
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Temporal-Difference Variational Continual Learning

Anonymous Authors1

Abstract

Machine Learning models in real-world applica-
tions must continuously learn new tasks to adapt
to shifts in the data-generating distribution. Yet,
for Continual Learning (CL), models often strug-
gle to balance learning new tasks (plasticity) with
retaining previous knowledge (memory stability).
Consequently, they are susceptible to Catastrophic
Forgetting, which degrades performance and un-
dermines the reliability of deployed systems. In
the Bayesian CL literature, variational methods
tackle this challenge by employing a learning ob-
jective that recursively updates the posterior distri-
bution while constraining it to stay close to its pre-
vious estimate. Nonetheless, we argue that these
methods may be ineffective due to compounding
approximation errors over successive recursions.
To mitigate this, we propose new learning ob-
jectives that integrate the regularization effects
of multiple previous posterior estimations, pre-
venting individual errors from dominating future
posterior updates and compounding over time.
We reveal insightful connections between these
objectives and Temporal-Difference methods, a
popular learning mechanism in Reinforcement
Learning and Neuroscience. Experiments on chal-
lenging CL benchmarks show that our approach
effectively mitigates Catastrophic Forgetting, out-
performing strong Variational CL methods.

1. Introduction
A fundamental aspect of robust Machine Learning (ML)
models is to learn from non-stationary sequential data. In
this scenario, two main properties are necessary: first, mod-
els must learn from new incoming data — potentially from
a different task -– with satisfactory asymptotic performance
and sample complexity. This capability is called plasticity.
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Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

1 2 3 4 5 6 7 8 9 10
Number of Observed Tasks

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

PermutedMNIST-Hard
Method

Online MLE
Batch MLE

VCL
VCL CoreSet

N-Step TD-VCL
TD( )-VCL

Figure 1. Average accuracy across observed tasks in the
PermutedMNIST-Hard benchmark. The TD-VCL approach,
proposed in this work, leads to a substantial improvement against
standard VCL and non-variational approaches.

Second, they must retain the knowledge from previously
learned tasks, known as memory stability. When this does
not happen, and the performance of previous tasks degrades,
the model suffers from Catastrophic Forgetting (Goodfel-
low et al., 2015; McCloskey & Cohen, 1989). These two
properties are the central core of Continual Learning (CL)
(Schlimmer & Fisher, 1986; Abraham & Robins, 2005), be-
ing strongly relevant for ML systems susceptible to test-time
distributional shifts.

Given the critical importance of this topic, extensive lit-
erature addresses the challenges of CL in traditional ML
methods (Schlimmer & Fisher, 1986; Sutton & Whitehead,
1993; McCloskey & Cohen, 1989; French, 1999) and, more
recently, for overparameterized models (Hadsell et al., 2020;
Goodfellow et al., 2015; Serra et al., 2018). In this work,
we focus on Bayesian CL methods, for two reasons. First, it
provides a principled, self-consistent framework for learn-
ing in online or low-data regimes (Rainforth et al., 2024).
Second, Bayesian models express their own uncertainty over
predictions, which is crucial for safety-critical applications
(Kendall & Gal, 2017) and for enabling principled data
selection (Gal et al., 2017; Melo et al., 2024).

Particularly, we investigate Variational Continual Learning
(VCL) approaches (Nguyen et al., 2018). As detailed in
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Temporal-Difference Variational Continual Learning

Figure 2. An intuitive illustration of how TD-VCL functions in comparison to vanilla VCL. At each timestep t, a new task dataset Dt

arrives. Both methods aim to learn variational parameters qt(θ) over a family of distributions Q that approximates the true posterior
p(θ | D1:t) via minimizing the KL divergence DKL(qt(θ) || p(θ | D1:t)). VCL optimization (left) is only constrained by the most
recent posterior, which compounds approximation errors from previous estimations and potentially deviates far from the true posterior.
TD-VCL (right) is regularized by a sequence of past estimations, alleviating the impact of compounded errors.

Section 3, VCL identifies a recursive relationship between
subsequent posterior distributions over tasks. A variational
optimization objective then leverages this recursion, which
regularizes the updated posterior to stay close to the very
latest posterior approximation. Nevertheless, we argue that
solely relying on a single previous posterior estimate for
building up the next optimization target may be ineffective,
as the approximation error propagates to the next update
and compounds after successive recursions. If a particular
estimation is especially poor, the error will be carried over
to the next step entirely, which can dramatically degrade
model’s performance.

In this work, we show that the same optimization objective
can be represented as a function of a sequence of previous
posterior estimates and task likelihoods. We thus propose
a new Continual Learning objective, n-Step KL VCL, that
explicitly regularizes the posterior update considering sev-
eral past posterior approximations. By considering multiple
previous estimates, the objective dilutes individual errors,
allows correct posterior approximates to exert a corrective
influence, and leverages a broader global context to the
learning target, reducing the impact of compounding errors
over time. Figure 2 illustrates the underlying mechanism.

We further generalize this unbiased optimization target
to a broader family of CL objectives, namely Temporal-
Difference VCL, which constructs the learning target by
prioritizing the most recent approximated posteriors. We
reveal a link between the proposed objective and Temporal-
Difference (TD) methods, a popular learning mechanism in
Reinforcement Learning (Sutton, 1988) and Neuroscience

(Schultz et al., 1997). Furthermore, we show that TD-VCL
represents a spectrum of learning objectives that range from
vanilla VCL to n-Step KL VCL. Finally, we present experi-
ments on several challenging and popular CL benchmarks,
demonstrating that they outperform standard VCL (as shown
in Figure 1), other VCL-based methods, and non-variational
baselines, effectively alleviating Catastrophic Forgetting.

2. Related Work
Continual Learning has been studied throughout the past
decades, both in Artificial Intelligence (Schlimmer & Fisher,
1986; Sutton & Whitehead, 1993; Ring, 1997) and in Neuro-
and Cognitive Sciences (Flesch et al., 2023; French, 1999;
McCloskey & Cohen, 1989). More recently, the focus has
shifted towards overparameterized models, such as deep
neural networks (Hadsell et al., 2020; Goodfellow et al.,
2015; Serra et al., 2018; Adel et al., 2020). Given their
powerful predictive capabilities, recent literature approaches
CL from a wide range of perspectives. For instance, by
regularizing the optimization objective to account for old
tasks (Kirkpatrick et al., 2016; Zenke et al., 2017; Chaudhry
et al., 2018); by replaying an external memory composed
by a set of previous tasks (Lopez-Paz & Ranzato, 2017;
Bang et al., 2021; Rebuffi et al., 2016); or by modifying
the optimization procedure or manipulating the estimated
gradients (Zeng et al., 2018; Javed & White, 2019; Liu
& Liu, 2022). We refer to Wang et al. for an extensive
review of recent approaches. Our proposed method is placed
between regularization-based and replay-based methods.

Bayesian CL. In the Bayesian framework, prior methods
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Temporal-Difference Variational Continual Learning

exploit the recursive relationship between subsequent pos-
teriors that emerge from the Bayes’ rule in the CL setting
(Section 3). Since Bayesian inference is often intractable,
they fundamentally differ in the design of approximated
inference. We highlight works that learn posteriors via
Laplace approximation (Ritter et al., 2018; Schwarz et al.,
2018), sequential Bayesian Inference (Titsias et al., 2020;
Pan et al., 2020), and Variational Inference (VI) (Nguyen
et al., 2018; Loo et al., 2021). Our work and proposed
method lies in the latter category.

Variational Inference for CL. Variational Continual Learn-
ing (VCL) (Nguyen et al., 2018) introduced the idea of
online VI for the Continual Learning setting. It leverages
the Bayesian recursion of posteriors to build an optimization
target for the next step’s posterior based on the current one.
Similarly, our work also optimizes a target based on previ-
ous approximated posteriors. On the other hand, rather than
relying on a single past posterior estimation, it bootstraps
on several previous estimations to prevent compounded er-
rors. Nguyen et al. (2018) further incorporate an heuristic
external replay buffer to prevent forgetting, requiring a two-
step optimization. In contrast, our work only requires a
single-step optimization as the replay mechanism naturally
emerges from the learning objective.

Other derivative works usually blend VCL with architec-
tural and optimization improvements (Loo et al., 2020; 2021;
Guimeng et al., 2022; Tseran, 2018; Ebrahimi et al., 2020;
Thapa & Li, 2025) or different posterior modeling assump-
tions (Auddy et al., 2020; Yang et al., 2019; Ahn et al.,
2019). We specifically highlight UCB (Ebrahimi et al.,
2020), which adapts the learning rate according to the uncer-
tainty of the Bayesian model, and UCL (Ahn et al., 2019),
which introduces a different implementation for the VCL
objective by proposing the notion of node-wise uncertainty.
While their contribution are orthogonal to ours, we adopt
UCB and UCL as comparison methods to further show that
our proposed objective can also be combined with other
variational methods and enhance their performance.

3. Preliminaries
Problem Statement. In the Continual Learning setting, a
model learns from a streaming of tasks, which forms a non-
stationary data distribution throughout time. More formally,
we consider a task distribution T and represent each task
t ∼ T as a set of pairs {(xt, yt)}Nt , where Nt is the dataset
size. At every timestep t1, the model receives a batch of data
Dt for training. We evaluate the model in held-out test sets,
considering all previously observed tasks.

In the Bayesian framework for CL, we assume a prior

1We represent each task with the index t, which also denotes
the timestep in the sequence of tasks.

distribution over parameters p(θ), and the goal is to learn a
posterior distribution p(θ | D1:T ) after observing T tasks.
Crucially, given the sequential nature of tasks, we identify a
recursive property of posteriors:

p(θ | D1:T ) ∝ p(θ)p(D1:T | θ) i.i.d
=

p(θ)

T∏
t=1

p(Dt | θ) ∝ p(θ | D1:T−1)p(DT | θ), (1)

where we assume that tasks are i.i.d. Equation 1 shows that
we may update the posterior estimation online, given the
likelihood of the subsequent task.

