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Abstract. In this work, we tackle the problem of domain-generalized action
recognition, i.e. we train a model on a source domain and then test the model
on other unseen target domains with different data distributions. Generalizing
across different domains often requires distinct representational invariances and
variances, which makes domain generalization even more challenging. However,
existing methods overlook the nuanced requirements of representational invari-
ances/variances across different domains. To this end, we propose Multi-teacher
Invariance Distillation for domain-generalized Action Recognition (MIDAR), a
method to learn multiple representational invariances/variances tailored to the
unique characteristics of diverse domains. MIDAR comprises two key learning
stages. First, we learn multiple teacher models to specialize in distinct represen-
tational invariances/variances. Then, we distill the knowledge of teachers to a
student model through the adaptive reweighting (ARW) layer, which determines
the ratio of supervision from different teachers. We validate the proposed method
on public benchmarks. The proposed method shows favorable performance com-
pared to the existing methods across multiple domains on public benchmarks.

Keywords: Action Recognition · Domain Generalization · Knowledge
Distillation · Self-Supervised Learning · Invariance

1 Introduction

The rapid progress in action recognition [6,15,16,26,41,52] has significantly improved
the ability of video models to understand human actions in videos. Despite the great
progress, most action recognition models often suffer from performance degradation
on the test datasets with different distributions from the training dataset [9–11,33]. This
performance drop is evident in domain generalization [47], highlighting the vulnerabil-
ity of action recognition models to distribution shifts. As shown in Fig. 1 (a) and (b),
training and testing in the same dataset, e.g. Jacob’s kitchen dataset, allows the model
to correctly recognize the action ‘Take’. However, as depicted in Fig. 1 (c), testing the
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Fig. 1. (Single-source) domain generalization. (a) We train a video recognition model on a
source domain (e.g., Jacob’s Kitchen); (b) When we test the model on the same data distribution,
the model performs reasonably well; (c) However, when the model is evaluated on an unseen
target domain (e.g., Theo’s Kitchen), the performance drops significantly due to domain shifts.

model on a dataset with a distribution shift from the training data, e.g. trained on Jacob’s
kitchen dataset and test on Theo’s kitchen dataset, significantly degrades the model per-
formance from 63.2% to 30.9%. The model fails to recognize the action ‘Take’ and
misclassifies it as ‘Wash’. A desired model would not suffer from this performance
drop across domains.

We hypothesize that we can enhance the generalization performance of a model
by learning multiple representational invariances/variances. We empirically find that
the beneficial invariances/variances depend on the source and target distributions. In
Table 1, we show domain generalization performance of a few models: i) a base-
line TSM [26] that does not explicitly learn any representational invariances, ii) a
color-invariant TSM, iii) a temporal-invariant TSM, iv) an color&temporal-invariant
TSM, all evaluated on the EPIC-KITCHENS dataset [12]. Please refer to Sect. 3.1 for
detailed information on model training procedures. We find that the color and temporal-
invariant model outperforms the baseline, whereas the color&temporal-invariant model
underperforms the baseline. The results indicate that the effectiveness of specific
invariances/variances depends on the source and target distributions. We could expect
improved generalization performance if we can appropriately learn to incorporate mul-
tiple invariances/variances.

Table 1. Baseline Domain Generalized Action Recog-
nition Performance. We show the domain generalization
accuracy of models with distinct representational invari-
ances and a model naively learned multiple invariances. We
use the TSM model with a ResNet-50 backbone.

Method Average Accuracy

Baseline Model 37.07 ± 3.39

Color Invariant Model 37.83 ± 3.65

Temporal Invariant Model 38.36 ± 2.73

Color&Temporal Invariant Model 35.34 ± 5.38

Multi-source domain gen-
eralization [2,24,25,40] might
be a solution to learn mul-
tiple invariances. However, it
is impractical for video action
recognition as collecting and
labeling multiple video action
recognition datasets is labor-
intensive and costly. Single-
source domain generalization
methods
[5,8,42,43,47,53] could learn representational invariances in image recognition. How-
ever, we empirically find these methods struggle with the temporal dimension critical
for video data. RADA [47] learns invariances by adversarial perturbations. They perturb
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the data distribution of the source domain to cover the unseen target domain. However,
they do not learn diverse invariances e.g. temporal and order variance/invariance, which
may be beneficial in some domains. A naive approach for learning multiple invariances
could be training a model with multiple tasks, each responsible for a specific type of
invariance. However, we empirically find this approach results in inferior performance
even compared to the baseline without any invariances in Table 1. Models with only
a single type of invariance, e.g. color invariance, show improved domain generaliza-
tion performance (38.36% vs. 37.07%). However, a model naively trained with both
color and temporal invariance learning heads underperforms compared to the baseline
(35.34% vs. 37.07%). The observations underscore the importance of a nuanced app-
roach to learning multiple representational invariances and variances to achieve robust
performance across diverse domain generalization scenarios.

