with a minimal performance degradation. To the best of
our knowledge, our work is the first to report end-to-end trained multimodal Transformers, and the
first to apply Transformers for audio-visual representation learning.

The quality of negative samples is crucial in contrastive learning, which is part of our learning
objective. As our second contribution, we propose a content-aware negative sampling strategy that
favors negatives sufficiently similar to a positive instance. Our approach measures the similarity
by reusing the CNN embeddings obtained during model training, and thus do not introduce extra
parameters to learn. We show that this improves performance over the standard sampling strategies.

Our third contribution is a systematic evaluation of different modality fusion strategies. Existing
works on multimodal BERT (all using vision-and-language data) typically apply one fusion strategy
without thoroughly comparing with alternatives, e.g., some works perform early fusion (Sun et al.,
2019b; |Su et al.;2020) while others perform mid-level fusion (Lu et al., 2019; |Tan & Bansall 2019).
As a result, it is unclear how different fusion methods affect the final performance. In this work, we
compare three fusion strategies (early, mid, late) and show the superiority of mid-level fusion.

To demonstrate our approach, we pretrain our model on long (30-second) video clips from Kinetics-
700 (Carreira et al.| [2019) and finetune it on various video classification tasks. One benefit of the
modular design of our architecture is flexibility: once pretrained, we can use any of the subnetworks
for downstream tasks depending on the modalities involved (audio-only, visual-only, audio-visual)
and video lengths (short and long). To show this, we evaluate our model on UCF101 (Soomro
et al., [2012) and ESC-50 (Gemmeke et al., 2017} for short-term visual/audio classification, and
Charades (Sigurdsson et al.l |2016) and Kinetics-Sounds (Arandjelovic & Zisserman, 2017) for
long-term audio-visual action recognition.

2 APPROACH

Figure[I|shows an overview of the proposed model architecture. The input to our model is a sequence
of visual clips vi.7 and the corresponding sequence of audio streams aj.r. For example, each
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sequence is a 30 second-long video divided into 30 non-overlapping clips (each clip is one second
long). We divide our model into three parts with different characteristics, which are explained below.

Local Feature Embedding. We feed each of T video clips to a visual CNN fy (v;) to obtain
xY.p € RT*P 'and each audio stream to an audio CNN f4(a) to obtain x§.; € RT*P [ﬁ) Intuitively,
the CNN outputs are temporally local embeddings as they have access to only a short-range temporal
window of the entire video sequence. Thus, they are suitable for representing short-range atomic
actions (e.g., sit down, raise arms) that constitute long-range events (e.g., gym workout). We use
the SlowFast network (Feichtenhofer et al., 2019) with a ResNet-50 backbone (He et al., 2016) as a
visual CNN fy-, and a ResNet-50 as an audio CNN f4. The weights of both CNNs are randomly
initialized and trained end-to-end with the Transformer layers.

Unimodal Contextualized Embedding. The local feature embeddings capture short-term dynam-
ics but lack long-term contextual information. We use Transformers (Vaswani et al.l 2017) to
enrich the embeddings with sequence-level context. We start by learning unimodal contextualized
representations using the visual Transformer gy and the audio Transformer g 4, respectively.

The Transformer consists of L layers, each with two sub-layers: a multi-head attention layer and a
feed-forward layer. Given an input sequence of embeddings x € R”*? and A attention heads, the
j-th head in the attention layer computes the output embedding sequence a; € RT*7 ~ = D/A as

QJK]T q k v
a; = softmax N Vi Q; = ij K =xWi V= xW @))

where W;I, Wf W e RP*7 are weight matrices for computing the (query, key, value) triplet
given the input x. This operation is repeated for each attention head, and the outputs are combined
(with concatenation followed by one linear layer with weights W° € RP*P), producing a € RT*P.
Next, the feed-forward layer takes this intermediate output and computes o € R”*? using a two-
layer fully-connected network with weights W¢ € RP*F and W? € RP*P_ The output of each
sub-layer is computed using a residual function followed by layer normalization (Ba et al.,|2016),
i.e., LayerNorm(z + Sublayer(z)). In this work, we set the number of layers L = 6, the number of
attention heads A = 12, the feature dimension D = 768 and the intermediate dimension £ = 3072.
For simplicity, we use this design for all layers across all three Transformers in our model.

Before feeding local embeddings x” and x® to unimodal Transformers, we augment them with
“positional” embeddings. Specifically, we append to the beginning of each sequence a special vector
BOS (beginning of sequence), i.e., xg for visual and x§ for audio streams; their dimensions are same
as x; and x¢, respectively. We also define positional embeddings po.7 encoding time indices (we call
this “time” embedding). This is necessary to preserve information about temporal ordering of local
feature embeddings, which is otherwise lost in Eqn. [T} We combine them via layer normalization,

uy = LayerNorm(xy + p{), uf = LayerNorm(x{ + p{), Vt € [0,T] (2)
We initialize {x{}, x§, P{.7, P{.7} to the normal distribution and train them with the rest of the model.

We feed the augmented visual embeddings into the visual Transformer gy and obtain y§.,, =
gv (uf.r), and similarly obtain yg..- = ga(ud.). The embeddings at each time step has a direct
access to the entire input sequence regardless of their position (it has a one-step signal path during
forward and backward inference). Multiple layers of such feature transformation thus allow the
resulting embedding to be deeply contextualized in the time dimension. We denote the output
embeddings corresponding to the BOS positions by BOS; = y; and BOSy = y(, and designate them
as the summary embeddings representing the sequence of each modality.

