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Abstract

The utility of reinforcement learning is limited by the alignment of reward functions1

with the interests of human stakeholders. One promising method for alignment is2

to learn the reward function from human-generated preferences between pairs of3

trajectory segments. These human preferences are typically assumed to be informed4

solely by partial return, the sum of rewards along each segment. We find this5

assumption to be flawed and propose modeling preferences instead as arising from6

a different statistic: each segment’s regret, a measure of a segment’s deviation from7

optimal decision-making. Given infinitely many preferences generated according8

to regret, we prove that we can identify a reward function equivalent to the reward9

function that generated those preferences. We also prove that the previous partial10

return model lacks this identifiability property without preference noise that reveals11

rewards’ relative proportions, and we empirically show that our proposed regret12

preference model outperforms it with finite training data in otherwise the same13

setting. Additionally, our proposed regret preference model better predicts real14

human preferences and also learns reward functions from these preferences that15

lead to policies that are better human-aligned. Overall, this work establishes that16

the choice of preference model is impactful, and our proposed regret preference17

model provides an improvement upon a core assumption of recent research.18

1 Introduction19

Improvements in reinforcement learning (RL) have led to notable recent achievements [1–6],20

increasing its applicability to real-world problems. Yet, like all optimization algorithms, even perfect21

RL optimization is limited by the objective it optimizes. For RL, this objective is created in large22

part by the reward function. Poor alignment between reward functions and the interests of human23

stakeholders limits the utility of RL and may even pose catastrophic risks [7, 8].24

Influential recent research has focused on reward learning from preferences over pairs of fixed-length25

trajectory segments. Nearly all of this recent work assumes that human preferences arise probabilis-26

tically from only the sum of rewards over a segment, i.e., the segment’s partial return [9–16]. That is,27

these works assume that people tend to prefer trajectory segments that yield greater rewards during the28

segment. However, this preference model ignores seemingly important information about the segment’s29

desirability, including the state values of the segment’s start and end states. Separately, this partial return30

preference model can prefer suboptimal actions with lucky outcomes, like buying a lottery ticket.31

This paper proposes an alternative preference model based on the regret of each segment, which is equiv-32

alent to the negated sum of an optimal policy’s advantage of each transition in the segment (Section 2.2).33
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Figure 1 shows an intuitive example of when these two models disagree. Other classes of domains that34

the models will differ on are those with constant reward until the end, including competitive games like35

chess, go, and soccer as well as tasks for which the objective is to minimize time until reaching a goal.36
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Figure 1: Two segments of a car moving at high speed
near a brick wall. Assume the right segment is opti-
mal and the left segment is suboptimal (as defined in
Sec. 2.1). The left segment has a higher sum of reward,
so the partial return preference model tends to prefer
it. The regret preference model instead tends to prefer
the right segment because optimal segments have mini-
mal regret. If we also assume deterministic transitions,
then the regret model includes the difference in values
between the start state and the end state (Eq. 3), and
the right segment would tend to be preferred because
it greatly improves its state values from start to end,
whereas the left segment’s state values greatly worsen.
We suspect our human readers will also tend to prefer
the right segment.

For these two preference models, we first focus the-37

oretically on a normative analysis (Section 3)—i.e.,38

what preference model would we want humans39

to use if we could choose—proving that reward40

learning on infinite, exhaustive preferences with41

our proposed regret preference model identifies a42

reward function with the same set of optimal poli-43

cies as the reward function with which the prefer-44

ences are generated. We also prove that the par-45

tial return preference model is not guaranteed to46

identify such a reward function without preference47

noise. We follow up with a descriptive analysis of48

how well each of these proposed models align with49

actual human preferences by collecting a human-50

labeled dataset of preferences in a rich grid world51

domain (Section 4) and showing that the regret pref-52

erence model better predicts these human prefer-53

ences (Section 5). Finally, we find that the policies54

ultimately created through the regret preference55

model tend to outperform those from the partial56

return model learning—both when assessed with57

collected human preferences or when assessed with58

synthetic preferences (Section 6).59

2 Preference models for learning reward functions60

We assume that the task environment is a Markov decision process (MDP) specified by the tuple (S, A,61

T , �, D0, r). S and A are the sets of possible states and actions, respectively. T is a transition function,62