In this work, we introduce Multi-teacher Invariance Distillation for domain-
generalized Action Recognition (MIDAR) to address the challenge of learning multiple
invariance/variance. Our approach involves two stages. In the first stage, we train mul-
tiple teacher models, each specializing in a different representational invariance or vari-
ance. In the next stage, we distill the knowledge from multiple teachers into a student
model. MIDAR adaptively reweighs the supervision from multiple teachers, allowing
the student model to learn distinct representational invariance/variance. We validate the
effectiveness of the proposed method on public benchmarks. MIDAR shows favorable
performance compared to the existing methods.

To summarize, we make the following contributions.

– We introduce MIDAR, a new training method addressing the challenge of learn-
ing multiple representational invariances/variances for domain-generalized action
recognition.

– We introduce the Adaptive Reweighting layer to adjust the contribution of multiple
teachers, allowing the student model to leverage the diverse representational invari-
ance/variance of each teacher.

– We conduct extensive experiments on the Epic-Kitchens benchmark to validate
MIDAR. Our findings indicate that MIDAR’s approach to learning diverse represen-
tational invariance/variance outperforms current SOTA methods like RADA, which
rely on adversarial perturbation.

2 Related Work

2.1 Video Action Recognition

2D CNNs [26,41,52], 3D CNNs [6,15,38], and two-stream CNNs [16,34] are popular
techniques to recognize human actions from videos. More recently, Transformer-based
methods have shown great performance [3,4,14,18,31,44,46]. Despite the great recent
advances in action recognition, we find that state-of-the-art action recognition methods
still suffer from cross-domain generalization: a model trained on one domain shows
poor performance on other domains with different data distributions. In this work, we
tackle the domain-generalized action recognition task to address the challenge.
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2.2 Domain Generalization

Recently, domain generalization has drawn significant attention from the community
since training and test data usually have different distributions in practice. Broadly,
there are two principal categories of approaches in the domain generalization litera-
ture: i) feature-based domain generalization, and ii) data-based domain generalization.
Feature-based domain generalization methods [2,5,24,25,42] aim to learn domain-
invariant representations to enhance the generalization performance of models. On the
other hand, data-based domain generalization methods [21,39,40] augments training
data to generate adversarial samples and synthetic data with different styles and scenes
that bridge the gap between source and target domains. These works have shown great
progress in domain-generalized image recognition. However, domain generalization for
video recognition is still under-explored. To the best of our knowledge, there is only one
work on domain-generalized action recognition: Robust Adversarial Domain Augmen-
tation (RADA) [47]. RADA learns domain invariant video representation by training on
the perturbed data and adversarial examples. Our work is on domain-generalized action
recognition as well. In contrast to RADA, the proposed method learns the nuanced
requirements of the representational invariances across different domains, thus offering
a novel approach to this challenging problem.

2.3 Knowledge Distillation

Knowledge distillation is a popular technique to transfer knowledge from one model to
another model. We can categorize knowledge distillation into three groups: i) response-
based, ii) intermediate, iii) relation-based, and iv) multi-teacher knowledge distilla-
tion. Response-based knowledge distillation methods [19,51,54] encourage the student
model to mimic the output of the teacher. In intermediate knowledge distillation [1,29],
the student model aims to learn the same feature representation as the feature represen-
tation of the teacher. In Relation-based knowledge distillation [30], the student model
mimics the relative distance and angle between data points in the feature space of the
teacher model. In Multi-teacher knowledge distillation [27,48,49], a student model
learns from the combined knowledge of multiple teacher models, leveraging diverse
representations. In this work, we leverage knowledge distillation techniques to address
the challenge of domain generalization. We learn a student model using multiple teach-
ers, each of which specializes in distinct representational invariances. We dynamically
adjust the contribution of different teachers by learning an adaptive re-weighting layer.