Multimodal Contextualized Embedding. The unimodal embeddings capture long-term temporal
context but miss out on cross-modal information. The final step in forward inference is to use a
multimodal Transformer h 41 to obtain embeddings contextualized in the audio-visual space.

We first augment the embeddings y§.- and y§. with modality and time embeddings. The modality
embeddings m® and m? are vectors of the same dimension as y; and y¢, respectively. We share m”
(and m?) across all the unimodal embeddings y ., (and y§.1); thus, they add modality-discriminative
information to the Transformer. We also add time embeddings pg.r as before; however, unlike in

"For notational simplicity, we drop the subscripts to refer to the entire sequence unless distinction is necessary.
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the previous step, we share the same pg.7 between embeddings from the two modalities to correctly
indicate the time indices. We augment the modality and time embeddings via layer normalization,

wy; = LayerNorm(y; + p; +m"), wi{ = LayerNorm(y{ + p; + m®), V¢t € [0,T]  (3)

We feed the augmented visual embeddings w(.,- and audio embeddings w{.,- to the multimodal
Transformer h 4y, one after another, and obtain z,2741) = hav ([Wg.p; Wi.p]). We again denote
the output embeddings corresponding to the BOS positions by BOS}, = z{(= z) and BOS} = z§(=
z741), and use them as summary embeddings encoding multimodal context.

We emphasize the importance of feeding w(..- and w{.,- one after another. An alternative would be
concatenating them before feeding them to & 4y and obtaining an output zo.r (instead of zg. (271 1))
However, this restricts the Transformer to access audio-visual embeddings only from the same
time slices, which could be problematic when there is a temporally asynchronous relationship
between the two modalities (e.g., a visual clip matches with sound captured a few times steps
before) (Kazakos et al.,[2019; Morgado et al.,|2020). By arranging the two sequences one after the
other, the Transformer can mix-and-match appropriate audio-visual embeddings in an asynchronous
manner. Another practical concern with the alternative approach is that it significantly increases the
model size; the weight matrices W, Wy, W, grow quadratically with the input feature dimension D.
Serializing the input resolves both issues.

2.1 SELF-SUPERVISED PRETRAINING OBJECTIVES

Task 1: Masked Embedding Prediction (MEP). BERT (Devlin et al.,[2019)) is trained using the
masked language model (MLM) task, which randomly selects input tokens and replaces them with
a mask token. The model is then trained to predict the original (unmasked) tokens by solving a
classification task with a cross-entropy loss. However, inputs to our model are real-valued audio-
visual signals (rather than discrete tokens) so applying the MLM task requires input discretization,
which causes information loss (Lu et al., [2019; Sun et al., [2019a). We instead train our model to
identify the correct visual clip or audio stream compared to a set of negative samples in a contrastive
manner, which does not require input discretization.

We formulate our MEP task using InfoNCE (Oord et al.l 2018), which is the softmax version of the
noise contrastive estimation (NCE) (Gutmann & Hyvirinen, [2010). Let 6, be the ¢-th output of any
of the three Transformers obtained by masking the ¢-th input x;. Our InfoNCE loss is then defined as

~ 1(x,0¢)
LNCE(xa 0) = 7]Ex log = — (4)
Xt: I(x¢,0¢) + Ejeneg(t) I(x;,0:)
where neg(t) are negative sample indices and the compatibility function I(x;, ;) is,
I(x¢,04) = exp (FFNT (6,)Wrx,) )

where W; € RPXP (P = 256) and FFN is a two-layer feed-forward network. The use of a non-linear
prediction head has shown to improve the quality of the representations learned in a contrastive
learning setup (Chen et al., 2020); following the recent work in Transformers (Devlin et al.| 2019} Liu
et al., 2019; Lan et al.| 2020), we use a GELU non-linear activation function (Hendrycks & Gimpel,
2016)) in FFN. Optimizing Eqn. @enforces I(x¢, 0;) to approximate the density ratio %; this
can be seen as maximizing the mutual information between x; and o, (Oord et al.,2018)). Intuitively,
this encourages the Transformer to capture the underlying dynamics of x from each modality without
explicitly learning a generative model p(x;|0;).

Negative sampling. We find that a good negative sampling strategy is essential for the model’s
convergence. Existing approaches either use all but x; (positive) within a mini-batch as negative
samples or limit it to the current sequence only. However, both these methods ignore the data content
and thus can miss useful negatives. |Oord et al.| (2018]) showed that leveraging prior knowledge about
data can improve the negative sample quality (e.g., by sampling negatives from the same speaker as
the positive). Unfortunately, such prior knowledge is often not available in unlabeled videos.

’In the form of RGB images and log-mel-scaled spectrograms.
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Figure 2: Comparison of parameter sharing schemes. Ours combines (b) and (c) but decomposes
weights in each layer into private and shared parts so only the latter is shared across Transformers.

We propose a content-aware negative sampling strategy that favors negatives sufficiently similar
to a positive instance in the CNN embedding space; we call our approach CANS-Similar. Our
approach is inspired by |[Ulyanov et al.| (2018]) who showed that randomly initialized CNNs provide a
strong prior over natural images due to the inductive bias already built into the design of the CNN's.
This suggests that our local feature embeddings x¥ (and x®) can capture the underlying statistical
regularities in video clips (and audio streams) right from the beginning, which can be sufficient
to assess the similarity/dissimilarity between clips. Therefore, the distance measured on them can
approximate content dissimilarity well (and this will improve as the training progresses).

