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ABSTRACT

Long-horizon event forecasting is critical across various domains, including re-
tail, finance, healthcare, and social networks. Traditional methods, such as
Marked Temporal Point Processes (MTPP), often rely on autoregressive mod-
els to predict multiple future events. However, these models frequently suffer
from issues like converging to constant or repetitive outputs, which limits their
effectiveness and general applicability. To address these challenges, we intro-
duce DeTPP (Detection-based Temporal Point Processes), a novel approach in-
spired by a matching-based loss function from object detection. DeTPP em-
ploys a unique matching-based loss function that selectively prioritizes reliably
predictable events, improving the accuracy and diversity of predictions during
inference. Our method establishes a new state-of-the-art in long-horizon event
forecasting, achieving up to a 77% relative improvement over existing MTPP and
next-K methods. Furthermore, DeTPP enhances next-event prediction accuracy
by up to 2.7% on a large transactions dataset and demonstrates high computational
efficiency during inference. The implementation of DeTPP is publicly available
on GitHub1.

1 INTRODUCTION

Data from various domains, including internet activity, e-commerce transactions, retail operations,
and clinical visits, is often recorded as timestamps and associated information. When ordered by
their timestamps, these data points form event sequences, and it is crucial to develop methods capa-
ble of handling these complex data streams. Event sequences differ fundamentally from other data
types. Unlike tabular data (Wang & Sun, 2022), events include timestamps and have an inherent
order. In contrast to time series data (Lim & Zohren, 2021), event sequences are characterized by
irregular time intervals and additional attributes. These distinctions necessitate the development of
specialized models.

The primary task in the domain of event sequences is predicting future event types and their occur-
rence times. Indeed, the ability to accurately forecast sequential events is vital for applications such
as stock price prediction, personalized recommendation systems, and early disease detection. The
simplified domain, represented as pairs of event types and times, is typically called Marked Tempo-
ral Point Processes (MTPP) (Rizoiu et al., 2017). Additionally, structured modeling of dependencies
between different data fields (McDermott et al., 2024) can be considered an extension of MTPP.

Practical applications often require predicting multiple future events within a specified time horizon.
This task presents unique challenges that differ from traditional next-event prediction. The conven-
tional approach typically relies on autoregressive models, which predict the next event step by step.
While these models are effective for immediate next-event forecasting, their performance tends to
deteriorate as the prediction horizon extends (Karpukhin et al., 2024).

This study identifies and addresses significant limitations of the autoregressive approach in the con-
text of long-horizon prediction. In particular, autoregressive models accumulate errors over time,
leading to constant or repetitive outputs. Additionally, their inference parallelism is limited due to
dependencies on the latest predictions. To address these limitations, we propose DeTPP, a novel

1https://github.com/anonymous-9485560/mtpp-detection-iclr25
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Figure 1: (a) A typical next-item or next-K loss compares events at corresponding positions, often
resulting in incorrect matches. (b) The proposed matching loss calculates the loss function between
the closest events, leading to a more robust and balanced error measure. (c) The proposed DeTPP
method enhances prediction diversity. The illustration demonstrates 3 predicted sequences from
the Amazon dataset for the autoregressive IFTPP method, its next-K extension, and the proposed
DeTPP method. Each label type is depicted using a distinct shape and color combination. The
precise timestamps are omitted for simplicity.

approach inspired by matching-based loss function from object detection. DeTPP predicts multi-
ple future events in parallel. The novel matching loss, illustrated in Fig. 1, omits events that are
inherently hard to model and focuses on robust modeling of other events. As a result, DeTPP sets
a new state-of-the-art in long-horizon prediction, outperforming both autoregressive and next-K ap-
proaches. We also introduce a simple extension that combines ideas from DeTPP with traditional
methods, improving next-event prediction quality, particularly on the large Transactions dataset.

2 RELATED WORK

Marked Temporal Point Processes. MTPP is a stochastic process that consists of a sequence
of time-event pairs (t1, l1), (t2, l2), . . . , where t1 < t2 < . . . denote the times of events, and
li ∈ {1, . . . , L} are the corresponding event type labels (Rizoiu et al., 2017). Traditional MTPP
models primarily focus on predicting the next event in the sequence. A straightforward approach
is to independently predict the time and type of the next event, while more sophisticated methods
model the temporal dynamics of each event type separately. These models often rely on Temporal
Point Processes, which describe the stochastic generation of event times.

MTPP models. Traditional MTPP models, such as Poisson and Hawkes processes (Rizoiu et al.,
2017), rely on strong assumptions about the underlying generative processes. Recent advancements
have shifted towards more flexible and expressive models that leverage neural architectures. These
include classical Recurrent Neural Networks (RNNs) (Du et al., 2016; Xiao et al., 2017; Omi et al.,
2019; Shchur et al., 2019), as well as more advanced architectures like transformers (Zhang et al.,
2020; Zuo et al., 2020; Wang & Xiao, 2022; Yang et al., 2022). Additionally, continuous-time mod-
els such as Neural Hawkes Processes (Mei & Eisner, 2017), ODE-RNN (Rubanova et al., 2019),
and their variants (Jia & Benson, 2019; De Brouwer et al., 2019; Kidger et al., 2020; Song et al.,
2024; Kuleshov et al., 2024) have been developed to capture the dynamics of event sequences bet-
ter. Moreover, some researchers have adapted generative models, including denoising diffusion and
Generative Adversarial Networks (GANs), for use in TPPs (Lin et al., 2022).

