
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

A RECOVERY GUARANTEE
FOR SPARSE NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

We prove the first guarantees of sparse recovery for ReLU neural networks, where
the sparse network weights constitute the signal to be recovered. Specifically, we
study structural properties of the sparse network weights for two-layer, scalar-
output networks under which a simple iterative hard thresholding algorithm re-
covers these weights exactly, using memory that grows linearly in the number of
nonzero weights. We validate this theoretical result with simple experiments on
recovery of sparse planted MLPs, MNIST classification, and implicit neural rep-
resentations. Experimentally, we find performance that is competitive with, and
often exceeds, a high-performing but memory-inefficient baseline based on itera-
tive magnitude pruning.

1 INTRODUCTION

Consider the task of training a sparse multilayer perceptron (MLP). We view this task through the
lens of sparse signal recovery, in which the signal to be recovered is the vectorized MLP weights,
most of which are zero — so exact recovery requires finding the indices and values of the few
nonzero MLP weights. Are these weights uniquely identifiable from training data? Can they be
recovered efficiently in both memory and iteration complexity? For scalar-output, two-layer MLPs
we answer both questions in the affirmative, proving what is to our knowledge the first recovery
guarantee for sparse MLP weights.

Large neural networks are widely used as universal function approximators (Hornik et al., 1989),
but as model size grows networks require ever larger memory and compute time to train (Kaplan
et al., 2020). Although large networks tend to be trainable to the highest quality, trained network
weights are often highly compressible, e.g. by pruning, allowing for dramatic savings in memory
and computation at inference time (Cheng et al., 2024). While sparse and high-performing networks
are known to exist, efficiently optimizing them is an open challenge. Existing approaches often
compromise either memory efficiency—requiring memory to first train a dense network (Frankle
& Carbin, 2019; Saikumar & Varghese, 2024; Gharatappeh & Sekeh, 2025)—or quality, failing to
match the performance of dense counterparts (Frankle et al., 2021; Saikumar & Varghese, 2024).
While some strategies can empirically balance efficiency and quality (Parger et al., 2022; Jin et al.,
2016; Damadi et al., 2024), all existing approaches to sparse network training are heuristic in nature
and lack formal guarantees of weight recovery.

At the same time, the compressed sensing literature is rich with theoretically-justified algorithms to
leverage sparsity in large-scale optimization tasks (see e.g., Wright & Ma (2022) for an accessible
overview). However, these results are typically designed for linear models and convex optimization,
and do not directly apply to recovery of sparse MLP weights (Tropp, 2004; Khanna & Kyrillidis,
2018; Aghazadeh et al., 2018).

Our work bridges this gap by leveraging the recent development of a convex reformulation of MLPs
(Pilanci & Ergen, 2020a; Ergen & Pilanci, 2024), which allows us to apply strong results from sparse
signal estimation (Jain et al., 2014) to the task of training a sparse MLP. In its convex reformulation,
sparse MLP optimization can be viewed as a highly structured linear sensing problem in which
the network weights are the signal to be recovered. We show that, when the training data consists
of network evaluations at random Gaussian sample points, this highly structured sensing matrix
satisfies (with high probability) the classic restricted strong convexity and restricted smoothness

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

conditions that suffice to enable efficient sparse recovery via a simple projected gradient descent
method known as Iterative Hard Thresholding (IHT).

Concretely, we make the following contributions:

• We prove the first sparse recovery result applicable to ReLU MLPs, focusing on the case
of a shallow scalar-output network and random Gaussian data. Our result includes both
unique identifiability of sparse network weights as well as a high-probability guarantee of
efficient recovery of these weights via IHT, building on a result from Jain et al. (2014).

• We demonstrate in a suite of illustrative small-scale experiments that IHT indeed tends to
outperform a strong but memory-inefficient baseline of iterative magnitude pruning (IMP)
(Frankle & Carbin, 2019), recovering higher-performing sparse networks while using less
memory during optimization. Our experiments include both 2-layer and 3-layer MLPs
with both scalar and vector valued outputs, extending beyond the regime of our theoretical
results.

2 RELATED WORK

2.1 SPARSE NEURAL NETWORKS

Prior work has shown that, in diverse contexts, a large neural network may be well approximated by
a sparse subnetwork, for example with only 10% of the original parameters left nonzero (Frankle &
Carbin, 2019; Nowak et al., 2023). Sparse networks are far cheaper and faster to evaluate and store,
making them attractive for applications on edge and resource-constrained platforms as well as for
democratizing access to large foundation models. Moreover, in many cases a sparse subnetwork can
even outperform the prediction accuracy (Frankle & Carbin, 2019) and out-of-distribution robustness
(Diffenderfer et al., 2021; Wu et al., 2024) of the original dense network.

However, sparse networks are notoriously difficult to optimize. Existing approaches to finding sparse
networks fall into three categories: iterative pruning (Frankle & Carbin, 2019; Liu et al., 2024), prun-
ing at initialization (Wang et al., 2022; Frankle et al., 2021), and dynamic sparse training (Jin et al.,
2016; Ji et al., 2024; Nowak et al., 2023; Damadi et al., 2024; Kusupati et al., 2020). Respectively,
these approaches tend to be high-performing but require high memory during optimization, memory
and computation efficient to optimize but with reduced final model performance, and efficient but
heuristic to optimize to reasonable final performance. None of the existing sparse network optimiza-
tion paradigms come with theoretical understanding or recovery guarantees.

Prior theoretical results for sparse neural networks are present in Boursier & Flammarion (2023) and
Ergen & Pilanci (2021) (see Lemma 10 therein), which derive conditions under which the sparsest
two-layer MLP may be recovered by minimizing the Euclidean norm of the weights (i.e., applying
weight decay). However, Boursier & Flammarion (2023) focuses on univariate data and Ergen & Pi-
lanci (2021) considers sparsity of the second (output) layer weights, whereas our analysis considers
arbitrary data dimension with a focus on sparsity of the first (hidden) layer weights. The recovery
result in Ergen & Pilanci (2021) also requires fewer data points than dimensions, while our result
does not. Further, the conditions in Ergen & Pilanci (2021) are based on the KKT optimality condi-
tions of a semi-infinite convex formulation (Hettich & Kortanek, 1993) and are not straightforward
to verify, nor is a tractable recovery algorithm presented in Ergen & Pilanci (2021). In contrast, our
guarantee of sparse weight recovery relies on verifiable and satisfiable conditions that we show hold
with high probability under random training data, and we prove that an iterative algorithm (iterative
hard thresholding) achieves successful recovery of sparse neuron weights.

2.2 CONVEX NEURAL NETWORKS

Recent work has revealed an equivalence between training shallow (Pilanci & Ergen, 2020a) or
deep (Ergen & Pilanci, 2024) neural networks and solving convex optimization problems defined by
network architectures. The core idea involves enumerating or sampling neuron activation paths to
form a fixed dictionary, whose coefficients are optimized via convex programming.

Specifically, a two-layer ReLU network approximates labels y using the nonconvex form y ≈∑p
j=1(Xuj)+vj , where U = [u1, ..., up] and v are the network weights and X is the data ma-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

trix. Instead, the convex formulation uses activation patterns Di = Diag(I[Xu ≥ 0]) enumerated
over all u to express the same network as

y ≈
P∑
i=1

DiX(w̃i − wi), (1)

subject to (2Di − In)Xw̃i ≥ 0 and (2Di − In)Xwi ≥ 0 for all i. Optimal values of the nonconvex
weights U and v can be recovered from optimal values of the convex optimization parameters w̃ and
w. Note that we use the term activation pattern to refer to a binary pattern whose length matches
the number of training examples, and whose values denote which training examples are attended to
by a particular neuron (each neuron has its own activation pattern). The total number of activation
patterns P derived from all possible u is bounded exponentially in the data rank r, typically requiring
subsampling for computational tractability. However, assuming sparsity in weights dramatically
reduces the number of possible patterns, enabling exact convex optimization for large-scale datasets.
Section 3 describes how we adapt and specialize this convex MLP reformulation for sparse networks
in our theory and experiments.

2.3 ITERATIVE HARD THRESHOLDING (IHT)

Iterative Hard Thresholding (IHT) is a special case of projected gradient descent, in which the pro-
jection is onto the nonconvex set of sparse vectors. For large-scale sparse recovery problems, IHT
and additive algorithms such as basis pursuit and matching pursuit (Tropp, 2004) are often the only
feasible algorithms, due to their memory efficiency compared to convex relaxations such as LASSO.
IHT is also well-studied theoretically and comes with convergence guarantees both in its classic
implementation (Blumensath & Davies, 2009; 2010; Jain et al., 2014) and accelerated variants (Blu-
mensath, 2012; Khanna & Kyrillidis, 2018). Some results also exist for a variant of IHT augmented
with a count sketch data structure (Aghazadeh et al., 2018), which can expand the regimes of spar-
sity under which IHT enjoys successful recovery. Of these theoretical results for sparse recovery by
IHT, most require the measurement matrix to satisfy either the restricted isometry property (RIP)
with a small enough RIP constant, or restricted strong convexity and restricted smoothness proper-
ties with a small enough condition number; these conditions are too strict for the sparse MLP weight
recovery task we consider.

However, Jain et al. (2014) proved a more general sparse recovery result for IHT, showing recovery
under restricted strong convexity and restricted smoothness with an arbitrary finite condition number.
Jain et al. (2014)’s result holds for classic IHT with the relaxation that the hard thresholding step of
IHT must project onto a larger sparsity level than that of the true signal, where the inflation factor
grows with condition number. Our theoretical results build on this result to show that the task of
recovering sparse MLP weights can be reformulated so as to satisfy the restricted strong convexity
and restricted smoothness properties in expectation over Gaussian data, allowing us to show that
IHT is guaranteed to recover the weights of a planted sparse MLP.

3 PRELIMINARIES

Consider a ReLU neural network with vector-valued input, scalar output, and a single hidden layer.
We use X ∈ Rn×d to denote the (Gaussian) data matrix with n data points and data (input) dimen-
sion d. We denote the ground truth labels or values as y ∈ Rn, and the neural network output as
ŷ ∈ Rn. The hidden weights of the 1-hidden-layer MLP are denoted U ∈ Rd×p where p is the width
of the hidden layer. The columns of this weight matrix are ui ∈ Rd, i = 1, . . . , p, and the second
layer weights are v1, ..., vp.