Variational Continual Learning. Despite the elegant recur-
sion, computing the posterior p(θ | D1:T ) exactly is often
intractable, especially for large parameter spaces. Hence,
we rely on an approximation. VCL achieves this by em-
ploying online variational inference (Ghahramani & Attias,
2000). It assumes the existence of variational parameters
q(θ) whose goal is to approximate the posterior by minimiz-
ing the following KL divergence over a space of variational
approximations Q:

qt(θ) = argmin
q∈Q

DKL(q(θ) ||
1

Zt
qt−1(θ)p(Dt | θ)), (2)

where Zt represents a normalization constant. The objective
in Equation 2 is equivalent to maximizing the variational
lower bound of the online marginal likelihood:

Lt
V CL(θ) = Eθ∼qt(θ)[log p(Dt | θ)]

− DKL(qt(θ) || qt−1(θ)). (3)

We can interpret the loss in Equation 3 through the lens of
the stability-plasticity dilemma (Abraham & Robins, 2005).
The first term maximizes the likelihood of the new task
(encouraging plasticity), whereas the KL term penalizes
parametrizations that deviate too far from the previous pos-
terior estimation, which supposedly contains the knowledge
from past tasks (encouraging memory stability).

4. Temporal-Difference Variational Continual
Learning

Maximizing the objective in Equation 3 is equivalent to the
optimization in Equation 2, but its computation relies on
two main approximations. First, computing the expected
log-likelihood term analytically is not tractable, which re-
quires a Monte-Carlo (MC) approximation. Second, the KL
term relies on a previous posterior estimate, which may be
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biased from previous approximation errors. While updating
the posterior to account for the next task, these biases de-
viate the learning target from the true objective. Crucially,
as Equation 3 solely relies on the very latest posterior es-
timation, the error compounds with successive recursive
updates.

Alternatively, we may represent the same objective as a func-
tion of several previous posterior estimations and alleviate
the effect of the approximation error from any particular
one. By considering several past estimates, the objective
dilutes individual errors, allows correct posterior approxi-
mates to exert a corrective influence, and leverages a broader
global context to the learning target, reducing the impact of
compounding errors over time.

4.1. Variational Continual Learning with n-Step KL
Regularization

We start by presenting a new objective that is equivalent to
Equation 2 while also meeting the aforementioned desider-
ata:
Proposition 4.1. The standard KL minimization objective in
Variational Continual Learning (Equation 2) is equivalently
represented as the following objective, where n ∈ N0 is a
hyperparameter:

qt(θ) = argmax
q∈Q

Eθ∼qt(θ)

[ n−1∑
i=0

(n− i)

n
log p(Dt−i | θ)

]
−

n−1∑
i=0

1

n
DKL(qt(θ) || qt−i−1(θ)). (4)

We present the proof of Proposition 4.1 in Appendix A. We
name Equation 4 as the n-Step KL regularization objective.
It represents the same learning target of Equation 2 as a
sum of weighted likelihoods and KL terms that consider
different posterior estimations, which can be interpreted as
“distributing” the role of regularization among them. For
instance, if an estimate qt−i deviates too far from the true
posterior, it only affects 1/n of the KL regularization term.
The hyperparameter n assumes integer values up to t and
defines how far in the past the learning target goes. If n is
set to 1, we recover vanilla VCL.

An interesting insight comes from the likelihood term. It
contains the likelihood of different tasks, weighted by their
recency. Hence, the idea of re-estimating old task likeli-
hoods, commonly leveraged as a heuristic in CL methods,
fundamentally emerges in the proposed objective. We may
estimate these likelihood terms by replaying data from dif-
ferent tasks simultaneously, alleviating the violation of the
i.i.d assumption that happens given the online, sequential
nature of CL (Hadsell et al., 2020).

4.2. From n-Step KL to Temporal-Difference Targets

The learning objective in Equation 4 relies on several differ-
ent posterior estimates, alleviating the compounding error
problem. A caveat is that all estimates have the same weight
in the final objective. One may want to have more flexibility
by giving different weights for them – for instance, amplify-
ing the effect from the most recent estimate while drastically
reducing the impact of previous ones. It is possible to ac-
complish that, as shown in the following proposition:
Proposition 4.2. The standard KL minimization objective
in VCL (Equation 2) is equivalently represented as the fol-
lowing objective, with n ∈ N0, and λ ∈ [0, 1) hyperparam-
eters:

qt(θ) =

argmax
q∈Q

Eθ∼qt(θ)

[ n−1∑
i=0

λi(1− λn−i)

1− λn
log p(Dt−i | θ)

]
−

n−1∑
i=0

λi(1− λ)

1− λn
DKL(qt(θ) || qt−i−1(θ)). (5)

The proof is available in Appendix B. We call Equation 5
the TD(λ)-VCL objective2. It augments the n-Step KL Reg-
ularization to weight the regularization effect of different
estimates in a way that geometrically decays – via the λi

term – as far as it goes in the past. Other λ-related terms
serve as normalization constants. Equation 5 provides a
more granular level of target control.

Interestingly, this objective relates intrinsically to the λ-
returns for Temporal-Difference (TD) learning in valued-
based reinforcement learning (Sutton & Barto, 2018). More
broadly, both objectives of Equations 4 and 5 are compound
updates that combine n-step Temporal-Difference targets,
as shown below. First, we formally define a TD target in the
CL context:
Definition 4.3. For a timestep t, the n-Step Temporal-
Difference target for Variational Continual Learning is de-
fined as, ∀n ∈ N0, n ≤ t:

TDt(n) = Eθ∼qt(θ)

[
n−1∑
i=0

log p(Dt−i | θ)]

]
− DKL(qt(θ) || qt−n(θ)). (6)

In Appendix C, we reveal the connection between Equation
6 and the TD targets employed in Reinforcement Learning,
justifying the adopted terminology. From this definition, it
follows that:

2We refer to both n-Step KL Regularization and TD(λ)-VCL
as TD-VCL objectives.
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Proposition 4.4. ∀n ∈ N0, n ≤ t , the objective in Equation
2 can be equivalently represented as:

qt(θ) = argmax
q∈Q

TDt(n), (7)

with TDt(n) as in Definition 4.3. Furthermore, the objective
in Equation 5 can also be represented as:

qt(θ) = argmax
q∈Q

1− λ

1− λn

[
n−1∑
k=0

λkTDt(k + 1))

]
.︸ ︷︷ ︸

Discounted sum of TD targets

(8)

The proof is in Appendix D. Proposition 4.4 states that the
TD(λ)-VCL objective is a sum of discounted TD targets
(up to a normalization constant), effectively representing
λ-returns. In parallel, one can show that the n-Step KL
Regularization objective, as a particular case, is a simple
average of n-Step TD targets. Fundamentally, the key idea
behind these objectives is bootstrapping: they build a learn-
ing target estimate based on other estimates. Ultimately, the
“λ-target” in Equation 5 provides flexibility for bootstrap-
ping by allowing multiple previous estimates to influence
the objective.

The TD-VCL objectives generalize a spectrum of Contin-
ual Learning algorithms. As a final remark, in Appendix
E, we show that, based on the choice of hyperparameters, the
TD(λ)-VCL objective forms a family of learning algorithms
that span from Vanilla VCL to n-Step KL Regularization.
Fundamentally, it mixes different targets of MC approxi-
mations for expected log-likelihood and KL regularization.
This process is similar to how TD(λ) and n-step TD mix
MC updates and TD predictions in Reinforcement Learning,
effectively providing a mechanism to strike a balance be-
tween the variance from MC estimations and the bias from
bootstrapping (Sutton & Barto, 2018).

5. Experiments and Discussion
Our central hypothesis is that for Bayesian CL, leveraging
multiple past posterior estimates mitigates the impact of
compounded errors inherent to the VCL objective, thus al-
leviating the problem of Catastrophic Forgetting. We now
provide an experimental setup for validation. Specifically,
we evaluate this hypothesis by analyzing the questions high-
lighted in Section 5.1.

Implementation. We use a Gaussian mean-field approx-
imate posterior and assume a Gaussian prior N (0, σ2I),
and parameterize all distributions as deep networks. For all
variational objectives, we compute the KL term analytically
and employ Monte Carlo approximations for the expected

log-likelihood terms, leveraging the reparametrization trick
(Kingma & Welling, 2014) for computing gradients. We
employed likelihood-tempering (Loo et al., 2021) to prevent
variational over-pruning (Trippe & Turner, 2018). Lastly,
for test-time evaluation, we compute the posterior predictive
distribution by marginalizing out the approximated posterior
via Monte-Carlo sampling. We provide further detail about
architecture and training in Appendix F and our code3.

Comparison Methods. We compare TD-VCL and n-Step
KL VCL against several methods. We first evaluate non-
variational naive methods for CL: Online MLE naively
applies maximum likelihood estimation in the current task
data. It serves as a lower bound for other methods, as well as
a way to evaluate how challenging the benchmark is. Batch
MLE applies maximum likelihood estimation considering
a buffer of current and old task data. Next, we adopt the
following variational methods for direct comparison in the
Bayesian CL setting: VCL, introduced by Nguyen et al.
(2018), optimizes the objective in Equation 3. VCL Core-
Set is a VCL variant that incorporates a replay set to mitigate
any residual forgetting (Nguyen et al., 2018). UCL (Ahn
et al., 2019) is another variational method that implements
adaptive regularization based on the notion of node-wise
uncertainty. Finally, UCB (Ebrahimi et al., 2020) also opti-
mizes the objective of Equation 3 but adapts the learning rate
for each parameter based on their uncertainty. Particularly
for UCL and UCB, we compare them with the proposed
TD-UCL and TD-UCB, which incorporate the introduced
objective into UCL and UCB, respectively.

Benchmarks. We evaluate five benchmarks for Contin-
ual Learning (CL). First, we introduce three new bench-
marks: PermutedMNIST-Hard, SplitMNIST-Hard, and
SplitNotMNIST-Hard. These are more challenging ver-
sions of traditional CL benchmarks with similar names.
They are significantly harder due to two key restrictions.
First, the amount of replay memory that any method can
use is limited in both dataset size and the number of tasks.
As empirically shown in Appendix H, this creates a much
more acute scenario of Catastrophic Forgetting. Second,
they enforce the adoption of single-head classifiers. As
also shown in Appendix H, this requires the model to ac-
count for the potential negative transfer learning among
tasks, which makes MNIST/NotMNIST-based benchmarks
non-trivial for current research. Next, we also evaluate
on two other popular CL benchmarks: CIFAR100-10 and
TinyImageNet-10. Both benchmarks are very challenging
classification problems, particularly in our setting where
no pre-trained representations are used. In Appendix I, we
detail all benchmark tasks and specific constraints adopted
for robust evaluation.