2
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Next-K models. Previous research has explored models that predict multiple future events simul-
taneously, known as next-K models (Karpukhin et al., 2024). These models are typically trained
using pairwise losses that match predicted events to ground truth events at corresponding positions.

Long-horizon models. The problem of long-horizon prediction has been addressed explicitly by
HYPRO (Xue et al., 2022), which introduces a technique for selecting the best candidate from a set
of generated sequences. HYPRO functions as a meta-algorithm that can enhance the performance of
nearly any sequence prediction model. However, HYPRO’s approach requires multiple generation
runs for each prediction, significantly reducing training and inference speed.

3 LIMITATIONS OF AUTOREGRESSIVE INFERENCE

Previous studies have identified several challenges associated with autoregressive models for long-
horizon predictions (Karpukhin et al., 2024). These models often exhibit reduced prediction uncer-
tainty over extended horizons, even though the task becomes increasingly difficult. As illustrated
in Fig. 1.c, the predicted label sequences often have constant or repetitive outputs. This behavior
likely stems from the model’s reliance on its predictions as input for subsequent predictions, which
can amplify errors and lead to repeated events. Notably, even the next-K approach, despite avoiding
autoregressive dependencies, exhibits repetitive patterns. This may be attributed to each head in the
next-K model predicting the entire distribution of labels, leading to a bias toward the most frequent
classes during inference.

In contrast, our proposed DeTPP approach exhibits greater diversity in its predictions and, as we
will demonstrate, achieves superior performance in long-horizon prediction tasks. The details of the
proposed method are discussed in the following section.

4 EVENT DETECTION WITH DETPP

This section introduces DeTPP, a novel approach to MTPP modeling that incorporates the loss func-
tion, motivated by DeTR object detection approach (Carion et al., 2020). DeTPP begins by utilizing
a backbone model to extract embeddings from historical data. In the next stage, DeTPP predicts
K future event candidates within a specified time horizon H, where K is larger than the typical se-
quence length. During training, the model aligns its predictions with ground truth and computes
pairwise losses, as illustrated in Fig. 2. At inference time, the model retains only candidates with
high prediction scores. Below, we provide a detailed overview of the event prediction head, the
sequence model, and the associated training and inference procedures.

4.1 PREDICTION HEAD

DeTPP captures the complexity of event sequences by modeling each component of an event using
a probabilistic framework. Specifically, DeTPP predicts the probability of an event occurring, the
distribution of event labels, and the distribution of the time shift relative to the last observed event.

As depicted in Fig. 2, the probability ô of an event occurring is modeled using a neural network with
a sigmoid activation function. A separate head with softmax activation (SM) models the distribution
p̂(l) of event labels. For the time shift, we employ an approach similar to Mixture Density Networks
(MDNs) (Bishop, 1994) and intensity-free TPP (Shchur et al., 2019), modeling the time shift as a
Laplace distribution with a unit scale parameter:

P(t) =
1

2
e−|t−t̂|, (1)

where t̂ is the predicted time shift. This formulation offers a probabilistic interpretation of the MAE
loss function. By combining the predicted probabilities, we can estimate the likelihood of a future
event given the output of the model:

log P(y) = log ô+ log p̂(l)− |t− t̂| − log 2. (2)
where y = (t, l) represents an event with timestamp t and label l. The probability of a missed event
(i.e., no event occurring) is given by:

log P(∅) = log(1− ô) + C∅, (3)

3
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Figure 2: DeTPP predicts K future events. Each prediction includes presence probability ô, time
t̂, and labels distribution p̂(l). During training, a special matching loss aligns predictions with the
ground truth sequence and evaluates its likelihood.

where C∅ is a constant independent of the model’s output, representing the probability associated
with a reserved ”unknown” time and label values. To compute the loss function, we omit C∅ since
it does not influence the gradient during training.

This proposed probabilistic framework offers a rigorous basis for evaluating the likelihood of ground
truth event sequences.

4.2 HORIZON MATCHING LOSS

DeTPP is designed to predict K future events {ŷi}Ki=1 within the horizon H, defined as the interval
(t, t+H), where t is the timestamp of the last observed event. The set of ground truth events within
this horizon is denoted by {yi}Ti=1, where T may vary. The model aligns the predicted sequence
with the ground truth sequence by finding the matching that minimizes the following loss function:

L(y, ŷ) = min
σ∈A

[
T∑

i=1

Lpair(yi, ŷσ(i)) + LBCE(σ, ŷ)

]
, (4)

whereA is the set of all possible alignments between the ground truth and predicted sequences and σ
represents a specific alignment. The optimal matching is computed using the Hungarian algorithm.

The pairwise loss Lpair is similar to the negative log-likelihood of the ground truth event yi given
the predicted distribution ŷσ(i). Specifically:

Lmatch(yi, ŷσ(i)) = |ti − t̂σ(i)| − log p̂σ(i)(li), (5)

where y = (t, l) is a ground truth event, t̂ is the predicted timestamp, and p̂(l) is the predicted
probability of the correct label. The binary cross-entropy loss LBCE is used to train the model to
predict the presence probability of events:

LBCE(σ, ŷ) = −
∑
i∈σ

log ôi −
∑
i/∈σ

log(1− ôi), (6)

where ôi is the predicted probability that the i-th event is matched with some ground truth event.