We now describe convexifying the model by fusing the first and second layer weights of the non-
convex ReLU model

∑p
j=1(Xuj)+vj . We can express this model as follows:

ŷ = [diag (I{Xu1 ≥ 0})X . . . diag (I{Xup ≥ 0})X]︸ ︷︷ ︸
A ∈ Rn×dp

u1v1
...

upvp

 (2)

where we use I{x ≥ 0} to denote the elementwise indicator function, taking value 1 at indices
where xi ≥ 0 and value 0 otherwise.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Training (e.g. with MSE loss) the 2-layer MLP in Equation (2) presents a nonconvex optimization
problem, because the parameters uj appear in both the weight vector and the A matrix. We convexify
by simply replacing the p weight vectors ui in the A matrix with p separate, fixed generator vectors
hi ∈ Rd, and fusing the weights via wi = uivi ∀i. This parameterization was previously studied in
Mishkin et al. (2022), where it was shown to yield the gated ReLU (GReLU) network class, which
is equivalent in expressivity to standard ReLU networks. Here, we extend this approach and show
that sparse ReLU networks can also be recovered using a similar strategy. We obtain

ŷ = [diag (I{Xh1 ≥ 0})X . . . diag (I{Xhp ≥ 0})X]︸ ︷︷ ︸
A

w1

...
wp

 ; (3)

in this formulation exact recovery amounts to finding the sparse vector w⋆ ∈ Rp whose values are
the weights of a ground truth, planted MLP. If we allow the effective hidden dimension p to be
very large (up to 2d

(e(n−1)
d

)d
(Pilanci & Ergen, 2020b)), we can choose a set of vectors hi such

that {(I{Xhi ≥ 0})}pi=1 is exactly the set of all possible distinct activation patterns achievable
for dataset X . Recall that in our notation, the term activation pattern refers to a binary pattern
whose length matches the number of training examples n, and whose values denote which train-
ing examples are attended to by a particular neuron (each neuron has its own activation pattern).
Moreover, for sparse neural networks with at most s′ nonzero weights per hidden neuron, we have
p ≤ 2s′

(
d
s′

)
(n
s′)

s′ by a counting argument; this may be far fewer total activation patterns than
needed to model dense weights. Consider a neuron whose weight vector has at most s′ nonzero
entries. First, the support of this weight vector must be selected, which corresponds to choosing s′

input dimensions out of d, resulting in
(
d
s′

)
possible choices. For each choice of these s′ dimensions,

the neuron computes a linear threshold function in an s′ dimensional subspace of Rn. A classi-
cal result in the theory of hyperplane arrangements (Stanley et al., 2007) shows that such a linear
threshold function can generate at most 2

∑s′−1
i=0

(
n−1
i

)
≤ 2

(
n
s′

)s′
distinct activation patterns over

n data points. Multiplying the number of ways to select the support and the number of patterns
per support, and incorporating a factor of s′ for indexing neurons, we arrive at the stated bound:
p ≤ 2s′

(
d
s′

)(
n
s′

)s′
. With this large but fixed set of generator vectors hi, we can solve a similarly

large but convex program to recover hidden weights wi corresponding to the globally optimal 2-layer
nonconvex MLP.

Alternatively, we can operate with an arbitrary hidden dimension m and select the generator vectors
hi at random such that the activation patterns {(I{Xhi ≥ 0})}mi=1 are a random subset (drawn
without replacement) of all p possible activation patterns. In our theoretical results (Section 4) we
assume patterns are enumerated; in our experiments (Section 5) we sample m ≤ p patterns using
random generator vectors.

4 THEORETICAL RESULTS

Consider the sparse recovery problem defined by Equation (3) of the form y = Aw⋆ for some
unknown vector w⋆, with sensing matrix

A := [diag (I{Xh1 ≥ 0})X . . . diag (I{Xhp ≥ 0})X] ∈ Rn×dp.

Our main result leverages connections between sparse recovery methods and convex formulations
of ReLU networks. For simplicity, we will assume that the data matrix X ∈ Rn×d has entries drawn
i.i.d. N (0, 1); a similar effect may be achieved in practice by data whitening. We also assume that
the columns of A are unit-normalized before optimization.

To recover the planted weights w⋆, we consider the following simple variant of the classic Iterative
Hard Thresholding (IHT) algorithm,

wk+1 = Hs̃(w
k − ηAT (Awk − y)). (4)

Here η > 0 is a step size parameter and the hard thresholding operation Hs̃ is a projection onto
the set of s̃-sparse vectors, where s̃ > s following Jain et al. (2014). In Lemma 1 we show that A
satisfies restricted strong convexity and restricted smoothness with high probability over the random

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

data X , making the sparse MLP weights uniquely identifiable. In Theorem 1 we show that IHT
efficiently recovers these sparse MLP weights.

Suppose that y =
∑p

i=1(Xu⋆
i)+v

⋆
i = Aw⋆ is the planted neural network model. Recall that

the relation between the standard and fused form of the weights is w⋆ = [u⋆
1v

⋆
1 , ..., u

⋆
pv

⋆
p] where

sign(Xhi) = sign(Xu⋆
i)∀i as defined in (2) and (3). Assumption 1 gives conditions on a planted

network under which we can ensure exact recovery of its weights.
Assumption 1 (Properties of the planted sparse network). Assume that either

(a) u⋆
i ∈ {−1, 0, 1}d, ∥u⋆

i ∥0 = k, v⋆i ∈ R∀i ∈ [p] and kp ≤ s, or

(b) u⋆
i ∈ Rd, ∥u⋆

i ∥0 = si ∈ [smin, k], v
⋆
i ∈ {−1, 1} ∀i ∈ [p] and

∑p
i=1 si ≤ s holds.

Both parts of Assumption 1 have to do with what values the planted MLP weights can take, and
both parts restrict the number of nonzero hidden weights. Assumption 1(a) requires that the nonzero
hidden weights take binary values, but allows the output layer weights to take any real values. As-
sumption 1(b) captures the more relaxed and common scenario in which the nonzero hidden weights
can take any real values, but the output layer weights are restricted to ±1, since the flexibility to
model any real value is already captured by the hidden layer weights.

In Appendix D we show that Assumption 2 follows from either of Assumption 1(a) and 1(b) with
high probability, and we give weight constructions that satisfy each option in Assumption 1. We
note that only Assumption 2 is used in our proof of convergence and sparse recovery; Assumption 1
is sufficient for Assumption 2 but may not be necessary. Likewise, we show that Assumption 2 is
sufficient for sparse recovery but we do not prove that it is necessary.
Assumption 2 (Properties of activation patterns). Let Di = diag (I{Xhi ≥ 0}) ∈ Rn×n, with
{Di}pi=1 as the set of all such distinct activation patterns possible with data X ∈ Rn×d, whose
entries are drawn i.i.d. ∼ N (0, 1). We assume the following properties about this set of enumerated
activation patterns:

1. TrDi ≥ εn for all i ∈ [p], for some ε ∈ (0, 1).

2. For all i ̸= i′, the diagonals of Di and Di′ differ in at least γn positions, for some γ ∈
(0, 1).

In the appendix we prove that both of these hold with high probability under Assumption 1. Specif-

ically, Assumption 2.1 holds with probability at least 1 − pe−n
(

1−ε
128 −H(ε)

)
, as long as n ≥ 4k.

Here H denotes binary entropy. Assumption 2.2 follows from Assumption 1(a) with probability at
least 1 − 2e−cδ2n, as long as n ≥ Cδ−6w(K)2 and k ≤ 0.69

π(γ+δ) . Here c and C are positive ab-
solute constants, δ > 0, and w(K) is the normalized Gaussian mean width of a subset K ⊆ Rd,
where K represents the set of (normalized) neuron weights that satisfy Assumption 1(a). Assump-
tion 2.2 likewise follows from Assumption 1(b) with probability at least 1 − 2e−cδ2n − ϵ̃ as long
as n ≥ Cδ−6w(K)2, where now K represents the set of (normalized) neuron weights that satisfy
Assumption 1(b). Note that ϵ̃ and some additional restrictions on smin and k are described in the
appendix proof.
Remark 1 (Sample complexity). Note that Assumption 2 requires the number of training examples
n ≥ max(4k,Cδ−6w(K)), where k is the sparsity level of each neuron, K is the set of (normal-
ized) neuron weights that satisfy Assumption 1(a) or 1(b), w(K) is its normalized Gaussian mean
width, and C is a positive absolute constant. This is a modest requirement that grows with the num-
ber of active (nonzero) neuron weights rather than the total number of neuron weights, enabling
compressive sensing of sparse neuron weights.

Below we show that Assumption 2 is sufficient to ensure recovery of sparse MLP weights, for
a 2-layer scalar-output ReLU MLP. Intuitively, the first part of Assumption 2 requires that every
neuron attends to at least an ϵ fraction of the training data, rather than fitting or overfitting to a tiny
number of examples. Since our data covariates are assumed Gaussian, this first part of Assumption 2
enables a concentration argument. The second part of Assumption 2 requires that any two different
neurons must attend to subsets of the training dataset that differ by at least a γ fraction. Without
this requirement, neurons might be very similar to each other and thus more difficult to distinguish

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

and recover correctly during optimization. This second portion of Assumption 2 bears similarity in
spirit with the incoherence property common in compressive sensing.
Lemma 1 (Restricted strong convexity and restricted smoothness). Let A ∈ Rn×dp be as defined in
Equation (3), with the modification that all columns are normalized to have unit ℓ2 norm. Assume
that entries of the data matrix X ∈ Rn×d are drawn i.i.d. N (0, 1) and Assumption 2 holds. Consider
an index set S ⊆ [dp] with |S| = s ≤ n, and the induced s × s matrix AT

SAS . For any δ ∈
(0, ε

1−γ), with probability at least 1 − 2s(s − 1) exp
(−cδ2ε

√
n

1+δ

)
− 2s(s − 1) exp

(−cδ2n3/4ε
n1/4+δ

)
−

8s(s− 1) exp
(−cδ2εn

1+δ

)
,

αIs ⪯ AT
SAS ⪯ βIs

with α ≥ 1− 1 + δ

1− δ

√
1− γ − s

n1/4(1− δ)
; β ≤ 1 +

1 + δ

1− δ
(s− 1)

√
1− γ +

s

n1/4(1− δ)
.

Here ε and γ are the same as in Assumption 2, and c is a positive universal constant.

