
MOTO: Offline Pre-training to Online Fine-tuning
for Model-based Robot Learning

Rafael Rafailov˚: Kyle Hatch˚: Victor Kolev:

John D. Martin; Mariano Phielipp; Chelsea Finn:

:Stanford University ;Intel AI Labs
{rafailov,khatch}@cs.stanford.edu

Abstract: We study the problem of offline pre-training and online fine-tuning for
reinforcement learning from high-dimensional observations in the context of re-
alistic robot tasks. Recent offline model-free approaches successfully use online
fine-tuning to either improve the performance of the agent over the data collec-
tion policy or adapt to novel tasks. At the same time, model-based RL algorithms
have achieved significant progress in sample efficiency and the complexity of the
tasks they can solve, yet remain under-utilized in the fine-tuning setting. In this
work, we argue that existing methods for high-dimensional model-based offline
RL are not suitable for offline-to-online fine-tuning due to issues with distribution
shifts, off-dynamics data, and non-stationary rewards. We propose an on-policy
model-based method that can efficiently reuse prior data through model-based
value expansion and policy regularization, while preventing model exploitation by
controlling epistemic uncertainty. We find that our approach successfully solves
tasks from the MetaWorld benchmark, as well as the Franka Kitchen robot manip-
ulation environment completely from images. To our knowledge, MOTO is the
first and only method to solve this environment from pixels.2

Keywords: Model-based reinforcement learning, offline-to-online fine-tuning,
high-dimensional observations

1 Introduction

Pre-training and fine-tuning as a paradigm has been instrumental to recent advances in machine
learning. In the context of reinforcement learning, this takes the form of pre-training a policy
with offline learning [1, 2], i.e. when only a static dataset of environment interactions is avail-
able; subsequently fine-tuning that policy with a limited amount of online fine-tuning. We study the
offline-to-online fine-tuning problem with a focus on high-dimensional pixel observations, as found
in real-world applications, such as robotics.

Prior works for offline-to-online fine-tuning often train a policy with model-free offline RL objec-
tives throughout both the offline and online phases [3, 4, 5, 6, 7, 8]. While this approach addresses
the challenge of distribution shift in the offline phase, it leads to excessive conservatism in the on-
line phase, since the policy cannot balance offline conservatism with online exploration. Moreover,
model-free works are lacking in generalization abilities, and can even under-perform when trained
on non task-specific data [9, 10].

˚Equal contribution
2Additional details are available on our project website: https://sites.google.com/view/mo2o/

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.

https://sites.google.com/view/mo2o/

Figure 1: Model-based offline to online fine-tuning. A static dataset of experience is used to train a world
model, with which the offline actor-critic agent interacts. The actor-critic agent is trained via both data from
the environment and data from the model via model-based value expansion. Model data is penalized via an
uncertainty penalty which inhibits model exploitation. Finally, during fine-tuning, the agent interacts with the
environment, and collects new trajectories, which are used to jointly fine-tune the world model and actor-critic.

Model-based methods, in which the agent learns a representation and dynamics model, present an
interesting alternative, as they have shown generalization ability to new within-distribution tasks
[11, 12, 13, 14]; they are sample-efficient and can enable online exploration via model-generated
rollouts [15]. Lastly, predictive models can also naturally learn stable representations, which makes
them suitable for realistic high-dimensional domains [16, 17, 18, 19]. Despite the good case for
model-based learning in the offline-to-online fine-tuning problem, this has been under-explored,
with the literature focused mostly on model-free methods.

In this work, we argue that existing algorithms for offline model-based RL are not suitable to the
pre-training and fine-tuning or continual learning regimes. In particular, algorithms that use replay
buffers of model-generated data, such as [11, 12, 13, 19], create significant distributional shift issues,
as the learned model dynamics and reward functions change with additional online interactions.
Moreover, models with high-dimensional observations, such as [19, 12], deal with the additional
complexity of representation shift of the latent data. These algorithms are also not feasible in large
models with high-dimensional representation spaces, which are common in real-world applications
[16, 17, 18]. On the other hand, on-policy model-based RL methods such as [20, 21] are amenable
to fine-tuning but do not make efficient use of high-quality data in the policy training objective or
are not scalable to models with changing representation spaces.

To alleviate these issues, we propose the MOTO (Model-based Offline-To-Online) algorithm.
MOTO is a model-based actor-critic algorithm which operates in high-dimensional observation
spaces. Crucially, MOTO uses model-based value expansion, which removes the need for large
replay buffers, alleviates the distributional shift issue, and allows for the use of large-scale predic-
tive models while still allowing us to use high-quality offline data in the critic learning. To prevent
model exploitation, we additionally implement ensemble model-based uncertainty estimation and
policy regularization. We evaluate MOTO on 10 tasks from the MetaWorld benchmark [22] and two
tasks in the Franka Kitchen domain [23, 24], completely from vision. Our approach outperforms
baselines on 9/10 environments in the MetaWorld benchmark and solves both settings in the Franka
kitchen. As far as we are aware, is the first method to solve this environment completely from vi-
sion. Moreover, by studying the fine-tuning regime, we empirically validate theoretical performance
bounds from prior model-based offline RL.

We summarize our contributions as follows: (1) we propose a new model-based actor-critic algo-
rithm for offline pre-training and online fine-tuning; (2) we show the first successful solution to the
Franka Kitchen task from images; (3) we empirically verify a proposed theoretical performance gap;
(4) to facilitate further research in this area, we will publicly release our environments and datasets.

2

2 Related Work

Our work is at the intersection of offline RL, model-based RL and control from high-dimensional
observations (i.e. images). We review related work from these fields below.

Model-Based Offline RL Model-based offline RL algorithms [20, 11, 25, 21, 26, 19, 12] learn
a predictive model from the offline dataset and use it for policy training. We would like to design
a model-based reinforcement learning algorithm that can efficiently utilize offline datasets, while
being easily amenable to continual learning and online fine-tuning. A line of prior works [11, 12, 13]
uses MBPO-style optimization [27], which mixes real and model-generated data in a replay buffer
used for policy training. [19] generalizes this approach to more realistic domains using variational
models and latent ensembles and manages to solve a real robot task involving desk manipulation.
However, these methods are not well-suited to the fine-tuning tasks, since the data in the replay buffer
is sampled from the model’s internal representation space, which suffers from significant distribution
shift as the model is fine-tuned. Moreover, the need for replay buffers limits the scalability of these
algorithms, as state-of-the-art predictive models in many realistic applications (such as autonomous
driving [16, 17, 18]) require very large model and representation sizes. Several algorithms such
as MOREL [20] and BREMEN [21] use on-policy training within the learned model without the
need for large replay buffers, making them well-suited to continual learning settings, but cannot use
potentially high-quality data from the offline dataset to supervise the actor-critic training.