3https://anonymous.4open.science/r/
vcl-nstepkl-5707
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Table 1. Quantitative comparison on the PermutedMNIST-Hard, SplitMNIST-Hard, and SplitNotMNIST-Hard benchmarks. Each
column presents the average accuracy across the past t observed tasks. Results are reported with two standard deviations across ten seeds.
Top two results are in bold, while noticeably lower results are in gray. TD-VCL objective consistently outperforms standard VCL variants,
especially when the number of observed tasks increase.

PermutedMNIST-Hard
t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

Online MLE 0.87±0.07 0.77±0.06 0.73±0.08 0.69±0.08 0.65±0.13 0.57±0.16 0.51±0.14 0.46±0.11 0.40±0.08

Batch MLE 0.95±0.01 0.93±0.01 0.88±0.04 0.83±0.04 0.77±0.10 0.71±0.13 0.64±0.12 0.57±0.11 0.51±0.06

VCL 0.95±0.00 0.94±0.01 0.93±0.02 0.91±0.02 0.89±0.03 0.86±0.03 0.83±0.04 0.80±0.06 0.78±0.04

VCL CoreSet 0.96±0.00 0.95±0.00 0.94±0.00 0.93±0.02 0.91±0.01 0.89±0.02 0.86±0.03 0.84±0.04 0.81±0.03

n-Step TD-VCL 0.95±0.01 0.94±0.00 0.94±0.00 0.93±0.01 0.92±0.01 0.91±0.01 0.90±0.02 0.89±0.01 0.88±0.02

TD(λ)-VCL 0.97±0.00 0.96±0.00 0.95±0.00 0.94±0.01 0.93±0.01 0.92±0.01 0.91±0.01 0.90±0.01 0.89±0.02

SplitMNIST-Hard SplitNotMNIST-Hard
t = 2 t = 3 t = 4 t = 5 t = 2 t = 3 t = 4 t = 5

Online MLE 0.86±0.02 0.61±0.03 0.75±0.04 0.57±0.06 0.72±0.02 0.61±0.05 0.61±0.00 0.51±0.04

Batch MLE 0.95±0.04 0.65±0.04 0.82±0.04 0.59±0.03 0.71±0.02 0.65±0.03 0.61±0.00 0.50±0.06

VCL 0.87±0.02 0.66±0.04 0.82±0.03 0.64±0.11 0.69±0.04 0.63±0.03 0.60±0.00 0.51±0.06

VCL CoreSet 0.93±0.04 0.68±0.07 0.84±0.04 0.62±0.03 0.69±0.04 0.65±0.02 0.60±0.01 0.51±0.07

n-Step TD-VCL 0.98±0.01 0.79±0.08 0.88±0.04 0.67±0.04 0.72±0.04 0.73±0.05 0.70±0.04 0.58±0.08

TD(λ)-VCL 0.98±0.01 0.81±0.07 0.89±0.03 0.66±0.02 0.74±0.02 0.73±0.03 0.69±0.03 0.58±0.09

Table 2. Quantitative comparison on the CIFAR100-10 and TinyImagenet-10 benchmarks. Each column presents the average
accuracy across the past t observed tasks. Results are reported with two standard deviations across five seeds. TD-VCL variants
consistently outperform the baselines in harder benchmarks with more complex architectures, such as Bayesian CNNs.

CIFAR100-10 TinyImageNet-10
t = 2 t = 4 t = 6 t = 8 t = 10 t = 2 t = 4 t = 6 t = 8 t = 10

Online MLE 0.56±0.05 0.57±0.06 0.56±0.03 0.53±0.06 0.52±0.04 0.48±0.03 0.45±0.02 0.44±0.01 0.45±0.02 0.44±0.03

Batch MLE 0.57±0.03 0.58±0.04 0.58±0.05 0.56±0.06 0.54±0.07 0.50±0.02 0.48±0.02 0.48±0.02 0.50±0.02 0.51±0.03

VCL 0.64±0.02 0.63±0.02 0.60±0.02 0.61±0.05 0.66±0.01 0.53±0.06 0.51±0.03 0.51±0.03 0.51±0.02 0.51±0.02

VCL CoreSet 0.64±0.05 0.63±0.03 0.63±0.02 0.61±0.02 0.65±0.02 0.52±0.03 0.51±0.02 0.51±0.02 0.54±0.02 0.54±0.02

n-Step TD-VCL 0.67±0.01 0.67±0.02 0.65±0.01 0.68±0.04 0.69±0.02 0.56±0.02 0.55±0.02 0.54±0.02 0.56±0.02 0.56±0.02

TD(λ)-VCL 0.66±0.02 0.66±0.04 0.66±0.02 0.67±0.01 0.71±0.01 0.57±0.03 0.56±0.02 0.55±0.03 0.56±0.02 0.56±0.02

5.1. Experiments

We highlight and analyze the following questions to evaluate
our hypothesis and proposed method:

Do the TD-VCL objectives effectively alleviate Catas-
trophic Forgetting in challenging CL benchmarks? Ta-
bles 1 and 2 present the results for all benchmarks. Each col-
umn presents the average accuracy across the past t observed
tasks, and we show the results starting from t = 2 as t = 1
is simply single-task learning. For PermutedMNIST-Hard,
all methods present high accuracy for t = 2, suggesting that
they could fit the data successfully. As the number of tasks
increases, they start manifesting Catastrophic Forgetting at
different levels. While Online and Batch MLE drastically
suffer, variational approaches considerably retain old tasks’
performance. The Core Set slightly helps VCL, and both
n-Step KL and TD-VCL outperform them by a considerable
margin, attaining approximately 90% average accuracy after
all tasks. For completeness, Figure 1 graphically shows

the results. We emphasize the discrepancy between vari-
ational approaches and naive baselines and highlight the
performance boost by adopting TD-VCL objectives.

For SplitMNIST-Hard, we highlight that the TD-VCL ob-
jectives also surpass baselines in all configurations, but
with a decrease in performance for t = 5, suggesting a
more challenging setup for addressing Catastrophic For-
getting that opens a venue for future research. We discuss
SplitMNIST-Hard results in more detail in Appendix J. Next,
SplitNotMNIST-Hard is a harder benchmark, as the letters
come from a diverse set of font styles. Furthermore, we
purposely decided to employ a modest network architecture
(as for previous benchmarks). Facing hard tasks with less
expressive parametrizations will result in higher posterior
approximation error. Our goal is to evaluate how the varia-
tional methods behave in this setting. Once again, n-step KL
and TD-VCL surpassed the baselines after observing more
than three tasks. The effect is more pronounced after in-
creasing the number of observed tasks. These objectives are
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PermutedMNIST-Hard: Per Task Performance

Figure 3. Per-task performance (accuracy) over time in the PermutedMNIST-Hard benchmark. Each plot represents the accuracy
of one task (identified in the plot title) while the number of observed tasks increases. We highlight a stronger effect of Catastrophic
Forgetting on earlier tasks for the baselines, while TD-VCL objectives are noticeably more robust to this phenomenon.

the only ones whose resultant models achieved non-trivial
average accuracy after observing all tasks.

Lastly, we analyze the results on CIFAR100-10 and
TinyImageNet-10 in Table 2. These are considerably harder
benchmarks, as the distribution of images and classes is
much richer than the previous benchmarks. Furthermore,
they necessarily require better architectures to attain non-
trivial performance. Following previous work (Serra et al.,
2018; Kumar et al., 2021; Konishi et al., 2023), we adopt
an AlexNet architecture (Krizhevsky, 2009). This setup is
ideal for evaluating how the learning objective functions at
a larger scale with more complex, deep architectures such
as (Bayesian) convolutional networks. Once again, TD-
VCL objectives attain superior performance, particularly
for later timesteps, where Catastrophic Forgetting is more
pronounced in the baselines. This suggests that leveraging
multiple posterior estimates for learning is better than only
the latest one, even when the approximation error is high.

How do the TD-VCL objectives affect per-task perfor-
mance? While the previous question analyze the perfor-
mance averaged across different tasks, we now investigate
the accuracy of each task separately in the course of online
learning. This setup is relevant since solely considering the
averaged accuracy may hide a stronger Catastrophic For-
getting effect from earlier tasks by “compensating” with
higher accuracy from later tasks. We show the results for
PermutedMNIST-Hard in Figure 3 (we defer additional per-

task results for Appendix J). It presents a sequence of plots,
where each figure represents the accuracy of one task while
the number of observed tasks increases. Naturally, the tasks
that appear at later stages present fewer data points: for
instance, “Task 10” has a single data point as it does not
have test data for earlier timesteps.

As observed, per-task performance explicitly shows a
stronger effect of Catastrophic Forgetting for earlier tasks
in the adopted baselines. We particularly highlight how
non-variational approaches fail for them. In this direction,
TD-VCL objectives presented a more robust performance
against others. For instance, we highlight the results for
Task 1. After observing all tasks, the proposed methods
demonstrated accuracy of around 80% and 85%. The VCL
baselines dropped to 50% and 60%, and MLE-based meth-
ods failed with only 20% of accuracy.

How does TD-VCL (and variants) perform against other
Bayesian CL methods?

In this work, we focus on Continual Learning with a
Bayesian lens. As highlighted in Section 1, it provides
a formal, uncertainty-aware framework crucial for safety-
critical applications and data-efficient learning. Thus, we
analyze the TD objective (Equation 5) on other Bayesian
CL methods. UCL and UCB are variational methods that
optimize the objective in Equation 2 but propose new mech-
anisms for regularization and learning rate adaptation. Since
these enhancements are orthogonal to the objective, we in-
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Table 3. Quantitative comparison between Bayesian CL methods and their TD-enhanced counterparts. The TD-enhanced methods
incorporate the objective in Equation 5 in each base method. Although no single base method consistently outperforms the others across
all benchmarks, their TD-enhanced versions consistently achieve better performance, particularly at later timesteps.