Lemma 1 ensures that the condition number of A, restricted to any set of s ≤ n columns, is finite and
bounded above by

√
β/α. The condition number shrinks as γ grows, because this enforces greater

separation (incoherence) between columns of A. The conditioning worsens with increasing s, as
this increases the number of columns in AS and thus the potential for a coherent pair of columns.
Theorem 1 ensures that IHT recovers planted sparse weights regardless of this condition number (as
long as it is finite), though the rate of convergence slows with increasing condition number.
Theorem 1 (IHT recovers sparse MLP weights). Suppose that Assumption 2 holds, the data matrix
X ∈ Rn×d has entries drawn i.i.d. N (0, 1), the activation patterns Di = diag (I{Xhi ≥ 0}) in
the sensing matrix A are enumerated to include all unique patterns that can result from ∥h∥0 ≤ s,
the columns of A are pre-normalized in ℓ2 norm, and the planted neural network weights satisfy
∥w⋆∥0 ≤ s. Consider the following variant of Iterative Hard Thresholding (IHT) to minimize the
MSE objective f(wk) = 1

2

∥∥Awk − y
∥∥2
2
:

wk+1 = Hs̃

(
wk − ηAT (Awk − y)

)
, (5)

where s̃ ≥ 32
(
β
α

)2
s, η = 2

3β , and α, β are the restricted strong convexity and restricted smoothness
constants from Lemma 1 corresponding to sparsity level 2s̃ + s. With the same high probability as
in Lemma 1, after K = O

(
β
α log

(f(w0)
ϵ

))
steps, IHT finds sparse weights wK such that

f(wK)− f(w⋆) ≤ ϵ and ∥wK − w⋆∥22 ≤ 2α−1ϵ .

Remark 2. Theorem 1 is, to our knowledge, the first sparse recovery result that applies to sparse
neural network weights. It extends Lemma 1 to show that sparse MLP weights are not only uniquely
identifiable with high probability from a network’s behavior on random data, but that these sparse
weights may be recovered efficiently by IHT with high probability. If the underlying function map-
ping data points to values is indeed a planted sparse MLP, recovery of the weights of this sparse
MLP also guarantees generalization, in the sense that the labels of fresh data following the same
function will be perfectly predicted by the sparse MLP recovered by IHT.

Proofs of all theoretical results may be found in the appendix.

5 EXPERIMENTAL RESULTS

Our experiments compare the performance of IHT and a strong MLP-pruning baseline method,
iterative magnitude pruning (IMP), the algorithm from the Lottery Ticket Hypothesis (Frankle &
Carbin, 2019), at training sparse MLPs. While these experiments are intended to complement and
validate our sparse recovery theoretical results, they also extend beyond the setting of Theorem 1 in
several respects, to demonstrate that IHT empirically recovers high-performing sparse MLPs even
under more flexible settings than those for which we can prove sparse recovery succeeds.

Specifically, our range of experiments for IHT include (i) both full-batch (deterministic) and mini-
batch (stochastic) gradients, (ii) both scalar and vector-valued MLP outputs, (iii) both single-hidden-
layer and deeper MLPs, (iv) both vanilla and accelerated IHT, (v) randomized (rather than enumer-
ated) initialization for the sensing matrix A, for computational efficiency, and (vi) sequential convex

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

updates to A during IHT, rather than keeping A fixed as we do in our theoretical analysis. These
sequential convex updates interpolate between the fully convex formulation in our theory and the
nonconvex training that is standard practice for MLPs, enabling empirically strong performance for
IHT even with a much smaller, randomly-initialized A compared to what is required in Theorem 1.
The extension of IHT to vector-output MLPs and deeper MLPs is enabled by employing a count-
sketch datastructure (following Aghazadeh et al. (2018)) for noisy but memory-efficient estimation
of all weights, to slightly relax the hard thresholding in vanilla IHT (which we do use for shallow,
scalar-output MLPs closer to the setting of our theoretical guarantees). We also strengthen the IMP
baseline by pruning only 10% of the weights in each iteration (rather than the default 20%), which
allows IMP to spend extra time finding a higher-performing sparse network.

The details of our experimental settings for both IHT and IMP are provided in Appendix A, and code
will be open-sourced upon publication. We emphasize that IMP requires first training a dense MLP
and then iteratively pruning it to achieve sparse weights, whereas IHT optimizes sparse weights
directly and thus has far smaller memory requirements during training.

We present experimental results on three illustrative tasks: fitting a planted sparse MLP, classifying
handwritten MNIST digits (Deng, 2012), and fitting an implicit neural representation to MNIST
and CIFAR-10 images (Krizhevsky et al., 2009). In each task, we compare the performance of IHT
(ours) and IMP (Frankle & Carbin, 2019), implemented as described in Appendix A. For all figures,
we show heatmaps comparing model performance as a function of the hidden dimension m (vertical
axis) and sparsity level s (horizontal axis).

Results on scalar-output and vector-output planted sparse MLPs are presented in Figure 1 and Fig-
ure 2, respectively. Within Figure 1 and Figure 2, the left two subfigures compare IHT and IMP
on 2-layer (1-hidden-layer) sparse MLPs while the right two subfigures compare IHT and IMP on
3-layer (2-hidden-layer) sparse MLPs. For the planted MLP fitting tasks, we optimize a sparse
MLP with hidden dimension m (heatmap vertical axis) and a budget of s nonzero weights (heatmap
horizontal axis) to match the input-output behavior of an unknown planted model of the same ar-
chitecture and sparsity. Specifically, we draw random sparse weights and use these to generate a
dataset (X ∈ R50000×100, y ∈ R50000,c), for c ∈ {1, 10}. For planted MLP fitting tasks, we report
peak signal to noise ratio (PSNR) at fitting this input-output behavior of the planted model. PSNR
is defined as PSNR = 10 log10(I

2
max/MSE), where Imax is the largest magnitude value in the ground

truth signal and MSE is the mean squared error; higher PSNR is better. If a certain setting of m and
s yields a planted model whose outputs y are all zero, we skip evaluation and report a PSNR of zero.

IHT IMP IHT IMP
Figure 1. Average PSNR for fitting a planted one-hidden-layer (left) and two-hidden-layer (right)
sparse scalar-output MLP of hidden dimension m (vertical axis) and at most s nonzero parameters
(horizontal axis). Colorbar shows average PSNR over 3 random trials. IHT exhibits more robust
performance than a strong but memory-inefficient iterative magnitude pruning (IMP) baseline (Frankle
& Carbin, 2019).

Figure 3 presents results on MNIST digit classification. In Figure 3, all MLPs have one hidden layer;
the left two subfigures compare IHT and IMP on binary classification and the right two subfigures
compare IHT and IMP on 10-way classification. We consider both binary classification (digit 0 vs.
1) posed as a regression problem with MSE loss, as well as 10-way classification of all digits using
cross-entropy loss and one-hot labels y ∈ R10. For MNIST classification, we report classification
accuracy, the fraction of test digits correctly classified.

Although runtime is not a key component of our analysis or experiments, one trend worth noting is
that the runtime for IHT is increasing in s, whereas the opposite is true for IMP. This is because IMP

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

IHT IMP IHT IMP
Figure 2. Average PSNR for fitting a planted one-hidden-layer (left) and two-hidden-layer (right)
sparse vector-output (10-dimensional output) MLP of hidden dimension m (vertical axis) and at most
s nonzero parameters (horizontal axis). Colorbar shows average PSNR over 3 random trials. IHT is
competitive with a strong but memory-inefficient iterative magnitude pruning (IMP) baseline (Frankle
& Carbin, 2019).

IHT IMP IHT IMP
Figure 3. Average binary (left) and 10-class (right) classification accuracy for handwritten MNIST
digits with a 2-layer (one-hidden-layer) MLP of hidden dimension m (vertical axis) and at most s
nonzero parameters (horizontal axis). Colorbar shows average classification accuracy over 3 random
trials. IHT exhibits more robust performance than a strong but memory-inefficient iterative magnitude
pruning (IMP) baseline (Frankle & Carbin, 2019).

requires iterative retraining with gradual pruning, so more steps of retraining are required to reach
a sparser network (with smaller s). In other words, IHT is fastest exactly where IMP is slowest.
Runtime varies for both IHT and IMP as a function of problem parameters, so we provide a few
illustrative examples, all evaluated on an NVIDIA A6000 GPU.

For binary MNIST classification using the smallest scalar-output model with m = 1 (hidden layer
has a single neuron) and sparsity s = 1 (meaning that neuron can attend to a single pixel only), and
15 full-batch gradient steps, IHT reaches 98.85% test accuracy in 1.2 seconds, while IMP reaches
50% test accuracy (random chance) in 27.78 seconds. With m = 10 and s = 100, IHT reaches
99.2% accuracy in 1.66 seconds; IMP reaches 50.15% in 20.56 seconds. With m = 100 and s =
1000, IHT retains 99.2% accuracy in 8.4 seconds, and IMP achieves 77.66% accuracy in 20.91
seconds. For small, scalar-output MLPs IHT is dominant in memory, runtime, and accuracy.

However, for vector-output MLPs, deeper MLPs, and settings with large s, IHT (in its current im-
plementation) can run more slowly than IMP, especially when using minibatch gradient updates.
For full (10-class) MNIST classification, with 50 epochs, batch size 5000, m = 10, and s = 1000,
IHT gets 88.73% test accuracy in 219.2 seconds, whereas IMP gets 77.66% accuracy in 68.98 sec-
onds. For fitting a planted MLP with 10-dimensional output, with 15 epochs, full-batch gradients,
m = 10, and s = 10, IHT reaches 48.67dB PSNR in 3.02 seconds while IMP reaches 24.81db
PSNR in 28.46 seconds.

Figure 4 and Figure 5 present results on fitting MNIST and CIFAR-10 images, respectively, with an
MLP-based implicit neural representation. Specifically, we use a fixed Fourier feature embedding
with Gaussian-distributed frequencies followed by a ReLU MLP, following Tancik et al. (2020). We
use the same Fourier features for embedding pixel coordinates for both IMP and IHT, and vary the
optimization strategy for fitting the sparse MLP weights. Within Figure 4 and Figure 5, the left
two subfigures compare IHT and IMP on 2-layer (1-hidden-layer) sparse MLPs while the right two
subfigures compare IHT and IMP on 3-layer (2-hidden-layer) sparse MLPs.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

IHT IMP IHT IMP
Figure 4. Average 1-hidden-layer (left) and 2-hidden-layer (right) PSNR for overfitting an MNIST
digit image with an MLP-based implicit neural representation (Tancik et al., 2020) of hidden dimension
m (vertical axis) and at most s nonzero parameters (horizontal axis). Colorbar shows average PSNR
over 3 random trials. IHT exhibits more robust performance than a strong but memory-inefficient
iterative magnitude pruning (IMP) baseline (Frankle & Carbin, 2019). We highlight that IHT exhibits
stable recovery independent of m, in line with our theoretical results (see Remark 1). In contrast,
IMP shows improved recovery with increasing m, likely because IMP here is solving a nonconvex
optimization problem whose landscape is made more benign by increasing m.