By minimizing the overall loss L(y, ŷ), DeTPP is trained to accurately predict the parameters of
the ground truth sequence, adapting to sequences of varying lengths, up to a maximum of K events.
Unlike object detection training objectives such as DeTR Carion et al. (2020), DeTPP employs the
same loss function for both the matching process and model training. Specifically, DeTPP integrates
the alignment loss LBCE into the matching cost. As demonstrated in our experiments, this approach
enhances the model’s performance, especially on small datasets.

To enable the method to accurately address both the next-event prediction task and long-horizon
forecasting, we incorporate the IFTPP loss function into the first output head. The final training
objective is defined as follows:

LDeTPP(y, ŷ) = L(y, ŷ) + λ
[
|t1 − t̂1| − log p̂1(l1)

]
. (7)

4
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4.3 CONDITIONAL HEAD ARCHITECTURE

. . .

. . .

. . .

Embedding

Queries

Concatenate

Feed-forward

Predictions

Figure 3: The DeTPP conditional prediction head.

Implementing a separate feed-forward network
for each prediction head results in many param-
eters and increases the risk of overfitting. A
common strategy to reduce the parameter count
is applying a transformer decoder network to a
set of K queries, where the decoder shares the
same projection matrices for all input vectors,
lowering the total number of weights. How-
ever, since our model generates the entire set
of predictions from a single embedding vector,
we can simplify this approach by omitting the
cross-attention layer.

In DeTPP, we implement a conditional feed-forward network, as shown in Fig. 3. The model takes
two inputs: a query and a context vector. It then applies a feed-forward network to the concatenated
input vectors. This way, the trainable query vector encodes the necessary information about each
output head, allowing the same feed-forward network to generate all K outputs. Using a single
network instead of K distinct ones significantly reduces the overall number of parameters, speeds
up convergence, and improves prediction quality, as demonstrated in our ablation studies.

4.4 CALIBRATION AND INFERENCE

Inference with DeTPP involves two steps: filtering and sorting. First, predicted events are filtered
based on their occurrence probabilities ôi. The remaining events are then sorted according to their
predicted timestamps, forming the final output sequence. However, in practice, an additional cali-
bration step is necessary. Without calibration, the model tends to predict a small number of events
due to a bias in the predicted occurrence probabilities ôi toward the matching frequency of each
head, which is typically below the 0.5 threshold. Calibration aims to determine optimal prediction
thresholds for all ôi, aligning the prediction rates with the matching probabilities. This calibration is
performed on the fly by tracking matching frequencies and computing the corresponding quantiles
using a streaming algorithm. The proposed calibration algorithm is outlined in Algorithm 1.

Algorithm 1 On-line calibration

Input: batches bn, n = 1, N with size B, momentum m.
Output: prediction thresholds thk, k = 1,K.

1: rk ← 1, k = 1,K ▷ Initialize head matching rates
2: thk ← 0, k = 1,K ▷ and thresholds
3: for n = 1 to N : ▷ Process each batch
4: matchedk ← 0, k = 1,K
5: scoresk ← ∅, k = 1,K
6: for (y, ŷ) in bn : ▷ Compute statistics for batch elements
7: σ ← optimal matching for (y, ŷ) given by Eq.4.
8: matchedk ← matchedk + I [k ∈ σ] , k = 1,K ▷ I is the indicator function
9: scoresk ← scoresk

⋃
{ôk}, k = 1,K

10: rk ← (1−m)rk +m matchedk/B, k = 1,K ▷ Update matching rates
11: thk ← (1−m)thk+m Q(rk, scoresk), k = 1,K ▷ and thresholds. Q is the quantile function

4.5 HYPERPARAMETER SELECTION

DeTPP relies on two key hyperparameters: the maximum number of predictions K and the horizon
H . We set the horizon H to match that of the T-mAP metric, ensuring consistency in evaluation.
The selected value is also sufficient to include the necessary number of events for calculating the
OTD metric. The selection of K typically requires tuning for each dataset. It controls the maximum
number of predictions, and we recommend setting K to approximately four times the average se-

5
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quence length. In our experiments, K values ranged between 32 and 64, depending on the dataset’s
characteristics. The value of λ from Eq. 7 was set to 4 in all experiments.

Additionally, we found it beneficial to adjust the weight of each loss function during alignment to
accommodate the number of model outputs, dataset classes, and the average time step. In practice,
the optimal weight for LBCE is typically around eight times larger than the weights for the label and
timestamp losses. For datasets with larger time steps, such as Retweet, the MAE loss weight should
be reduced accordingly.

The exact hyperparameter values used in our experiments are provided in Appendix B.

5 EXPERIMENTS

We conducted a series of experiments using the HoTPP benchmark (Karpukhin et al., 2024) to as-
sess the performance of DeTPP against several widely used MTPP models. Specifically, we compare
DeTPP to Intensity-Free (Shchur et al., 2019), intensity-based RMTPP (Du et al., 2016) and NHP
(Mei & Eisner, 2017) approaches, ODE-RNN (Rubanova et al., 2019), the transformer-based At-
tNHP model Yang et al. (2022), and the long-horizon rescoring method HYPRO (Xue et al., 2022).
We employ a GRU recurrent neural network Cho et al. (2014) as the backbone for the DeTPP model,
similar to IFTPP and RMTPP.