PermutedMNIST-Hard SplitMNIST-Hard
t = 2 t = 4 t = 6 t = 8 t = 10 t = 2 t = 3 t = 4 t = 5

VCL 0.95±0.00 0.93±0.02 0.89±0.03 0.83±0.04 0.78±0.04 0.87±0.02 0.66±0.04 0.82±0.03 0.64±0.11

TD(λ)-VCL 0.97±0.00 0.95±0.00 0.93±0.01 0.91±0.01 0.89±0.02 0.98±0.01 0.79±0.08 0.88±0.04 0.67±0.04

UCL 0.97±0.00 0.94±0.00 0.89±0.02 0.83±0.06 0.73±0.12 0.88±0.04 0.68±0.03 0.83±0.03 0.66±0.06

TD(λ)-UCL 0.97±0.00 0.95±0.00 0.92±0.02 0.88±0.04 0.84±0.04 0.97±0.01 0.85±0.06 0.90±0.02 0.70±0.04

UCB 0.93±0.01 0.92±0.01 0.89±0.02 0.86±0.02 0.83±0.02 0.85±0.16 0.79±0.12 0.83±0.06 0.75±0.10

TD(λ)-UCB 0.94±0.00 0.93±0.00 0.91±0.01 0.90±0.01 0.88±0.02 0.93±0.02 0.89±0.03 0.87±0.03 0.80±0.03

CIFAR100-10 TinyImageNet-10
t = 2 t = 4 t = 6 t = 8 t = 10 t = 2 t = 4 t = 6 t = 8 t = 10

VCL 0.64±0.02 0.63±0.02 0.60±0.02 0.61±0.05 0.66±0.01 0.53±0.06 0.51±0.03 0.51±0.03 0.51±0.02 0.51±0.02

TD(λ)-VCL 0.66±0.02 0.66±0.04 0.66±0.02 0.67±0.01 0.71±0.01 0.57±0.03 0.56±0.02 0.55±0.03 0.56±0.02 0.56±0.06

UCL 0.65±0.03 0.64±0.05 0.60±0.05 0.58±0.02 0.62±0.02 0.55±0.02 0.52±0.03 0.51±0.02 0.52±0.02 0.50±0.03

TD(λ)-UCL 0.68±0.02 0.64±0.01 0.70±0.02 0.66±0.03 0.67±0.03 0.55±0.03 0.54±0.01 0.54±0.01 0.55±0.01 0.56±0.01

UCB 0.65±0.01 0.66±0.02 0.66±0.03 0.65±0.01 0.66±0.01 0.52±0.06 0.51±0.02 0.48±0.04 0.45±0.02 0.42±0.03

TD(λ)-UCB 0.64±0.02 0.66±0.01 0.67±0.01 0.68±0.01 0.70±0.01 0.54±0.04 0.52±0.01 0.51±0.02 0.50±0.03 0.47±0.02

corporate the proposed TD objective with these methods,
resulting in TD-UCL and TD-UCB, respectively. We aim
to show that the TD objectives for CL work across different
base methods and promote a performance boost on them.

Table 3 compares the base methods (VCL, UCL, and UCB)
with their TD-enhanced counterparts (complete results in
Appendix L). While there is no dominant base method
across the benchmarks, the TD counterparts consistently
improve upon their respective base methods, especially at
later timesteps. These results indicate that the TD objective
is robust among different Bayesian CL algorithms and may
be incorporated effectively into methods that rely on the
variational objective in Equation 2.

How do the TD-VCL objectives behave with the choice of
the hyperparameters n, λ, and the likelihood-tempering
parameter β? The proposed learning objectives introduce
two new hyperparameters: n (the number of considered
previous posterior estimates in the learning target) and λ for
TD(λ)-VCL (which controls the level of influence for each
past posterior estimate). Furthermore, it also inherits the β
parameter from VCL. Hence, we evaluate the sensitivity of
the proposed objectives concerning these hyperparameters,
presenting results and detailed discussion in Appendix K.
We highlight three main findings. First, similarly to VCL,
TD-VCL objectives are sensitive to the likelihood-tempering
hyperparameter. Second, increasing n is beneficial up to a
certain point, from which it becomes detrimental, suggesting
the existence of an optimal range for leveraging posterior
estimates. Lastly, TD-VCL objectives present robustness
over the choice of λ, with a more pronounced effect when
the number of observed tasks increases.

6. Closing Remarks
In this work, we presented a new family of variational objec-
tives for Continual Learning, namely Temporal-Difference
VCL. TD-VCL is an unbiased proxy of the standard VCL ob-
jective but leverages several previous posterior estimates to
alleviate the compounding error caused by recursive approx-
imations. We showed that TD-VCL represents a spectrum
of Continual Learning algorithms and is equivalent to a dis-
counted sum of n-step Temporal-Difference targets. Lastly,
we empirically presented that it helps address Catastrophic
Forgetting, surpassing Bayesian CL baselines in several
challenging benchmarks.

Limitations. Despite being theoretically principled and at-
taining superior performance, TD-VCL presents limitations.
First, the hyperparameters n and λ depend on the evaluated
setting, which may require certain tuning. Second, the ob-
jectives rely on past posterior estimates, which may increase
memory requirements. Still, we believe this is not a major
limitation as TD-VCL suits well modern deep Bayesian
architectures that target smaller parameter subspaces for
posterior approximation (Yang et al., 2024; Dwaracherla
et al., 2024; Melo et al., 2024).

Future Work. While presenting connections with
Temporal-Difference methods, TD-VCL is not an RL al-
gorithm. Further mathematical connections with Markov
Decision/Reward Processes formalism are left as future
work. Another interesting direction is to apply TD-VCL
objectives for other problems that involve sequential varia-
tional inference, such as probabilistic meta-learning (Finn
et al., 2018; Zintgraf et al., 2020).
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Impact Statement
This work develops a novel learning objective for Bayesian
Continual Learning. As such, we believe our work has a pos-
itive impact on fundamental research for Machine Learning
for three reasons. First, we argue that advancing Continual
Learning research is crucial for ensuring the long-term qual-
ity of ML models in production systems, as they are vulner-
able to potential distributional shifts in the data generation
distribution. We also argue that CL is crucial for developing
safe autonomous learning agents, as Catastrophic Forgetting
may be a dangerous challenge while interacting with the
physical or digital world. Second, our particular focus on the
Bayesian framework is relevant for designing uncertainty-
aware models, which, as argued in Section 1, is crucial for
robust Machine Learning and general AI safety. Lastly, we
provide a solid theoretical connection between Variational
Continual Learning methods and Temporal-Difference meth-
ods, effectively bridging two seemingly distant disciplines
into a unified family of algorithms. We believe this will
inspire further research in the intersection of both areas.
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A. Derivation of the n-Step KL Regularization Objective
In this Section, we prove Proposition 4.1:

Proposition 4.1. The standard KL minimization objective in Variational Continual Learning (Equation 2) is equivalently
represented as the following objective, where n ∈ N0 is a hyperparameter:

qt(θ) = argmax
q∈Q

Eθ∼qt(θ)

[ n−1∑
i=0

(n− i)

n
log p(Dt−i | θ)

]
−

n−1∑
i=0

1

n
DKL(qt(θ) || qt−i−1(θ)). (4)

Proof. Starting from Equation 2, we can expand it as a sum of equal terms and utilize the recursive property (Equation 1) to
expand these terms:

qt(θ) = argmin
q∈Q

DKL(q(θ) ||
1

Zt
qt−1(θ)p(Dt | θ))

= argmin
q∈Q

n

n
DKL(q(θ) ||

1

Zt
qt−1(θ)p(Dt | θ))

= argmin
q∈Q

1

n

[
DKL(q(θ) ||

1

Zt
qt−1(θ)p(Dt | θ))

+ DKL(q(θ) ||
1

ZtZt−1
qt−2(θ)p(Dt | θ)p(Dt−1 | θ)) + . . .

+ DKL(q(θ) ||
1∏n−1

i=0 Zt−i

qt−n(θ)

n−1∏
i=0

p(Dt−i | θ))

]

= argmin
q∈Q

1

n

[
DKL(qt(θ) || qt−1(θ))− Eθ∼qt(θ)[log p(Dt | θ)]

+ DKL(qt(θ) || qt−2(θ))− Eθ∼qt(θ)[log p(Dt | θ) + log p(Dt−1 | θ)] + . . .

+ DKL(qt(θ) || qt−n(θ))− Eθ∼qt(θ)[

n−1∑
i=0

log p(Dt−i | θ)]

]

= argmin
q∈Q

1

n

[
n−1∑
i=0

DKL(qt(θ) || qt−i(θ))− Eθ∼qt(θ)

[
n log p(Dt | θ)

+ (n− 1) log p(Dt−1 | θ) + · · ·+ log p(Dt−n+1 | θ)
]]

= argmax
q∈Q

Eθ∼qt(θ)

[ n−1∑
i=0

(n− i)

n
log p(Dt−i | θ)

]
−

n−1∑
i=0

1

n
DKL(qt(θ) || qt−i−1(θ)).

(9)
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B. Derivation of the Temporal-Difference VCL Objective
Before proving Proposition 4.2, we start by presenting a well known result for the sum of geometric series:

Lemma B.1. The finite sum of a geometric series with n terms, common ratio λ and initial term a is given by:

n−1∑
k=0

λka =
a(1− λn)

(1− λ)
(10)

Proof. Let sn =
∑n

k=0 λ
ka. Hence,

sn − λsn =

n−1∑
k=0

λka− λ

n−1∑
k=0

λka = a− aλn

⇐⇒ sn(1− λ) = a(1− λn)

⇐⇒ sn =
a(1− λn)

(1− λ)
.

(11)

Now, we prove Proposition 4.2.

Proposition 4.2. The standard KL minimization objective in VCL (Equation 2) is equivalently represented as the following
objective, with n ∈ N0, and λ ∈ [0, 1) hyperparameters:

qt(θ) =

argmax
q∈Q

Eθ∼qt(θ)

[ n−1∑
i=0

λi(1− λn−i)

1− λn
log p(Dt−i | θ)

]
−

n−1∑
i=0

λi(1− λ)

1− λn
DKL(qt(θ) || qt−i−1(θ)). (5)

Proof. We can use Lemma B.1 to expand the sum of KL terms:

14
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qt(θ) = argmin
q∈Q

DKL(q(θ) ||
1

Zt
qt−1(θ)p(Dt | θ))

= argmin
q∈Q

1− λ

1− λn

1− λn

1− λ
DKL(q(θ) ||

1

Zt
qt−1(θ)p(Dt | θ))

= argmin
q∈Q

1− λ

1− λn

[
DKL(q(θ) ||

1

Zt
qt−1(θ)p(Dt | θ))

+ λDKL(q(θ) ||
1

ZtZt−1
qt−2(θ)p(Dt | θ)p(Dt−1 | θ)) + . . .