Variational Dynamics Models Variational predictive models have demonstrated success in a va-
riety of challenging applications. One line of research [16, 17, 28, 29, 30] utilizes the model for
representation purposes only and uses standard RL, control, or imitation on top of it. Others such
as [31, 32, 15, 33] use the latent dynamics model either to learn a policy within the model or deploy
shooting-based planning methods. However, most of those prior works focus on the online setting
and do not make good use of highly-structured prior data or account for distribution shift. Our
method utilizes model-based value expansion, which allows us to take advantage of the efficiency
of model-based training, while also using high-quality offline data for critic supervision.

3 Preliminaries

In this section we review the modeling framework for our world model and epistemic uncertainty
estimates.

World Model To model the high-dimensional observations of the environment, we use a recurrent
VAE based on the RSSM model [31, 32]. The model consists of the following components:

zt „ qθpzt | ht,xtq latent representation encoder
ht “ fθpzt´1,ht´1,at´1q deterministic latent state

ẑt „ piθpzt | htq stochastic latent state
x̂t „ pθpxt | zt,htq observation decoder
r̂t „ pθprt | zt,htq reward decoder

where xt are the high-dimensional environment observations, at are the actions, rt are the rewards,
ht are deterministic latent states, and zt are stochastic latent states. We denote the latent state
st “ rht, zts as the concatenation of both. All components of the model are trained jointy via the
ELBO loss as:

Lmodel
pθ,qθ

“ E
τ„D

”

ÿ

t

´ ln pθpxt | stq ´ ln pθprt | stq`

DKLrqθpst|xt, st´1,at´1q||pitθ pst|st´1,at´1qs

ı

. (1)

In our experiments we use discrete latent state models, following the DreamerV2 architecture [15].
Notice that we train an ensemble of stochastic latent dynamics models tpiθpst`1|ztquMi“1 following

3

Algorithm 1 MOTO: Model-based Offline to Online Fine-tuning
Require: Offline dataset D, initialized policy πψ and critics Qψ , initialized prediction and reward model Mθ ,

policy rollout length H , number of offline training steps Noffline, number of online episodes to collect
Nonline episodes, number of online gradient updates per episode G.

1: // offline pre-training
2: for i “ 1, 2, 3, ¨ ¨ ¨ , Noffline do
3: Sample a batch of trajectories B „ D.
4: Update Mθ on B according to Eq. 1.
5: Generate H-step latent policy rollouts with penalized rewards (Eq. 3).
6: Update πψ according to Eq. 10
7: update Qψ according to Eq. 9 on the real and model data.
8: end for
9: // online fine-tuning

10: for i “ 1, 2, 3, ¨ ¨ ¨ , Nonline episodes do
11: Rollout the policy πθ in the environment for an episode to collect a new trajectory τ
12: D “ D Y τ
13: for step “ 1, 2, 3, ¨ ¨ ¨ , G do
14: Sample a batch of trajectories B „ D.
15: Update Mθ on B according to Eq. 1.
16: Generate H-step latent policy rollouts with penalized rewards (Eq. 3).
17: Update πψ according to Eq. 10
18: update Qψ according to Eq. 9 on the real and model data.
19: end for
20: end for

[19] by randomly selecting one model pitθ to optimize at each time step of the trajectory in the model
in Eq. 1. This makes the ensemble training no more computationally expensive than single model
optimization.

Offline Model-Based RL From High-Dimensional Observations To mitigate issues with model
exploitation, similar to [19, 11], we train a latent dynamics model ensemble tpiθpst`1|ztquMi“1, and
implement model conservatism by penalizing rewards via dynamics model disagreement, which acts
as a proxy for epistemic uncertainty. We use the penalty:

uθpst,atq “ stdptlθipzt`1quMi“1q, (2)

where liθpzt`1q is the logit outputs of the discrete distribution piθp¨|zt`1q. Hence, the final reward
function is

prθpst,at, st`1q “ rθpst`1q ´ αuθpst,atq (3)

where α is a trade-off parameter between reward maximization and conservatism.

4 Model-based Offline to Online Fine-tuning (MOTO)

Our model training architecture and objective follow prior works [19, 34], but we significantly
change the actor-critic algorithm optimization towards the goal of efficient online fine-tuning from
offline data. We build the MOTO policy optimization procedure on three main design choices:
1) model-based value expansion, 2) uncertainty-aware predictive modelling, and 3) behaviour-
regularized policy optimization. The full algorithm training outline is presented in Algorithm 1.

Variational Model-Based Value Expansion We would like to train a policy via model-based
training and without latent replay buffers, while making use of both the high-quality offline data
and the world model as sources of supervision for the actor and critic. To this end, we adapt ideas
from the model-based value expansion literature [35, 36, 37, 38]. We consider sequences of data
of the form τ “ px1:T ,a1:T , r1:T q. At each agent training step, we infer latent states s01:T „

qθps1:T |x1:T ,a1:T q. We then use the true data as starting points for model-generated rollouts, as:

âtj „ πψpa|ŝt´1
j q, ŝt`1

j „ pθps|âtj , ŝ
t
jq, r̂tj „ pθpr|ŝtjq, (4)

4

where the rewards are computed according to Eq. 3. Following standard off-policy learning algo-
rithms, we use critics tQψ1 , Qψ2u and and target networks t sQψ1 , sQψ2u. We can then use our model
to estimate Monte-Carlo based policy returns:

V
πψ
0 pŝtjq “ mintQψ1pŝtj , â

t
jq, Qψ2pŝtj , â

t
jqu, V

πψ
K pŝtjq “

K
ÿ

k“1

γk´1r̂k`t
j ` γKV

πψ
0 pŝt`Kj q

And compute the GAEpγ, λq estimate:

V πψ pŝtjq “ p1 ´ λq

H´t´1
ÿ

k“1

λk´1V
πψ
k pŝtjq ` λH´t´1V

πψ
H´tpŝ

t
jq (5)

We denote pV πψ psq :“ λV πψ psq ` p1 ´ λqV
πψ
0 , and optimize the actor objective as:

Lmodel
πψ

“ ´
1

HT
E
τ„D

E
πψ,pθ

«

H´1,T
ÿ

t“0,j“1

pV πψ pŝtjq

ff

(6)

This objective essentially estimates the actor return by mixing Monte-Carlo based estimates at
various horizons. Notice that is a fully differentiable function of the policy parameters, by back-
propagating through the Q-functions and dynamics model. Also notice that for H “ 0 this is just
the standard actor-critic policy update.