The datasets employed in this study include Retweet (Zhao et al., 2015), Amazon (Jianmo, 2018),
StackOverflow (Jure, 2014), MIMIC-IV (Johnson et al., 2023), and Transactions (AI-Academy for
teens, 2021), which represent a diverse range of domains and scales, as summarized in Table 1.

Table 1: Datasets statistics and evaluation parameters

Dataset Domain Sequences Events Classes Time
unit

OTD
steps

Horizon /
Mean length

StackOverflow Social. net. 2k 138k 22 Minute 10 10 / 12.0
Amazon Social. net. 9k 403k 16 N/A 5 10 / 14.8
Retweet Social. net. 23k 1.3M 3 Second 10 180 / 14.7
MIMIC-IV Medical 120k 2.4M 34 Day 5 28 / 6.6
Transactions Financial 50k 43.7M 203 Day 5 7 / 9.0

MTPP models are typically evaluated based on their accuracy in predicting the next event (Xue et al.,
2023). Time and type predictions are often assessed separately, with type prediction accuracy mea-
sured by error rates and time prediction accuracy evaluated using metrics like Mean Absolute Error
(MAE) or Root Mean Squared Error (RMSE). Recent advancements have introduced metrics such
as Optimal Transport Distance (OTD) (Mei et al., 2019) and Temporal mAP (T-mAP) (Karpukhin
et al., 2024), which are designed to evaluate long-horizon predictions by comparing predicted se-
quences to ground truth sequences within a specified horizon. In this work, we use all mentioned
metrics to assess the performance of our proposed method. We also measure the diversity of pre-
dictions by using the predicted label distribution entropy. For further details on metric computation,
please refer to Appendix E. Ablation studies are presented in Appendix F.

5.1 LONG-HORIZON EVENTS FORECASTING

We evaluate long-horizon prediction performance using Optimal Transport Distance (OTD) and
Temporal mean Average Precision (T-mAP). As shown in Table 2, DeTPP significantly outperforms
popular MTPP approaches, with the only exception being the OTD metric on the MIMIC-IV dataset,
where IFTPP ranks first and DeTPP second. Overall, DeTPP achieves state-of-the-art performance
in 9 out of 10 comparisons. The high T-mAP scores of DeTPP can be linked to its training objec-
tive, which utilizes matching, similar to T-mAP. However, DeTPP consistently improves the OTD
metric, suggesting that its training process enhances overall model performance rather than merely
optimizing for a single evaluation criterion.

6
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Table 2: Evaluation results in the long-horizon prediction task. The best result is shown in bold.
Mean and STD values of 5 runs with different random seeds are reported.

Model Metrics (OTD / T-mAP)
StackOverflow Amazon Retweet MIMIC-IV Transactions

IFTPP 13.64 / 8.31% 6.52 / 22.56% 172.7 / 31.75% 11.53 / 21.67% 6.90 / 5.88%
±0.05 / ±0.50% ±0.05 / ±0.52% ±4.4 / ±4.44% ±0.01 / ±0.21% ±0.01 / ±0.13%

RMTPP 13.17 / 12.72% 6.57 / 20.06% 166.7 / 44.74% 13.71 / 21.08% 6.88 / 6.69%
±0.05 / ±0.16% ±0.03 / ±0.33% ±3.3 / ±0.94% ±0.03 / ±0.29% ±0.01 / ±0.12%

NHP 13.24 / 11.96% 9.02 / 26.29% 165.8 / 45.07% 18.60 / 7.32% 6.98 / 5.61%
±0.02 / ±0.40% ±0.35 / ±0.55% ±1.6 / ±0.34% ±0.19 / ±1.33% ±0.01 / ±0.05%

AttNHP 13.30 / 11.13% 7.30 / 14.62% 171.6 / 25.85% 14.68 / 22.46% 7.50 / 1.48%
±0.02 / ±0.32% ±0.06 / ±0.80% ±1.0 / ±1.08% ±0.08 / ±0.40% N/A / N/A

ODE 13.27 / 10.52% 9.46 / 22.96% 165.3 / 44.81% 14.74 / 15.18% 6.97 / 5.52%
±0.03 / ±0.23% ±0.08 / ±0.61% ±0.5 / ±0.69% ±0.34 / ±0.15% ±0.01 / ±0.13%

HYPRO 13.26 / 14.69% 6.61 / 20.53% 170.7 / 46.99% 14.87 / 16.77% 7.05 / 7.05%
N/A / N/A N/A / N/A N/A / N/A N/A / N/A N/A / N/A

DeTPP 12.14 / 22.72% 5.98 / 37.20% 132.9 / 57.93% 12.95 / 30.35% 6.70 / 9.26%
±0.04 / ±0.32% ±0.04 / ±0.06% ±0.7 / ±0.33% ±0.32 / ±0.25% ±0.03 / ±0.09%

The suboptimal performance of DeTPP on the MIMIC-IV dataset in terms of OTD warrants further
discussion. As illustrated in Fig. 4a, MIMIC-IV includes numerous events with near-zero times-
tamps. These events, however, follow a natural sequence (e.g., admission, laboratory tests, ICU stay
start, treatment, ICU stay end). Consequently, for MIMIC-IV, precise ordering of events becomes
more important than accurate time predictions.