3 Method

We propose Multi-teacher Invariance Distillation for domain-generalized Action
Recognition (MIDAR). As shown in Fig. 2, we employ multiple teachers each with
expertise in distinct representational invariance/variance. Our objective is to distill a
broad spectrum of invariances/variances, including order variance, temporal invariance,
and color invariance, into a student model. This knowledge distillation process encom-
passes both the feature representations and the output logits of these teacher models. We
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propose an adaptive reweighting layer to dynamically adjust the contribution from each
teacher based on the data. In the following subsections, we provide detailed descrip-
tions of each component of MIDAR. We describe the training process of teacher mod-
els in Sect. 3.1. Then we illustrate the proposed multi-teacher distillation framework in
Sect. 3.2. Finally, we describe the proposed adaptive reweighting method in Sect. 3.3.

3.1 Training Teacher Models

Color Invariant Teacher. Color invariance is desirable in many action recognition
scenarios. For example, a model should be able to correctly recognize the ‘playing
tennis’ action regardless of whether the tennis court is green grass or brown mud. To
learn color invariance, we employ color jittering augmentation during the color invariant
teacher training process. Given an input video, we randomly jitter the brightness, con-
trast, saturation, and hue of each frame. Following prior works [17,32,55], we employ a
temporally coherent color jitter augmentation, i.e. we use the same color jittering across
all the frames within an input video.

We employ supervised contrastive learning (SCL) [23] for color invariant teacher
training. We empirically find that SCL is beneficial for color invariance learning, com-
pared to using the cross-entropy loss. In the SCL framework, we define any pair of
videos from the same action class as a positive pair, regardless of color augmentation.
We define any pairs from different action classes as negative pairs. We define the SCL
loss for learning color invariance as follows:

Fig. 2. Overview. (a) We use a multi-teacher distillation framework to distill multiple represen-
tational (in)variances into a student model. Both features and the logits are distilled from each
teacher to the student model. (b) For logit distillation, we propose an adaptive reweighting layer
to adjust the impacts of each teacher. Specifically, we assign one learnable parameter for each
teacher so that the distillation strength of each teacher is dynamically adjusted during training.
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LSCL =
∑

i∈B

−1
|P (i)|

∑

p∈P (i)

log
exp(zi · zp/τ)∑

a∈A(i) exp(zi · za/τ)
, (1)

where B denotes the set of all input data within a minibatch while each i-th instance
is an anchor. A(i) denotes the set of all input data within a mini-batch except the i-th
instance, i.e. A(i) ≡ B\{i}. The set of all positive pairs P (i) contains samples with
identical class labels to i-th instance, including color-augmented samples. In (1), we
scale the similarity between the anchor embedding zx and any positive sample embed-
ding zp by the temperature hyperparameter τ .

In SCL, a model learns to align positive pairs, each consisting of different augmen-
tations. As a result, a teacher model trained with SCL has specialized expertise, i.e.
color invariance in our case, that could be generalizable across different domains [37].

Temporal Invariant Teacher. Unlike image data, video data has an additional tem-
poral dimension. The same human action might have different speeds, durations, or
temporal patterns across different domains. Consequently, to robustly recognize human
actions in various domains, we desire a temporal invariant model [13,17,35,55]. To
learn temporal invariant representations to a teacher model, we employ three tempo-
ral augmentations [55] that have shown significant performance improvement: T-Half,
T-Drop, and T-Reverse. For example, let us assume we have 4 frames with indices
[1, 2, 3, 4]. Then the T-Half augmentation repeats the first or the second half of the video
only: e.g. [1, 2, 3, 4] → [1, 2, 1, 2] or [1, 2, 3, 4] → [3, 4, 3, 4]. The T-Half augmenta-
tion encourages the model to be robust to the partial temporal occlusion. The T-Drop
augmentation drops random frames in the video, substituting them with the previous
frame: e.g. [1, 2, 3, 4] → [2, 2, 4, 4]. The T-Drop augmentation encourages the model to
be invariant to the speed of the action. The T-Reverse augmentation inverts the order of
the video frames, e.g. [1, 2, 3, 4] → [4, 3, 2, 1]. Following the prior work [55], we ran-
domly select one temporal augmentation for augmenting each video. We employ (1),
supervised contrastive learning with these temporal augmentations [55]. We empirically
find that using the SCL loss is beneficial for temporal invariance learning compared to
using the standard supervised training with the cross-entropy loss for the prediction.