T :S⇥A!S. � is the discount factor and D0 is the distribution of start states. Unless otherwise63

stated, we assume undiscounted tasks (i.e., �=1) that have terminal states, after which only 0 reward64

can be received. r is a reward function, r :S⇥A⇥S!R, where the reward rt at time t is a function of65

st, at, and st+1. An MDP\r is an MDP without a reward function.66

Throughout this paper, r refers to the ground-truth reward function for some MDP; r̂ refers to a learned67

approximation of r; and r̃ refers to any reward function (including r or r̂). A policy (⇡ :S⇥A! [0,1])68

specifies the probability of an action given a state. Q⇤
r̃ and V ⇤

r̃ refer respectively to the state-action value69

function and state value function for an optimal policy, ⇡⇤, under r̃. The optimal advantage function is70

defined as A⇤
r̃(s,a),Q⇤

r̃(s,a)�V ⇤
r̃ (s). Throughout this paper, the ground-truth reward function r71

is used to algorithmically generate preferences when they are not human-generated, is hidden during72

reward learning, and is used to evaluate the performance of optimal policies under a learned r̂.73

2.1 Reward learning from pairwise preferences74

A reward function can be learned by minimizing the cross-entropy loss—i.e., maximizing the75

likelihood—of observed human preferences, a common approach in recent literature [9–11, 14, 16].76

Segments Let� denote a segment starting at state s�,0. Its length |�| is the number of transitions within77

the segment. A segment includes |�|+1 states and |�| actions: (s�,0,a�,0,s�,1,a�,1,...,s�,|�|). In this78

problem setting, segments lack any reward information. As shorthand, we define�t,(s�,t,a�,t,s�,t+1).79

A segment � is optimal with respect to r̃ if, for every i2 {1,...,|�|-1}, Q⇤
r̃(s�,i,a�,i)=V ⇤

r̃ (s�,i). A80

segment that is not optimal is suboptimal. Given some r̃ and a segment �, r̃t, r̃(s�,t,a�,t,s�,t+1),81

and the partial return of a segment � is
P|�|�1

t=0 �tr̃t, denoted in shorthand as⌃� r.82
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Preference datasets Each preference over a pair of segments creates a sample (�1,�2,µ) in a83

preference dataset D�. Vector µ= hµ1,µ2i represents the preference; specifically, if �1 is preferred84

over �2, denoted �1��2, µ=h1,0i. µ is h0,1i if �1��2 and is h0.5,0.5i for �1⇠�2 (no preference).85

Loss function To learn a reward function from a preference dataset, D�, a common assumption86

is that these preferences were generated by a preference model P that arises from an unobservable87

ground-truth reward function r. We approximate r by minimizing cross-entropy loss to learn r̂:88

loss(r̂,D�)=�
X

(�1,�2,µ)2D�

µ1logP (�1��2|r̂)+µ2logP (�1��2|r̂) (1)

This loss is under-specified untilP (�1��2|r̂) is defined, which is the focus of this paper. We show that89

the common model of preference probabilities is flawed and introduce an improved preference model.90

Preference models A preference model determines the probability of one trajectory segment being91

preferred over another, P (�1 � �2|r̃). Preference models could be applied to model preferences92

provided by humans or other systems. Preference models can also directly generate preferences, and in93

such cases we refer to them as preference generators.94

2.2 Choice of preference model: partial return and regret95

Partial return Recent work assumes human preferences are generated by a Boltzmann distribution96

over the two segments’ partial returns [9–16], expressed here as a logistic function1:97

P⌃r (�1��2|r̃)= logistic
⇣
⌃�1 r̃�⌃�2 r̃

⌘
. (2)

Regret We introduce an alternative preference model based on the regret of each transition in a98

segment. We first focus on segments with deterministic transitions. For a transition (st,at,st+1) in a99

deterministic segment, regretd(�t|r̃),V ⇤
r̃ (s�,t)�[r̃t+V ⇤

r̃ (s�,t+1)]. For a full deterministic segment,100

101

regretd(�|r̃),
|�|�1X

t=0

regretd(�t|r̃)=V ⇤
r̃ (s�,0)�(⌃� r̃+V ⇤

r̃ (s�,|�|)), (3)

with the right-hand expression arising from cancelling out intermediate state values. Therefore,102

deterministic regret measures how much the segment reduces expected return from V ⇤
r̃ (s�,0). An103

optimal segment, �⇤, always has 0 regret, and a suboptimal segment, �¬⇤, will always have positive104

regret, a intuitively appealing property that also plays a role in the identifiability proof of Theorem 3.1.105