+ λn−1DKL(q(θ) ||
1∏n−1

i=0 Zt−i

qt−i(θ)

n−1∏
i=0

p(Dt−i | θ))

]

= argmin
q∈Q

1− λ

1− λn

[
DKL(qt(θ) || qt−1(θ))− Eθ∼qt(θ)[log p(Dt | θ)]

+ λDKL(qt(θ) || qt−2(θ))− λEθ∼qt(θ)[log p(Dt | θ) + log p(Dt−1 | θ)] + . . .

+ λn−1DKL(qt(θ) || qt−n(θ))− λn−1Eθ∼qt(θ)[

n−1∑
i=0

log p(Dt−i | θ)]

]

= argmin
q∈Q

1− λ

1− λn

[
n−1∑
i=0

λiDKL(qt(θ) || qt−i−1(θ))− Eθ∼qt(θ)

[ n−1∑
i=0

λi log p(Dt | θ)

+

n−1∑
i=1

λi log p(Dt−1 | θ) + · · ·+ λn−1 log p(Dt−n+1 | θ)
]]

= argmin
q∈Q

1− λ

1− λn

[
n−1∑
i=0

λiDKL(qt(θ) || qt−i−1(θ))− Eθ∼qt(θ)

[1− λn

1− λ
log p(Dt | θ)

+
λ(1− λn−1)

1− λ
log p(Dt−1 | θ) + · · ·+ λn−1 log p(Dt−n+1 | θ)

]]

= argmax
q∈Q

Eθ∼qt(θ)

[ n−1∑
i=0

λi(1− λn−i)

1− λn
log p(Dt−i | θ)

]
−

n−1∑
i=0

λi(1− λ)

1− λn
DKL(qt(θ) || qt−i−1(θ)).

(12)
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C. The connection of TD Targets in TD-VCL and Reinforcement Learning
In the Section 4, we formalize the concept of n-Step Temporal-Difference for the Variational CL objective (Definition 4.3).
In this Section, we reveal the connections between this definition and the widely used Temporal-Difference methods in
Reinforcement Learning. Our aim is to clarify why Equation 6 indeed represents a temporal-difference target, both in a
broad and strict senses.

In a broad sense, bootstrapping characterizes a Temporal-Difference target: building a learning target estimate based on
previous estimates. Crucially, the leveraged estimates are functions of different timesteps. TD-VCL objectives applies
bootstrapping in the KL regularization term, by considering one or more of posteriors estimates from previous timesteps.

In a strict sense, we can show that Equation 6 deeply resembles TD targets in Reinforcement Learning. RL assumes the
formalism of a Markov Decision Process (MDP), defined by a tuple M = (S,A,P,R,P0, γ,H), where S is a state space,
A is an action space, P : S × A × S → [0,∞) is a transition dynamics, R : S × A → [−Rmax, Rmax] is a bounded
reward function, P0 : S → [0,∞) is an initial state distribution, γ ∈ [0, 1] is a discount factor, and H is the horizon.

The standard RL objective is to find a policy that maximizes the cumulative reward:

π∗
θ = argmax

π
Eπ[

H∑
k=0

γkR(st+k, at+k)], (13)

with at ∼ πθ(at | st), st ∼ P(st | st−1, at−1), and s0 ∼ P0(s), where πθ : S ×A → [0,∞) is a policy parameterized by
θ. Hence, we can define the following learning target, which represents a “value” function at each state st:

vπ(st) := Eπ[

H∑
k=0

γkR(st+k, at+k) | s = st],∀st ∈ S. (14)

Naturally, it follows that π∗
θ = argmaxπ vπ(s), ∀s ∈ S. Crucially, we can expand Equation 14 as follows:

vπ(st) := Eπ[

H∑
k=0

γkR(st+k, at+k) | s = st]

= Eπ[R(st, at) +

H∑
k=1

γkR(st+k, at+k) | s = st]

= Eπ[R(st, at) + γvπ(st+1)],

= Eπ[R(st, at) + γR(st+1, at+1) + γ2vπ(st+2)],

= Eπ[
n−1∑
k=0

γkR(st, at) + γnvπ(st+n)],∀st ∈ S, n ≤ H. (15)

Temporal-Difference methods estimates a learning target directly from Equation 15:

v̂π(s) := TDRL(n) = Eπ[

n−1∑
k=0

γkR(st, at)]︸ ︷︷ ︸
Estimated via MC Sampling

+ γnv̂π(st+n)︸ ︷︷ ︸
Bootstrapped via past estimations

,∀st ∈ S, n ≤ H. (16)

Now, we turn our attention back to our Variational Continual Learning setting. The standard VCL objective is given by
Equation 2:

qt(θ) = argmin
q∈Q

DKL(q(θ) ||
1

Zt
qt−1(θ)p(Dt | θ)).

16
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We can similarly define a learning target as a “value” function which we aim to maximize:

uq(θ)(t) := −DKL(q(θ) ||
1

Zt
qt−1(θ)p(Dt | θ))

= Eθ∼qt(θ)

[
log p(Dt | θ)] + logZt

]
− DKL(qt(θ) || qt−1(θ))

= Eθ∼qt(θ)

[
log p(Dt | θ)] + logZt

]
− DKL(qt(θ) ||

1

Zt−1
qt−2(θ)p(Dt−1 | θ))

= Eθ∼qt(θ)

[
log p(Dt | θ)] + logZt

]
+ uq(θ)(t− 1)

= Eθ∼qt(θ)

[
n−2∑
i=0

log p(Dt−i | θ)] +
n−2∑
i=0

logZt−i

]
+ uq(θ)(t− n+ 1), n ∈ N0, n ≤ t. (17)

Similarly to the RL case, it follows that qt(θ) = argmaxq∈Q uq(θ)(t). Lastly, we assume the following estimation of the
“value” function defined in Equation 17:

ûq(θ)(t) = Eθ∼qt(θ)

[
n−2∑
i=0

log p(Dt−i | θ)] +
n−2∑
i=0

logZt−i

]
+ ûq(θ)(t− n+ 1)

= Eθ∼qt(θ)

[
n−1∑
i=0

log p(Dt−i | θ)]

]
︸ ︷︷ ︸

Estimated via MC Sampling

− DKL(qt(θ) || qt−n(θ))︸ ︷︷ ︸
Bootstrapped via past posterior estimations

+

[
n−1∑
i=0

logZt−i

]
︸ ︷︷ ︸

Constant w.r.t θ

. (18)

We notice that Zt is constant with respect to θ, hence we can disregard it and still have the same learning target. Thus, we
have:

qt(θ) = argmax
q∈Q

ûq(θ)(t)

= argmax
q∈Q

Eθ∼qt(θ)

[
n−1∑
i=0

log p(Dt−i | θ)]

]
− DKL(qt(θ) || qt−n(θ)) +

[
n−1∑
i=0

logZt−i

]

= argmax
q∈Q

Eθ∼qt(θ)

[
n−1∑
i=0

log p(Dt−i | θ)]

]
− DKL(qt(θ) || qt−n(θ))︸ ︷︷ ︸

TDCL(n)

. (19)

Equation 19 is exactly n-Step Temporal-Difference target in Definition 4.3 from Section 4. The main differences from the CL
recursion in Equation 17 and the RL one in Equation 15 are two-fold. First, the CL setup is not discounted (or, equivalently,
assumes the discount factor γ = 1). Second, the RL recursion looks over future timesteps, while the CL one looks over past
timesteps. Besides these two differences, both scenarios are strongly connected. Particularly, they share the same purpose
for leveraging TD targets: to strike a balance between MC estimation (which incurs variance) and bootstrapping (which
incurs bias) while estimating the learning objective.

17
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D. TD(λ)-VCL is a discounted sum of n-Step TD targets
In Section 4, we mention that the TD-VCL learning target is a compound update that averages n-step temporal-difference
targets, as per Proposition 4.4, which we prove below.

Proposition 4.4. ∀n ∈ N0, n ≤ t , the objective in Equation 2 can be equivalently represented as:

qt(θ) = argmax
q∈Q

TDt(n), (7)

with TDt(n) as in Definition 4.3. Furthermore, the objective in Equation 5 can also be represented as:

qt(θ) = argmax
q∈Q

1− λ

1− λn

[
n−1∑
k=0

λkTDt(k + 1))

]
.︸ ︷︷ ︸

Discounted sum of TD targets

(8)

Proof. We start by proving the equivalence between Equation 2 and Equation 7:

qt(θ) = argmin
q∈Q

DKL(q(θ) ||
1

Zt
qt−1(θ)p(Dt | θ))

= argmin
q∈Q

DKL(q(θ) ||
1∏n−1

i=0 Zt−i

qt−n(θ)

n−1∏
i=0

p(Dt−i | θ))

= argmax
q∈Q

Eθ∼qt(θ)

[
n−1∑
i=0

log p(Dt−i | θ)]

]
− DKL(qt(θ) || qt−n(θ))

= argmax
q∈Q

TDt(n).

(20)

Now, we show that Equation 5 is a discounted sum of n-Step targets:

qt(θ) = argmax
q∈Q

1− λ

1− λn

[
Eθ∼qt(θ)[log p(Dt | θ)− DKL(qt(θ) || qt−1(θ))]

+ λEθ∼qt(θ)[log p(Dt | θ) + log p(Dt−1 | θ)]− λDKL(qt(θ) || qt−2(θ)) + . . .

+ λn−1Eθ∼qt(θ)[

n−1∑
i=0

log p(Dt−i | θ)]− λn−1DKL(qt(θ) || qt−n(θ))

]

= argmax
q∈Q

1− λ

1− λn

[
TDt(1) + λTDt(2) + . . . λn−1TDt(n)

]

= argmax
q∈Q

1− λ

1− λn

[
n−1∑
k=0

λkTDt(k + 1))

]
.︸ ︷︷ ︸

Disconted sum of TD targets

(21)

In Equation 7, if we set n = 1, the n-Step TD target recovers the VCL objective. Furthermore, it is worth highlighting
that an n-Step TD target is not the same as n-Step KL Regularization. The latter leverages several previous posterior
estimates, while the former only relies on a single estimate. Lastly, we can follow a similar idea to prove that the n-Step KL
Regularization objective is a simple average of n-step TD targets, by leveraging the expansion in Equation 9 and identifying
the sum of TD targets.
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E. TD-VCL: A spectrum of Continual Learning algorithms
In this Section, we describe how TD-VCL spans a spectrum of algorithms that mix different levels of Monte Carlo approxi-
mation for expected log-likelihood and KL regularization. Our goal is to show that by choosing specific hyperparameters for
Equation 5, one may recover vanilla VCL in one extreme and n-Step KL regularization in the opposite.