To highlight the impact of ordering, consider a simple dataset consisting of a single sequence with
16 events, each having a timestamp of zero and labels forming an ordered sequence of integers from
0 to 15. In this dataset, timestamps provide no information about the event order. OTD, calculated
for sequences of length 5, requires the model to correctly predict the first 5 events to achieve a low
score. As shown in Fig. 4b, only IFTPP and RMTPP attain a low OTD score, while other methods,
including those with high T-mAP scores, perform significantly worse. This outcome is expected
for DeTPP, as its event ordering relies entirely on the predicted timestamps. Interestingly, NHP
and ODE-based approaches exhibit similar behavior. This can be attributed to the NHP objective,
which models the arrival times of each event class independently, leading to random ordering when
timestamps are identical.

From this experiment, we conclude that most TPP methods struggle with ordering events that share
equal timestamps. However, such problems fall beyond the scope of MTPP modeling, as outlined
in Section 2.
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Figure 4: Additional experiments demonstrating specifics of the OTD metric on MIMIC-IV.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5.2 NEXT EVENT PREDICTION

Marked temporal point processes are usually evaluated based on the quality of next-event prediction.
We measured the next-event type error rate and mean absolute time error across various datasets,
with the results presented in Fig. 5. DeTPP achieves state-of-the art results in all comparisons and
significantly reduces error on the Transactions dataset, the only dataset where the difference between
top methods is significant. This improvement highlights DeTPP’s potential to scale effectively for
more complex problems involving a large number of classes and events. We conclude that DeTPP,
although primarily designed for long-horizon prediction, also achieves high-quality performance in
the next-event prediction task.
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Figure 5: The next event prediction error.

5.3 PREDICTIONS DIVERSITY

As we qualitatively demonstrated in Section 3, autoregressive methods tend to produce repetitive
outputs. In this section, we provide additional quantitative results that further highlight the low
output diversity of traditional approaches.

A popular way to make diverse predictions is to adjust temperature during sampling. When the
temperature approaches zero, the model predicts the label with the maximum output probability, as
previous experiments did. When the temperature increases, the model samples from the uniform
label distribution, leading to the highest possible entropy. We, therefore, need to study the impact
of the temperature on both the predictions diversity and long-horizon quality. We do this by varying
temperature from 0 to 10 and measuring the average entropy of predicted event types within the hori-
zon. We also evaluate the long-horizon prediction quality regarding OTD, as T-mAP doesn’t depend
on temperature. The results from Fig. 6 show, that DeTPP achieves the optimal balance between
diversity and prediction quality on 4 out of 5 datasets. Certain methods benefit from sampling-based
approaches over maximum probability predictions; however, they fail to achieve the prediction qual-
ity of DeTPP. Further details on DeTPP’s output diversity can be found in Appendix D.
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Figure 6: The relation between OTD and predictions diversity for varying sampling temperature
values. The optimal quality corresponds to the bottom right corner, combining low error and high
diversity.
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5.4 TRAINING AND INFERENCE SPEED

A key practical aspect of the model is its computational efficiency. Fig. 7 presents a comparison of
the training and inference times in terms of Requests Per Second (RPS), i.e., the number of processed
batch elements2. The results show that DeTPP has a moderate training time while being the fastest
method during inference across all datasets except Transactions, where it is slightly slower than
IFTPP due to the computational cost associated with the prediction head. We therefore conclude
that DeTPP is among the most computationally efficient methods in the field.
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Figure 7: Computation speed measured as Requests Per Second (RPS) during training and sequence
generation.

5.5 THE NUMBER OF HEADS

An important hyperparameter of DeTPP is the number K of prediction heads. We analyzed the
quality of the model depending on K according to the T-mAP metric, as it, unlike OTD, considers
the whole horizon. The results are presented in Fig. 8. It can be seen that the number of heads
is an important hyperparameter that must be tuned individually for each dataset. In most cases,
however, the optimal value lies between 32 and 64. It is also worth noting that the dependency is
not monotonic, and the large K might be suboptimal. On the MIMIC-IV and Transactions datasets,
the value of K has little impact on performance within a specified range, so we reduced the number
of heads to speed up training.
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Figure 8: The dependency of T-mAP on the DeTPP hyperparameter K. The vertical line indicates
the selected value.

5.6 HEADS SPECIALIZATION

To provide greater intuition on the functioning of DeTPP, we conducted an additional analysis of the
outputs generated by the model’s prediction heads. During training, each prediction head is matched
to its closest corresponding ground truth event, leading to a gradual and persistent specialization.
This specialization is illustrated in Fig. 9, where we present per-head output statistics. As shown,
each prediction head becomes responsible for a specific time interval and a subset of event classes.
Notably, the time intervals tend to be short in relation to the overall horizon length, while the number
of assigned event classes can vary from 1 to 10. From this, we infer that the specialization of the
prediction heads is driven more by temporal factors than by specific event types.

2The experiment was done with a single Nvidia RTX 4060 GPU.
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In the Retweet dataset, approximately half of the heads focus on events occurring in the near fu-
ture, leaving the later parts of the horizon largely uncovered. This suggests that the model naturally
excludes rare and distant events, which are challenging to predict accurately. This behavior high-
lights DeTPP’s inherent flexibility in adapting to the underlying data distribution without additional
modifications.
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Figure 9: Output statistics across K model heads. Head indices are sorted according to the mean
predicted timestamp. The number of classes for Transactions is limited to 20 for clarity.