Stochastic transitions, however, can result in regretd(�⇤|r̂)>regretd(�¬⇤|r̃), losing the property106

above. To retain it, we note that the effect on expected return of transition stochasticity from a107

transition (st,at,st+1) is [r̃t+V ⇤
r̃ (st+1)]�Q⇤

r̃(st,at) and add this expression once per transition to108

get regret(�), removing the subscript d that refers to determinism. The regret for a single transition109

becomes regret(�t|r̃) = [V ⇤
r̃ (s�,t)� [r̃t + V ⇤

r̃ (s�,t+1)]]+ [[r̃t + V ⇤
r̃ (s�,t+1)]�Q⇤

r̃(s�,t,a�,t)] =110

V ⇤
r̃ (s�,t)�Q⇤

r̃(s�,t,a�,t)=�A⇤
r̃(s�,t,a�,t). Regret for a full segment is111

regret(�|r̃)=
|�|�1X

t=0

regret(�t|r̃)=
|�|�1X

t=0

h
V ⇤
r̃ (s�,t)�Q⇤

r̃(s�,t,a�,t)
i
=

|�|�1X

t=0

�A⇤
r̃(s�,t,a�,t). (4)

The regret preference model is the Boltzmann distribution over negated regret:112

Pregret(�1��2|r̃), logistic
⇣
regret(�2|r̃)�regret(�1|r̃)

⌘
. (5)

Lastly, we note that if two segments have deterministic transitions, end in terminal states, and have the113

same starting state, this regret model reduces to the partial return model: Pregret(·|r̃)=P⌃r (·|r̃).114

Algorithms in this paper All algorithms in the body of this paper are defined simply as “minimize115

Equation 1”. They differ only in how the preference probabilities are calculated. All reward function116

learning via partial return uses Equation 2. We use two algorithms for reward function learning117

1See Appendix B for a derivation of this logistic expression from a Boltzmann distribution with a temperature
of 1. Unless otherwise stated, we ignore the temperature because scaling reward has the same effect.
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via regret. The theory in Section 3 assumes exact measurement of regret, using Equation 5. Our118

experimental results in Section 6 use Equation 6 to approximate regret. Appendix B introduces other119

algorithms that use Equation 1, as well as one in Appendix B.2 that generalizes Equation 1.120

Regret as a model for human preference Pregret makes at least three assumptions worth noting.121

First, it keeps the assumption that human preferences follow a Boltzmann distribution over some122

statistic, which is a common model of choice behavior in economics and psychology, where it is123

called the Luce-Shepard choice rule [17, 18]. Second, Pregret implicitly assumes humans can identify124

optimal and suboptimal segments when they see them, which will less true in domains where the human125

has less expertise. Lastly, Pregret assumes that in stochastic settings where the best outcome may only126

result from suboptimal decisions (e.g., buying a lottery ticket), humans instead prefer optimal decisions.127

We suspect humans are capable of expressing either type of preference—based on decision quality128

or desirability of outcomes—and can be influenced by training or the preference elicitation interface.129

In practice we determine that the regret model produces improvements over the partial-return model130

(Section 6), and its assumptions represent an opportunity for follow-up research.131

Alternative methods for learning reward functions Other methods for learning reward functions132

include inverse reinforcement learning from demonstrations [19, 20] (discussed in Appendix B.5) and133

inverse reward design from trial-and-error reward design in multiple instances of a task domain [21].134