IHT IMP IHT IMP
Figure 5. Average 1-hidden-layer (left) and 2-hidden-layer (right) PSNR for overfitting a CIFAR-10
digit image with an MLP-based implicit neural representation (Tancik et al., 2020) of hidden dimension
m (vertical axis) and at most s nonzero parameters (horizontal axis). Colorbar shows average PSNR
over 3 random trials. IHT exhibits more robust performance than a strong but memory-inefficient
iterative magnitude pruning (IMP) baseline (Frankle & Carbin, 2019).

Across these experimental settings, we find that IHT almost always finds higher-performing sparse
network weights compared to IMP, a strong baseline for pruning nonconvex MLPs (Frankle et al.,
2021). Moreover, IHT uses a fixed parameter budget that scales with the sparsity level s throughout
optimization, whereas IMP requires initial training of a dense network whose parameter count grows
with data dimension d and hidden dimension m.

6 DISCUSSION

This work presents, to our knowledge, the first sparse recovery result applicable to the weights of a
ReLU MLP. For nonnegative scalar-output MLPs, we show that sparse weights are uniquely iden-
tifiable and efficiently recoverable from measurements on random Gaussian data, with high proba-
bility. We complement this theoretical result with an empirical demonstration that a simple iterative
hard thresholding algorithm can find sparser and higher-performing network weights compared to a
strong network pruning baseline, while using far less memory during training.

Limitations and future work. Our results are subject to several limitations that we expect future
work may address. Our theoretical results are restricted to shallow, scalar-output MLPs, and are
shown to hold with high probability over Gaussian data rather than more general data distributions.
As these are the first recovery results for sparse MLPs, we are optimistic that future work may extend
our results to deeper, vector-output networks with more diverse architectures and data distributions.
Our experiments also suggest that sequential convex optimization from random initialization can
find high-performing sparse MLPs; extending our convex-formulation recovery result to sequential
convex programming is of interest. Our IHT recovery result also inherits an inflated sparsity level
s̃ > s from Jain et al. (2014); tightening this result is a compelling direction for further study.
Finally, we encourage future work to refine and scale up our implementation of memory-efficient
IHT training of sparse MLPs to enable both memory-efficient and fast training of high-performing
sparse MLPs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Amirali Aghazadeh, Ryan Spring, Daniel LeJeune, Gautam Dasarathy, Anshumali Shrivastava, et al.
Mission: Ultra large-scale feature selection using count-sketches. In International conference on
machine learning, pp. 80–88. PMLR, 2018.

Dennis Amelunxen, Martin Lotz, Michael B McCoy, and Joel A Tropp. Living on the edge: Phase
transitions in convex programs with random data. Information and Inference: A Journal of the
IMA, 3(3):224–294, 2014.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-wise training
of deep networks. Advances in neural information processing systems, 19, 2006.

Thomas Blumensath. Accelerated iterative hard thresholding. Signal Processing, 92(3):752–756,
2012.

Thomas Blumensath and Mike E Davies. Iterative hard thresholding for compressed sensing. Ap-
plied and computational harmonic analysis, 27(3):265–274, 2009.

Thomas Blumensath and Mike E Davies. Normalized iterative hard thresholding: Guaranteed stabil-
ity and performance. IEEE Journal of selected topics in signal processing, 4(2):298–309, 2010.

Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration Inequalities: A Nonasymp-
totic Theory of Independence. Oxford University Press, 02 2013. ISBN 9780199535255.
doi: 10.1093/acprof:oso/9780199535255.001.0001. URL https://doi.org/10.1093/
acprof:oso/9780199535255.001.0001.

Etienne Boursier and Nicolas Flammarion. Penalising the biases in norm regularisation enforces
sparsity. Advances in Neural Information Processing Systems, 36:57795–57824, 2023.

Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. A survey on deep neural network pruning:
Taxonomy, comparison, analysis, and recommendations. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2024.

Saeed Damadi, Soroush Zolfaghari, Mahdi Rezaie, and Jinglai Shen. Learning a sparse neural
network using IHT. In 2024 International Joint Conference on Neural Networks (IJCNN), pp.
1–8. IEEE, 2024.

Li Deng. The mnist database of handwritten digit images for machine learning research [best of the
web]. IEEE signal processing magazine, 29(6):141–142, 2012.

James Diffenderfer, Brian Bartoldson, Shreya Chaganti, Jize Zhang, and Bhavya Kailkhura. A
winning hand: Compressing deep networks can improve out-of-distribution robustness. Advances
in neural information processing systems, 34:664–676, 2021.

Tolga Ergen and Mert Pilanci. Convex geometry and duality of over-parameterized neural networks.
Journal of machine learning research, 22(212):1–63, 2021.

Tolga Ergen and Mert Pilanci. Path regularization: A convexity and sparsity inducing regularization
for parallel relu networks. Advances in Neural Information Processing Systems, 36, 2024.

Tolga Ergen, E Candès, and M Pilanci. Random projections for learning non-convex models. In
33rd Conference on Neural Information Processing Systems, Workshop on Beyond First Order
Methods in Machine Learning, 2019.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neu-
ral networks. In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.
net/forum?id=rJl-b3RcF7.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Pruning neural net-
works at initialization: Why are we missing the mark? In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=Ig-VyQc-MLK.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Soheil Gharatappeh and Salimeh Yasaei Sekeh. Information consistent pruning: How to efficiently
search for sparse networks? In International Workshop on AI for Transportation, pp. 270–284.
Springer, 2025.

Rainer Hettich and Kenneth O Kortanek. Semi-infinite programming: theory, methods, and appli-
cations. SIAM review, 35(3):380–429, 1993.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural networks, 2(5):359–366, 1989.

Prateek Jain, Ambuj Tewari, and Purushottam Kar. On iterative hard thresholding methods for high-
dimensional m-estimation. Advances in neural information processing systems, 27, 2014.

Jie Ji, Gen Li, Lu Yin, Minghai Qin, Geng Yuan, Linke Guo, Shiwei Liu, and Xiaolong Ma. Ad-
vancing dynamic sparse training by exploring optimization opportunities. In Ruslan Salakhut-
dinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix
Berkenkamp (eds.), Proceedings of the 41st International Conference on Machine Learning, vol-
ume 235 of Proceedings of Machine Learning Research, pp. 21606–21619. PMLR, 21–27 Jul
2024. URL https://proceedings.mlr.press/v235/ji24a.html.

Xiaojie Jin, Xiaotong Yuan, Jiashi Feng, and Shuicheng Yan. Training skinny deep neural networks
with iterative hard thresholding methods. arXiv preprint arXiv:1607.05423, 2016.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Ali Karimi, Ahmad Kalhor, and Melika Sadeghi Tabrizi. Forward layer-wise learning of convo-
lutional neural networks through separation index maximizing. Scientific Reports, 14(1):8576,
2024.

Rajiv Khanna and Anastasios Kyrillidis. Iht dies hard: Provable accelerated iterative hard thresh-
olding. In International Conference on Artificial Intelligence and Statistics, pp. 188–198. PMLR,
2018.

Sungyoon Kim and Mert Pilanci. Convex relaxations of relu neural networks approximate global
optima in polynomial time. In International Conference on Machine Learning, pp. 24458–24485.
PMLR, 2024.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek Jain, Sham
Kakade, and Ali Farhadi. Soft threshold weight reparameterization for learnable sparsity. In
International Conference on Machine Learning, pp. 5544–5555. PMLR, 2020.

Bohan Liu, Zijie Zhang, Peixiong He, Zhensen Wang, Yang Xiao, Ruimeng Ye, Yang Zhou, Wei-
Shinn Ku, and Bo Hui. A survey of lottery ticket hypothesis. arXiv preprint arXiv:2403.04861,
2024.

Aaron Mishkin, Arda Sahiner, and Mert Pilanci. Fast convex optimization for two-layer relu net-
works: Equivalent model classes and cone decompositions. In International Conference on Ma-
chine Learning, pp. 15770–15816. PMLR, 2022.

Aleksandra Nowak, Bram Grooten, Decebal Constantin Mocanu, and Jacek Tabor. Fantastic weights
and how to find them: Where to prune in dynamic sparse training. Advances in Neural Information
Processing Systems, 36:55160–55192, 2023.

Mathias Parger, Alexander Ertl, Paul Eibensteiner, Joerg H Mueller, Martin Winter, and Markus
Steinberger. Gradient-based weight density balancing for robust dynamic sparse training. arXiv
preprint arXiv:2210.14012, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Mert Pilanci and Tolga Ergen. Neural networks are convex regularizers: Exact polynomial-time
convex optimization formulations for two-layer networks. In Hal Daumé III and Aarti Singh
(eds.), Proceedings of the 37th International Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pp. 7695–7705. PMLR, 13–18 Jul 2020a. URL
https://proceedings.mlr.press/v119/pilanci20a.html.

Mert Pilanci and Tolga Ergen. Neural networks are convex regularizers: Exact polynomial-time con-
vex optimization formulations for two-layer networks. In International Conference on Machine
Learning, pp. 7695–7705. PMLR, 2020b.

Yaniv Plan and Roman Vershynin. Dimension reduction by random hyperplane tessellations. Dis-
crete & Computational Geometry, 51(2):438–461, 2014.

Dhananjay Saikumar and Blesson Varghese. Drive: Dual gradient-based rapid iterative pruning.
arXiv preprint arXiv:2404.03687, 2024.

Richard P Stanley et al. An introduction to hyperplane arrangements. Geometric combinatorics, 13:
389–496, 2007.

Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan,
Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. Fourier features let net-
works learn high frequency functions in low dimensional domains. NeurIPS, 2020.

Joel A Tropp. Greed is good: Algorithmic results for sparse approximation. IEEE Transactions on
Information theory, 50(10):2231–2242, 2004.

Huan Wang, Can Qin, Yue Bai, Yulun Zhang, and Yun Fu. Recent advances on neural network
pruning at initialization. In Luc De Raedt (ed.), Proceedings of the Thirty-First International
Joint Conference on Artificial Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022, pp.
5638–5645. ijcai.org, 2022. doi: 10.24963/IJCAI.2022/786. URL https://doi.org/10.
24963/ijcai.2022/786.

John Wright and Yi Ma. High-dimensional data analysis with low-dimensional models: Principles,
computation, and applications. Cambridge University Press, 2022.

Boqian Wu, Qiao Xiao, Shunxin Wang, Nicola Strisciuglio, Mykola Pechenizkiy, Maurice van
Keulen, Decebal Constantin Mocanu, and Elena Mocanu. Dynamic sparse training ver-
sus dense training: The unexpected winner in image corruption robustness. arXiv preprint
arXiv:2410.03030, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDICES

A EXPERIMENTAL METHODS

In this section we describe our experimental implementation of IHT as well as a network-pruning
baseline algorithm, IMP (Frankle & Carbin, 2019). Our experiments are built on a mixture of Py-
Torch and CuPy, and our code will be released publicly upon publication to facilitate reproducibility
and further development.