6 LIMITATIONS AND FUTURE WORK

While DeTPP effectively addresses both next-event and long-horizon prediction tasks, it has certain
limitations. First, DeTPP relies on a fixed horizon size, H . In this study, we selected H based
on the hyperparameters of the OTD and T-mAP metrics. A change in the evaluation metric typi-
cally requires adjusting DeTPP’s parameters. A potential direction for future research could explore
combining horizon-based and autoregressive inference, enabling DeTPP to make predictions across
arbitrary horizons without requiring modifications to the model.

Another limitation of DeTPP is its independent prediction of events within the horizon. Future
research could investigate integrating rescoring techniques, such as those in Xue et al. (2022), or ap-
plying beam search to improve DeTPP’s predictive performance. Additionally, better time modeling
might be achieved by integrating intensity-based approaches, like NHP or RMTPP, with DeTPP, of-
fering another promising direction for research.

Furthermore, some techniques from DeTPP could be adapted for object detection in computer vi-
sion Carion et al. (2020). DeTPP introduces a probabilistic framework that unifies different loss
functions, using the same objective during both matching and backpropagation, which enhances op-
timization robustness. Notably, DeTPP employs a presence score during matching, which, as shown
in our ablation studies, significantly improves the model performance on most datasets.

7 CONCLUSION

In this work, we introduced DeTPP, a novel event prediction method that adapts a set-based training
objective from object detection to address the challenges of long-horizon forecasting. Our experi-
ments demonstrate that DeTPP effectively overcomes the limitations of traditional autoregressive ap-
proaches. Notably, DeTPP generates more diverse predictions, significantly enhancing long-horizon
prediction accuracy. Moreover, DeTPP is computationally more efficient than most MTPP methods,
as it predicts multiple future events in parallel. This approach paves the way for advancing the
modeling of Marked Temporal Point Processes, offering new opportunities across a wide range of
practical applications.
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Oleksandr Shchur, Marin Biloš, and Stephan Günnemann. Intensity-free learning of temporal point
processes. arXiv preprint arXiv:1909.12127, 2019.

Yujee Song, Donghyun Lee, Rui Meng, and Won Hwa Kim. Decoupled marked temporal point
process using neural ordinary differential equations. arXiv preprint arXiv:2406.06149, 2024.

Chongren Wang and Zhuoyi Xiao. A deep learning approach for credit scoring using feature em-
bedded transformer. Applied Sciences, 12(21):10995, 2022.

Zifeng Wang and Jimeng Sun. Transtab: Learning transferable tabular transformers across tables.
Advances in Neural Information Processing Systems, 35:2902–2915, 2022.

Shuai Xiao, Junchi Yan, Xiaokang Yang, Hongyuan Zha, and Stephen Chu. Modeling the intensity
function of point process via recurrent neural networks. In Proceedings of the AAAI conference
on artificial intelligence, volume 31, 2017.

Siqiao Xue, Xiaoming Shi, James Zhang, and Hongyuan Mei. Hypro: A hybridly normalized prob-
abilistic model for long-horizon prediction of event sequences. Advances in Neural Information
Processing Systems, 35:34641–34650, 2022.

Siqiao Xue, Xiaoming Shi, Zhixuan Chu, Yan Wang, Fan Zhou, Hongyan Hao, Caigao Jiang, Chen
Pan, Yi Xu, James Y Zhang, et al. EasyTPP: Towards open benchmarking the temporal point
processes. arXiv preprint arXiv:2307.08097, 2023.

Chenghao Yang, Hongyuan Mei, and Jason Eisner. Transformer embeddings of irregularly spaced
events and their participants. In Proceedings of the tenth international conference on learning
representations (ICLR), 2022.

Qiang Zhang, Aldo Lipani, Omer Kirnap, and Emine Yilmaz. Self-attentive hawkes process. In
International conference on machine learning, pp. 11183–11193. PMLR, 2020.

Qingyuan Zhao, Murat A Erdogdu, Hera Y He, Anand Rajaraman, and Jure Leskovec. Seismic:
A self-exciting point process model for predicting tweet popularity. In Proceedings of the 21th
ACM SIGKDD international conference on knowledge discovery and data mining, pp. 1513–
1522, 2015.

Simiao Zuo, Haoming Jiang, Zichong Li, Tuo Zhao, and Hongyuan Zha. Transformer hawkes
process. In International conference on machine learning, pp. 11692–11702. PMLR, 2020.

A ON-LINE CALIBRATION ALGORITHM

The description of the algorithm moved to the main text. This section will be removed in the camera-
ready version of the paper.

B HYPERPARAMETERS

Table 3 provides details of the backbone architecture and training parameters. Training on smaller
datasets typically involves a greater number of epochs. For the Transactions dataset, the backbone
size was increased to accommodate its higher number of events and event types compared to the
other datasets.

The number of prediction heads K and matching weights in DeTPP were chosen using a Bayesian
optimizer, with the validation T-mAP score as the objective function. The selected horizon is equal
to that used in the T-mAP metric. The λ weight was set to 4 in all cases. The final values are
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Table 3: Backbone and training hyperparameters.

Dataset Num epochs Max Seq. Len. Label Emb. Size Hidden Size Head layers
dimensions

Transactions 30 1200 256 512 512→ 256
MIMIC-IV 30 64 16 64 64
Retweet 30 264 16 64 64
Amazon 60 94 32 64 64
StackOverflow 60 101 32 64 64

Table 4: DeTPP hyperparameters.