3 Theoretical comparisons135

In this section, we consider how different ways of generating preferences affect reward inference, setting136

aside whether humans can be influenced to give preferences in accordance with a specific preference137

method. In economic terms, this analysis—and all of our analyses with synthetic preferences—could138

be considered a normative analysis. In artificial intelligence, this analysis might be cast as a step139

towards defining criteria for a rational preference model.140

Definition 3.1 (An identifiable preference model). For a preference model P , assume an infinite141

dataset D� of n-length pairs of segments is constructed by repeatedly choosing (�1,�2) and sampling142

a label µ⇠P (�1��2|r), using P as a preference generator. Further assume that in this dataset, all143

possible n-length segment pairs appear infinitely many times. For some MDP\r M , let Mr̃ be M with144

the reward function r̃. Let⇧⇤
r̃ be the set of optimal policies in Mr̃. Let reward-equivalence class R be145

the set of all reward functions such that if r1,r22R then⇧⇤
r1 =⇧

⇤
r2 . Preference model P is identifiable146

if, for any choice of n and Mr , any r̂= argminr̃,D� [loss(r̃)]—for the cross-entropy loss (Eqn. 1),147

with P as the preference model—is in the same reward equivalence class as r. I.e.,⇧⇤
r=⇧

⇤
r̂ .148

Theorem 3.1 (Pregret is identifiable). Let Pregret be any function such that if regret(�1|r̃) <149

regret(�2|r̃), Pregret(�1��2|r̃)> 0.5, and if regret(�1|r̃)= regret(�2|r̃), Pregret(�1��2|r̃)=150

0.5. Pregret is identifiable.151

This class of regret preference models includes but is not limited to the Boltzmann distribution of Eqn. 5152

and the narrower class that Theorem 3.1 focuses upon.153

Theorem 3.2 (Noiseless P⌃r is not identifiable). Let P⌃r be any function such that if⌃�1 r̃ >⌃�2 r̃,154

P⌃r (�1��2|r̃)=1, and if⌃�1 r̃=⌃�2 r̃, P⌃r (�1��2|r̃)=0.5. There exists an MDP in which P⌃r is155

not identifiable.156

Appendix C contains a proof of Theorem 3.1 and two proofs by example for Theorem 3.2, each157

focusing on a different weakness of P⌃r .The first proof by example reveals issues when learning158

reward functions with stochastic transitions with either P⌃r or deterministic Pregretd . These issues159

directly correspond to the need for preferences over distributions over outcomes (i.e., lotteries) to160

construct a cardinal utility function (see Russell and Norvig [22, Ch. 16]). Note that the noiseless161

version of P⌃r in Theorem 3.2 is achieved in the limit as reward values are scaled higher; equivalently,162

one could include a Boltzmann temperature parameter in Equation 2 and scale it towards 0. Intuitively,163

Theorem 3.2 says that P⌃r is not identifiable without the distribution over preferences providing164

information about the proportions of rewards with respect to each other. In contrast, to be identifiable,165

the regret preference model does not require this preference error (though it can presumably benefit166

from it in certain contexts).167
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4 Creating a human-labeled preference dataset168

To empirically investigate the consequences of each preference model when learning reward from169

human preferences, we created a preference dataset labeled by human subjects via Amazon Mechanical170

Turk. This data collection was IRB-approved. Appendix D adds detail to the content below.171

4.1 The general delivery domain172

The delivery domain consists of a grid of cells, each of a specific road surface type. The delivery agent’s173

state is its location. The agent’s action space is moving one cell in one of the four cardinal directions.174

The episode can terminate either at the destination for +50 reward or in failure at a sheep for �50175

reward. The reward for a non-terminal transition is the sum of any reward components. Cells with a176

white road surface have a�1 reward component, and cells with brick surface have a�2 component.177

Additionally, each cell may contain a coin (+1) or a roadblock (�1). Coins do not disappear and at178

best cancel out the road surface cost. Actions that would move the agent into a house or beyond the179

grid’s perimeter result in no motion and receive reward that includes the current cell’s surface reward180

component but not any coin or roadblock components. In this work, the start state distribution, D0, is181

always uniformly random over non-terminal states. This domain was designed to permit subjects to182

easily identify bad behavior yet also to be difficult for them to determine optimal behavior from most183

states, which is representative of many common tasks.184

4.1.1 The delivery task185

Figure 2: The delivery task used to gather
human preferences. The yellow van is the
agent and the red inverted teardrop is the
destination.