We can similarly use MC return estimates to train the critics. We recompute the critic target values
sV kpŝtjq for all states similarly to Eq. 5 using the target networks t sQψ1 , sQψ2u. The critics are trained
on both the model-generated and real data with the sum of two losses:

Lmodel
Qψi

“
1

HT
E
τ„D

E
πψ,pθ

«

H´1,T
ÿ

t“0,j“1

p sV πψ pŝtjq ´ Qψipŝ
t
j , â

t
jqq2

ff

(7)

Ldata
Qψi

“
1

T ´ 1
E
τ„D

E
πψ

«

T´1
ÿ

j“1

´

r0j`1 ` γ pV πψ ps0j`1q ´ Qψips
0
j ,a

0
j q

¯2
ff

(8)

(notice that the second equation does not involves dynamics model samples) and the final critic loss
is the sum of the two:

Lfinal
Qψi

“ Lmodel
Qψi

` Ldata
Qψi

(9)

Training the critic networks on the available offline data serves as a strong supervision when the
dataset already contains rollouts with high returns.

Uncertainty-aware Predictive Modelling In order to prevent model exploitation in the offline
training, we use model-based uncertainty estimates via ensemble statistics, similar to [39, 40, 41,
42, 43, 44, 45, 46]. Note that the loss Ldata

Qψi
is computed on transitions sampled from the dataset

trajectories through the inference model qθ and have ground-truth environment rewards. In contrast,
the critic loss Lmodel

Qψi
is computed on synthetic states sampled from the model using only uncertainty-

penalized rewards (Eq 2). This explicitly builds conservatism into the critic values by biasing them
towards dataset states and actions. We also considered alternative conservative critic optimization
[4, 12]. However, these approaches are incompatible with multi-step returns and require the use of a
latent replay buffer which is undesirable. Following prior works [11, 20, 19] we provide theoretical
verification for our modelling choices. In addition, by studying the online fine-tuning regime, for
the first time, we are able to provide empirical verification for prior offline MBRL performance
bounds. Since the current work does not focus on theoretical contributions, we defer these results to
Appendix B.

5

Figure 2: The success rates across the 10 MetaWorld tasks. MOTO matches or outperforms other methods
on 9 out of the 10 tasks, demonstrating MOTO’s ability to successfully pre-train offline and fine-tuning online
on a variety of manipulation tasks using limited offline data. DreamerV2 is the only other method to achieve
competitive results on the MetaWorld tasks. The model free baselines achieve low to moderate performance
across all tasks.

Behaviour Prior Policy Regularization Realistic robot learning datasets often consist of narrow
data like planner based rollouts or human demonstrations. As such, at the initial stages of training
dynamics models can be quite inaccurate and the agent can benefit from stronger data regulariza-
tion for the policy [26, 13, 25, 21]. To avoid additional complexity of modelling the behaviour
distribution we follow an approach similar to [47] which deploy a regularization term of the form

Lreg
πψ

“ ´ E
τ„D

«

T
ÿ

t“1

log πψpat | stqf

ˆ

γHV πψ pst`Hq `

H
ÿ

j“1

γjrt`j ´ V πψ pstq

looooooooooooooooooooooooomooooooooooooooooooooooooon

Advantage over trajectory snippet st : st`H

˙

ff

for some function f . The authors suggest a simple threshold function works well (i.e adding a
behaviour cloning term to snippets with positive advantage), [13] can also be viewed as an instance
of this approach using exponential weighting. In this work we focus on realistic robot manipulation
tasks with sparse rewards, and just threshold trajectories based on whether they achieve the goals in
the environment. We then optimize the joint actor loss:

Lπψ “ Lmodel
πψ

` βLreg
πψ

(10)

where β is a hyper-parameter that trades-off between model-based optimization and data regulariza-
tion.

5 Experiments and Results

We aim to answer the following questions: (1) Can MOTO pre-train offline and successfully fine-
tune online? (2) What is the impact of different model components? (3) Does MOTO exhibit good
generalization and sample efficiency?

Experiment Setup We evaluate our method on two challenging dexterous manipulation domains,
MetaWorld [22] and the Standard Franka Kitchen environment [24, 23] used in the D5RL benchmark
[48].

MetaWorld contains a variety of simulated manipulation tasks in a shared, table-top environment
to be solved with a Sawyer robotic arm. We use ten of these tasks for our experiments (see Figure
7). We modify these environments to use 64x64 RGB image observations, without any robot pro-
prioception and use sparse rewards based on task completion. For each environment we collected a
small dataset of 9-10 demonstration episodes using a scripted policy.

6

Figure 3: (Left) Success rate of completing the “mixed” and “partial” tasks in Franka Kitchen. MOTO outper-
forms all methods on both tasks, and is the only method to achieve meaningful progress on the “partial” task,
indicating MOTO’s capacity for combinatorial generalization. (Right) We carry out ablations on the MOTO
design: no uncertainty penalties ”No Unc.”, no behavioral cloning regularization ”No. BC”, and removing both
”No BC., No Unc.”; removing model-based value expansion as well gives us DreamerV2. We observe that the
gains from each component are additive, and only the full model achieves full performance. Lastly, since all
ablations share the same architecture, this shows that the performance improvement is not due to a stronger
architecture, but rather the actor critic training.

We also evaluate MOTO on the Standard Franka Kitchen environment from the D5RL benchmark
[48], which is a challenging long-range control problem that requires using a simulated 9-DOF
Franka Emika Robot to manipulate multiple different objects in a simulated kitchen area. For our
experiments, we only use the central camera image without the wrist camera view or robot propri-
ocpetion. Since the ”partial” task does not contain successful trajectories for all four target objects,
we only regularize policy training with respect to the first three objects.

More details about the environments and datasets can be found in Appendix C.