IHT updates. Our experiments use the classic IHT update rule wk+1 = Hs(w
k − ηk∇f(wk)),

where f(wk) is the objective function to be minimized. We do not inflate the projection sparsity level
to the s̃ required in our theoretical analysis; doing so would likely further improve performance at the
cost of inflating memory usage. For most of our experiments we use the mean squared error (MSE)
objective with gradient ∇fMSE = AT (Awk−y). This yields the update rule in Equation (4), where
in our experiments we use hard thresholding to enforce s-sparsity but not r-structure in the neurons.
However, for our experiments on multiclass classification, we use the cross-entropy objective whose
gradient is ∇fCE(w

k) = AT (softmax(Awk − y)).

Memory-efficient IHT implementation. A key strength of IHT is its memory efficiency, since
only the nonzero weights and their indices need to be stored during optimization. However, achiev-
ing this memory efficiency requires careful implementation because each gradient ∇f(wk) is a
dense vector rather than a sparse one, and because the sensing matrix A is huge. Our implementa-
tion is therefore blockwise. Instead of storing the entire matrix A ∈ Rn×dp we generate each n× d
block on the fly as it is needed. Instead of computing the entire gradient ∇f(wk) ∈ Rdp at once, we
compute each d-dimensional block and apply it to the sparse iterate wk+1 before computing the next
block. Mathematically this is equivalent to computing the entire gradient and performing a single
hard thresholding, but it can be far more memory efficient. The choice of block size is a design
parameter that allows our IHT implementation strategy to trade off memory and computation time,
allowing large sparse models to be trained under diverse hardware constraints.

Sequential convex IHT. In our theoretical analysis, we assume that the p activation patterns
(I{Xhi ≥ 0}) are enumerated to include all possible unique activation patterns based on fixed,
sparse generator vectors hi. This construction produces a large-scale but convex and very sparse
optimization problem. In our experiments, for computational efficiency we instead solve a sequen-
tially convex optimization that switches between the convex formulation in Equation (3) and the
nonconvex formulation in Equation (2). We choose a fixed hidden dimension m (rather than a larger
enumerated dimension p) for the network weights, and frequently update the construction of the
sensing matrix A ∈ Rn×dm to maintain consistency with the weights w ∈ Rdm as they evolve
during optimization, starting from a random initialization. In between these updates to A the for-
mulation is fixed and convex, hence the terminology of sequential convex optimization. We can
equivalently view optimization in this sequential convex formulation as a time-varying dynamical
system in which the sensing matrix A is really Ak, as it depends on the current weight estimate
wk. We find the best performance arises from a two-stage optimization procedure in which we
hold the generator vectors inside A fixed at their random initialization until completion of the first
epoch (pass through the training dataset), and then allow the generator vectors to update after each
subsequent IHT iteration. Intuitively, this procedure stabilizes the first phase of optimization by
maintaining convexity, and then allows for refinement of the sensing matrix once IHT has had the
opportunity to enter a region of attraction around the global optimum.

Vector-output MLPs. The formulation in Equation (2) and Equation (3) assumes a scalar-output
MLP in which the output layer can be fused to the hidden layer weights. In an MLP with vector-
valued output, we instead have ŷ = (XW)+W̃ , where as before X ∈ Rn×d and W ∈ Rd×m for
hidden dimension m, but now ŷ ∈ Rn×c and W̃ ∈ Rm×c for output dimension c. We can no longer
fuse the output layer weights, so we optimize the following formulation:

ŷ = [diag (I{Xw1 ≥ 0})X . . . diag (I{Xwm ≥ 0})X]

w1w̃
T
1

...
wmw̃T

m

 (6)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

where wi ∈ Rd is a column of W (as in the scalar-output case) and w̃i ∈ Rc is a row of W̃ . We
use the chain rule to compute separate gradients for W and W̃ , computed blockwise and applied
on-the-fly to update a global sparse weight representation for memory efficiency.

Layerwise optimization for deeper MLPs. Although it is possible to refine the formulation Equa-
tion (2) for deep MLPs (Ergen & Pilanci, 2024), for simplicity of implementation we optimize deep
MLPs following a layerwise approach (Bengio et al., 2006; Karimi et al., 2024). For example, to
optimize a 3-layer MLP (2 hidden layers plus an output layer), we proceed as follows. First, we
optimize a 2-layer, vector-output MLP to find sparse weights W ∈ Rd×m and Ŵ ∈ Rm×c. We then
discard Ŵ and freeze W , treating it as an input embedding while training a second 2-layer MLP,
this time with input dimension d = m. We note that our results for IHT on deeper MLPs are slightly
pessimistic, as our optimization procedure allocates some nonzero parameters to intermediate output
layers W̃ that are not used in the final model, meaning that the final model performance is attained
with strictly fewer active weights than the budgeted s. Nonetheless, IHT remains competitive despite
this restriction (see Section 5).

Count sketching. For shallow scalar-output MLPs, we use the standard hard thresholding rule
based on weight magnitudes, retaining the s highest-magnitude entries in W at each iteration. For
deeper and vector-output MLPs, we follow Aghazadeh et al. (2018) and use an intermediate count
sketch data structure to perform hard thresholding. Intuitively, we view the count sketch approach
as a noisy but more memory efficient alternative to the deterministic sparsity inflation in our theo-
retical analysis. At every gradient step, we update the count sketch to maintain a noisy estimate of
the full iterate, a vectorized concatenation of W and W̃ . We use a vector of dimension 4s log(n/s)
to represent the count sketch, balancing memory efficiency with the level of approximation error in
the sketch. At each iteration of IHT, we find the s entries in the count sketch with largest estimated
magnitude, and store exact values for these entries. We observe an empirical tradeoff in the use
of a count sketch: for shallow scalar-output networks where we have a single weight matrix W to
optimize, the approximation error introduced by the count sketch outweighs any benefit it brings
by “softening” the hard thresholding operation. However, for vector-output networks or deeper net-
works where IHT must implicitly decide how to allocate a fixed parameter budget among W and W̃ ,
the count sketch allows IHT to make less myopic thresholding decisions that aggregate information
from multiple gradient steps, the benefits of which appear to outweigh the cost of approximation
error in the count sketch.

Step size selection. For our experiments with IHT, we use two different step size selection meth-
ods. For shallow scalar-output networks, we fuse the output layer weights following Equation (2).
We can then compute an adaptive stepsize to minimize the mean squared error (MSE) objective
function

ηk =

∥∥∥AT
supp(wk)(y −Awk)

∥∥∥2
2∥∥Asupp(wk)AT (y −Awk)
∥∥2
2

, (7)

following Blumensath & Davies (2010). However, as Equation (7) does not directly apply to vector-
output networks, for these we use a fixed stepsize ηk = η for both W and W̃ , and manually tune η.
This manual tuning surely leaves room for improvement with an adaptive strategy, which we defer
to future work.

Accelerated IHT. For shallow scalar-output networks, we use an accelerated IHT following Blu-
mensath (2012), which defines an accelerated IHT as any algorithm that augments the classic IHT
update with a refinement step to produce an iterate that is both sparse and has objective value no
larger than that of the iterate produced by classic IHT. Specifically, after each IHT update we take
a few gradient steps restricted to the current set of nonzero weights, to lower the objective value
without changing the sparse support (Blumensath, 2012). We do not find an empirical benefit to
this acceleration procedure for vector-output MLPs, so we perform acceleration only for IHT on
scalar-output networks.

IMP baseline. We compare our IHT approach for optimizing sparse MLPs with iterative magni-
tude pruning (IMP) (Frankle & Carbin, 2019), a high-performing baseline method for pruning neural

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

networks that has been shown to find sparse networks that often match or exceed the quality of their
dense counterparts. IMP begins by training a dense network, and then iteratively prunes (sets to
zero) a constant fraction of the active (nonzero) weights based on magnitude, rewinds the remaining
active weights to their initialization values, and retrains. IMP thus allows pruning a dense network
to any desired sparsity level, but requires sufficient memory to train the dense network and sufficient
computation time to iteratively retrain it during pruning. Although this IMP process is computation-
ally costly, it provides a strong baseline of performance that can be achieved with a sparse network
using existing methods. Frankle & Carbin (2019) suggest pruning 20% of the active weights at each
iteration to balance computation and performance; we prune only 10% of the active weights at each
iteration to maximize IMP performance and provide as strong a baseline as possible.

Minibatches. For both IHT and IMP, each iteration operates on a minibatch of the full dataset.
For IHT, we perform a minibatch update by subsampling the n rows of both A and y. For fitting a
planted sparse MLP as well as for 10-way MNIST classification we use a minibatch size of 5000,
and for binary MNIST classification we use a minibatch size of 1000. These settings all correspond
to 10% of each training dataset per minibatch. For fitting an implicit neural representation to MNIST
and CIFAR-10 images, we use full-batch updates as each image is small.

B PROOF OF LEMMA 1

Proof. Our goal is to upper and lower bound the eigenvalues of AT
SAS ∈ Rs×s, where the full

matrix A ∈ Rn×dp is a column-normalized version of

[diag (I{Xh1 ≥ 0})X . . . diag (I{Xhp ≥ 0})X] ∈ Rn×dp,

X ∈ Rn×d has i.i.d. N (0, 1) entries, and the index set S ⊆ [dp] has |S| = s ≤ n.

As singular values of AS are unaffected by column permutation, without loss of generality, we
assume that columns of AS are ordered so that columns involving each xj are adjacent to each
other. This ordering induces a block structure in AT

SAS ; we refer to the i, j block submatrix as
(AT

SAS)i,j . Using this block structure, we bound each type of entry in AT
SAS with high probability

and then use these entry-wise bounds to upper and lower bound the eigenvalues of AT
SAS with high

probability.

First, consider a block submatrix (AT
SAS)i,i on the diagonal of AT

SAS . Since the columns of A are
normalized, the diagonal entries of (AT

SAS)i,i are deterministically 1 for all i. The off-diagonal en-

tries of (AT
SAS)i,i take the form xT

i DjDj′xi

∥Djxi∥2∥Dj′xi∥
2

. The numerator has E[xT
i DjDj′xi] = TrDjDj′ ,

while the denominator terms have expectation
√
TrDj and

√
TrDj′ , respectively. Applying

Hanson-Wright (Theorem 2) to each quadratic form in this expression, we have

xT
i DjDj′xi

∥Djxi∥2 ∥Dj′xi∥2
≤ TrDjDj′ + t1√

TrDj − t2
√

TrDj′ − t3
(8)

with probability at least 1 − 2 exp
(−ct21
TrDjDj′+t1

)
− 2 exp

(−ct22
TrDj+t2

)
− 2 exp

(−ct23
TrDj′+t3

)
, for a

universal constant c.