Dataset K Horizon λ
Matching weights

Presence Timestamps Labels

Transactions 32 7 4 4 0.47 0.57
MIMIC-IV 32 28 4 4 0.4 0.8
Retweet 64 180 4 4 0.15 0.6
Amazon 48 10 4 4 0.5 0.8
StackOverflow 48 10 4 4 2 1

presented in Table 4. Note, that only relative values of matching weights are important. Thus,
DeTPP has 3 hyperparameters that must be tuned.

We also conducted an additional analysis to examine the dependency of DeTPP on the selected loss
weights. The results for the Amazon, Retweet, and StackOverflow datasets are shown in Figure 10
and Figure 11. Most parameters are observed to be near their optimal values, with a few suboptimal
exceptions. We retained the original values to ensure a fair comparison with the baselines, where
hyperparameters were also automatically tuned using Bayesian optimization.
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Figure 10: DeTPP T-mAP performance across varying loss weights. The vertical line indicates the
value determined through Bayesian hyperparameter optimization.

C OTD ON MIMIC-IV

The section moved to the main text. Appendix will be removed in the camera-ready version of the
paper.

D DETPP PREDICTION DIVERSITY

In this section, we investigate the factors contributing to the improved output diversity achieved
by DeTPP. Consider a toy dataset consisting of regular events with timestamps 0, 1, 2, 3, . . . and
random labels sampled from a categorical distribution with probabilities (0.1, 0.2, 0.7), resulting in
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Figure 11: DeTPP accuracy across varying loss weights. The vertical line indicates the value deter-
mined through Bayesian hyperparameter optimization.

three possible labels. Suppose each label is sampled independently. In this scenario, historical data
provides no information about future events, requiring the model to learn the prior distribution of
events.

Since history offers no useful insights into the next event, autoregressive models tend to predict
only the most probable event type (the third label), as illustrated in Figure 12. In contrast, DeTPP
estimates the typical distribution of labels over the entire horizon. As a result, DeTPP’s outputs
include a significant proportion of events belonging to less frequent labels.

We conclude that DeTPP’s improved prediction diversity stems from its ability to model the distri-
bution of labels across the prediction horizon.
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Figure 12: Predicted labels distribution on the toy dataset with independent labels.

E METRICS DESCRIPTION

In Section 5, we evaluate the models using both next-event prediction metrics and long-horizon
prediction metrics. In this section, we provide detailed definitions of these metrics.

E.1 NEXT-EVENT PREDICTION

Each event yi is defined by its timestamp ti and label li. The quality of the predicted timestamps
is usually evaluated using the Mean Absolute Error (MAE) or Mean Squared Error (MSE). Since
event sequences often contain many large time intervals, we choose MAE as the primary measure
because it is more robust to outliers. The MAE for timestamps is defined as:

MAE =
1

N

N∑
i=1

∣∣ti − t̂i
∣∣ , (8)
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where N is the total number of predictions, and t̂i is the predicted timestamp for the i-th event. The
error rate for labels is defined as the fraction of incorrectly predicted labels:

ErrorRate =
1

N

N∑
i=1

I(li ̸= l̂i), (9)

where I(·) is the indicator function, equal to 1 if the argument is true and 0 otherwise, and l̂i is the
predicted label for the i-th event.

E.2 LONG-HORIZON PREDICTION.

We evaluate long-horizon prediction using two metrics: Optimal Transport Distance (OTD) and
Temporal mean Average Precision (T-mAP).

Optimal Transport Distance (OTD). OTD measures the discrepancy between predicted and
ground truth sequences by computing an optimal matching between their events. For each pair
of sequences, OTD extracts prefixes of a predefined length K, which is a hyperparameter typi-
cally set between 5 and 10 events. Given the prefixes y = {(ti, li)}Ki=1 from the ground truth and
ŷ = {(t̂i, l̂i)}Ki=1 from the predictions, OTD solves an optimal transport problem using a cost matrix
COTD of size K × K, where the cost between the i-th predicted event and the j-th ground truth
event is defined as:

COTD
i,j =

{
|t̂i − tj |, if l̂i = lj ,

2R, if l̂i ̸= lj ,
(10)

where R represents the cost of deleting a ground truth event or inserting a predicted event, making
the substitution cost 2R when labels do not match. The Optimal Transport Distance is then defined
as the minimum total cost overall one-to-one assignments σ:

OTD = min
σ∈A

K∑
i=1

COTD
i,σ(i), (11)

where A represents all permutations of {1, 2, . . . ,K}.

Temporal mean Average Precision (T-mAP). T-mAP introduces two key parameters: the horizon
length H and the maximum allowed time error δ. From each pair of predicted and ground truth
sequences, T-mAP extracts subsequences that fall within the specified time horizon H . Unlike the
Optimal Transport Distance (OTD), T-mAP compares sequences of variable lengths. Additionally,
T-mAP evaluates the predicted probability distribution of labels p̂(l) rather than the hard labels,
which typically correspond to the label with the highest probability. T-mAP computes the Average
Precision (AP) for each class, which is equivalent to the area under the precision-recall curve. The
AP values for all classes are then averaged with equal weights, a process commonly referred to as
macro averaging.

To compute T-mAP for a specific class l, consider some decision threshold τ . T-mAP selects a
subset of predicted events with probability p̂(l) exceeding the threshold τ . A prediction ŷi = (t̂i, l) is
considered a true positive (TP) if there exists a ground truth event yj = (tj , l) such that |t̂i− tj | ≤ δ.
Each ground truth event can be matched to at most one prediction, so the number of true positives
does not exceed the total number of targets. Predictions not matched to any ground truth event are
classified as false positives (FP), while unmatched ground truth events are considered false negatives
(FN). For a given threshold τ , precision and recall can then be calculated as:

Precision =
TP

TP + FP
,
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Table 5: Ablation studies results. The best result is shown in bold. Mean and STD values of 5 runs
with different random seeds are reported.