Motivated by this, we sample the negatives based on local feature embeddings x” (and x*). Specif-
ically, we compute a pairwise /5 distance between x; (positive) and all other instances within a
mini-batch, and normalize them to the [0, 1] interval. To remove samples that are either too similar
or too different from the positive sample, we discard instances that fall outside the 95% confidence
interval in the normalized distance space. We then sample the negatives from the remainder using the
normalized distance as sampling probability. This makes instances similar to the positive instance
have more chance to become negatives. We emphasize the importance of sampling, instead of
deterministically taking top most similar samples; the stochasticity allows our model to be robust
to potentially inaccurate distance estimates because samples with low probabilities will still have a
chance to be selected as negatives.

Finally, our MEP loss is the InfoNCE loss computed on all three Transformers,
Lyver = Lnce(xY, %) + Lace(x”,¥7) + Lace([x*;x%], 2) (6)

Task 2: Correct Pair Prediction (CPP). The MEP task encourages our model to learn the underlying
dynamics within each modality. To help our model learn cross-modal dynamics, we design a task
that predicts whether a pair of audio-visual embeddings is from the same video. Specifically, we
define two binary classifiers, one for the two unimodal Transformers and another for the multimodal
Transformer. Each classifier takes as input either s, = [y{; y§] (and [z§; 23]), a pair of audio-visual
“summary” embeddings corresponding to the BOS positions, or s, = [y};y¢] (or [z}; z{]), the output
embeddings sampled at random positions (we take two random positions ¢ € [1, T). The classifier
predicts p(c|s) indicating whether the pair is from the same video (¢ = 1) or from different videos
(c = 0). We train the classifiers with a binary cross-entropy loss,

Lepp = —Exy [c-logp(clsy) + ¢ - logp(clsy)] (7)

where - is the inner product. We generate a random derangement of the input mini-batch so that the
number of positive and negative pairs are guaranteed to be the same.

Overall Pretraining Objective. We train our model end-to-end from scratch by optimizing Ly gp +
aLcpp with a balancing term «.. We find our model is insensitive to this term, so we set a = 1.0.

2.2 PARAMETER REDUCTION

Optimizing our model is challenging due to the large memory requirement. The most expensive part
is the Transformers, which take up 82% of model parameters. One could reduce the model size by
making the Transformers shallower, but the depth of Transformers has shown to be crucial to get
good performance (Devlin et al.,|2019). We propose to reduce the model size by aggressively sharing
parts of weights across Transformers as well as layers within each Transformer (see Figure 2] (d)).

Sharing across Transformers. We first consider sharing weights across Transformers. Each Trans-
former encodes data coming from different distributions: gy encodes x", g4 encodes x%, and
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hay encodes (y¥,y®). These input distributions may each exhibit different dynamics, yet to-
gether share certain regularities because they all come from the same videos. Motivated by this,
we decompose Transformer weights into shared and private parts so that different patterns can be
learned in a parameter-efficient manner. Recall that each layer of a Transformer contains weights
{Wa, Wk We Wb We, W9}, We decompose each of these weights into W = UXV' T, where
W e RMXN 17 ¢ RMXO 57 ¢ ROXO 1 ¢ RVXO, We perform low-rank approximation of W by
setting the rank O < M, N, and share U across Transformers while keeping > and V' private to each
Transformer. This helps reduce parameters because MO + 3(0? + NO) < 3M N. We experimented
with different matrix ranks O but the differences were small; we set O = 128 (M, N = 768 or 3072).

The decomposition converts a linear projection of input Wx into a series of (unconstrained) linear
projections UXV T x. However, this can cause numerical instability during optimization (Nocedal
& Wright, 2006)). We could perform the Singular Value Decomposition (SVD) over W so that it
performs rotation (V' ), stretch (), and rotation (U) with orthogonal basis vectors in U and V.
Unfortunately, solving the full SVD has a computational complexity of O(max(M, N)?) (Golub
& Van Loan, 2012). Here, we put an orthogonality constraint only on X and perform projection
(V'1), rotation (¥), and projection (U) of input x. In addition, we put V " x in a unit sphere (via £5-
normalization) before rotating it with . This not only improves numerical stability, but also removes
magnitude information in V' x and keeps angular information only, which has been shown to provide
sample discriminative information (Chen et al.,|2019a)). To impose the orthogonality constraint on X,
we use the Padé approximation with a scale-squaring trick of |Lezcano-Casado & Martinez-Rubio
(2019). Intuitively, we linearly project x onto a unit sphere (V' ' x) and rotate it (XV ' x) in each
Transformer so that it captures the dynamics of each input distribution independently. We then project
it to the shared space via U, capturing shared regularities across all three Transformers.

Sharing across Layers. Recently, |Bai et al.|(2019a) showed that sharing parameters across layers in
deep neural networks does not hurt the representational power of the network. Furthermore, (Lan
et al.,[2020) demonstrated that cross-layer parameter sharing in the Transformer leads to a lighter
and faster-to-train model without sacrificing the performance on various language understanding
benchmarks. Motivated by this, we let each Transformer share parameters across different layers.