Order Variant Teacher. To distinguish fine-grained actions with subtle differences,
e.g. opening and closing a door, a model needs to be sensitive to the temporal order of
events. To encourage a model to be sensitive to the order of temporal events, we employ
a self-supervised task: video clip order prediction [45]. In this task, we shuffle the clips
sampled from an input video. Then we input the shuffled clips into a model. The model
should predict the correct chronological order of the clips. Predicting the correct tem-
poral sequence of video clips encourages the model to specialize in order variance.
Through this task, a model better understands temporal relationships and dependen-
cies between different temporal segments of the actions. Order variance is beneficial
for domain generalized action recognition since the order of the action often does not
change across people or locations. Furthermore, order variance is desirable as learning
order variant representation is learning action representations robust to scene distribu-
tion shift across domains [11].
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To learn order variance, we define the order variance (OV) loss as follows:

LOV = −
C!∑

i=1

yi log fo(ψ). (2)

Here, the model takes the concatenated input ψ = (φ1, ...,φC), where each φi

is a feature vector of i-th clip in the input video. The model predicts a probability
distribution across C! possible temporal orders of the input clips, where C denotes the
number of clips in an input video. yi is the i-th element of y, while y is the ground truth
one-hot vector of length C! with the correct clip order of the input video.

3.2 Distilling Invariances from Multiple Teachers

In Table 1, we observe that the naive learning of multiple representational invariances
degrades the domain generalized action recognition performance (i.e. 35.34± 5.38 vs.
37.07± 3.39). To address this challenge, we propose Multi-teacher Invariance Distilla-
tion for domain-generalized Action Recognition (MIDAR). MIDAR has a multi-teacher
knowledge distillation architecture [20,22,27] comprising teacher models with exper-
tise in order variance (ΩO), temporal invariance (ΩT ), and color invariance (ΩC). As
depicted in Fig. 2 (a), each teacher contributes distinct expertise to the learning process.

Both the student model, π, and the teacher models, ΩO, ΩT , and ΩC , take the same
input RGB video, I ∈ RM×H×W×C , where each video contains M frames with the
height of H pixels, width of W pixels, and C channels. We employ the feature-space
distillation loss, Lfeature. We compute Lfeature as the mean squared error between the
feature vectors of the student and teacher models as follows:

Lfeature =
∑

t∈{O,T,C}

(
1
n

n∑

i=1

(Ωt(i) − π(i))2
)
. (3)

Here, t is the teacher model index and Ω(i) and π(i) denote the i-th feature of the
teacher and student model, respectively. By using the Lfeature, we effectively guide the
student model to mimic the expertise of the teachers.

Moreover, we employ the Kullback-Leibler (KL) Divergence loss, LKL, in MIDAR
for the output-space distillation as follows:

LKL =
K∑

k=1

PΩ(k) log
(
PΩ(k)
Qπ(k)

)
. (4)

Here PΩ denotes the output probability of the adaptive reweighting (ARW) layer
and k is the action category index for K action categories. Qπ is the output probabil-
ity of the linear action classifier for the student model. The output-space distillation
encourages the student model to mimic the prediction of the teacher model.
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3.3 Learning to Re-weight Multiple Teachers

We introduce an adaptive reweighting (ARW) layer in MIDAR to reflect the nuanced
influence of multiple teacher models for learning a student model. The ARW layer takes
the softmax probability of each teacherΩO,ΩT , and ΩT and outputs the single softmax
probability vector PΩ . We define adaptive reweighting operation as follows:

PΩ =
∑

t∈{O,T,C}

exp(αt)∑
i∈O,T,C exp(αi)

ft(Ωt). (5)

Here, ft is a linear action classifier for the teacher t. αi’s are learnable parameters
for the adaptive reweighting. We set the same number of parameters the same as the
number of teachers. By (5), we get the final reweighted probability, PΩ , that aggregates
the nuanced contributions of all the teacher models, as illustrated in Fig. 2 (b).

During training, the parameters αi’s are continuously updated, leading to dynamic
adjustments of the contribution of each teacher: more effective teachers get higher
weights and less effective ones get lower weights. The learnable parameter αi dynami-
cally adjusts the student model’s focus on multiple invariances and variances. The bal-
ance is crucial for enhancing the student model performance, as it allows for a more
nuanced understanding that could be beneficial in multiple domains. The proposed
ARW layer enables the student model to effectively extract the diverse representational
invariances/variances of the teacher models.