We chose one instantiation of the delivery domain for gath-186

ering our dataset of human preferences. This specific MDP187

has a 10⇥10 grid. From every state, the highest return pos-188

sible involves reaching the goal, rather than hitting a sheep or189

perpetually avoiding termination. Figure 2 shows this task.190

4.2 The user interface and survey191

This subsection describes the three main stages of the ex-192

perimental session. A video showing the full experimental193

protocol can be seen at bit.ly/humanprefs.194

Teaching subjects about the task Subjects first view in-195

structions describing the general domain. To avoid the jargon196

of “return” and “reward,” these terms are mapped to equiv-197

alent values in US dollars, and the instructions describe the198

goal of the task as maximizing the delivery vehicle’s financial outcome, where the reward components199

are specific financial impacts. This information is shared amongst interspersed interactive episodes,200

in which the subject controls the agent in domain maps that are each designed to teach one or two201

concepts. Our intention during this stage is to inform the later preferences of the subject by teaching202

them about the domain’s dynamics and its reward function, as well as to develop the subject’s sense of203

how desirable various behaviors are. At the end of this stage, the subject controls the agent for two204

episodes in the specific delivery task shown in Figure 2.205

Preference elicitation After each subject is trained to understand the task, they indicate their206

preferences between 40–50 randomly-ordered pairs of segments, using the interface shown in Figure 3.207

The users select a preference, no preference (“same"), or “can’t tell”. In this work, we exclude responses208

labeled “can’t tell”, though one might alternatively try to extract information from these responses.209

Users’ task comprehension Subjects then answered questions testing their understanding of the task,210

and we removed their data if they scored poorly. We also removed a subject’s data if they preferred211

colliding the vehicle into a sheep over not doing so, which we interpreted as poor task understanding or212

inattentiveness. This filtered dataset contains 1812 preferences from 50 subjects.213
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4.3 Selection of segment pairs for labeling214

Figure 3: Interface shown to subjects during preference elicitation.

We collected human prefer-215

ences in two stages, each216

with different methods for217

selecting which segment218

pairs to present for label-219

ing. The second stage’s220

sole purpose was to im-221

prove the reward-learning222

performance of P⌃r . With-223

out second-stage data, P⌃r224

compared even worse to225

Pregret than in the results226

described in Section 6 (see227

Appendix ??). Both stages’228

data are combined and used as a single dataset. These methods and their justification are described in229

Appendix D.3.230

5 Descriptive results231

Figure 4: Proportions at which subjects preferred each
segment in a pair, plotted by the difference in the seg-
ments’ changes in state values (x-axis) and partial returns
(y-axis). The diagonal line shows points of preference
indifference for Pregret. Points of indifference for P⌃

lie on the x-axis. The shaded gray area indicates where
the two models disagree, each giving a different segment
a preference probability greater than 0.5. Each circle’s
area is proportional to the number of samples it describes.

This section considers how well different prefer-232

ence models explain our dataset of human pref-233

erences.234

5.1 Correlations235

between preferences and segment statistics236

We hypothesize that the values of segments’ start237

and end states—which are included in Pregret238

but not in P⌃—affect human preferences, inde-239

pendent of partial return. To simplify analysis,240

we combine the two parts of regretd(�|r) that241

are additional to ⌃� r̃ and introduce the follow-242

ing shorthand: ��Vr̃ , V ⇤
r̃ (s�,|�|)�V ⇤

r̃ (s�,0).243

Note that with an algebraic manipulation (see Ap-244

pendix E.1), regretd(�2|r̃)� regretd(�1|r̃) =245

(��1Vr̃���2Vr̃)+(⌃�1 r̃�⌃�2 r̃). Therefore,246

on the diagonal line in Figure 4, regretd(�2|r)=247

regretd(�1|r), making the Pregretd preference model indifferent.248

Preference model Loss
P (·)=0.5 (uninformed) 0.69
P⌃r (partial return) 0.62
Pregret 0.57

Table 1: Mean cross-entropy test loss
over 10-fold cross validation (n=1812)
from predicting human preferences.
Lower is better.