3 EXPERIMENTS

We pretrain our model on Kinetics-700 (Carreira et al.,|2019) or AudioSet (Gemmeke et al.,2017) and
finetune it on various downstream tasks. The official release of Kinetics-700 contains 10-second clips
only, so we download 410K original videos from YouTube and take 30-second clips from each video.
For fair comparison with prior work, we use 10-second clips from the official release of AudioSet
(we used 1.8M clips). We pretrain our model on 64 NVIDIA Tesla V100 GPUs with a batch size
of 256 for 220K iterations. For downstream tasks, we evaluate on short-video/audio classification
using UCF-101 (Soomro et al., 2012) (13K clips from 101 classes; 7.2 seconds on average) and ESC-
50 (Gemmeke et al.,|2017) (2K clips from 50 classes; 5 seconds), and on long-video classification
using Kinetics-Sounds (Arandjelovic & Zisserman, |[2017)) (23K videos from 32 classes; 10 seconds
on average) and Charades (Sigurdsson et al., 2016) (10K videos from 157 classes; 30 seconds on
average). We describe various details about experimental setup in Appendix.

3.1 RESULTS AND DISCUSSION

Multimodal Fusion Methods. To evaluate different fusion methods on the quality of learned
representation, we test the following settings: (i) Early uses a single multimodal Transformer
with 2 x L layers, (ii) Mid is our approach described in Figure[I] (iii) Late uses two unimodal
Transformers each with 2 x L layers. All the methods are pretrained on audio-visual data using CPP
and MEP losses, except for (iv) Late—w/o-CPP where we use only the MEP loss. We finetune
the pretrained models on audio-visual, audio-only, and visual-only scenarios. For fair comparisons
across different fusion methods, we do not perform parameter sharing in this ablation setting.

Table[T](a) shows that Ear 1y and Mid outperform Late on the audio-visual scenario. This suggests
the importance of encoding cross-modal information. Note that Late—w/—-CPP gets cross-modal
self-supervision, which gives marginal performance improvement over Late—-w/o—CPP; however,
both methods miss the opportunity to encode any cross-modal relationship, leading to inferior results.
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a) Fusion Method Audio-Visual  Audio-only Visual-only b) Sampling Method top-1 top-5
Early 64.9/89.8 -/- -/- Current-Sequence 64.6 89.8
Late-w/-CPP 61.0/88.7 52.3/80.8 41.0/71.3 Current-MiniBatch 65.5 90.8
Late-w/o-CPP 60.6/87.6 50.5/79.9 40.7/71.7 CANS-Dissimilar 66.2 91.1
migf 65.7 / 89.9 53.5/82.7 42.5/73.2 CANS-Similar! 67.5 92.3
¢) Model X.-L X.-T Params top-1/5 d) Model X.-L  X.-T | Params top-1/5
Multi-2 X X ™ 60.3/88.9 Vis-2 X X 14M 414/71.0
Multi-6 v X 2IM 65.7/89.9 Vis-2 v X ™ 412/72.9
Multi-6 v v(all) ™ 67.1/92.3 Vis-6 X X 43M 43.8/74.2
Multi-6 v /(part’) 4M 67.5/92.3 Vis-6 v X ™ 43.5/73.7

Table 1: Ablation study on Kinetics-Sounds comparing: (a; top-left) multimodal fusion methods,
(b; top-right) negative sampling strategies, and (¢ & d; bottom) parameter sharing schemes. X.-L:
Cross-layer, X.-T: Cross-Transformer sharing. We report top-1 and top-5 accuracy (%). I: Ours.

While both Early and Late perform similarly in the audio-visual scenario, only Late can be used
in unimodal downstream scenarios (c.f., Ear 1y requires the presence of both modalities). This has
practical implications: Mid and Late can effectively handle missing modalities, i.e., once pretrained
on audio-visual data, we can use it on any of audio-visual, audio-only, and visual-only scenarios. Our
Mid fusion approach enjoys both the advantages, i.e., learning cross-modal relationship and being
robust to missing modalities, achieving overall the best performance.

Negative Sampling Strategies. We compare four strategies: (i) Current—-Sequence takes all
but the positive instance from the same sequence as negatives, (ii) Current-MiniBatch takes
all but the positive instance in the mini-batch as negatives; this subsumes Current-Sequence,
(iii) CANS-Dissimilar stochastically samples negatives using a modified version of our content-
aware negative sampling (CANS) that favors dissimilar samples, and (iv) CANS—-Similar is our
proposed CANS approach that favors negatives that are similar to the positive instance.

Table[T](b) shows Current—Sequence is the least effective: It makes MEP too difficult because
negatives are (sometimes too much) similar to positives. As a result, the training dynamics is
dominated by CPP, which is relatively easier, leading to inferior performance. We make quite the
contrary observations from Current-MiniBatch: the inclusion of negatives from different videos
makes MEP easier and thus makes it dominate the training dynamics. Our CANS approach solves
both these issues by eliminating negatives that are either almost identical to or trivial to distinguish
from the positives, based on the 95% CI over the CNN embedding distances. It also samples negatives
in a stochastic manner so a wide variety of samples can be included as negatives. Our proposed
CANS-Similar can be considered as a “softened” version of Current-Sequence; it samples
negatives that are similar to positives with a high probability (this can be considered as online hard
negative mining), but it also takes instances from different videos with a lower probability. This
balances out hard and easy negatives, making the MEP task effective.