We define the total loss function of MIDAR as follows:

L = LCE + Lfeature + LKL. (6)

The total loss function consists of three components. First, LCE is the standard
cross-entropy loss to learn action categories. Lfeature aligns feature representations of
the student model with the feature representations of the teacher models. LKL guides
the student model to mimic the adaptively re-weighted predictions of the teacher mod-
els.

4 Experimental Results

4.1 Experimental Setup

Dataset. To evaluate the effectiveness of MIDAR, we use the EPIC-KITCHENS-55
dataset [12]. EPIC-KITCHENS-55 is a large-scale egocentric action recognition dataset
consisting of multiple domains. We use the subset for evaluating domain generalization
methods, following the experimental protocol in a prior work [28]. The subset com-
prises three domains, D1, D2, and D3, which results in six domain generalization set-
tings: D1→D2, D1→D3, D2→D1, D2→D3, D3→D1, and D3→D2. The subset con-
sists of 8 action classes across all the domains: put, take, open, close, wash, cut, mix, and
pour. Each domain has different actors and kitchen environments but the same action
categories. The subset consists of 10, 094 videos in total.
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Evaluation Metric. We evaluate the effectiveness of Multi-teacher Invariance Distil-
lation for domain-generalized Action Recognition (MIDAR) by adopting the standard
evaluation protocols across benchmarks [28]. For the Epic-Kitchens benchmark, in our
protocol [28], we select the model that demonstrates the highest in-domain performance
and evaluate the cross-domain performance of the model. We measure the model’s per-
formance using the averaged Top-1 accuracy and the standard deviation across six dif-
ferent cross-domain generalization settings.

Implementation Details. Here, we provide details of our training setup and implemen-
tation. For additional information, please refer to the supplementary materials. Base
setting. We employ Temporal Shift Module (TSM) [26] with a ResNet-50 backbone as
the base model, unless we specify another model. From each video, we sample 8 frames
to construct an input clip. The initial learning rate is 0.0075. We train models for 150
epochs.

Teacher Model Training. For color and temporal invariant teacher models, we build
the models upon the SimSiam [7] architecture. We use the supervised contrastive loss
Eq. (1) as a loss function to train the color-invariant and temporal-invariant teacher mod-
els, with the temperature τ set to 0.3. For the order variant teacher, we implement the
video clip order prediction (VCOP) [45] pre-text task, processing 3 clips of 8 frames
each, with an inter-clip interval of 8 frames. We train the model for 800 epochs. We
attach a linear classifier on top of the backbone. Then we train the model end-to-end
just like other teacher models.

Student Model Training. When training the student model, we freeze the weights of all
the teacher models. The learning rate is set to 0.005. For the adaptive reweighting layer,
each trainable parameter αt is initially set to an equal value of 1. This initialization
strategy ensures that, before updating the trainable parameters, each value post-softmax
normalization approximates 0.3333, thereby providing a fair starting point.

Please see the supplementary materials for details on the model training and infer-
ence.

Table 2. Individual Invariant/Variant Model
Performance.We show the domain generalization
performance of individual invariant/variant mod-
els. Every model is equipped with the TSM with a
ResNet-50 backbone.

Method Top-1 Accuracy

Baseline 37.07 ± 3.39

Color Invariant Model 37.83 ± 3.65

Temporal Invariant Model 38.36 ± 2.73

Order Variant Model 37.38 ± 3.54

Baseline. To establish a baseline for
domain generalization performance,
we train a TSMwith a ResNet-50 back-
bone on one domain of the benchmark
dataset. Subsequently, we evaluate the
trained model on another domain of
the dataset. We repeat the same pro-
cess for all six settings in the EPIC-
KITCHENS dataset. During training,
we do not apply any learning technique
that encourages domain-invariant rep-
resentations. To establish a baseline for
domain generalization performance, we train a TSMwith a ResNet-50 backbone on one
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domain of the EPIC-KITCHENS dataset [28]. Subsequently, we evaluate the trained
model on another domain of the EPIC-KITCHENS dataset. We perform the same pro-
cess for all six settings in the EPIC-KITCHENS dataset. During training, we do not
apply any learning technique that encourages domain-invariant representation learning.