The dataset of preferences is visualized in Figure 4. This plot249

shows how ��Vr has influence independent of partial return250

by focusing only on points at a chosen y-axis value; if the colors251

along the corresponding horizontal line reddens as thex-axis value252

increases, then��Vr appears to have independent influence. To253

statistically test for independent influence of��Vr on preferences,254

we consider subsets of data where⌃�1r�⌃�2r is constant. For255

⌃�1r�⌃�2r=�1 and⌃�1r�⌃�2r=�2, the only values with256

more than 30 samples that also include informative samples with both negative and positive values of257

regret(�1|r)�regret(�2|r), the Spearman’s rank correlations between��Vr and the preferences258

are significant (r>=0.3, p<0.0001). This result indicates that��Vr influences human preferences259

independent of partial return, validating our hypothesis that humans form preferences based on260

information about segments’ start states and end states, not only partial returns.261
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5.2 Likelihood of human preferences under different preference models262

To examine how well each preference model predicts human preferences, we calculate the cross-263

entropy loss for each model (Eqn. 1)—i.e., the negative log likelihood—of the preferences in our264

dataset. Scaling reward by a constant factor does not affect the set of optimal policies. Therefore,265

throughout this work we ensure that our analyses of preference models are insensitive to reward scaling.266

To do so for this specific analysis, we conduct 10-fold cross validation to learn a reward scaling factor267

for each of Pregret and P⌃r . Table 1 shows that the loss of Pregret is lower than that of P⌃r , indicating268

that it is more reflective of how people actually express preferences.269

6 Results from learning reward functions270

Analysis of a preference model’s predictions of human preferences is informative, but such predictions271

are a means to the ends of learning human-aligned reward functions and policies. We now examine each272

preference model’s performance on these ends. In all cases, we learn a reward function r̂ according273

to Eqn. 1 and apply value iteration [23] to find the approximately optimal Q⇤
r̂ function. For this Q⇤

r̂ ,274

we then evaluate the mean return of the maximum-entropy optimal policy—which chooses uniformly275

randomly among all optimal actions—with respect to the ground-truth reward function r, over D0.276

To compare performance across different MDPs, the mean return of a policy ⇡, V ⇡
r , is normalized277

to (V ⇡
r �V U

r )/V ⇤
r , where V ⇤

r is the optimal expected return and V U
r is the expected return of the278

uniformly random policy (both given D0). Normalized mean return above 0 is better than V U
r . Optimal279

policies have a normalized mean return of 1, and we consider above 0.9 to be near optimal.280

6.1 An algorithm to learn reward functions with regret(��|r̂)281

Algorithm 1 is a general algorithm for learning a linear reward function according to Pregret. This282

regret-specific algorithm only changes the regret-based algorithm from Section 2.2 by replacing283

Equation 5 with a tractable approximation of regret, avoiding expensive repeated evaluation of V ⇤
r̂ (·)284

and Q⇤
r̂(·,·) to compute Pregret(·|r̂) during reward learning. Specifically, successor features for a set285

of policies are used to approximate the optimal state values and state-action values for any reward286

function.287

ApproximatingPregret with successor features Following the notation of Barreto et al. [24], assume288

the ground-truth reward is linear with respect to a feature vector extracted by� :S⇥A⇥S!Rd and289

a weight vector wr 2Rd: r(s,a,s0)=�(s,a,s0)>wr. During learning, wr̂ similarly expresses r̂ as290

r̂(s,a,s0)=�(s,a,s0)>wr̂ .291

Given a policy ⇡, the successor features for (s,a) are the expectation of discounted reward features292

from that state-action pair when following ⇡:  ⇡
Q
(s,a)=E⇡[

P1
i=t�

i�t�(st,at,st+1)|st=s,at=a].293

Therefore, Q⇡
r̂ (s,a)= 

⇡
Q
(s,a)>wr̂. Additionally, state-based successor features can be calculated294

from the ⇡
Q

above as ⇡
V
(s)=

P
a2A⇡(a|s) ⇡

Q
(s,a), making V ⇡

r̂ (s)= ⇡
V
(s)>wr̂.295

Given a set Q of state-action successor feature functions and a set V of state successor feature func-296

tions for various policies and given a reward function via wr̂, Q⇡⇤

r̂ (s,a)�max Q2 
Q
[ ⇡

Q
(s,a)>wr̂]297

andV ⇡⇤

r̂ (s)�max V 2 
V
[ ⇡

V
(s)>wr̂] [24], so we use these two maximizations as approximations of298

Q⇤
r̂(s,a) and V ⇤

r̂ (s), respectively. In practice, to enable gradient-based optimization with current tools,299

the maximization in this expression is replaced with the softmax-weighted average, making the loss300

function linear. Focusing first on the approximation of V ⇤
r̂ (s), for each V 2 V , a softmax weight is301