Parameter Sharing Schemes. Our parameter reduction scheme reduces the number of parameters
from 128M to 4M (by 97%) (Table E] (c)). We reduce the model size by sharing weights across
Transformers and across layers. We validate these ideas in two sets of experiments. Table [I]
(c) compares cross-Transformer weight sharing schemes. We use Multi-6 that uses all three
Transformers with 6 layers each, and compare four methods that correspond to Figure [2] (a)-(d).
Note that No sharing is too large to fit in a Tesla V100 GPU (16GB) even with 2 samples, so we
define Multi-2 that uses three Transformers with 2 layers each, and with the reduced number of
attention heads A to 5, the feature dimension D to 320 and the intermediate dimension E to 1280.
We see that our proposed approach, Part, achieves the best performance with the least number of
parameters. One might ask how Part leads to a smaller model when A11 shares all the weights
across Transformers: We decompose weights W = UXV T with low-rank approximation and share
only U across Transformers, while the XV T part learns modality-specific dynamics. Table (d
compares cross-layer weight sharing schemes using the visual Transformer with either 2 (Vis-2) or
6 (Vis—6) layers. The results show that sharing weights across layers does not hurt the performance,
confirming the observations by |Lan et al.|(2020) in the audio-visual setting.

Pretraining Objectives. To evaluate the importance of MEP and CPP tasks, we test two settings:
(i) Mid-w/o-CPP and (ii) Mid-w/o-MEP. On Kinetics-Sounds, these achieve 65.9% and 64.6%,
respectively; ours achieve 67.5% (top-1 accuracy). The result show that the MEP task plays an
important role during pretraining, confirming the findings from [Sun et al.| (2019a)) that the InfoNCE
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a) Model Net Data UCF b) Model Net Data ESC ¢) Model Charades KS
ST-Puzzle 3D-RI§ K400 | 65.8 SVM MLP - 39.6 Random 59 -7~
ClipOrder ~ R2+1)D  UCF | 724 ConvAE  CNN-4 39.9 ATF 18.3 -1-
DPC 3D-R34 K400 | 75.7 RF MLP - 443 ATF (OF) 224 -1-
CBT S3D K600 | 79.5 ConvNet  CNN-4 - 64.5 V-CNN 187 4587733
MultiSens ~ 3D-RI1§  AS 82.1 SoundNet CNN-8  FS 742 A-CNN 18.9 49.4/76.9
AVTS MC3-18 K400 | 858 L3Net CNN-8  FS 793 M-CNN 23.1 59.4/83.6
AVTS MC3-18  AS 89.0 DMC VGG-ish ~ FS 79.8 V-BERT 26.0 4957789
V-CNNT  SlowFast K700 | 85.2 AVTS VGG-M  AS | 80.6 A-BERT 27.4 58.9/85.7
v-cNn  SlowFast  AS 86.1 Aa-CNNT RS0 AsS [ 815 M-BERT' 29.5 75.6/94.6

Datasets. K: Kinetics, AS: AudioSet, FS: Flicker-SoundNet, KS: Kinetics-Sounds. Baselines. ST-Puzzle (Kim et al., 2019), ClipOrder (Xu et al.;|2019), DPC (Han
et al.| 2019), CBT (Sun et al.}|2019a), MultiSens (Owens & Efros} [2018), AVTS (Korbar et al.}[2018), AE (Aytar et al.||2016), SVM (Piczak] 2015a), RF (Piczak]
2015a), ConvNet (Piczak||2015b), SoundNet (Aytar et al.}[2016), L3 -Net (Arandjelovic & Zisserman}|2017), DMC (Hu et al.| 2019), ATF (Sigurdsson et al.|[2017)

Table 2: (a; left): Short video classification results on UCF101 (mean accuracy (%)). (b; cen-
ter): Short audio classification results on ESC-50 (mean accuracy (%)). (c; right): Long video
classification results on Charades (mAP) and Kinetics-Sounds (KS; top-1/5 accuracy (%)). T: Ours.

loss, as deployed in CBT, is effective in the cross-modal setting. The result also shows that augmenting
MEP with CPP provides further performance improvement by learning cross-modal correspondence.

Downstream Evaluation. We pretrain our model with Mid fusion using MEP and CPP tasks (with
CANS-Similar), and employ Part weight sharing. We use either Kinetics-700 or AudioSet for
fair comparisons with prior work. Table (a)/(b) shows short-video/audio classification results on
UCF-101/ESC-50. For fair comparisons to the baselines, we use only the visual/audio CNN (no
Transformers); we finetune a linear classifier on top of the visual CNN end-to-end for UCF-101, and
train a multi-class one-vs-all linear SVM on top of the fixed audio CNN for ESC-50. Although our
model is pretrained on long video clips with no direct supervision to the CNN layers (gradients must
flow through Transformers), it outperforms most of the baselines (except for AVTS on UCF-101)
that received direct supervision from short video clips. We note that, similar to ours, CBT (Su et al.,
2020) is a multimodal Transformer pretrained on long video clips and thus is the most meaningful
comparison to ours; ours outperform CBT on UCF-101 by 5.7%. For sound classification, our
approach outperform all existing published results.

Table[2](c) shows long-video classification results on Charades and Kinetics-Sounds (KS) when pre-
trained on Kinetics-700. We test Visual-only (V),Audio-only (A),and Multimodal
(M) settings to verify the benefit of multimodal learning. Because there is no published self-
supervised learning results on these datasets, we demonstrate long-term representations by comparing
CNNs (CNN; short-term) to Transformers (BERT; long-term) on KS that contains 10-second clips.
Since CNNs process 1-second clips, we feed 10 non-overlapping clips to CNNs and average the pre-
diction output. In all settings, we add a 2-layer MLP with softmax classifier on top. The results show
that Transformers outperform CNNs on Kinetics-Sounds, suggesting the superiority of long-term
representations. We also see that combining audio-visual information performs the best. We notice
that audio representations are generally stronger than visual representations; we believe that learn-
ing discriminative visual representations is generally more challenging, especially when the CNNs
receive (self-)supervision signals only indirectly through Transformers. We believe that providing
(self-)supervision directly to CNNG, e.g., by first pretraining CNNs on 3D rotation prediction (Jing
et al.| [2018) and then jointly training the whole model (as was done in CBT (Sun et al., | 2019a))), could
further improve performance. Incorporating contrastive learning (Chen et al., 2020) over the CNN
embeddings and training the whole model end-to-end is another promising direction for future work.