Consider two regimes based on whether TrDjDj′ is less than or greater than ε
√
n. In the first

regime, TrDjDj′ ≤ ε
√
n. We choose t1 = ε

√
n, t2 = δTrDj , and t3 = δTrDj′ for δ ∈ (0, 1),

which yields
xT
i DjDj′xi

∥Djxi∥2 ∥Dj′xi∥2
≤ TrDjDj′ + ε

√
n√

(1− δ) TrDj

√
(1− δ) TrDj′

with probability at least 1− 2 exp
(−cε2n
TrDjDj′+ε

√
n

)
− 2 exp

(−cδ2 TrDj

1+δ

)
− 2 exp

(−cδ2 TrDj′

1+δ

)
.

Since we are in the regime where TrDjDj′ ≤ ε
√
n and, by Assumption 2, Dj and Dj′ each have

trace at least εn, we have
xT
i DjDj′xi

∥Djxi∥2 ∥Dj′xi∥2
≤ 2

(1− δ)
√
n

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

with probability at least 1− 2 exp
(−cε

√
n

2

)
− 4 exp

(−cδ2εn
1+δ

)
.

In the second regime, TrDjDj′ > ε
√
n. In Equation (8) we choose t1 = δTrDjDj′ , t2 = δTrDj ,

and t3 = δTrDj′ , for δ ∈ (0, 1), to yield

xT
i DjDj′xi

∥Djxi∥2 ∥Dj′xi∥2
≤ (1 + δ) TrDjDj′

(1− δ)
√
TrDj

√
TrDj′

with probability at least 1−2 exp
(−cδ2 TrDjDj′

1+δ

)
−2 exp

(−cδ2 TrDj

1+δ

)
−2 exp

(−cδ2 TrDj′

1+δ

)
. With-

out loss of generality, assume that TrDj ≤ TrDj′ . We are interested in upper bounding the quantity
xT
i DjDj′xi

∥Djxi∥2∥Dj′xi∥
2

, which is maximized when all entries that take value 1 in Dj also take value 1 in

Dj′ . This choice maximizes TrDjDj′ for any fixed values of TrDj and TrDj′ . Let TrDj = ξn.
By Assumption 2, Dj and Dj′ must take different values (one is 0 and the other is 1) in at least γn
diagonal positions. Combining this with our observation of the maximizing arrangement of ones
and zeros in Dj and D′

j , for this arrangement we have that TrDj′ ≥ TrDj + γn = (ξ + γ)n and
TrDjDj′ = TrDj = ξn. Since we are in the regime where TrDjDj′ > ε

√
n and, by Assumption

2, Dj and Dj′ each have trace at least εn, we have

xT
i DjDj′xi

∥Djxi∥2 ∥Dj′xi∥2
≤ (1 + δ)

√
ξ

(1− δ)
√
ξ + γ

with probability at least 1− 2 exp
(−cδ2ε

√
n

1+δ

)
− 4 exp

(−cδ2εn
1+δ

)
. This upper bound is increasing in

ξ, which can take value at most 1 − γ since TrDj′ ≥ (ξ + γ)n and by construction Dj′ ≤ n. We
therefore set ξ = 1− γ to yield the bound:

xT
i DjDj′xi

∥Djxi∥2 ∥Dj′xi∥2
≤ (1 + δ)

√
1− γ

1− δ
,

which holds with probability at least 1 − 2 exp
(−cδ2ε

√
n

1+δ

)
− 4 exp

(−cδ2εn
1+δ

)
. Since this second-

regime bound is independent of n while the first-regime bound decays as n−1/2, for large n the
second-regime bound dominates. For all δ ∈ (0, 1) we also have that 1 − 2 exp

(−cδ2ε
√
n

1+δ

)
−

4 exp
(−cδ2εn

1+δ

)
≤ 1− 2 exp

(−cε
√
n

2

)
− 4 exp

(−cδ2εn
1+δ

)
. Therefore, we conclude that

0 ≤ xT
i DjDj′xi

∥Djxi∥2 ∥Dj′xi∥2
≤ (1 + δ)

√
1− γ

1− δ
,

holds with probability at least 1 − 2 exp
(−cδ2ε

√
n

1+δ

)
− 4 exp

(−cδ2εn
1+δ

)
for all off-diagonal en-

tries of a diagonal block submatrix (AT
SAS)i,i. Here we include a deterministic lower bound

xT
i DjDj′xi

∥Djxi∥2∥Dj′xi∥
2

≥ 0, which holds because DjDj′ is a diagonal matrix with all entries nonneg-

ative.

Next, we consider a block submatrix (AT
SAS)i,i′ that is off the diagonal of AT

SAS . The entries of

(AT
SAS)i,i′ take the form xT

i DjDj′xi′

∥Djxi∥2∥Dj′xi′∥2

, where Dj and Dj′ may be the same or different. The

numerator has E[xT
i DjDj′xi′] = 0, while the denominator terms have expectation

√
TrDj and√

TrDj′ , respectively. We bound this expression with high probability by applying Hanson-Wright
to each term in the denominator, and asymmetric Hanson-Wright to the numerator:

|xT
i DjDj′xi′ |

∥Djxi∥2 ∥Dj′xi′∥2
≤ t1√

TrDj − t2
√
TrDj′ − t3

(9)

with probability at least 1 − 2 exp
(−ct21
TrDjDj′+t1

)
− 2 exp

(−ct22
TrDj+t2

)
− 2 exp

(−ct23
TrDj′+t3

)
, for a

universal constant c. We choose t2 = δTrDj and t3 = δTrDj′ , for δ ∈ (0, 1), to yield

|xT
i DjDj′xi′ |

∥Djxi∥2 ∥Dj′xi′∥2
≤ t1

(1− δ)
√
TrDj

√
TrDj′

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

with probability at least 1 − 2 exp
(−ct21
TrDjDj′+t1

)
− 2 exp

(−cδ2 TrDj

1+δ

)
− 2 exp

(−cδ2 TrDj′

1+δ

)
. By

Assumption 2, TrDj ≥ εn and TrDj′ ≥ εn, so we have
|xT

i DjDj′xi′ |
∥Djxi∥2 ∥Dj′xi′∥2

≤ t1
(1− δ)εn

with probability at least 1− 2 exp
(−ct21
TrDjDj′+t1

)
− 4 exp

(−cδ2εn
1+δ

)
. Now, we consider two regimes

depending on whether TrDjDj′ is less than or greater than εn.

In the regime where TrDjDj′ ≤ εn, we choose t1 = εn3/4, yielding:
|xT

i DjDj′xi′ |
∥Djxi∥2 ∥Dj′xi′∥2

≤ 1

(1− δ)n1/4

with probability at least 1− 2 exp
(−cεn3/4

1+n1/4

)
− 4 exp

(−cδ2εn
1+δ

)
.

In the regime where TrDjDj′ > εn, we choose t1 = δn−1/4 TrDjDj′ . Combining this with the
implication of Assumption 2 that TrDjDj′ ≤ (1− γ)n, we have

|xT
i DjDj′xi′ |

∥Djxi∥2 ∥Dj′xi′∥2
≤ δn−1/4 TrDjDj′

(1− δ)εn
≤ δ(1− γ)

(1− δ)εn1/4

with probability at least 1 − 2 exp
(−cδ2n3/4ε

n1/4+δ

)
− 4 exp

(−cδ2εn
1+δ

)
. For all δ ∈ (0, 1), 1 −

2 exp
(−cδ2n3/4ε

n1/4+δ

)
− 4 exp

(−cδ2εn
1+δ

)
≤ 1− 2 exp

(−cεn3/4

1+n1/4

)
− 4 exp

(−cδ2εn
1+δ

)
, and for δ ≤ ε

1−γ we

have 1
(1−δ)n1/4 ≥ δ(1−γ)

(1−δ)εn1/4 . Combining these, we have that

|xT
i DjDj′xi′ |

∥Djxi∥2 ∥Dj′xi′∥2
≤ 1

(1− δ)n1/4

holds with probability at least 1− 2 exp
(−cδ2n3/4ε

n1/4+δ

)
− 4 exp

(−cδ2εn
1+δ

)
, for all δ ∈ (0, ε

1−γ) and all
entries of a block submatrix (AT

SAS)i,i′ that is off the diagonal of AT
SAS .

Now that we have high probability (and in some cases deterministic) upper and lower bounds on
each entry of AT

SAS , we combine them into high probability bounds on the eigenvalues of AT
SAS .

We can decompose AT
SAS = B + C, where B is block diagonal and C is dense except for having

zeros in block-diagonal entries. First, consider a single block submatrix Bi,i on the diagonal of
B. This block submatrix has diagonal values deterministically 1, and off-diagonal entries bounded
deterministically from below by 0 and bounded above by (1+δ)

√
1−γ

1−δ with probability at least 1 −
2 exp

(−cδ2ε
√
n

1+δ

)
−4 exp

(−cδ2εn
1+δ

)
. We use the variational definition of the minimum and maximum

eigenvalues, and refer to Bi,i as B̃ so that subscripts may denote indices within the block submatrix:

λmin(B̃) = min
∥u∥2=1

uT B̃u

= min
∥u∥2=1

∑
i

B̃i,iu
2
i +

∑
i ̸=j

Bi,juiuj

(a)
= 1 + min

∥u∥2=1

∑
i ̸=j

Bi,juiuj

(b)

≥ 1− (1 + δ)
√
1− γ

1− δ
,

where in (a) we use the deterministic facts that diagonal entries of B̃ take value 1 and that ∥u∥2 = 1,
and in (b) we use the high-probability upper bound on the magnitude of B̃i,j and the observation
that the minimum is achieved by a vector u ⊥ 1 (this makes the cross terms most negative). By a
similar line of reasoning, we can bound

λmax(B̃) = 1 + max
∥u∥2=1

∑
i ̸=j

Bi,juiuj

(a)

≤ 1 +
(1 + δ)

√
1− γ

1− δ
(s− 1),

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

where in (a) we use the high-probability upper bound on the magnitude of B̃i,j , the observation that
the maximum is achieved by a vector u ∥ 1, and the requirement that the maximum dimension of B̃
is s× s. Both of these bounds hold with probability at least 1− 2s(s− 1) exp

(−cδ2ε
√
n

1+δ

)
− 4s(s−

1) exp
(−cδ2εn

1+δ

)
, by a union bound over all off-diagonal entries in B̃. The spectrum of the full block

matrix B is bounded by the minimum and maximum eigenvalues of its largest block, which can
have size at most s× s. Thus the bounds above on λmin(B̃) and λmax(B̃) also apply to B.