4.2 Individual Invariance/Variance Model Performance

We first study the effectiveness of each model with distinct representational invari-
ances/variances by comparing the domain generalization performance of each model
with the baseline performance. As shown in Table 2 each representational invari-
ant/variant model outperforms the baseline. The temporal invariant model shows the
most improvement of 1.29 points and the color invariant model shows an improve-
ment of 0.76 points compared to the baseline. The order variant model achieves a
marginal improvement of 0.31 points compared to the baseline. These results indicate
that incorporating individual representational invariances/variances could improve the
domain generalization performance, but the improvement is not very significant. As
shown in Table 1, naively learning multiple invariances, e.g. learning the temporal and
the color invariant representations simultaneously, results in inferior performance com-
pared to the baseline without learning any invariances: 35.34% vs. 37.07%. Therefore,
we need a nuanced approach, such as MIDAR, to learn multiple representational invari-
ances/variances to achieve superior domain generalization performance.

Table 3. Effect of Distillation in
Domain Generalization. We compare
the performance of the logit-space dis-
tillation, the feature-space distillation,
and both the logit-space and faeture-
space distillation. We employ the tempo-
ral invariant model as a teacher in this
experiment.

Method Logit Feature Top-1 Accuracy

Baseline – – 37.07 ± 3.39

Temporal
Invariant
Teacher

– – 38.36 ± 2.73

! 38.78 ± 2.85

Student ! 35.28 ± 4.13

! ! 38.93 ± 3.61

Table 4. Effect of Multi-Teacher Distillation.
We compare the domain generalization perfor-
mance of students learned from different combi-
nations of teachers. Properly using all three teach-
ers shows the best domain generalization perfor-
mance.

Method Color Temporal Order Top-1 Accuracy

Baseline – – – 37.07 ± 3.39

Single
Teacher
Distillation

! 38.93 ± 3.61

! ! 38.64 ± 2.48

Two-
Teacher
Distillation

! ! 37.20 ± 5.30

! ! 40.03 ± 3.29

Three-
Teacher
Distillation

! ! ! 41.12 ± 2.61



126 J. Shin et al.

Table 5. Ablation study. We conduct experiments with different distillation methods to validate
the effect of each distillation strategy, logit, feature, and multi-teacher distillation.

(a) How to aggregate multiple
teacher outputs?

Method Top-1 Accuracy

Baseline 37.07 ± 3.39

Correct Teacher 38.55 ± 1.74

Most Confident Teacher 38.99 ± 3.76

Lowest Cross-Entropy Teacher 38.89 ± 2.81

Average of Teachers 38.70 ± 3.74

Adaptive Reweighting (Ours) 41.12 ± 2.61

(b) Which loss to distill features?

Method Top-1 Accuracy

Baseline 37.07 ± 3.39

CORAL Loss [36] 40.12 ± 3.47

Huber Loss 39.02 ± 3.87

MSE Loss 41.12 ± 2.61

(c) Multi-teacher distillation
method

Method Top-1 Accuracy

Baseline 37.07 ± 3.39

KD [19] 38.45 ± 3.86

FiTNet [1] 37.38 ± 4.34

Average [48] 38.68 ± 3.70

Ours 41.12 ± 2.61

4.3 Distillation for Learning Multiple Invariances/variances

Is Distillation Beneficial in Domain Generalization? We empirically find that dis-
tillation is beneficial in domain generalization. In Table 3, compared to the temporal
invariant teacher model, a student model learned by the logit-space distillation shows
an improved performance of 38.78%. A student model learned by the feature-space
distillation shows inferior performance compared to the teacher. However, a student
model learned by both logit and feature-space distillation shows the best performance
of 38.93%. The results demonstrate that distillation is beneficial in domain generaliza-
tion even when we have a single teacher only. In the remaining experiments, we distill
both features and logits.

Is Multi-Teacher Distillation Beneficial for Learning Multiple Invariances/vari-
ances? We investigate the effect of multiple teachers in Table 4. We can observe a
trend: as the number of teachers increases, the student model demonstrates improved
performance. Specifically, the student model, which learns from both the temporal-
invariant and order-variant teachers, achieves an accuracy of 40.03%, surpassing the
single teacher distillation with an accuracy of 38.93%. Furthermore, when the student
model learns from the knowledge distillation of the color invariant, the temporal invari-
ant, and the order variant teachers simultaneously, the student model achieves the best
accuracy of 41.12%. The results underscore the significance of leveraging multiple
teachers to enrich the knowledge of the student model and subsequently enhance the
domain generalization.