4 RELATED WORK

Multimodal BERT. Extending BERT (Devlin et al., 2019) to vision-and-language has been actively
studied. Existing work typically adopt early fusion (Li et al., 2019} |Alberti et al.,|2019}|Sun et al.,
2019b; |Li et al., 20205 Zhou et al., 2020; Su et al.} [2020; (Chen et al.,[2019bj [Zhu & Yang} 2020) or
mid fusion (Tan & Bansal, 2019; Lu et al.,[2019;|Sun et al.| 2019a; [Luo et al.,[2020) without thorough
validation, and they train only visual components while relying on a language-pretrained BERT.
Although there have been some efforts to leverage the Transformer architecture (Vaswani et al.,2017)
for audio and visual inputs (Boes & Van hammel [2019; |Tian et al., 2020), our approach is the first to
demonstrate multimodal audio-visual BERT trained from scratch in an end-to-end manner. This is
enabled by our novel parameter reduction technique, which is one of our main technical contributions.
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Audio-Visual Learning. Early work in audio-visual learning focused on speech signals, improving
audio-visual speech recognition than unimodal approaches (Ngiam et al., 201 1};|Srivastava & Salakhut-
dinov, 2012). Recent approaches leverage unlabeled videos from specific domains (Owens et al.|
2016} |Gao & Grauman, 2019;[Zhao et al., 2018; [Ephrat et al.| 2018} |Alwassel et al.,[2019; Miech et al.
2020; |Piergiovanni et al.,|2020) and often demonstrate on audio-visual source separation, localization,
and co-segmentation. However, these approaches rely on short-term audio-visual correspondence and
thus may not generalize to long-term video recognition that requires global context (as was suggested
in (Hjelm et al.| 2019)), which this work focuses on.

Parameter Reduction. Network pruning (Reed, 1993} |Caron et al., 2020) trains a large model
and then reduces its size while maintaining performance. Reducing the size of CNNs for mobile
applications is an active research area (Rastegari et al.,[2016; Howard et al., 2017;|2019; Zhang et al.,
2018} Iandola et al.,[2016). Our work is closely related to the work that shares parameters across layers
in deep neural networks. Trellis network (Bai et al.,2019b) is a temporal convolutional architecture
with weight-tying across time and depth. Similar to ours, Universal Transformer (Dehghani et al.,
2019), RSNMT (Dabre & Fujita, [2019), DEQ (Bai et al.l 2019a)), ALBERT (Lan et al.| 2020) share
weights across layers in Transformers. We combine this idea with our novel cross-Transformer weight
sharing, which decomposes weight matrices with low-rank approximation.

Negative Sampling. Hard negative mining has been shown to be crucial for contrastive learn-
ing (Arandjelovic & Zisserman, [2017; |Owens & Efros| 2018} Korbar et al., 2018} [Schroff et al.,
2015; [Zhuang et al., 2019; Morgado et al., |[2020; |Wu et al., 2020). Korbar et al.| (2018) use the time
difference between clips to approximate clip similarity (i.e., clips that are further apart are deemed
more different). However, such an assumption may not hold for real-world videos, e.g., periodic
actions such as push-ups. Unlike this line of approaches, we directly use the feature embeddings
learned by our model. Several apparoaches adapted a similar idea (Schroff et al., [2015}; [Zhuang et al.|
2019; Morgado et al., 2020; Wu et al., 2020). Different from prior work, we bring the stochasticity to
the sampling procedure by using the content similarity as the sampling probability; this helps reduce
potential errors especially during the early stage of training.

5 CONCLUSION

We introduced a multimodal bidirectional Transformer architecture for self-supervised learning of
contextualized audio-visual representation from unlabeled videos. Our main technical contributions
include: (1) we propose a parameter efficient multimodal Transformers based on matrix decomposi-
tion with low-rank approximation; (2) we propose a novel content-aware negative sampling technique
for contrastive learning. We demonstrate a successful end-to-end training of multimodal Transformers
for audio-visual learning (which is, to the best of our knowledge, the first time in the literature). We
also report comprehensive evaluation of various design decisions in multimodal learning.
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A IMPLEMENTATION DETAILS

A.1 ARCHITECTURES OF VISUAL/AUDIO CNNSs

Table 3| shows the architectures of visual and audio CNNs we use for our model. For the visual CNN,
we use the SlowFast network (Feichtenhofer et al., [2019) with a ResNet-50 backbone (He et al.|
2016). We use the speed ratio o = 8 and the channel ratio 5 = 1/8 for the SlowFast architecture,
so Ty = 8 x T. We use different values of T and T for different tasks. During pretraining, we
set Ts = 4 and Ty = 32. During finetuning, we use T; = 8 and Ty = 64 for short-video action
classification on UCF101 (Soomro et al.,|2012) while we use Ts = 4 and Ty = 32 for long-video
action classification on Charades (Sigurdsson et al., 2016)) and Kinetics-Sounds (Arandjelovic &
Zisserman, 2017). For the audio CNN, we use a ResNet-50 without the downsampling layer pool; to
preserve information along both frequency and time axis in early stages. We use different values of
T, for different training phases. We set T,, = 220 for one-second clip during pretraining while we
use T, = 440 for two-second clip during finetuning.