Baselines We compare our method to prior vision-based offline model-based RL algorithms
LOMPO [19] and COMBO [12] as well as DreamerV2 [15], a state-of-the art online model-based
learning algorithm. We also compare our approach against CQL, [4] a successful model-free offline
RL algorithm, IQL, [3] a state-of-the art model-free regression-based fine-tuning algorithm, SAC
[49], and behaviour cloning. All methods are pre-trained offline for 10 thousand gradient steps and
fine-tuned with online interactions for a total of 500 thousand environment steps.

MetaWorld Results Results for the MetaWorld tasks are in Fig. 2. MOTO outperforms other
methods on 9 out of 10 tasks in that domain. This shows MOTO’s ability to successfully pre-train
offline and fine-tune online on a variety of manipulation tasks using limited offline data. Dream-
erV2 is the only other method to achieve competitive results on the MetaWorld tasks. The model
free baselines achieve low to moderate performance across all tasks. Perhaps somewhat surpris-
ingly, COMBO and LOMPO achieve very low success rates on most of the tasks. A speculative
explanation for this is that the MetaWorld environments have a significant degree of randomization
between them at each new episode, causing the learned image representations to change frequently.
Since COMBO and LOMPO are off-policy methods that maintain replay buffers of the latent state
representations, if these representations change frequently this would lead to poor performance.

Franka Kitchen Results As seen in Fig. 3, our method successfully solves both the “mixed” and
“partial” tasks of Franka Kitchen with 100% and 90.5% final success rates respectively. DreamerV2
is the only other method to obtain non-trivial success rates. Noteworthy is MOTO’s success on the
“partial” task, which demonstrates that the world model is capable of combinatoric generalization.

While model-free methods make some progress, ultimately they stagnate and cannot successfully
complete all four objects on either task. This is likely due to the partial observability of the envi-
ronment, since the robot can occlude manipulated objects and also requires joint state estimation di-
rectly from images. In contrast, variational models serve as Bayesian filters and naturally build state
estimations of the environment in the latent space. Model-based methods LOMPO and COMBO
achieve very limited progress, due to the non-stationarity issues described in the beginning of Sec-
tion 4. The DreamerV2 algorithm learns more slowly and only reaches final success rates of 77.5%

7

and 13.5% versus 100% and 90.5% for our method on the ”mixed” and ”partial” task. As far as we
know, our model is the first method to solve the Franka Kitchen environment from images.

Ablation Studies In this section we evaluate the contribution of each model component to final
performance. Results are presented in Fig. 5 (right). We also include the standard DreamerV2
algorithm for direct model-based comparison. While all ablations make significant progress on the
”mixed” task, only the full model manages to solve it entirely. The full model outperforms the
others on the “partial” task by a very significant margin. We also note that without any behavioral
cloning (BC) data regularization, both the ”No BC., No Unc.” and DreamerV2 methods learn unsafe
behaviours, such as hitting the kettle into the goal position, or smashing the light switch with the
robot head, instead of using its gripper to grasp and place the objects. These policies would be
unsafe for both the hardware and environment in a real setting. Such behaviours are not present in
any of the regularized methods (videos are available on the project website).

6 Discussion

Future Work The MOTO algorithm design does not require large replay buffers of intermediate
representations, while still allowing the use of high-quality data to supervise the critic learning and
bootstrap the policy optimization. We believe that these qualities make MOTO very suitable for
realistic applications, which require large scale models [16, 17, 18]. We plan to evaluate MOTO on
large-scale realistic domains, such as CARLA [50] in future work.

MOTO is also well-suited to the model-based imitation learning setting [51, 14, 52, 53], which has
recently been successfully applied to real world scenarios as well [54, 55]. By using on-policy roll-
outs, MOTO can maintain the stability and theoretical guarantees of adversarial imitation learning
[56, 57, 19], while still using the high-quality expert data to both provide supervision to the critic,
as well as to regularize the policy.

Limitations MOTO builds a level of pessimism through penalizing state-action epistemic model
uncertainty. Excessive pessimism can prevent the model from exploring or generalizing outside of
the available data distribution. This can hurt performance if the offline dataset consists of lower-
quality or incomplete data. MOTO also uses policy regularization, which is based on task success.
It may be difficult to adapt this approach to tasks that involve more complex or non-sparse rewards.
Finally, a key component of MOTO is controlling model-based epistemic uncertainty. We train an
ensemble of latent transition models and use their disagreement as a reward penalty. The models
we consider use MLPs for the latent dynamics, however it is not clear if this scheme can transfer
to more complex architectures, such as Transformers, which are now more widely used within the
predictive modeling context.

7 Conclusion

We present MOTO, a model-based reinforcement learning algorithm specifically designed for the
offline pre-training and down-stream fine-tuning regime. MOTO learns a variational model directly
from pixels, and trains an actor-critic agent within the learned latent dynamics model using model-
based value expansion, epistemic uncertainty corrections, and policy regularization, all of which
we show have an impact in improving performance, and deriving safe and robust policies. MOTO
outperforms baselines in terms of sample efficiency and final performance on 9/10 MetaWorld tasks
and far as we are aware is the first and only method to solve the Franka Kitchen benchmark from
images. Furthermore, by studying the offline pre-training and fine-tuning regime, we empirically
verify long-standing theoretical results on the offline model-based RL problem. Finally, the structure
of the algorithm makes it suitable for use in very large scale dynamics models, such as the ones used
in autonomous driving, which prior work was not able to utilize, as well as a backbone for model-
based imitation, multi-task and transfer learning. We plan to explore these directions in follow-up
works.

8

Acknowledgments

We would like to express gratitude to the reviewers, whose feedback helped improve this paper.
Chelsea Finn is a CIFAR Fellow in the Learning in Machines and Brains program. This work was
supported by Intel AI Labs and ONR grant N00014-21-1-2685.

References
[1] S. Lange, T. Gabel, and M. A. Riedmiller. Batch reinforcement learning. In Reinforcement

Learning, volume 12. Springer, 2012.

[2] S. Levine, A. Kumar, G. Tucker, and J. Fu. Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

[3] I. Kostrikov, A. Nair, and S. Levine. Offline reinforcement learning with implicit q-learning.
arXiv preprint arXiv:2110.06169, 2021.

[4] A. Kumar, A. Zhou, G. Tucker, and S. Levine. Conservative q-learning for offline reinforce-
ment learning. arXiv preprint arXiv:2006.04779, 2020.