Model Metrics (OTD / T-mAP)
StackOverflow Amazon Retweet MIMIC-IV Transactions

DeTPP 12.14 / 22.72% 5.98 / 37.20% 132.9 / 57.93% 12.95 / 30.35% 6.70 / 9.26%
±0.04 / ±0.32% ±0.04 / ±0.06% ±0.7 / ±0.33% ±0.32 / ±0.25% ±0.03 / ±0.09%

Pairwise loss 13.51 / 11.42% 6.68 / 22.57% 167.9 / 34.73% 13.18 / 22.30% 7.19 / 4.43%
±0.06 / ±0.78% ±0.01 / ±0.07% ±2.8 / ±5.11% ±0.05 / ±0.03% ±0.00 / ±0.16%

DeTR matching 13.62 / 18.08% 6.39 / 36.38% 193.2 / 48.96% 12.52 / 33.62% 6.88 / 9.32%
±0.04 / ±0.27% ±0.02 / ±0.25% ±1.5 / ±0.28% ±0.42 / ±0.10% ±0.02 / ±0.07%

λ = 0
12.06 / 23.11% 5.98 / 37.18% 134.4 / 57.37% 12.85 / 30.63% 6.66 / 9.17%

±0.04 / ±0.08% ±0.01 / ±0.07% ±0.8 / ±0.67% ±0.26 / ±0.14% ±0.03 / ±0.11%

Without cond. head 12.27 / 19.87% 5.97 / 37.09% 131.2 / 55.37% 13.32 / 31.13% 6.64 / 9.03%
±0.02 / ±0.26% ±0.06 / ±0.09% ±0.4 / ±0.40% ±0.11 / ±0.17% ±0.03 / ±0.23%

Recall =
TP

TP + FN
.

By varying the threshold τ , a precision-recall curve is generated, and the Average Precision (AP)
is computed as the area under this curve. The final T-mAP score is obtained by averaging the AP
values across all classes:

T-mAP =
1

L

L∑
l=1

AP(l),

where L represents the total number of classes.

F ABLATION STUDIES

F.1 MATCHING LOSS

DeTPP involves two modifications compared to previous methods: a parallel prediction of multiple
future events and a novel loss function. To study the impact of these modifications, we evaluated
DeTPP with a simple pairwise loss. Unlike matching, this loss is computed between events on
corresponding positions in the prediction and ground truth. As shown in Table 5, pairwise loss
demonstrates a low long-horizon prediction quality, even worse than a simple IFTPP. A possible
reason for this failure can be incorrect alignment between predictions and ground truth, leading to
noisy gradients and reduced prediction quality. We therefore conclude that our matching loss is an
essential part of the training pipeline.

F.2 THE EFFECT OF λ

In Equation 7, we introduced an extension of the loss function with the next-event loss, controlled
by λ. We compare DeTPP with and without next-event loss by setting λ to zero in the latter case.
According to the results from Table 5, the difference between the long-horizon prediction quality of
DeTPP and DeTPP with λ = 0 is not significant. We therefore conclude that the next-event loss
doesn’t contribute to long-horizon prediction improvements.

F.3 CONDITIONAL HEAD

We introduced a conditional head architecture in Section 4.3. In Table 5, we present evaluation
results for a model with a simple feed-forward head. The resulting approach without conditional
head shows slightly better OTD scores and slightly worse T-mAP values. At the same time, the feed-
forward model has more model parameters. For example, it contains 140082 trainable parameters
for the Retweet dataset, while conditional head is roughly half of that size – 71543. We, therefore,
preferred conditional heads due to their low memory usage and better-scaling properties with the
growing number of prediction heads.
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F.4 PRESENCE MATCHING

One of the fundamental differences between DeTPP and the DeTR method from object detection
Carion et al. (2020) is the usage of the presence score for matching, as stated in Equation 6 and
Equation 4. The usage of the presence score allows the model to select a subset of its heads de-
pending on historical data, better adapting to a particular sequence of events during training. We
conducted an additional study and measured the model’s performance with LBCE excluded during
matching. According to the results from Table 5, the model trained with DeTR matching is inferior
to DeTPP with a large margin on small datasets while giving moderate or no improvement in other
cases. We, therefore, conclude that matching with the presence score improves the stability of the
model among different dataset sizes.

17


	Introduction
	Related Work
	Limitations of Autoregressive Inference
	Event Detection with DeTPP
	Prediction Head
	Horizon Matching Loss
	Conditional Head Architecture
	Calibration and Inference
	Hyperparameter Selection

	Experiments
	Long-Horizon Events Forecasting
	Next Event Prediction
	Predictions diversity
	Training and Inference Speed
	The number of heads
	Heads Specialization

	Limitations and Future Work
	Conclusion
	On-line Calibration Algorithm
	Hyperparameters
	OTD on MIMIC-IV
	DeTPP Prediction Diversity
	Metrics Description
	Next-Event Prediction
	Long-Horizon Prediction.

	Ablation Studies
	Matching Loss
	The Effect of 
	Conditional head
	Presence matching