Since AT
SAS = B+C, it remains to bound the spectrum of C and combine the results. The structure

of C is dense, with block diagonal submatrices of value zero and each other entry bounded between
− 1

(1−δ)n1/4 and 1
(1−δ)n1/4 with probability at least 1− 2 exp

(−cδ2n3/4ε
n1/4+δ

)
− 4 exp

(−cδ2εn
1+δ

)
, for all

δ ∈ (0, ε
1−γ). For this matrix, we use a coarse bound that |||C|||op ≤ s

(1−δ)n1/4 , which holds with

probability at least 1 − 2s(s − 1) exp
(−cδ2n3/4ε

n1/4+δ

)
− 4s(s − 1) exp

(−cδ2εn
1+δ

)
for all δ ∈ (0, ε

1−γ),
following a union bound.

Combining these spectral bounds on B and C via Weyl’s inequality, we have that

λmin(A
T
SAS) ≥ 1− (1 + δ)

√
1− γ

1− δ
− s

(1− δ)n1/4

and

λmax(A
T
SAS) ≤ 1 +

(s− 1)(1 + δ)
√
1− γ

1− δ
+

s

(1− δ)n1/4

for any δ ∈ (0, ε
1−γ) with probability at least 1 − 2s(s − 1) exp

(−cδ2ε
√
n

1+δ

)
− 2s(s −

1) exp
(−cδ2n3/4ε

n1/4+δ

)
− 8s(s− 1) exp

(−cδ2εn
1+δ

)
.

Theorem 2 (Hanson-Wright (Boucheron et al., 2013)). Let x be a random vector with i.i.d. zero-
mean 1-sub-Gaussian entries. Let H be a square matrix. Then for a universal constant c

P
[∣∣xTHx− E[xTHx]

∣∣ ≥ t
]
≤ 2 exp

(
− ct2

|||H|||2F + |||H|||opt

)
.

If H is a diagonal matrix with all diagonal entries equal to either zero or one, |||H|||2F = TrH and
|||H|||op = 1. We also use an asymmetric version of Hanson-Wright, derived as follows. Let

H =

[
0 H̃
0 0

]
; x =

[
u
v

]
;

yielding

P
[∣∣∣uT H̃v − E[uT H̃v]

∣∣∣ ≥ t
]
≤ 2 exp

(
− ct2

|||H̃|||2F + |||H̃|||opt

)
.

C PROOF OF THEOREM 1

Proof. The proof of Theorem 1 combines Lemma 1 with Theorem 3 (Theorem 1 in Jain et al.
(2014)), which shows that IHT with an inflated sparsity level can recover a sparse signal in a linear
inverse problem as long as the sensing matrix satisfies the restricted strong convexity and restricted
strong smoothness properties with any positive finite parameters; i.e. with an arbitrary finite re-
stricted condition number.

Theorem 3 shows directly that, under the conditions in the theorem statement, the objective value
converges as f(wK) − f(w⋆) ≤ ϵ. This implies convergence of iterates due to restricted strong
convexity and the fact that ∇f(w⋆) = 0:

f(wK)− f(w⋆) ≥ ⟨wK − w⋆,∇f(w⋆)⟩+ α

2

∥∥wK − w⋆
∥∥2
2
=

α

2

∥∥wK − w⋆
∥∥2
2
,

which proves the additional result that
∥∥wK − w⋆

∥∥2
2
≤ 2

αϵ.

We note that the proof in Jain et al. (2014) also implies that, if IHT projects onto the smaller sparsity
level s rather than the inflated sparsity level s̃, each step of IHT is still guaranteed to not increase
the MSE loss f(w); the requirement that s̃ > s allows for strict objective decrease in each step.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Theorem 3 (Jain et al. (2014)). Assume that the objective f has restricted strong convexity param-
eter α and restricted strong smoothness parameter L at sparsity level 2s̃ + s, with s̃ > 32

(
L
α

)2
s.

Assume that θ⋆ = argmin∥θ∥0≤s f(θ), i.e. that the true signal is s-sparse. Then IHT with projec-

tion (hard thresholding) to sparsity level s̃ and step size η = 2
3L , run for K = O

(
L
α log

(f(θ0)
ϵ

))
iterations, achieves

f(θK)− f(θ⋆) ≤ ϵ.

D PROOF THAT ASSUMPTION 2 FOLLOWS FROM ASSUMPTION 1 WITH HIGH
PROBABILITY

Let Di = diag (I{Xhi ≥ 0}) ∈ Rn×n, with {Di}pi=1 as the set of all such distinct activation
patterns possible under Assumption 1 with data X ∈ Rn×d, whose entries are drawn i.i.d. ∼
N (0, 1). Assumption 2 has the following two components:

1. TrDi ≥ εn for all i ∈ [p], for some ε ∈ (0, 1).

2. For all i ̸= i′, the diagonals of Di and Di′ differ in at least γn positions, for some γ ∈
(0, 1).

D.1 COMPONENT 1: LOWER BOUND ON TRACE OF ACTIVATION PATTERNS Di

Component 1 follows from Lemma 2, which does not require Assumption 1.

Lemma 2 (based on Ergen et al. (2019)). Let S = {i : xT
i h > 0}, where xi are i.i.d standard

Gaussian vectors distributed as N (0, Id). Then with probability at least 1 − e−n
(
φ(1−ε)−H(ε)

)
,

infh |S| ≥ nε. Here ε ∈ (0, 1), φ is a fixed numerical constant satisfying 1
2 −

√
8φ > 0, n satisfies

n
(
1
2 −

√
8φ
)
≥ d, and H is the binary entropy function.

Proof. Consider the symmetric event E := suph̸=0 |{i : xT
i h ≤ 0}| ≥ n(1− ε). Then

P[E] ≤
∑

V⊆[n]
|V |≥n(1−ε)

P
[
∃h ̸= 0 s.t. xT

i h ≤ 0, ∀i ∈ V
]

≤
(

n

n(1− ε)

)
e−φn(1−ε)

≤ e−n
(
φ(1−ε)−H(ε)

)
in which the second inequality follows from the Kinematic Formula (by flipping the sign of h).

Theorem 4 (Kinematic Formula (Amelunxen et al., 2014)). Let X be an n × d i.i.d. Gaussian
matrix and G = XΣ1/2 with any Σ ≻ 0. If n satisfies n(12 −

√
8φ) ≥ d, we have

P [∃h ̸= 0 s.t. Gh ≥ 0] = P
[
∃h̃ ̸= 0 s.t. Xh̃ ≥ 0

]
≤ e−φn.

Remark 3. If we further assume Assumption 1, specifically that ∥h∥0 ≤ si ≤ k, we can tighten
Lemma 2 as follows. If ∥h∥0 ≤ k ≤ d, and we set φ = 1

128 , then TrDi ≥ εn with probability at

least 1 − e−n
(

1−ε
128 −H(ε)

)
as long as n ≥ 4k. Following a union bound over p activation patterns,

TrDi ≥ εn for all i ∈ [p] with probability at least 1− pe−n
(

1−ε
128 −H(ε)

)
, as long as n ≥ 4k.

D.2 COMPONENT 2: HAMMING SEPARATION OF ACTIVATION PATTERNS

Definition 1 (δ-isometric embedding (Plan & Vershynin, 2014)). A map f : X → Y is a δ-isometry
between metric space X with distance metric dX and metric space Y with distance metric dY if, for
all x, x′ ∈ X , |dY (f(x), f(x′))− dX(x, x′)| ≤ δ.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Theorem 5 (Hamming embedding, Theorem 1.5 in Plan & Vershynin (2014)). Consider a subset
K ⊆ Sd−1 and let δ > 0. Let X be an n × d random matrix with independent N (0, 1) entries.
Let n ≥ Cδ−6w(K)2, where w(K) := E supx∈K |⟨g, x⟩| is the Gaussian mean width of K, with
g ∼ N (0, Id). Then with probability at least 1 − 2 exp(−cδ2n), the sign map f(x) = sign(Xx),
f : K → {−1, 1}n is a δ-isometric embedding between K ⊆ Sd−1 with normalized geodesic dis-
tance metric dG(x, x

′) = 1
π cos−1(xTx′) and {−1, 1}n with normalized Hamming distance metric

dH(f(x), f(x′)) = 1
n

∑n
i=1 f(x)i ̸= f(x′)i. Here C and c denote positive absolute constants.

Corollary 1. Theorem 5 may be restated so as to apply to unnormalized generator vectors from
K ⊆ Rd and indicator-based rather than sign-based activation pattern embedding. Consider a
subset K ⊆ Rd and let δ > 0. Let X be an n× d random matrix with independent N (0, 1) entries.
Let n ≥ Cδ−6w(K)2, where w(K) := E supx∈K |⟨g, x

∥x∥2
⟩| is the normalized Gaussian mean

width of K, with g ∼ N (0, Id). Then with probability at least 1 − 2 exp(−cδ2n), the indicator
map f(x) = I{Xx ≥ 0}, f : K → {0, 1}n is a δ-isometric embedding between K ⊆ Rd with
normalized geodesic distance metric dG(x, x′) = 1

π cos−1
(

xT x′

∥x∥2∥x′∥2

)
and {0, 1}n with normalized

Hamming distance metric dH(f(x), f(x′)) = 1
n

∑n
i=1 f(x)i ̸= f(x′)i. Here C and c denote

positive absolute constants.

Corollary 1 ensures that a set of generator vectors {hi}pi=1 that are sufficiently separated in nor-
malized geodesic distance will yield activation patterns Di = diag (I{Xhi ≥ 0}) whose diago-
nals are separated in normalized Hamming distance, with high probability for i.i.d. Gaussian data
X ∈ Rn×d. Specifically, for the diagonals of Di and Di′ to differ in at least γn positions for all
i ̸= i′ with probability at least 1− 2 exp(−cδ2n), we require a set of generator vectors {hi}pi=1 that
(1) include the planted first layer weights u⋆

i , and (2) are separated by at least γ + δ in normalized
geodesic distance. In Appendix D.3 we show that both of these properties hold with high probability
for both of the sparse weight conditions in Assumption 1 (recall that u⋆

i are the first layer weights
and v⋆i are the second layer weights, which are fused during IHT):

(a) u⋆
i ∈ {−1, 0, 1}d, ∥u⋆

i ∥0 = k, v⋆i ∈ R∀i ∈ [p] and kp ≤ s, or

(b) u⋆
i ∈ Rd, ∥u⋆

i ∥0 = si ∈ [smin, k], v
⋆
i ∈ {−1, 1} ∀i ∈ [p] and

∑p
i=1 si ≤ s holds.