[5] A. Nair, M. Dalal, A. Gupta, and S. Levine. Accelerating online reinforcement learning with
offline datasets. arXiv preprint arXiv:2006.09359, 2020.

[6] M. Yang and O. Nachum. Representation matters: offline pretraining for sequential decision
making. In International Conference on Machine Learning, pages 11784–11794. PMLR, 2021.

[7] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and
I. Mordatch. Decision transformer: Reinforcement learning via sequence modeling. Advances
in neural information processing systems, 34:15084–15097, 2021.

[8] S. Reed, K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov, G. Barth-Maron, M. Gimenez,
Y. Sulsky, J. Kay, J. T. Springenberg, et al. A generalist agent. arXiv preprint
arXiv:2205.06175, 2022.

[9] T. Yu, A. Kumar, Y. Chebotar, K. Hausman, S. Levine, and C. Finn. Conservative data shar-
ing for multi-task offline reinforcement learning. Advances in Neural Information Processing
Systems, 34:11501–11516, 2021.

[10] T. Yu, A. Kumar, Y. Chebotar, C. Finn, S. Levine, and K. Hausman. Data sharing without
rewards in multi-task offline reinforcement learning. 2021.

[11] T. Yu, G. Thomas, L. Yu, S. Ermon, J. Zou, S. Levine, C. Finn, and T. Ma. Mopo: Model-based
offline policy optimization. arXiv preprint arXiv:2005.13239, 2020.

[12] T. Yu, A. Kumar, R. Rafailov, A. Rajeswaran, S. Levine, and C. Finn. Combo: Conservative
offline model-based policy optimization. Advances in neural information processing systems,
34:28954–28967, 2021.

[13] C. Cang, A. Rajeswaran, P. Abbeel, and M. Laskin. Behavioral priors and dynamics models:
Improving performance and domain transfer in offline rl. arXiv preprint arXiv:2106.09119,
2021.

[14] R. Rafailov, T. Yu, A. Rajeswaran, and C. Finn. Visual adversarial imitation learning using
variational models. Advances in Neural Information Processing Systems, 34:3016–3028, 2021.

[15] D. Hafner, T. Lillicrap, M. Norouzi, and J. Ba. Mastering atari with discrete world models.
arXiv preprint arXiv:2010.02193, 2020.

[16] A. Hu, G. Corrado, N. Griffiths, Z. Murez, C. Gurau, H. Yeo, A. Kendall, R. Cipolla,
and J. Shotton. Model-based imitation learning for urban driving. arXiv preprint
arXiv:2210.07729, 2022.

9

[17] A. Hu, Z. Murez, N. Mohan, S. Dudas, J. Hawke, V. Badrinarayanan, R. Cipolla, and
A. Kendall. Fiery: Future instance prediction in bird’s-eye view from surround monocular
cameras. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 15273–15282, 2021.

[18] A. K. Akan and F. Güney. Stretchbev: Stretching future instance prediction spatially and
temporally. arXiv preprint arXiv:2203.13641, 2022.

[19] R. Rafailov, T. Yu, A. Rajeswaran, and C. Finn. Offline reinforcement learning from images
with latent space models. ArXiv, abs/2012.11547, 2020.

[20] R. Kidambi, A. Rajeswaran, P. Netrapalli, and T. Joachims. Morel: Model-based offline rein-
forcement learning. arXiv preprint arXiv:2005.05951, 2020.

[21] T. Matsushima, H. Furuta, Y. Matsuo, O. Nachum, and S. Gu. Deployment-efficient reinforce-
ment learning via model-based offline optimization. arXiv preprint arXiv:2006.03647, 2020.

[22] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-world: A
benchmark and evaluation for multi-task and meta reinforcement learning. In Conference on
Robot Learning, pages 1094–1100. PMLR, 2020.

[23] A. Gupta, V. Kumar, C. Lynch, S. Levine, and K. Hausman. Relay policy learning: Solving
long-horizon tasks via imitation and reinforcement learning. arXiv preprint arXiv:1910.11956,
2019.

[24] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4rl: Datasets for deep data-driven
reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

[25] A. Argenson and G. Dulac-Arnold. Model-based offline planning. arXiv preprint
arXiv:2008.05556, 2020.

[26] P. Swazinna, S. Udluft, and T. Runkler. Overcoming model bias for robust offline deep rein-
forcement learning. arXiv preprint arXiv:2008.05533, 2020.

[27] M. Janner, J. Fu, M. Zhang, and S. Levine. When to trust your model: Model-based policy
optimization. In Advances in Neural Information Processing Systems, pages 12498–12509,
2019.

[28] M. Watter, J. Springenberg, J. Boedecker, and M. Riedmiller. Embed to control: A locally
linear latent dynamics model for control from raw images. In Advances in neural information
processing systems, pages 2746–2754, 2015.

[29] M. Zhang, S. Vikram, L. Smith, P. Abbeel, M. Johnson, and S. Levine. Solar: Deep struc-
tured representations for model-based reinforcement learning. In International Conference on
Machine Learning, pages 7444–7453. PMLR, 2019.

[30] A. X. Lee, A. Nagabandi, P. Abbeel, and S. Levine. Stochastic latent actor-critic: Deep rein-
forcement learning with a latent variable model. arXiv preprint arxiv:1907.00953.pdf, 2020.

[31] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learning latent
dynamics for planning from pixels. International Conference on Learning Representations,
2019.

[32] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi. Dream to control: Learning behaviors by latent
imagination. International Conference on Learning Representations, 2020.

[33] D. Ha and J. Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

[34] R. Sekar, O. Rybkin, K. Daniilidis, P. Abbeel, D. Hafner, and D. Pathak. Planning to explore
via self-supervised world models. arXiv preprint arXiv:2005.05960, 2020.

10

[35] V. Feinberg, A. Wan, I. Stoica, M. I. Jordan, J. E. Gonzalez, and S. Levine. Model-based value
estimation for efficient model-free reinforcement learning. arXiv preprint arXiv:1803.00101,
2018.

[36] J. Buckman, D. Hafner, G. Tucker, E. Brevdo, and H. Lee. Sample-efficient reinforcement
learning with stochastic ensemble value expansion. Advances in neural information processing
systems, 31, 2018.

[37] B. Amos, S. Stanton, D. Yarats, and A. G. Wilson. On the model-based stochastic value
gradient for continuous reinforcement learning. In Learning for Dynamics and Control, pages
6–20. PMLR, 2021.