Let us consider the TD-VCL objective in Equation 5:

argmax
q∈Q

Eθ∼qt(θ)

[ n−1∑
i=0

λi(1− λn−i)

1− λn
log p(Dt−i | θ)

]
−

n−1∑
i=0

λi(1− λ)

1− λn
DKL(qt(θ) || qt−i−1(θ)).

Trivially, if we set λ = 0, assuming 00 = 1, it recovers the Vanilla VCL objective, as stated in Equation 3, regardless of the
choice of n.

More interestingly, we investigate the learning target as λ → 1:

lim
λ→1

{
Eθ∼qt(θ)

[ n−1∑
i=0

λi(1− λn−i)

1− λn
log p(Dt−i | θ)

]
−

n−1∑
i=0

λi(1− λ)

1− λn
DKL(qt(θ) || qt−i−1(θ))

}

= Eθ∼qt(θ)

[ n−1∑
i=0

lim
λ→1

{λi(1− λn−i)

1− λn

}
︸ ︷︷ ︸

(I)

log p(Dt−i | θ)
]
−

n−1∑
i=0

lim
λ→1

{λi(1− λ)

1− λn

}
︸ ︷︷ ︸

(II)

DKL(qt(θ) || qt−i−1(θ))

Let us develop (I) and (II) separately by applying the L’Hôpital’s rule. First, for (I):

lim
λ→1

{λi(1− λn−i)

1− λn

}
= lim

λ→1

{ iλi−1(1− λn−i)− λi(n− i)λn−i−1

−nλn−1

}
= lim

λ→1

{ iλi−1 − iλn−1 − (n− i)λn−1

−nλn−1

}
=

n− i

n
.

(22)

Now, for (II):

lim
λ→1

{λi(1− λ)

1− λn

}
= lim

λ→1

{ iλi−1(1− λ)− λi

−nλn−1

}
=

1

n
. (23)

Applying Equations 22 and 23 to TD-VCL objective, we obtain:

argmax
q∈Q

Eθ∼qt(θ)

[ n−1∑
i=0

(n− i)

n
log p(Dt−i | θ)

]
−

n−1∑
i=0

1

n
DKL(qt(θ) || qt−i−1(θ)),

which is exactly the N-Step KL Regularization objective.

19



1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Temporal-Difference Variational Continual Learning

F. Implementation Details and Reproducibility
Operationalization. For all experiments, we use a Gaussian mean-field approximate posterior and assume a Gaussian
prior N (0, σ2I) for the variational methods. We parameterize all distributions as deep networks. For all considered
objectives, we compute the KL term analytically and employ the Monte Carlo approximations for the expected log-
likelihood terms, leveraging the reparametrization trick (Kingma & Welling, 2014) for computing gradients. Lastly, we
employ likelihood-tempering (Loo et al., 2021) to prevent variational over-pruning (Trippe & Turner, 2018).

Model Architecture and Hyperpatameters. We adopt fully connected neural networks for PermutedMNIST-Hard,
SplitMNIST-Hard and SplitNotMNIST-Hard. We choose different depths and sizes depending on the benchmark, and we
provide a full list of hyperparameters in Appendix G. For CIFAR100-10 and TinyImageNet-10, we implement a Bayesian
version of the AlexNet (Krizhevsky et al., 2017), a traditional convolutional neural network architecture, as in prior Bayesian
CL literature (Thapa & Li, 2025). Crucially, also following prior literature (Ebrahimi et al., 2020), we do not use pre-trained
representations, as our goal is to evaluate how the proposed objectives perform in the CL setting, which also requires
learning their own robust representations. Finally, for training, we adopt the Adam optimizer (Kingma & Ba, 2015) and
employ early stopping with a patience parameter of five epochs, which drastically reduces the number of epochs needed for
each new task in comparison to previous work (Nguyen et al., 2018).

Hyperparamter Tuning Protocol. We conduct hyperparameter tuning for all methods in the paper, including the baselines
(VCL, UCL, UCB). We follow a random search for each evaluated benchmark. For a fair comparison, we ensure that all
methods use approximately the same compute of 1 GPU day. We provide the search space for each method in our released
code. For the proposed methods, we mainly tuned three hyperparameters: n (as in n-Step KL), λ (as in TD-VCL), and β
(the likelihood tempering parameter). We conducted a grid search for each evaluated benchmark, with n ∈ {1, 2, 3, 5, 8, 10},
λ ∈ {0.0, 0.1, 0.5, 0.8, 0.9, 0.99}, and β ∈ {1e− 5, 1e− 4, 1e− 3, 5e− 3, 1e− 2, 5e− 2, 1e− 1, 1.0}.

Reproducibility. Reported results are averaged across ten different seeds for PermutedMNIST-Hard, SplitMNIST-Hard,
and SplitNotMNIST-Hard, and five seeds for CIFAR100-10 and TinyImageNet-10. Error bars represent 95% confidence
intervals, while tables show 2-sigma errors up to two decimal places. We execute all experiments using a single GPU
RTX 4090. We provide our implementation code for the proposed methods (TD-VCL, TD-UCB, TD-UCL, and n-
Step), as well as considered baselines (Batch MLE, Online MLE, VCL, VCL CoreSet, UCB, and UCL) in https:
//anonymous.4open.science/r/vcl-nstepkl-5707.
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G. Hyperparameters
Table 4 provides the shared hyperparameters used in each benchmark. Tables 5 and 6 provided the specific hyperparameters
for the proposed methods and baselines, respectively.

PermMNIST-Hard SplitMNIST-Hard SplitNotMNIST-Hard CIFAR100-10 TinyImageNet-10
Batch Size 256 256 256 256 256
Max Epochs 100 100 100 100 100
NN Architecture [100, 100] [256, 256] [150, 150, 150, 150] AlexNet AlexNet
Number of Heads 1 1 1 10 10
Learning Rate 1e-3 1e-3 1e-3 1e-3 1e-3

Table 4. Training hyperparameters. These are shared across all evaluated methods.

PermMNIST-Hard SplitMNIST-Hard SplitNotMNIST-Hard CIFAR100-10 TinyImageNet-10

n-Step KL n 5 4 5 5 2
β 5e-3 5e-2 5e-2 3e-5 1e-9

TD(λ)-VCL
n 8 4 3 10 2
λ 0.5 0.8 0.1 0.5 0.1
β 1e-3 5e-2 1e-3 1e-5 1e-9

TD(λ)-UCL
n 8 4 3 5 2
λ 0.5 0.8 0.1 0.8 0.5
β 1e-3 5e-2 1e-3 1e-5 1e-7

TD(λ)-UCB
n 8 4 3 8 3
λ 0.5 0.8 0.1 0.8 0.1
β 1e-3 5e-2 1e-3 1e-5 1e-5

Table 5. Hyperparameters for different methods across benchmarks.

PermMNIST-Hard SplitMNIST-Hard SplitNotMNIST-Hard CIFAR100-10 TinyImageNet-10
VCL β 5e-3 5e-3 5e-3 5e-4 1e-5

UCL

α 1.0 10.0 0.5 1.0 10.0
β 0.001 1.0 0.001 0.001 1.0
γ 0.01 1.0 1.0 0.005 0.1
r 0.5 0.5 0.5 0.5 0.5
βkl 5e-3 1e-3 1e-5 1e-4 1e-7

UCB α 1.0 1.0 0.1 10.0 100.0
β 1e-2 1e-2 5e-2 5e-5 1e-5

Table 6. Hyperparameters for different methods across benchmarks.
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H. PermutedMNIST-Hard, SplitMNIST-Hard, and SplitNotMNIST-Hard: Introducing Higher
Standards for MNIST/NotMNIST-based Continual Learning Benchmarks

Popular Continual Learning benchmarks, such as PermutedMNIST, SplitMNIST, and SplitNotMNIST, (Goodfellow et al.,
2015; Zenke et al., 2017; Nguyen et al., 2018) provide an effective experimental setup. These benchmarks offer tasks
that, while conceptually simple in isolation, present a challenging task-streaming setup that highlights the phenomenon of
Catastrophic Forgetting. This combination facilitates the study of Continual Learning methods through rapid iterations and
modest deep architectures, making it ideal for academic settings. Nonetheless, we argue that the “unrestricted” versions
of these benchmarks are either trivially addressed by simple baselines or do not reflect a challenging evaluation setup
for Catastrophic Forgetting in current Bayesian CL research. This observation motivates our work to incorporate certain
restrictions in the considered methods, resulting in a more challenging setup for Continual Learning while maintaining the
benchmarks’ original desiderata.
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PermutedMNIST: Replay Buffer Analysis

Figure 4. A Replay Buffer analysis on the PermutedMNIST. Each curve represents a model re-trained on a buffer composed of “T ”
previous tasks, “B” examples of each. Online MLE only considers the current task. Allowing “unlimited” access to previous task data
trivializes the CL setting, and a simple MLE baseline is enough to attain strong results. Nevertheless, as we restrict the replay buffer in
size and number of tasks, the benchmark becomes substantially more challenging and shows signs of Catastrophic Forgetting.

Restricting replay memory size imposes a new challenge for MNIST/NotMNIST CL benchmarks. Figure 4 presents
MLE models trained on different levels of previous tasks‘ data (besides the data from the current task) for the classic
PermutedMNIST benchmark. Online MLE means no usage of data from previous tasks. On the flip side, we re-train
the remaining models considering the data of T previous tasks, with B examples of each. It shows that allowing access
to all the old tasks is enough for an MLE model to maintain high accuracy even when presenting to only a set as tiny
as 200 examples. As we reduce the number of old tasks in the buffer, performance decreases, showing clear signs of
Catastrophic Forgetting. For T = 2, all models present an accuracy lower than 60% regardless of the volume of old task
data. Therefore, in order to impose a harder evaluation setup, we impose additional restrictions for re-training in prior
tasks. For PermutedMNIST-Hard, we restrict re-training to the two most recent past tasks, with 200 examples per task;
for SplitMNIST-Hard and SplitNotMNIST-Hard, we allow only the most recent past task with 40 examples. As shown in
Figure 4, MLE-based methods do not perform well in this setting. Crucially, these adopted replay buffers are very small in
comparison with the training data of the current task, which is more realistic than retaining the full data. Nonetheless, they
strictly follow the core set sizes used in prior work (Nguyen et al., 2018), ensuring that the adopted baselines (e.g., VCL
CoreSet) work as proposed and promoting a fair comparison.