Visual CNN .
Stage Slow pathway [ Fast pathway Audio CNN
raw clip 3x T, x 1122 3 x Ty x 1122 128 x T,
conv, 1x 72,64 5x 72,8 9x9,32
stride 1, 22 stride 1, 22 stride 1, 1
pool 1 x 32, max 1 x 32, max _
1 stride 1, 22 stride 1, 22
1x 12,64 3x 12,8 r1x 1,327
ress 1x32,64 | x3 1x3%28|x3 3x3,32 %3
1 x 12,256 1x 12,32 |1 x 1,128]
1x 12,128 3x 12,16 T1x1,647
ress 1x 32,128 x4 1x 32,16 x4 3 x 3,64 | x4
1x 12,512 1x 12,64 |1 x 1,256
3 x 12,256 3x 12,32 1 x 1,128
resy 1 x 32,256 | x6 1x 32,32 | x6 3 x 3,128 x6
1x 12,1024 1x 12,128 11 x1,512]
3 x 12,512 3 x 12,64 1 x 1,256
ress 1x32,512 [ x3 | | 1x32,64|x3 [3x3,256]x3
1 x 12,2048 1 x 12,256 1x1,1024

Table 3: The architectures of visual and audio CNNs. For the visual CNN, the input dimensions
are denoted by {channel size, temporal size, spatial size?}, kernels are denoted by {temporal size,
spatial size?, channel size} and strides are denoted by {temporal stride, spatial stride? ). For the audio
CNN, the input dimensions are denoted by {frequency size, temporal size}, kernels are denoted by
{frequency size, time size, channel size} and strides are denoted by {frequency stride, temporal stride;.

A.2 DATA PREPROCESSING

We preprocess the data by dividing T-second clips into 7" non-overlapping parts (7' = 30 for Kinetics-
700 (Carreira et al.,2019) and 7' = 10 for AudioSet (Gemmeke et al.,[2017)) and sampling 16 frames
from each. For audio stream, we take waveform sampled at 44.1 kHz and convert it to log-mel-scaled
spectrogram. We augment audio data with random frequency/time masking using SpecAugment (Park
et al.,[2019)), and visual data with color normalization, random resizing, random horizontal flip, and
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Figure 3: Loss curves during pretraining under different ablative settings. (a) compares Content-
Aware Negative Sampling (CANS) that favors negatives that are dissimilar vs. similar to the positive
instance. (b) compares different cross-Transformer weight sharing schemes; see the text for details.

random cropping to obtain 112 x 112 pixel frames; for test data, we resize videos to 128 pixels on
the shorter side and take three equidistant crops of 128 x 128 pixels to cover the entire region. We
also apply audio-visual synchronized temporal jittering (Patrick et al.,2020).

A.3 DOWNSTREAM EVALUATION

For evaluation on UCF101, we follow the test protocol of (Feichtenhofer et al., 2019): We sample
10 clips from each test video at a uniform time interval, and for each sampled clip, we take three
equidistant spatial crops, resulting in a total of 30 views. We use each of the 30 views as input to our
visual CNN and average the prediction scores from all 30 views to obtain the final prediction result.
For evaluation on ESC-50 (Piczakl 2015a)), we extract 10 equally spaced 2-second clips from each
test audio sample. We use each of 10 clips as input to our audio CNN and average the prediction
scores to obtain the final prediction result. For evaluation on Charades and Kinetics-Sounds, we use
three audio-visual sequences with different spatial crops from a test video and max-pool/average the
prediction scores from each sequence, respectively.

A.4  OPTIMIZATION

In all experiments, we use the AMSGrad (Reddi et al., [2018) variant of AdamW (Loshchilov &
Hutter, 2019) optimizer with 81 = 0.9, S = 0.98, L2 weight decay of 1e-4. We use a learning rate
warm-up for the first 6% of iterations followed by a linear decay of learning rate.

From the observations of Lezcano-Casado and Martinez-Rubio (Lezcano-Casado & Martinez-Rubiol,
2019), we have 10 times less learning rate for the orthogonal parameters than that for the non-
orthogonal parameters: we use le-5 for the former and 1e-4 for the latter.

We pretrain our model on Kinetics-700 (Carreira et al., 2019) with a batch size 256 for 220K
iterations and AudioSet (Gemmeke et al.| [2017) with a batch size 300 for 220K iterations in the main
experiments; for the ablation study, we use a much smaller batch size of 4 and pretrain our model on
Kinetics-700 for 80K iterations.

For finetuning on UCF101, we train our model for 40K iterations with a batch size of 64 and learning
rate of 0.02. For evaluation on ESC-50, we train a multi-class one-vs-all linear SVM on top of our
fixed audio CNN for 38K iterations with a batch size of 128 and learning rate of 0.003. For finetuning
on Charades, we train for 40K iterations with a batch size of 8, with learning rate of 0.001 for the
classifier and CNN parameters, le-5 for the orthogonal parameters and 1e-4 for the rest parameters.
For finetuning on Kinetics-Sounds, we train for 24K iterations with a batch size of 32, with learning
rate of 0.005 for the classifier and CNN parameters, 1e-4 for the orthogonal parameters and 1le-3 for
the rest parameters.
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B EXTRA RESULTS FROM THE ABLATION STUDY

B.1 NEGATIVE SAMPLING STRATEGIES

We proposed the content-aware negative sampling strategy (CANS) using pairwise [o distances
between CNN embeddings. We introduced two variants of CANS: CANS-Dissimilar that favors
negatives that are dissimilar to the positive instance and CANS—-Simi lar that favors negatives that
are similar to the positive instance. We chose to use CANS—-Similar based on the results from our
ablation study presented in the main paper, Table 1 (b).