[38] I. Clavera, V. Fu, and P. Abbeel. Model-augmented actor-critic: Backpropagating through
paths. arXiv preprint arXiv:2005.08068, 2020.

[39] K. Chua, R. Calandra, R. McAllister, and S. Levine. Deep reinforcement learning in a handful
of trials using probabilistic dynamics models. Advances in neural information processing
systems, 31, 2018.

[40] I. Clavera, J. Rothfuss, J. Schulman, Y. Fujita, T. Asfour, and P. Abbeel. Model-based rein-
forcement learning via meta-policy optimization. In Conference on Robot Learning, pages
617–629. PMLR, 2018.

[41] M. Deisenroth and C. E. Rasmussen. Pilco: A model-based and data-efficient approach to pol-
icy search. In Proceedings of the 28th International Conference on machine learning (ICML-
11), pages 465–472, 2011.

[42] T. Kurutach, I. Clavera, Y. Duan, A. Tamar, and P. Abbeel. Model-ensemble trust-region policy
optimization. arXiv preprint arXiv:1802.10592, 2018.

[43] A. Nagabandi, K. Konolige, S. Levine, and V. Kumar. Deep dynamics models for learning
dexterous manipulation. In Conference on Robot Learning, pages 1101–1112. PMLR, 2020.

[44] Y. Luo, H. Xu, Y. Li, Y. Tian, T. Darrell, and T. Ma. Algorithmic framework for model-based
deep reinforcement learning with theoretical guarantees. arXiv preprint arXiv:1807.03858,
2018.

[45] A. L. Strehl and M. L. Littman. An analysis of model-based interval estimation for markov
decision processes. Journal of Computer and System Sciences, 74(8):1309–1331, 2008.

[46] A. Zanette and E. Brunskill. Tighter problem-dependent regret bounds in reinforcement learn-
ing without domain knowledge using value function bounds. In International Conference on
Machine Learning, pages 7304–7312. PMLR, 2019.

[47] N. Y. Siegel, J. T. Springenberg, F. Berkenkamp, A. Abdolmaleki, M. Neunert, T. Lampe,
R. Hafner, N. Heess, and M. Riedmiller. Keep doing what worked: Behavioral modelling
priors for offline reinforcement learning, 2020.

[48] R. Rafailov, K. B. Hatch, A. Singh, A. Kumar, L. Smith, I. Kostrikov, P. Hansen-Estruch,
V. Kolev, P. J. Ball, J. Wu, S. Levine, and C. Finn. D5rl: Diverse datasets for data-driven deep
reinforcement learning, 2023.

[49] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290, 2018.

[50] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. CARLA: An open urban driving
simulator. In Proceedings of the 1st Annual Conference on Robot Learning, pages 1–16, 2017.

[51] N. Baram, O. Anschel, I. Caspi, and S. Mannor. End-to-end differentiable adversarial imitation
learning. In International Conference on Machine Learning, pages 390–399. PMLR, 2017.

11

[52] J. D. Chang, M. Uehara, D. Sreenivas, R. Kidambi, and W. Sun. Mitigating covariate shift in
imitation learning via offline data without great coverage. arXiv preprint arXiv:2106.03207,
2021.

[53] W. Zhang, H. Xu, H. Niu, P. Cheng, M. Li, H. Zhang, G. Zhou, and X. Zhan. Discriminator-
guided model-based offline imitation learning. arXiv preprint arXiv:2207.00244, 2022.

[54] Y. Lu, J. Fu, G. Tucker, X. Pan, E. Bronstein, B. Roelofs, B. Sapp, B. White, A. Faust, S. White-
son, et al. Imitation is not enough: Robustifying imitation with reinforcement learning for
challenging driving scenarios. arXiv preprint arXiv:2212.11419, 2022.

[55] E. Bronstein, M. Palatucci, D. Notz, B. White, A. Kuefler, Y. Lu, S. Paul, P. Nikdel, P. Mougin,
H. Chen, et al. Hierarchical model-based imitation learning for planning in autonomous driv-
ing. In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 8652–8659. IEEE, 2022.

[56] J. Ho and S. Ermon. Generative adversarial imitation learning. Advances in neural information
processing systems, 29, 2016.

[57] C. Finn, X. Y. Tan, Y. Duan, T. Darrell, S. Levine, and P. Abbeel. Deep spatial autoencoders
for visuomotor learning. In 2016 IEEE International Conference on Robotics and Automation
(ICRA), pages 512–519. IEEE, 2016.

[58] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learning latent
dynamics for planning from pixels. In International conference on machine learning, pages
2555–2565. PMLR, 2019.

[59] I. Kostrikov. JAXRL: Implementations of Reinforcement Learning algorithms in JAX, 10
2022. URL https://github.com/ikostrikov/jaxrl2. v2.

[60] G. Barth-Maron, M. W. Hoffman, D. Budden, W. Dabney, D. Horgan, D. Tb, A. Muldal,
N. Heess, and T. Lillicrap. Distributed distributional deterministic policy gradients. arXiv
preprint arXiv:1804.08617, 2018.

12

https://github.com/ikostrikov/jaxrl2

A Additional Experiments

A.1 Model-Based Generalization

Figure 4: We evaluate the model’s gener-
alization capabilities at the end of the of-
fline pre-training phase. The model correctly
predicts rewards of up to 4 on successful
episodes in the “partial” task, even though
the maximum dataset reward is 3. (left).
When doing rollouts in the learned model,
the policy solves all four objects in the “par-
tial” task and reaches rewards of up to 4
(right).