“Single-Head” Classifiers prevents the saturation of PermutedMNIST, SplitMNIST, and SplitNotMNIST. “Multi-Head”
networks train a different classifier for each task on top of a shared backbone. The goal is to alleviate Catastrophic Forgetting
by disregarding the effect of negative transfer among tasks. While this may be acceptable for harder datasets where multi-
head architecture is necessary to avoid trivial performance, current methods with multi-head classifiers already saturates the
classic MNIST/NotMNIST benchmarks, achieving accuracy above 99%. For empirical evidence, we evaluate the methods
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on SplitMNIST (which allows multi-head architecture, Figure 5) and SplitMNIST-Hard (which restricts to a single-head
classifier, Figure 6 in Appendix J). In the former, all baselines trivially attain high average accuracy; in the latter, all methods
face a much more challenging setup. Hence, PermutedMNIST-Hard, SplitMNIST-Hard, and SplitNotMNIST-Hard enforces
single-head architecture.
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SplitMNIST: Per Task Performance

Figure 5. SplitMNIST results. The first five plots show results per task, and the last one is an average across tasks. As a consequence of
multi-head networks simplifying the Continual Learning challenge, all methods attain high accuracy. In particular, variational methods
accuracies ranging from 97% and 98%. In constrast, SplitMNIST-Hard in Figure 6, provides a considerably more challenging CL
benchmark.

Lastly, we highlight that all evaluated methods – including the proposed ones – are subject to the adopted restrictions
highlighted in this Section. Therefore, they are trained in the same data with the same parametrization, ensuring a fair
comparison setup.
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I. Benchmarks Description
PermutedMNIST-Hard. This benchmark uses the MNIST dataset. Each task corresponds to a different permutation of
the pixels in the MNIST data. Similarly to MNIST, PermutedMNIST is a multi-class classification problem to recognize
the handwritten digit associated with the image. The benchmark runs 10 successive tasks, and each evaluation iteration
considers the performance in all past tasks. For the “Hard” version, we restrict any method in two ways, as described in
Appendix H: first, replay buffers are restricted to the two most recent tasks, with a fixed set of 200 data points per task;
second, we restrict the model architectures to single-head classifiers.

SplitMNIST-Hard. This benchmark also considers the MNIST dataset but in a binary classification setting. The model
selects between two different digits. Five tasks from the MNIST dataset arrive in sequence: 0/1, 2/3, 4/5, 6/7, and 8/9, and
evaluation considers the performance in all past tasks. For the “Hard” version, we apply the similar restrictions: replay
buffers restricted to the most recent task, with a fixed set of 40 data points. We also restrict the model architectures to
single-head classifiers.

SplitNotMNIST-Hard. This benchmark contains a similar structure to SplitMNIST-Hard, but it leverages the notMNIST
dataset. This more challenging task contains characters from diverse font styles, comprising 400,000 examples. The five
tasks are A/F, B/G, C/H, D/I, and E/J. The “Hard” version applies the same restrictions as in SplitMNIST-Hard.

CIFAR100-10. This challenging benchmark contains 10 different tasks, each of them comprising 20 distinct classes from
the CIFAR-100 dataset (Krizhevsky, 2009). Evaluation considers the performance in all previous tasks. The dataset contains
50,000 images (5,000 per task) for training/validation and 10,000 images (1,000 per task) for evaluation. For this benchmark,
we restrict the replay buffer to contain 200 data points per task.

TinyImageNet-10. This challenging benchmark also contains 10 different tasks, each of them comprising 20 distinct classes
from the ImageNet dataset (Deng et al., 2009). The dataset contains 100,000 images (10,000 per task) for training/validation
and 10,000 images (1,000 per task) for evaluation. Particularly for TinyImageNet-10, we also adopt a memory restriction:
replay buffers are restricted to the three most recent tasks, with a fixed set of 200 data points per task.
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J. Per Task Performance: Additional Results
J.1. SplitMNIST-Hard

Figure 6 presents the per-task performance for the SplitMNIST-Hard results. As expected, the performance of all methods
drops substantially in comparison to traditional SplitMNIST, as the CL becomes considerably harder. However, we highlight
that n-Step KL and TD-VCL presented better results than VCL and VCL CoreSet, demonstrating again the effectiveness of
the proposed learning objectives.

Interestingly, the average accuracy does not decrease monotonically, as one might typically expect due to Catastrophic
Forgetting. Instead, it drops significantly after Task 3 and then rises again. This evidence indicates two potential dynamics
of transfer learning: a negative transfer from Task 1 while learning Task 3, and a positive transfer from Task 1 while
learning Task 4. For instance, the digit “0” from Task 1 is rounded, similar to the digits “5” and “6” in Tasks 3 and 4,
respectively. Additionally, the digit “1” is composed of straight lines, much like the digits “4” and “7.” We believe that the
employed architecture, given its inherent and intended simplicity, relies on features of this nature. Therefore, more expressive
architectures that better disentangle these features may potentially prevent the negative transfer. However, exploring this
possibility is beyond our scope, as our focus is on studying the effects of Catastrophic Forgetting in Continual Learning.
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SplitMNIST-Hard: Per Task Performance

Figure 6. SplitMNIST-Hard results. In this more robust evaluation setting, tasks are enforced to share a single classifier with restricted
replay memory. Consequently, the effect of Catastrophic Forgetting (and task negative transfer) is explicit. TD-VCL objectives present
slightly better average accuracy across tasks in comparison with standard VCL variants.

J.2. SplitNotMNIST-Hard

In this section, we show per-task performance for SplitNotMNIST-Hard. As highlighted in Section 5.1, NotMNIST
is a considerably harder dataset than MNIST, and the choice of simpler deep architectures naturally results in higher
approximation errors. Our goal is to evaluate how the presented methods behave under this circumstance.

Figure 7 presents the results. As expected, even learning the current task is challenging. This characteristic contrasts with
MNIST-based benchmarks, where all models could at least fit the current task almost perfectly. MLE methods fit the current
task slightly better since their objectives are not regularized by the prior or previous posterior. However, this same reason
caused them to suffer from Catastrophic Forgetting more drastically, as they tend to focus on fitting the current task and
disregard past ones. Overall, TD-VCL objectives maintained the best trade-off between plasticity and memory stability,
aligning with the results in the other benchmarks.
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Figure 7. SplitNotMNIST-Hard results. The first five plots show results per task, and the last one is an average across them.
SplitNotMNIST-Hard is considerably harder to fit with modest deep architectures, leading to a setup where posteriors induce high
approximation errors. As a result, the standard VCL variants performs similarly to non-variational approaches. TD-VCL surpasses all
methods and shows more robustness to Catastrophic Forgetting under this high approximation error setting.

J.3. CIFAR100-10

Figure 8 displays the per-task performance in the CIFAR100-10 benchmark. Non-variational baselines consistently struggle
with Catastrophic Forgetting, even in more recent tasks. VCL and VCL CoreSet also show a consistent drop in accuracy as
the number of observed tasks increases, although this decline is less noticeable in some cases and occasionally followed
by a slight increase in accuracy for certain tasks. In contrast, the proposed TD-VCL objectives demonstrate a significant
improvement over the baselines and show little indication of Catastrophic Forgetting, despite the harder challenge posed by
the CIFAR100 dataset.

Interestingly, variational methods, which experience less Catastrophic Forgetting, exhibit a surprising effect in some tasks:
their accuracy initially drops after observing a few consecutive tasks before subsequently increasing again. For example, in
Task 3, this effect is evident across all variational methods. As a result, the average accuracy tends to rise as the total number
of observed tasks increases, which is also reported in prior work (see Figure 7a in Ahn et al. (2019), and Table 2 in Thapa &
Li (2025))). We hypothesize that the process of explicit posterior regularization, combined with training on successive tasks,
leads to a parameterization that learns features more generalizable across tasks, incurring positive transfer learning.

J.4. TinyImageNet-10

Lastly, Figure 9 illustrates the per-task performance in the TinyImageNet-10 benchmark. As seen in previous scenarios,
Online MLE consistently fails to achieve continual learning. Interestingly, VCL also encounters difficulties in this more
challenging benchmark, showing per-task performance similar to Batch MLE. VCL CoreSet outperforms the standard VCL
and achieves performance comparable to the TD-VCL objectives in some tasks. Nevertheless, the TD-VCL objectives
consistently demonstrate superior performance across all tasks, reinforcing the findings from the earlier benchmarks.
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CIFAR100-10: Per Task Performance

Figure 8. Per-task performance (accuracy) over time in the CIFAR100-10 benchmark. Each plot illustrates the accuracy of a specific
task (as indicated in the plot title) as the number of observed tasks increases. Non-variational baselines consistently struggle with
catastrophic forgetting, while VCL and VCL CoreSet show a mild effect. However, the TD-VCL objectives demonstrate a noticeable
improvement over these methods, even in the more challenging setup.
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TinyImageNet-10: Per Task Performance

Figure 9. Per-task performance over time in the TinyImageNet-10 benchmark.. In the most challenging benchmark presented in this
work, we observe similar trends to the previous ones, where TD-VCL objectives show superior performance across tasks.
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K. Hyperparameters Robustness Analysis
In this Section, we present robustness studies in the PermutedMNIST-Hard benchmark with respect to the relevant
hyperparameters. Our goal is to evaluate how they affect the performance of the proposed methods.

K.1. n-Step KL Regularization

Figure 10 presents the ablation study of the n-step KL Regularization method in the PermutedMNIST-Hard benchmark. We
designed this study to highlight the two most sensitive hyperparameters: n, the n-step size, and β, the likelihood-tempering
parameter.

Similarly to VCL, this method is sensitive to the choice of β. Higher values will prevent the model from fitting new tasks, a
manifestation of variational over-pruning. On the other hand, lower values will not retain knowledge properly, suffering
from Catastrophic Forgetting. Mild values (0.001, 0.005, 0.01) balanced well this trade-off.

In terms of n, we observe benefits of up to 5 steps. Beyond that, the effect saturates, even becoming slightly detrimental.
This observation suggests the existence of an optimal range for n while leveraging past posterior estimates.