4.4 Ablation Study

We conduct ablation experiments to explore the various design choices of the multi-
teacher distillation strategy to improve the domain generalization performance. Here,
we conduct all experiments with multi-teacher distillation that encompasses all invariant
and variant teacher models.
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How to Aggregate the Output of Multiple Teachers? Since we have multiple teach-
ers, how to aggregate the output of multiple teachers is an important design choice.
In Table 5 (a), we compare five logit-space distillation methods. i) Correct Teacher:
we select the correctly predicted teachers for the distillation. We average the prediction
vectors if multiple teachers agree, and we discard the sample if all predictions are incor-
rect. ii) Most Confident Teacher: we select the teacher with the highest softmax prob-
ability among all the teachers for the distillation. iii) Lowest Cross-Entropy Teacher:
we choose the prediction from the teacher with the minimum cross-entropy loss for the
distillation. iv) Average of Teachers: we average the predictions of all the teachers for
the distillation. v) Adaptive reweighting (ours): we dynamically adjust the contribution
of each teacher by Eq. 5. The results demonstrate that the adaptive reweighting outper-
forms the other compared methods, achieving 41.12% which is 2.13 points higher than
the second-best method, Most Confident Teacher. The results suggest that our adap-
tive reweighting is more effective in leveraging multiple teachers to improve domain
generalization.

Which Loss for Feature-Space Distillation? Here, we compare three loss functions
for the feature-space distillation in MIDAR. i) The CORAL (CORelation ALignment)
loss [36]: we align the second-order statistics of feature distributions by minimizing the
difference in their covariance matrices. The CORAL loss is typically applied for domain
adaptation. We employ the CORAL loss to align student features with the teacher fea-
tures to tackle the problem of domain generalization. ii) Huber loss is a hybrid loss
function that is a combination of both Mean Squared Error (MSE) and Mean Absolute
Error (MAE). Huber loss aims to mitigate the influence of outliers during distillation.
Also, huber loss offers a balance between sensitivity to data variance and robustness to
outliers. iii) Mean Squared Error (MSE) loss: a loss function that minimizes the average
of the squares of the errors. As shown in Table 5 (b), employing CORAL loss outper-
forms Huber loss with a margin of 1.1 points (40.12% vs. 39.02%). However, using
MSE loss outperforms CORAL loss with a margin of 1.0 points (41.12% vs. 40.12%).
The results suggest that the MSE loss is more effective for feature-space distillation.

Comparing Multi-teacher Distillation Methods. We conduct a comparative analysis
of MIDAR against established distillation techniques. We replace the proposed multi-
teacher distillation method with the following methods and compare the domain gener-
alization performance. i) KD [19], which distills the average predictions from multiple
teachers, ii) FitNet [1], which distills their average features, and iii) Average [48], which
distills both averaged features and predictions. Table 5(c) shows that MIDAR achieves
the best accuracy of 41.12%. Compared to MIDAR, FitNet shows a 3.74-point drop
(41.12% vs. 37.38%) and KD shows a 2.67-point drop (41.12% vs. 38.45%). Average
shows a 2.44-point drop (41.12% vs. 38.68%). The results showcase the effectiveness
of our multi-teacher distillation approach in enhancing domain generalization.
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4.5 Comparison with Existing Domain Generalization Methods

Table 6. Comparison with the state of the
arts on EPIC-Kitchens. We compare the domain
generalization performance (top-1 accuracy) of
our model with several image-based methods
(Mixup [50], Mistyle [53], JigSen [5], EIS-
Net [42]) and a recently proposed video-based
method (RADA [47]).