The ”partial” task also provides a good test bed for
an algorithm’s generalization capabilities, since the
offline dataset does not contain full solutions for
it. This is a different problem than the standard
dynamic programming (”stitching”) issue of data-
centric reinforcement learning since the dataset does
not contain a sequence of state-action pairs that lead
from the initial state to the goal state. Instead, to
solve this task, a learning agent must understand
the compositional nature of the scene and do com-
binatorial generalization over the objects. In this
section we seek to answer whether 1) the learned
model can do combinatorial generalization of within
distribution tasks and 2) whether policy optimiza-
tion can take advantage of the model’s capabilities.
We evaluate the agent at the end of the offline pre-
training phase. To answer the first question, we con-
sider episodes that successfully complete the ”par-
tial” task from the trained agent. We condition our
model on the frames that solves the first three tasks
(which are covered in the offline dataset) and rollout the expert actions to predict the following
frames. Results are shown in Fig. 1. The model successfully predicts a combination of the mi-
crowave, kettle, bottom burner and light switch in the correct configuration, despite never encoun-
tering these four objects together in the offline dataset. Moreover, we evaluate the model-predicted
rewards on these expert trajectories, plotted in Fig. 4 (left). We see that the model predicts rewards
of up to 4 with an average reward of 3.63, despite only being trained on trajectories with maximum
reward of 3. This results show that the learned model is capable of compositional generalization. To
evaluate whether the learned policy can take advantage of the model generalization capabilities, we
rollout the trained agent under the model and evaluate the predicted rewards, results are shown in
Fig. 4 (right). The agent achieves an average final reward of 3.52 under the learned model and solves
all four tasks. This suggest that the model-based RL agent is able to do combinatorial generalization,
but the offline dataset is not enough to adequately learn the environment dynamics.

A.2 Constrained Offline Data Ablation

Figure 5: Training curves for data ab-
lation experiments. We see no degra-
dation in performance when using only
100 and 250 pre-training episodes.

We aim to test the performance of MOTO under a data-
constrained regime, evaluating whether learning slows
down with less offline data. To do so, we randomply
sampled 100 and 250 episodes from the Franka Kitchen
dataset and used them for offline training, evaluating on
the “Mixed” task. The results are presented in fig. 5. We
observe that learning is not slowed down by reduction in
offline data, at least to the extent that we tested. This
shows that MOTO is robust to a constrained set of offline
data, and can operate at the same performance level even
with 5 times less offline episodes. Notably, we hypothe-
sise there is a minimum threshold for diversity of offline
learning, yet we see no performance degredation even at
100 episodes. It is important to point out that episodes
were randomly sampled without regards to the reward at-

13

tained in each episode, i.e. the 100 episodes are not of
proportionally higher quality.

B Theoretical Results and Empirical Validation

Figure 6: Empirical evaluation of The-
orem B.1. We plot the performance
gap versus the the empirical estimates
of (normalized) expected model uncer-
tainty using Eq. 12.

Theoretical Results for Uncertainty-Aware Model-
based Training Given our choice of variational
parametrization and model uncertainty estimation we can
directly adapt certain theoretical guarantees from prior
model-based RL literature [11, 20, 19]. We consider
the following result in particular: let Tθps1|s,aq and
T ps1|s,aq be the learned and true latent dynamics models
respectively. We define the discounted state-action distri-
bution

ρπT ,µ0
ps,aq9

8
ÿ

t“0

γtPπT ,µ0
pst “ sqπpa|sq

in the standard way. The function ups,aq is an admissible
error estimator if

dF rT ps1|s,aq||Tθps1|s,aqs ď ups,aq.

For any policy π we can then define

ϵupπq “ Eps,aq„ρπTθ,µ0
rups,aqs.

The following Theorem then holds:
Theorem B.1. (Informal) Let pπ˚psq be the optimal policy under the learned model Tθps1|s,aq with
an uncertainty-penalized reward and π˚ the optimal policy in the ground-truth MDP. Under certain
mild assumptions, then the following inequality holds:

2αϵupπ˚q ě Eπ˚,T

”

8
ÿ

t“0

rt

ı

´ E
pπ˚,T

”

8
ÿ

t“0

rt

ı

(11)

Proof. Consult [11].

Empirical verification From the Theorem, we can deduce that the policy under-performance is
upper bounded by the discounted model-based uncertainty over the state-action distribution induced
by the expert policy under the learned model. In practice we do not have access to an oracle esti-
mator ups,aq and we use the ensemble disagreement from Eq. 2. While these results are not new,
empirical verification is difficult in the fully offline case, since we have a static dataset, and all values
are point estimates. However, in the online fine-tuning case, we have a continuum of datasets and
we can empirically verify the claims of Theorem B.1.

We periodically evaluate ϵupπ˚q and the expected model uncertainty induced under the expert state-
action distribution in the learned model. At each epoch E, we cannot generate model rollouts from
the expert, since that would require training an expert policy under the current inference model qθE .
However, we can sample expert episodes from the trained expert and the environment. Given an
expert trajectory τ exp “ x1:T ,a1:T we sample latent belief states from the first T ´ H steps to
obtain s1:pT´hq „ qθE p¨|x1:T´H ,a1:T´Hq. From each state sj we then rollout the expert actions
aj:j`H using the current iteration of the dynamics model TθE and obtain states tpŝtj ,a

t
ju
T´H,H
j“1,t“0 as

in Section 4 (here atj “ aj`t from the expert dataset. We can then obtain the empirical estimate of

ϵupπ˚q « EqθE ps0
j |τ expq,TθE

” 1

HpT ´ Hq

ÿ

uθpŝtj ,a
t
jq

ı

(12)

Empirical results evaluated on the ”partial” task are shown in Fig. 6. We see that the performance
gap is strongly bounded (up to a choice of the penalty scale) by the estimate from Eq. 12, which
verifies the claim of Theorem B.1.

14

Figure 7: Visualization of the 10 different MetaWorld environments used in our experiments. Top row from left
to right: assembly-v2, bin-picking-v2, box-close-v2, coffee-push-v2, disassemble-v2. Bottom
row from left to right: door-open-v2, drawer-open-v2, hammer-v2, plate-slide-v2, window-open-v2.

C Experimental Details

C.1 Environments

The Franka Kitchen environment from [23] (RPL) is a challenging long-range control problem,
which involves a simulated 9-DOF Franka Emika Robot in a kitchen setting. The robot uses joint-
space control and the observation is a single 64x64 RGB image; we do not assume access to object
states or robot proprioception. The goal of the agent is to manipulate a set of 4 pre-defined objects
and receives a reward of 1.0 for each object in right configuration at each time step. This is a very
challenging environment due to 1) high-dimensional observation spaces; 2) partial observability with
non-trivial object and robot state estimation; 3) need for very-fine-grained control in order to operate
the small elements of the environment, such as turning knobs and flipping the light-switch; 4) the
long-range nature of the tasks; 5) the use of sparse rewards, which provide limited intermediate
supervision to the policy, and finally 6) the use of high-dimensional control which requires learning
forward kinematics from images alone. For our experiments we render the original RPL datasets and
consider two environments from the D4RL benchmark [24]. The ”mixed” task requires operating
the microwave, kettle, light switch and slide cabinet and has a small set of successful demos in
the offline dataset. The ”partial” task, which requires manipulating the microwave, kettle, bottom
burner and light switch does not have any trajectories that successfully complete all four objects, but
has demonstrations for several configurations which complete up to three objects. We will release
this dataset with our project to facilitate the development and testing of vision-based offline RL
algorithms.