calculated for ⇡
V
(s): softmax 

V
( ⇡

V
(s)>wr̂), [( ⇡

V
(s)>wr̂)1/T ]/[(

P
 0

V
2 

V
 0⇡

V
(s)>wr̂)1/T ],302

where temperature T is a constant hyperparameter. The resulting approximation of V ⇤
r̂ (s) is there-303

fore defined as Ṽ ⇤
r̂ (s) , P

 V 2 
V

softmax 
V
( ⇡

V
(s)>wr̂)[ ⇡

V
(s)>wr̂]. Similarly, to approxi-304

mate Q⇤
r̂(s,a), softmax 

Q
( ⇡

Q
(s,a)>wr̂) , [( ⇡

Q
(s,a)>wr̂)1/T ]/[(

P
 0

Q
2  

0⇡
Q
(s,a)>wr̂)1/T ]305

and Q̃⇤
r̂(s,a),

P
 Q2 

Q
softmax 

Q
( ⇡

Q
(s,a)>wr̂)[ ⇡

Q
(s,a)>wr̂]. Consequently, from Eqns. 4306
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Algorithm 1 Linear reward learning with regret preference model (Pregret), using successor features
1: Input: a set of reward functions and a set of policies (where one set can be ?)
2:   ?
3: for each reward function rSF or policy ⇡SF in the input sets do

4: if rSF then ⇡SF estimate of optimal maximum-entropy policy for rSF

5: estimate  ⇡SF
Q

and  ⇡SF
V

(if not estimated already during step 4)
6: add  ⇡SF

Q
to Q

7: add  ⇡SF
V

to V

8: end for

9: repeat

10: optimize wr̂ by loss of Eqn. 1, calculating P̃regret(�1��2|r̂) via Eqn. 6, using Q and V

11: until stopping criteria are met
12: return wr̂

and 5, the corresponding approximation P̃regret of the regret preference model is:307

P̃regret(�1��2|r̂)= logistic

✓P|�2|-1
t=0

h
Ṽ ⇤
r̂ (s�2,t)�Q̃⇤

r̂(s�2,t,a�2,t)
i
�
P|�1|-1

t=0

h
Ṽ ⇤
r̂ (s�1,t)�Q̃⇤

r̂(s�1,t,a�1,t)
i◆

(6)

The algorithm In Algorithm 1, lines 9–12 describe the supervised-learning optimization using308

the approximation P̃regret, and the prior lines create Q and V . Specifically, given a set of reward309

functions, a corresponding set of policies is created (line 4), where each policy is an estimate of the310

maximum entropy policy for a reward function. Standard policy improvement methods can be used to311

create each such policy. Alternatively, some or all of the set of policies can be given as input directly,312

not derived from input reward functions. For each such policy ⇡SF , successor feature functions ⇡SF
Q

313

and  ⇡SF
V

are estimated (line 5), which by default would be performed by a minor extension of a314

standard policy evaluation algorithm as detailed by Barreto et al. [24]. Note that the reward function315

that is ultimately learned is not restricted to be in the input set of reward functions, which is used only316

to create an approximation of regret.317

The details of our instantiation of Algorithm 1 for the delivery domain can be found in Appendix F.1,318

along with guidance for extending it to reward functions that might be non-linear.319

6.2 Results from synthetic preferences320

Before considering human preferences, we first ask how each preference model performs when it is321

correct. In other words, we investigate empirically how well the preference model could perform if322

humans perfectly adhered to it. Recall that the ground-truth reward function, r, is used to create these323

preferences but is inaccessible to the reward-learning algorithms.324

Figure 5: Performance comparison over 100 randomly
generated deterministic MDPs

For these evaluations, either a stochastic or325

noiseless preference model acts a preference326

generator to create a preference dataset, and327

then the stochastic version of the same model328

is used for reward learning. For the noiseless329

case, the deterministic preference generator com-330

pares a segment pair’s ⌃�r values for P⌃r or331

their regret(�|r) values for Pregret. Note that332

through reward scaling the preference generators333

approach determinism in the limit, so this noise-334

less analysis examines minimal-entropy versions335

of the two preference-generating models. (The opposite extreme, uniformly random preferences,336

would remove all information from preferences and therefore is not examined.) In the stochastic case,337

for each preference model, each segment pair is labeled by sampling from that preference generator’s338

output distribution (Eqs 2 or 5), using the unscaled ground-truth reward function.339