Figure 3] (a) in this appendix provides additional evidence that supports our decision. We see that
the loss of CANS-Disimilar initially drops rapidly but starts increasing around iteration 7K
and continues to increase until around 15K; this is mainly caused by the visual MEP loss shown
in Figure [3] (a-2). One explanation for this might that CANS-Disimilar is easier to solve than
CANS-Similar, which causes the loss landscape of CANS-Disimilar to contain too many
shallow local minima compared to that of CANS-Similar. Recall that we use a learning rate
warm-up for the first 6% of iterations during pretraining; this roughly equals to the first 13K (out
of 220K) iterations. Given this, we speculate that the model got out of a local minima around
iteration 7K (most likely due to the increasing learning rate), and then eventually settled in another
(bad) local minima after the warm-up period ended. Compared to this, we observe much milder
learning dynamics with CANS—-Similar: the loss decreases relatively slowly but steadily, and
eventually leaps around 35K to go below the loss of CANS-Disimilar. We, again, believe that
this is because CANS-Similar is more difficult to solve than CANS-Disimilar (as shown by
the slower decrease in loss values), which caused the resulting loss landscape to contain steeper local
minima. Our model eventually found one of those after round 40K of iterations, resulting in a better
performing model in the downstream tasks shown in Table 1 (b) of the main paper (the loss kept
slowly decreasing after iteration 50K).

B.2 PARAMETER SHARING SCHEMES

We proposed a cross-Transformer weight sharing technique, which decomposes weight matrices with
low-rank approximation. Recall that each layer of a Transformer contains the multi-head attention
layer weights {W 2, W* W W} and the feed-forward layer weights {1¥¢, W¢}. We chose to share
all six weight matrices across Transformers, though we could have shared any combination of them.
To justify this design choice, we empirically compared three variants: (i) Mult i—6 that do not share
parameters across Transformers, (ii) Multi-6-Part_Att that shares only {W?, Wk W, Wb}
(but not {WW¢, Wd}) and (iii) Multi-6-Part that shares all six weight matrices. Figure [3|(b)
shows that there is not much difference between all the variants in terms of the loss curves; we chose
touse Multi-6-Part that requires the least number of parameters. We showed that our approach
outperforms Mult i-6 in the ablation study (Table 1 (c-left) in the main paper).

B.3 JUSTIFICATION FOR THE MEP L0OSS FORMULATION

Since the multimodal Transformer h 4y has access to both visual and audio inputs, one might think
that the model could “leak” information about visual input into z* and information about audio
input into z¥, which could make MEP trivial to solve. Here we show that this is not the case. By
construction, we mask the same positions in audio and visual streams when designing the MEP task,
so the model has no access to the masked input even in a cross-modal manner. Empirically, removing
the third term in Eq. E] (Lnce([x%;x"], z)) leads to performance degradation in Kinetics-Sounds, i.e.,
top-1 accuracy 66.7% vs. ours 67.5% (see Table[I)), which suggests that solving the MEP task in the
multimodal Transformer is beneficial to our model.

B.4 JUSTIFICATION FOR THE CPP L0SS FORMULATION

Recall that our CPP loss has two terms; the first term uses the summary embeddings s, and the
second term uses output embeddings s;, sampled at random positions; see Eq. [/} One could argue
that the two terms are redundant as bidirectional Transformers have “one-step” access to all the input
embeddings, and thus solving CPP only with the summary embeddings (the first term) would be
enough. This is not the case. We encode s;, with position-specific information through the time
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embeddings p¢, which makes every s;, different compared to s,. Empirically, we find that removing
the second term of Eqn.[7](sy,) in our CPP loss leads to an inferior accuracy 66.9% vs. ours 67.5% on
Kinetics-Sounds, suggesting its importance in learning.

B.5 USE OF MODALITY EMBEDDINGS IN THE MULTIMODAL TRANSFORMER

We use modality embeddings m” and m® as part of input to the multimodal Transformer in order
to distinguish embeddings coming from visual and audio Transformers. They are learnable weights
trained end-to-end with other parameters. Conceptually, incorporating modality-discriminative em-
beddings is crucial because of our aggressive weight sharing scheme. Without them, the multimodal
Transformer will see the output from audio/visual Transformers (y® and y") as if they are coming
from the same distribution because the two Transformers share a large part of weights. Using modality
embeddings encourages our model to preserve modality-specific information in the final output, and
this empirically leads to performance improvements: ours 67.5% vs. without modality embeddings
67.1% on Kinetics-Sounds.

B.6 ON THE IMPORTANCE OF END-TO-END PRETRAINING

Previous work in multimodal visual-and-language tasks (Tan & Bansal, 2019;[Lu et al.|[2019) point
out that using partially fixed Transformers of different modalities is detrimental to multimodal
representation learning (c.f., Sun et al.| (2019a;b)). We make the same observation in our audio-
visual learning scenario. We compare two variants of Multi-6 Part in Table[I] (c), each of
which pretrains only the audio (or visual) CNN/Transformer in the first half of pretraining stage and
then continues pretraining the remaining weights while fixing the weights of the audio (or visual)
CNN/Transformer in the second half. This leads to inferior performance (audio-fixed 62.8% and
visual-fixed 63.1% vs. ours 67.5%), which is consistent with the results reported in|/Tan & Bansal
(2019); Lu et al.| (2019).
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