D.3 SAMPLING SPARSE ARRANGEMENTS

D.3.1 REAL-VALUED PLANTED NEURONS

We now show that a random sampling of hyperplane arrangements can be guaranteed to contain the
planted activation patterns, while simultaneously ensuring a packing of the Euclidean sphere in Rd.
Theorem 6. Let X ∈ Rn×d have i.i.d. N (0, 1) entries. Fix m unknown vectors w1, . . . , wm ∈ Rd

each with ∥wi∥0 = si ∈ [smin, k], and an error tolerance 0 < ϵ̃ < 1. Note that the choice of ϵ̃ affects
the permissible sparsity range [smin, k]. Set

T =

(
log(2n)

c

)k

log

(
2m

ϵ̃

)
,

where c > 0 is an absolute constant. Consider the set of all supports S with |S| ∈ [smin, k], and
draw T supports from this set uniformly at random. For each randomly drawn support S, draw |S|
values i.i.d. from N (0, 1) and embed these in Rd by setting entries in S to their random Gaussian
values and zero–padding outside S. Record the two collections

Γ =
{
I
[
Xhj ≥ 0

]
: 1 ≤ j ≤ T

}
, G =

{ h̃j

∥h̃j∥2
: 1 ≤ j ≤ T

}
,

where h̃j denotes the zero–padded generator and hj is its normalized version. There exists δ > 0
such that, with probability at least 1 − ϵ̃ over the draws of X and all T generators, the following
hold simultaneously:

1. Coverage: I
[
Xwi ≥ 0

]
∈ Γ for every i ∈ {1, . . . ,m}.

2. Minimum geodesic separation: For all distinct g, g′ in G, ∥g − g′∥2 ≥ δ̃. This Euclidean
separation of unit vectors implies geodesic separation: dG(g, g

′) = 1
π cos−1(gT g′) ≥

0.69
π δ̃2.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Proof. The strategy used to prove coverage is to show that the cones {u : sign(Xu) = sign(Xh)}
are not too narrow, for Gaussian i.i.d. training data X ∈ Rn×d and a fixed vector h ∈ Rd. Specifi-
cally, a bound on the cone sharpness developed in Kim & Pilanci (2024) implies that the probability
that a uniformly sampled vector on the sphere falls into this cone is at least O

(
(log n)−d

)
. We then

apply this result to n× si submatrices of X to translate it to sparse generators, and control the error
probability via the union bound. We first reintroduce the notion of cone sharpness:
Cone sharpness. For any support S and non-zero u ∈ Rsi , set D(u) := diag

(
I[XSu ≥ 0]

)
and

define the cone KS(u) := { v ∈ Rsi : (2D(u)−I)XSv ≥ 0}. By the cone–sharpness bound of Kim
& Pilanci (2024) there are universal constants c, c1 > 0 such that

PX

[
C
(
KS(u),

u
∥u∥2

)
≤ C∗

]
≥ 1− δ̃si , C∗ := 2 + 200c

√
c log(2n), δ̃si := n−10 + e−c1si ,

where the sharpness C(K, z) of a cone K with respect to a fixed unit vector z is defined as
C(K, z) := minu,v∈K, u−v=z ∥u∥2 + ∥v∥2 following Kim & Pilanci (2024). Let E be the high
probability event that the cone sharpness for each of the m planted neurons is at most C∗; E occurs
with probability at least 1 −m(n−10 + e−c1smin). Now we relate cone sharpness to the probability
of sampling a specific pattern.

Spherical cap inclusion. Fix S and u ̸= 0 and write z := u/∥u∥2. On E there exist a, b ∈ KS(u)
with a− b = z and ∥a∥2 + ∥b∥2 ≤ C∗. Setting q := (a+ b)/2 yields ⟨q, z⟩ ≥ 1/(2C∗). Therefore
the spherical cap

Cz :=
{
y ∈ S|S|−1 : ⟨y, z⟩ ≥ 1/(2C∗)

}
is contained in KS(u).

Cap measure. For h ∼ N (0, Isi) the direction h/ ∥h∥2 is uniform on Ssi−1. Standard sur-
face–measure estimates give

psi := P
[
I[XSh ≥ 0] = I[XSu ≥ 0]

]
≥ Surfsi−1(Cz) ≥

csi(
log(2n)

)si .
Coverage probability. As a consequence of the above inequality, the arrangement pattern of each

planted neuron is sampled with probability at least csi(
log(2n)

)si ≥
(

c
log(2n)

)k
. After T samples,

the probability that we have not yet sampled all m planted neuron activation patterns is at most

m

(
1−

(
c

log(2n)

)k)T

; after T =
(

log(2n)
c

)k
log
(
2m
ϵ̃

)
random draws we are guaranteed to sample

all m planted patterns with probability at least 1− ϵ̃
2 .

Packing of generators. Consider any two generator vectors h, h′ with supports S, S′, respectively.
We have

hTh′ =

∑
i∈S∩S′ h̃ih̃

′
i√∑

i∈S h̃2
i

√∑
i∈S′ h̃′2

i

,

where h̃i and h̃′
i are i.i.d. distributed as N (0, 1). Using a union bound over asymmetric Hanson-

Wright (Theorem 2) in the numerator and symmetric Hanson-Wright (twice) in the denominator, we
have

P

[
|hTh′| ≥ t1√

|S|+ t2
√

|S′|+ t3

]
≤ 2 exp

(
−ct21

|S ∩ S′|+ t1

)
+2 exp

(
−ct22

|S|+ t2

)
+2 exp

(
−ct23

|S′|+ t3

)
.

We choose t2 = γ|S|, t3 = γ|S′|, yielding

P

[
|hTh′| ≥ t1

(1 + γ)
√

|S||S′|

]
≤ 2 exp

(
−ct21

|S ∩ S′|+ t1

)
+ 2 exp

(
−cγ2|S|
1 + γ

)
+ 2 exp

(
−cγ2|S′|
1 + γ

)
.

Next, we choose t1 =
(
1− δ̃2

2

)
(γ + 1)

√
|S||S′| to yield

P

[
|hTh′| ≥ 1− δ̃2

2

]
≤ 2 exp

(
−c
(
1− δ̃2

2

)2
(γ + 1)2|S||S′|

|S ∩ S′|+
(
1− δ̃2

2

)
(γ + 1)

√
|S||S′|

)

+ 2 exp

(
−cγ2|S|
1 + γ

)
+ 2 exp

(
−cγ2|S′|
1 + γ

)
.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Assuming that all planted neurons, and thus all generator vectors we need to consider, have sparsity
level si ∈ [smin, k], we have

P

[
|hTh′| ≥ 1− δ̃2

2

]
≤ 2 exp

(
−c
(
1− δ̃2

2

)2
(γ + 1)2s2min

k +
(
1− δ̃2

2

)
(γ + 1)k

)
+ 4 exp

(
−cγ2smin

1 + γ

)
.

For sufficiently large smin , a union bound over all
(
T
2

)
pairs of generators allows us to bound

P
[
|hTh′| ≥ 1− δ̃2

2

]
≤ ϵ̃

2 − m(n−10 + e−c1smin) uniformly over all pairs h, h′, as required for
an overall failure probability at most ϵ̃. Finally, the Euclidean packing follows as

∥h− h′∥22 = ∥h∥22 + ∥h′∥22 + 2hTh′ = 2 + 2hTh′ ≥ 2− (2− δ̃2) = δ̃2.

Euclidean δ̃-packing implies the stated separation in normalized geodesic distance as follows:

dG(g, g
′) =

1

π
cos−1

(
gT g′

∥g∥2 ∥g′∥2

)
(a)

≥ 1.38

π
(1− gT g′)

(b)

≥ 0.69

π
δ̃2,

where in (a) we use the fact that cos−1(1 − x) ≥ 1.38x for x ∈ [0, 1] and in (b) we use that
∥g∥2 = ∥g′∥2 = 1 and ∥g − g′∥22 = ∥g∥22 + ∥g′∥22 − 2gT g′ = 2− 2gT g ≥ δ̃2.

D.3.2 DISCRETE-VALUED PLANTED NEURONS

Theorem 7. Fix integers d and k ≤ d. For a subset S ⊆ [d] with entries Sj and |S| = k, define the
generator set

GS :=
{
g(σ) ∈ {−1, 0, 1}d : σ ∈ {−1, 1}k, g(σ)Sj

= σj , g(σ)ℓ = 0 if ℓ /∈ S
}
,

i.e. all possible sign assignments on the coordinates in S and zeros elsewhere (|GS | = 2k). Given a
matrix X ∈ Rn×d form the associated arrangement list

ΓS :=
{
I
[
Xg ≥ 0

]
: g ∈ GS

}
⊆ {0, 1}n.

(i) Coverage. Let w1, . . . , wm ∈ {−1, 0, 1}d be k-sparse vectors (each with exactly k non-
zeros). Then for every i ∈ {1, . . . ,m}

I[Xwi ≥ 0] ∈ Γsupp(wi).

(ii) Minimum geodesic separation. For any two distinct k-sparse vectors u, v ∈ {−1, 0, 1}d,

dG(u, v) =
1

π
cos−1

(
uT v

∥u∥2 ∥v∥2

)
≥ 0.69

πk
.

Proof. (i) Coverage. Fix i ∈ {1, . . . ,m} and set S = supp(wi). Because wi has entries ±1 on S
and zeros elsewhere, there exists σ ∈ {−1, 1}|S| such that wi = g(σ) ∈ GS . Hence the pattern
1[Xwi ≥ 0] belongs to ΓS .

(ii) Separation. Let u ̸= v be k-sparse vectors in {−1, 0, 1}d. There is an index j with uj ̸= vj , so
|uj − vj | ≥ 1. Therefore ∥u− v∥22 =

∑d
ℓ=1(uℓ − vℓ)

2 ≥ (uj − vj)
2 ≥ 1, implying ∥u− v∥2 ≥ 1.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

From Euclidean separation we can infer normalized geodesic separation as follows:

dG(u, v) =
1

π
cos−1

(
uT v

∥u∥2 ∥v∥2

)
(a)

≥ 1.38

π

(
1− uT v

∥u∥2 ∥v∥2

)
(b)

≥ 1.38

π

(
1−

∥u∥22 + ∥v∥22 − 1

2 ∥u∥2 ∥v∥2

)
(c)

≥ 0.69

πk
,

where in (a) we use the fact that cos−1(1−x) ≥ 1.38x for x ∈ [0, 1], in (b) we use that ∥u− v∥22 =

∥u∥22 + ∥v∥22 − 2uT v ≥ 1, and in (c) we use that ∥u∥22 = ∥v∥22 = k since both u and v have exactly
k nonzero entries each with magnitude one.

23