For the model-free methods, since we use a feedforward network for encoding images, we use a
framestack of 3 for all of our model-free experiments. At each timestep t, the agent was provided
with a history of the previous 3 images (from the offline trajectories during offline training, or from
the environment during online training). For COMBO and LOMPO, since the latent dynamics model
has a recurrent component and therefore can implicitly retain a history of observations, we did not
use any framestacking with the image observations from the environments.

One the Franka Kitchen Environment, we did not use an action repeat, and on the Metaworld en-
vironments and data we used an action repeat of 2. For the online finetuning experiments, we used
the following procedure: roll out the current policy in the environment for a single episode, add that
episode to the replay buffer, and then finetuning the model, critic network, and the policy network.
On the Franka Kitchen environment, after each episode we performed 50 gradient steps on each
component of each method (eg: model, critic network, and the policy network). For the Metaworld
environments, we performed 20 gradient steps after each episode. In total, on the Franka Kitchen
environments, we performed 10, 000 gradient steps of offline training and 66, 300gradient steps of

15

Environment Avg. Return Success Rate

assembly-v2 36.000 1.000
bin-picking-v2 20.900 1.000
box-close-v2 25.300 1.000

coffee-push-v2 36.200 1.000
disassemble-v2 31.556 1.000
door-open-v2 15.200 1.000

drawer-open-v2 48.000 1.000
hammer-v2 63.333 1.000

plate-slide-v2 71.100 1.000
window-open-v2 60.500 1.000

Table 1: Undiscounted episode returns and success rates in the MetaWorld datasets.

online finetuning. On the Metaworld environments, we performed 1, 000 gradient steps of offline
training and 20, 000 gradient steps of online finetuning.

C.2 Datasets

Kitchen

• Number of trajectories: 563

• Number of transitions: 128, 569

• Average undiscounted episode return: 261.12

• Average number of objects manipulated per episode: 3.98

MetaWorld All of the MetaWorld datasets have 9 ´ 10 trajectories and 1, 010 total transitions.
The average undiscounted episode returns and success rates are shown in Table 1:

C.3 Model Based Methods

MOTO uses the model architecture from [32]. For the convolutional image encoder network, we use
the following hyperparameters:

• channels: p48, 96, 192, 384q

• kernel sizes: p4, 4, 4, 4q

• strides: p2, 2, 2, 2q

• padding: VALID

• four final MLP layers of size: 400

The decoder network consists of Deconvolution/Transpose convolution layers with the following
hyperparameters:

• four initial MLP layers of size: 400

• channels: p128, 64, 32, 3q

• kernel sizes: p5, 5, 6, 6q

• strides: p2, 2, 2, 2q

• padding: VALID

16

MOTO was trained using a model learning rate of 1 ˆ 10´4. The critic and policy network learning
rates are 8 ˆ 10´5. The batch size for model training is 16 and the batch size for agent training is
128. We also used a filtered behavioral cloning factor of 10 and a disagreement penalty factor of 10.

The latent dynamics model is represented using an RSSM [58] with an ensemble size of 7 models.
All other hyperparameters are the default values in the DreamerV2 repository.

The DreamerV2 baseline uses the same hyperparameters as used for MOTO (excluding the behav-
ioral cloning factor and the disagreement penalty factor).

COMBO [12] and LOMPO [19] were run using the image-based implementations from the LOMPO
repository. For the image encoder network of the model, we use the default convolutional encoder
architecture, which has the following hyperparameters:

• channels: p32, 64, 128, 256q

• kernel sizes: p4, 4, 4, 4q

• strides: p2, 2, 2, 2q

• padding: VALID

• final MLP layer size: 1024

Similarly, the decoder network consists of Deconvolution/Transpose convolution layers with the
following hyperparameters:

• initial MLP layer size: 1024

• channels: p128, 64, 32, 3q

• kernel sizes: p5, 5, 6, 6q

• strides: p2, 2, 2, 2q

• padding: VALID

The latent dynamics model is represented using an RSSM [58] with an ensemble size of 7 models.

Both COMBO and LOMPO were trained using a model learning rate of 6ˆ10´4, and critic network
learning rate of 3 ˆ 10´4, and a policy network learning rate of 3 ˆ 10´4. The batch size for model
training is 64 and the batch size for agent training is 256. For COMBO, we use a conservatism
penalty factor of α “ 2.5, and for LOMPO we use a disagreement penalty factor of λ “ 5.

C.4 Model Free Methods

The model free baselines (IQL [3], CQL [4], SAC [49], BC) were run using the JAXRL2 frame-
work [59]. For all policy networks, critic networks, and value networks, we used a feed-forward
convolutional encoder network architecture from the D4PG method [60], with the following hyper-
parameters:

• channels: p32, 64, 128, 256q

• kernel sizes: p3, 3, 3, 3q

• strides: p2, 2, 2, 2q

• padding: VALID

• final MLP layer size: 50

This encoder was then followed by two MLP layers of size 256, followed by a final output layer of
size 1 (for critic and value networks) or of size action-dim for policy networks. ReLU activations
were used between each layer.

We use a discount factor γ “ 0.99 and a batch size of 256 for all of the methods, as well as a
learning rate of 3 ˆ 10´4 for all policy, critic, and value networks. We also used a soft target update

17

for critic and value networks with a factor of τ “ 0.005. For CQL we set the conservatism penalty
factor α “ 5, and for IQL we set the expectile hyperparameter τ “ 0.5 and the inverse temperature
hyperparameter β “ 3, which are the default values in JAXRL2. For all other hyperparameters, we
used the default values in JAXRL2.

18

	Introduction
	Related Work
	Preliminaries
	Model-based Offline to Online Fine-tuning (MOTO)
	Experiments and Results
	Discussion
	Conclusion
	Additional Experiments
	Model-Based Generalization
	Constrained Offline Data Ablation

	Theoretical Results and Empirical Validation
	Experimental Details
	Environments
	Datasets
	Model Based Methods
	Model Free Methods