1 2 3 4 5 6 7 8 9 100.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

n-Step = 1

 = 1e-05
 = 0.0001
 = 0.001
 = 0.005
 = 0.01
 = 0.05

1 2 3 4 5 6 7 8 9 10
Number of Observed Tasks

0.5
0.6
0.7
0.8
0.9
1.0

n-Step = 2

1 2 3 4 5 6 7 8 9 100.5
0.6
0.7
0.8
0.9
1.0

n-Step = 3

1 2 3 4 5 6 7 8 9 100.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

n-Step = 5

1 2 3 4 5 6 7 8 9 10
Number of Observed Tasks

0.5
0.6
0.7
0.8
0.9
1.0

n-Step = 8

1 2 3 4 5 6 7 8 9 100.5
0.6
0.7
0.8
0.9
1.0

n-Step = 10

PermutedMNIST-Hard: N-Step TD-VCL Ablation

Figure 10. Hyperparameter Robustness Analysis for n-Step KL Regularization in PermutedMNIST-Hard. The plots show the effect
of the likelihood-tempering parameter β for different n. For β, too high values negatively affect fitting new tasks, and too low values
disregard the regularization of previous posteriors, leading to Catastrophic Forgetting. For n, we observe benefits while increasing up to
n = 5, and the effect saturates.

K.2. TD(λ)-VCL

Figure 11 shows the ablation study for TD-VCL. For this setup, we considered a fixed value of β, as our hyperparameter
search suggested the same trends for n-Step KL Regularization and TD-VCL. Hence, we simplify the analysis to consider
only n and λ.

TD-VCL presents mild sensitivity to the choice of λ. The effect is more pronounced as the method observes more tasks, with
a slight preference for lower values for some choices of n. We believe that the choice of λ will fundamentally depend on how
most recent estimates are better and more informative than old ones. In the case where they present similar approximation
errors, the choice of λ causes less impact, and, therefore, there is less difference between leveraging N-Step TD-VCL and
TD(λ)-VCL objectives.
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Figure 11. Hyperparameter Robustness Analysis for TD(λ)-VCL in PermutedMNIST-Hard. The plots show the effect of λ for
different choices of n. The learning objective presents mild sensitivity to the choice of λ in this benchmark, and the effect is more
pronounced as the number of observed tasks increases.
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L. Full Table Results
In this Appendix, we report the full version of Tables 1 and 3, for the sake of completeness. Table 7 shows the results on
CIFAR100-10 and TinyImageNet-10, considering all timesteps from t = 2 to t = 10. Table 8 shows the results for all
benchmarks, including SplitNotMNIST-Hard, for the Bayesian CL methods and their TD-enhanced counterparts.

Table 7. Full table for quantitative comparison on the CIFAR100-10 and TinyImagenet-10 benchmarks. Each column presents the
average accuracy across the past t observed tasks. Results are reported with two standard deviations across five seeds. TD-VCL variants
consistently outperform the baselines in harder benchmarks with more complex architectures, such as Bayesian CNNs.

CIFAR100-10
t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

Online MLE 0.56±0.05 0.56±0.06 0.57±0.06 0.56±0.04 0.56±0.03 0.55±0.03 0.53±0.06 0.51±0.04 0.52±0.04

Batch MLE 0.57±0.03 0.58±0.04 0.58±0.04 0.59±0.04 0.58±0.05 0.58±0.06 0.56±0.06 0.54±0.05 0.54±0.07

VCL 0.64±0.02 0.63±0.03 0.63±0.02 0.60±0.02 0.60±0.02 0.60±0.03 0.61±0.05 0.65±0.02 0.66±0.01

VCL CoreSet 0.64±0.05 0.65±0.03 0.63±0.03 0.62±0.03 0.63±0.02 0.63±0.02 0.61±0.02 0.64±0.03 0.65±0.02

n-Step TD-VCL 0.67±0.01 0.68±0.01 0.67±0.02 0.67±0.01 0.65±0.01 0.66±0.01 0.68±0.04 0.69±0.01 0.69±0.02

TD(λ)-VCL 0.66±0.02 0.67±0.02 0.66±0.04 0.66±0.01 0.66±0.02 0.66±0.01 0.67±0.01 0.69±0.02 0.71±0.01

TinyImagenet-10
t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

Online MLE 0.48±0.03 0.45±0.02 0.45±0.02 0.46±0.02 0.44±0.01 0.44±0.02 0.45±0.02 0.45±0.02 0.44±0.03

Batch MLE 0.50±0.02 0.47±0.02 0.48±0.02 0.49±0.02 0.48±0.02 0.48±0.02 0.50±0.02 0.50±0.02 0.51±0.03

VCL 0.53±0.06 0.50±0.02 0.51±0.03 0.52±0.02 0.51±0.03 0.49±0.01 0.51±0.02 0.51±0.02 0.51±0.02

VCL CoreSet 0.52±0.03 0.50±0.02 0.51±0.02 0.53±0.01 0.51±0.02 0.52±0.01 0.54±0.02 0.55±0.02 0.54±0.02

n-Step TD-VCL 0.56±0.02 0.54±0.03 0.55±0.02 0.55±0.02 0.54±0.02 0.54±0.01 0.56±0.02 0.56±0.01 0.56±0.02

TD(λ)-VCL 0.57±0.03 0.55±0.02 0.56±0.02 0.56±0.01 0.55±0.03 0.55±0.03 0.56±0.02 0.57±0.02 0.56±0.02
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Table 8. Full table for quantitative comparison between Bayesian CL methods and their TD-enhanced counterparts. The TD-
enhanced methods incorporate the objective in Equation 5 in each base method. Although no single base method consistently outperforms
the others across all benchmarks, their TD-enhanced versions consistently achieve better performance, particularly at later timesteps.

PermutedMNIST-Hard
t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

VCL 0.95±0.00 0.94±0.01 0.93±0.02 0.91±0.02 0.89±0.03 0.86±0.03 0.83±0.04 0.80±0.06 0.78±0.04

TD(λ)-VCL 0.97±0.00 0.96±0.00 0.95±0.00 0.94±0.01 0.93±0.01 0.92±0.01 0.91±0.01 0.90±0.01 0.89±0.02

UCL 0.97±0.00 0.95±0.01 0.94±0.01 0.92±0.02 0.89±0.02 0.86±0.04 0.83±0.06 0.78±0.09 0.73±0.12

TD(λ)-UCL 0.97±0.00 0.97±0.00 0.95±0.00 0.94±0.01 0.92±0.02 0.90±0.02 0.88±0.04 0.85±0.09 0.84±0.04

UCB 0.93±0.01 0.93±0.01 0.92±0.01 0.90±0.01 0.89±0.02 0.87±0.02 0.86±0.02 0.85±0.01 0.83±0.02

TD(λ)-UCB 0.94±0.00 0.93±0.00 0.93±0.00 0.92±0.00 0.91±0.01 0.91±0.01 0.90±0.01 0.89±0.02 0.88±0.02

SplitMNIST-Hard SplitNotMNIST-Hard
t = 2 t = 3 t = 4 t = 5 t = 2 t = 3 t = 4 t = 5

VCL 0.87±0.02 0.66±0.04 0.82±0.03 0.64±0.11 0.69±0.04 0.63±0.03 0.60±0.00 0.51±0.06

TD(λ)-VCL 0.98±0.01 0.79±0.08 0.88±0.04 0.67±0.04 0.74±0.02 0.73±0.03 0.69±0.03 0.58±0.09

UCL 0.88±0.04 0.68±0.03 0.83±0.03 0.66±0.06 0.71±0.01 0.63±0.04 0.61±0.00 0.52±0.04

TD(λ)-UCL 0.97±0.01 0.85±0.06 0.90±0.02 0.70±0.04 0.72±0.03 0.71±0.06 0.63±0.02 0.51±0.06

UCB 0.85±0.16 0.79±0.12 0.83±0.06 0.75±0.10 0.70±0.08 0.63±0.06 0.61±0.01 0.61±0.05

TD(λ)-UCB 0.93±0.02 0.89±0.03 0.87±0.03 0.80±0.03 0.72±0.01 0.72±0.01 0.70±0.02 0.63±0.03

CIFAR100-10
t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

VCL 0.64±0.02 0.63±0.03 0.63±0.02 0.60±0.02 0.60±0.02 0.60±0.03 0.61±0.05 0.65±0.02 0.66±0.01

TD(λ)-VCL 0.66±0.02 0.67±0.02 0.66±0.04 0.66±0.01 0.66±0.02 0.66±0.01 0.67±0.01 0.69±0.02 0.71±0.01

UCL 0.65±0.03 0.66±0.07 0.64±0.05 0.62±0.04 0.60±0.05 0.60±0.04 0.58±0.02 0.61±0.02 0.62±0.02

TD(λ)-UCL 0.68±0.02 0.67±0.02 0.64±0.01 0.70±0.04 0.70±0.02 0.68±0.03 0.66±0.03 0.65±0.06 0.67±0.03

UCB 0.65±0.01 0.65±0.02 0.66±0.02 0.66±0.03 0.66±0.03 0.66±0.01 0.65±0.01 0.64±0.01 0.66±0.01

TD(λ)-UCB 0.64±0.02 0.65±0.02 0.66±0.01 0.67±0.01 0.67±0.01 0.68±0.01 0.68±0.01 0.68±0.02 0.70±0.01

TinyImagenet-10
t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

VCL 0.53±0.06 0.50±0.02 0.51±0.03 0.52±0.02 0.51±0.03 0.49±0.01 0.51±0.02 0.51±0.02 0.51±0.02

TD(λ)-VCL 0.57±0.03 0.55±0.02 0.56±0.02 0.56±0.01 0.55±0.03 0.55±0.03 0.56±0.02 0.57±0.02 0.56±0.02

UCL 0.55±0.02 0.52±0.03 0.52±0.03 0.52±0.02 0.51±0.02 0.50±0.02 0.52±0.01 0.52±0.01 0.50±0.03

TD(λ)-UCL 0.55±0.03 0.53±0.01 0.54±0.01 0.55±0.01 0.54±0.01 0.54±0.01 0.55±0.01 0.56±0.01 0.56±0.01

UCB 0.52±0.06 0.51±0.04 0.51±0.02 0.50±0.02 0.48±0.04 0.46±0.01 0.45±0.02 0.44±0.03 0.42±0.03

TD(λ)-UCB 0.54±0.04 0.54±0.01 0.52±0.01 0.52±0.02 0.51±0.02 0.50±0.02 0.50±0.03 0.49±0.02 0.47±0.02
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