Method Backbone Average Accuracy

Baseline TSM 37.07 ± 3.39

Mixup [50] TSM 37.54 ± 4.69

Mixtyle [53] TSM 36.88 ± 5.18

JiGen [5] TSM 38.59 ± 6.14

EISNet [42] TSM 37.52 ± 1.31

RADA [47] APN [47] 40.52 ± 3.23

Ours TSM 41.12 ± 2.61

We compare the domain generalization
performance of MIDAR with exist-
ing single-source domain generaliza-
tion methods in Table 6. Please see the
supplementary materials for details of
the results. We compare MIDAR with
four image-based methods extended to
the video domain. i) Mixup [50]: we
blend each video with a randomly cho-
sen video in the batch and set the
mixup ratio as 0.2. ii) Mixstyle [53]:
we integrate a Mixstyle module into
the ResNet backbone of TSM.Mixstyle
mixes the statistics, i.e. mean and stan-
dard deviation, of feature maps from
different instances during the training
process. Mixstyle incorporates a new
style in the feature space and encour-
ages the model to learn domain generalizable features. iii) JiGen [5] recognizes action
and simultaneously solves jigsaw puzzles to understand spatial correlations. Solving
jigsaw puzzles acts as a regularization for the classification task. The shared feature
embedding between the classification and the jigsaw puzzle tasks allows the model
to generalize across domains. iv) EISNet [42] enhances generalization performance
by multi-task learning from both extrinsic and intrinsic supervisions. EISNet employs
momentum metric learning for domain-invariant yet class-specific features and solves
jigsaw puzzles. For JiGen and EISNet baselines, we apply consistent augmentation
across all frames in a video clip to maintain temporal coherence. Additionally, we com-
pare MIDAR with RADA [47]1, the state-of-the-art video-based domain generalization
method.

Table 7. Effect of using different backbones: ResNet-
50 vs. ResNet-101 on the EPIC-Kitchens dataset.
We compare the domain generalization performance
(top-1 accuracy) of our model with the video-based
method(RADA [47]).

Method Model Backbone Average Accu-
racy

RADA [47] APN [47] ResNet-50 40.52 ± 3.23

Ours TSM ResNet-50 41.12 ± 2.61

RADA [47] APN [47] ResNet-101 43.08 ± 4.27

Ours TSM ResNet-101 43.54 ± 5.59

All the compared methods
employ the TSM [26] as a back-
bone except RADA. RADA [47]
is equipped with the Adversarial
Pyramid Network (APN) back-
bone. We select the learning rate
with the highest performance for
each method. We use the learn-
ing rates of 0.01, 0.001, 0.005,
and 0.0075 for Mixup, Mixstyle,
JiGen, and EISNet respectively.
For RADA we use the learn-
ing rate of 0.001. As shown in
1 The TSM backbone employed by MIDAR has 4.8 million fewer parameters than the APN used
by RADA.
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Table 6, JiGen outperforms other image-based methods with an average accuracy of
38.59% exceeding Mixstyle by 1.71 points, Mixup by 1.05 points and EISNet by 1.07
points.

However, JiGen shows inferior performance compared to the video-based method
RADA by 1.93 points. MIDAR surpasses RADA by 0.60 points and Jigen by 2.53
points, resulting in the best accuracy as well as relatively lower standard deviation. The
results indicate that MIDAR shows favorable performance across various domain shifts
and demonstrates the effectiveness in various domain generalization scenarios.

For a fair comparison, we evaluate MIDAR and RADA using the same ResNet-50
and ResNet-101 backbones in Table 7. As shown in Table 7, with a stronger ResNet-101
backbone, MIDAR shows an improvement of 0.46 points over RADA with ResNet-101
backbone on the Epic-Kitchens dataset. The favorable performance of MIDAR on the
different backbones underscores its effectiveness.

5 Conclusions

In this paper, we tackle the problem of domain-generalized action recognition, which
is a challenging, yet relatively under-explored problem. We study a wide spectrum of
representational invariance/variance learning which is often beneficial in the context
of domain-generalized action recognition. We empirically find that naively learning
multiple invariances leads to even inferior domain generalization performance com-
pared to the baseline without learning any representational invariances. To tackle this
challenge, we introduce MIDAR, an innovative multi-teacher distillation approach that
learns nuanced influence from multiple teachers with distinct representational invari-
ances/variances. We propose an adaptive re-weighting layer to learn such nuanced influ-
ence from multiple teachers as well as to incorporate both feature-space and output-
space distillation. The empirical results on the challenging EPIC-Kitchens dataset with
a moderate size demonstrate that MIDAR generalizes across different domains com-
pared to the existing domain generalization methods. Our future work is overcoming
this limitation. We plan to improve MIDAR’s adaptability to various data scales. More-
over, we plan to apply MIDAR to Transformer architectures and tailor MIDAR to lever-
age the representational invariance and variance of Transformers.
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