8



We created 100 deterministic MDPs that instantiate variants of our delivery domain (see Section 4.1).340

To create each MDP, we sampled from sets of possible widths, heights, and reward component values,341

and the resultant grid cells were randomly populated with a destination, objects, and road surface types342

(see Appendix F.2 for details). Each segment in the preference datasets for each MDP was generated343

by choosing a start state and three actions, all uniformly randomly. For a set number of preferences,344

each method had the same set of segment pairs in its preference dataset. Figure 5 shows the percentage345

of MDPs in which each preference model results in near-optimal performance. The regret preference346

model outperforms the partial return model at every dataset size, both with and without noise. By a347

Wilcoxon paired signed-rank test on normalized mean returns, p<0.05 for 86% of these comparisons348

and p<0.01 for 57% of them, as reported in Appendix F.2.349

Further analyses can be found in Appendix F.2, including with stochastic transitions, with different350

segment lengths, and while artificially lowering the discount factor (as is common in deep RL and351

recent work on deep reward learning from preferences).352

6.3 Results from human preferences353

Figure 6: Performance comparison over various
amounts of human preferences. Each partition has
the number of preferences shown or one less.

We randomly assign human preferences from our gath-354

ered dataset to different numbers of same-sized parti-355

tions, resulting in different training set sizes, and test356

each preference model on each partition. Figure 6357

shows the results. With smaller training sets (20–100358

partitions), the regret preference model results in near-359

optimal performance more often. With larger training360

sets (1–10 partitions), both preference models always361

reach near-optimal return, but the mean return from362

the regret preference model is higher for all of these363

partitions except for 3 partitions in the 10-partition364

test. Applying a Wilcoxon paired signed-rank test on normalized mean return to each group with 5 or365

more partitions, p<0.05 for all numbers of partitions except 100 and p<0.01 for 20 and 50 partitions.366

7 Conclusion367

Over numerous evaluations with human preferences, our proposed regret preference model (Pregret)368

shows improvements summarized below over the previous partial return preference model (P⌃r ).369

When each preference model generates the preferences for its own infinite and exhaustive training set,370

we prove that Pregret identifies the set of optimal policies, whereas P⌃r is not guaranteed to do so371

without preference noise that reveals the proportions of rewards with respect to each other. With finite372

training data of synthetic preferences, Pregret also empirically results in learned policies that tend to373

outperform those resulting from P⌃r . This superior performance of Pregret is also seen with human374

preferences. In summary, our analyses suggest that regret preference models are more effective both375

descriptively with respect to human preferences and also normatively, as the model we want humans to376

follow if we had the choice.377

Independent of Pregret, this paper also reveals that segments’ changes in state values provide informa-378

tion about human preferences that is not fully provided by partial return. More generally, we show that379

the choice of preference model impacts the performance of learned reward functions.380

This study motivates several new directions for research. Future work could address any of the381

limitations detailed in Appendix A.1. Specifically, future work could further test the general superiority382

of Pregret or apply it to deep learning settings. Additionally, prescriptive methods could be developed383

via the user interface or elsewhere to nudge humans to conform more to Pregret or to other normatively384

appealing preference models. Lastly, subsequent efforts could seek preference models that are even385

more effective with preferences from actual humans, now that this work has provided conclusive386

evidence that the choice of preference model is impactful.387

9



References388

[1] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian389

Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go390

with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.391

[2] Andrew W Senior, Richard Evans, John Jumper, James Kirkpatrick, Laurent Sifre, Tim Green, Chongli Qin,392

Augustin Žídek, Alexander WR Nelson, Alex Bridgland, et al. Improved protein structure prediction using393

potentials from deep learning. Nature, 577(7792):706–710, 2020.394

[3] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung395

Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in StarCraft396

II using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.397

[4] Marc G Bellemare, Salvatore Candido, Pablo Samuel Castro, Jun Gong, Marlos C Machado, Subhodeep398

Moitra, Sameera S Ponda, and Ziyu Wang. Autonomous navigation of stratospheric balloons using rein-399

forcement learning. Nature, 588(7836):77–82, 2020.400

[5] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak, Christy Dennison,401
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