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Abstract

Attribute reconstruction is used to predict node or edge features in the pre-training1

of graph neural networks. Given a large number of molecules, they learn to cap-2

ture structural knowledge, which is transferable for various downstream property3

prediction tasks and vital in chemistry, biomedicine, and material science. Pre-4

vious strategies that randomly select nodes to do attribute masking leverage the5

information of local neighbors. However, the over-reliance of these neighbors6

inhibits the model’s ability to learn long-range dependencies from higher-level7

substructures. For example, the model would learn little from predicting three8

carbon atoms in a benzene ring based on the other three but could learn more from9

the inter-connections between the functional groups, or called chemical motifs. In10

this work, we propose and investigate motif-aware attribute masking strategies to11

capture long-range inter-motif structures by leveraging the information of atoms12

in neighboring motifs. Once each graph is decomposed into disjoint motifs, the13

features for every node within a sample motif are masked. The graph decoder14

then predicts the masked features of each node within the motif for reconstruction.15

We evaluate our approach on eight molecular property prediction datasets and16

demonstrate its advantages.17

1 Introduction18

Molecular property prediction has been an important topic of study in fields such as physical chemistry,19

physiology, and biophysics [Wu et al., 2017]. It can be defined as a graph label prediction problem20

and addressed by machine learning. However, graph learning models such as graph neural networks21

(GNNs) must overcome issues in data scarcity, as the creation and testing of real-world molecules is22

an expensive endeavor [Chang et al., 2022]. To address labeled data scarcity, model pre-training has23

been utilized as a fruitful strategy for improving a model’s predictive performance on downstream24

tasks, as pre-training allows for the transfer of knowledge from large amounts of unlabeled data. The25

selection of pre-training strategy is still an open question, with contrastive tasks [Zhu et al., 2021]26

and predictive/generative tasks [Hu et al., 2020a] being the most popular methods.27

Attribute reconstruction is one predictive method for graphs that utilizes masked autoencoders to28

predict node or edge features [Hu et al., 2020a, Kipf and Welling, 2016, Xia et al., 2022]. Masked29

autoencoders have found success in vision and language domains [He et al., 2022, Devlin et al., 2018]30

and have been adopted as a pre-training objective for graphs as the reconstruction task is able to31

transfer structural pattern knowledge [Hu et al., 2020a], which is vital for learning specific domain32

knowledge such as valency in material science. Additional domain knowledge which is important33

for molecular property prediction is that of functional groups, also called chemical motifs [Pope34

et al., 2019]. The presence and interactions between chemical motifs directly influence molecular35

properties, such as reactivity and solubility [Frechet, 1994, Plaza et al., 2014]. Therefore, to capture36
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Figure 1: Our MoAMa masks every node in sampled motifs to pre-train GNNs. The full masking
of a motif forces the GNNs to learn to (1) pass feature information across motifs and (2) pass
local structural information within the motif. Compared to the traditional random attribute masking
strategies, the motif-aware masking captures the most essential information to learn graph embeddings.
Random masking would put most of the pre-training effort on passing the feature information within
a motif, e.g., predicting two carbon nodes in a benzene ring based on the other four.

the interaction information between motifs, it is important to transfer inter-motif structural knowledge37

and other long-range dependencies during the pre-training of graph neural networks.38

Unfortunately, the random attribute masking strategies used in previous work for graph pre-training39

were not able to capture the long-range dependencies inherent in inter-motif knowledge [Kipf and40

Welling, 2016, Hu et al., 2020b, Pan et al., 2019]. That is because they rely on neighboring node41

feature information for reconstruction [Hu et al., 2020a, Hou et al., 2022]. Notably, leveraging the42

features of local neighbors can contribute to learning important local information, including valency43

and atomic bonding. However, GNNs heavily rely on the neighboring node’s features rather than44

graph structure [Yun et al., 2021], and this over-reliance inhibits the model’s ability to learn from45

motif structures as message aggregation will prioritize local node feature information due to the46

propagation bottleneck [Alon and Yahav, 2021]. For example, as shown on the left-hand side of47

Figure 1, if only a (small) partial set of nodes were masked in several motifs, the pre-trained GNNs48

would learn to predict the node types (i.e., carbon) of two atoms in the benzene ring based on the49

features and structure of the other four carbon atoms in the ring, limiting the knowledge transfer50

of long-range dependencies. To measure the inter-motif knowledge transfer of graph pre-training51

strategies, we define five inter-motif influence measurements and report our findings in Sec. 5.52

Recent successes in vision and language domains have shown the utility of masking semantically53

related regions, such as pixel batches [Li et al., 2022, Xie et al., 2022, He et al., 2021] and multi-token54

spans [Levine et al., 2020, Sun et al., 2019, Joshi et al., 2020], and have demonstrated that a random55

masking strategy is not guaranteed to transfer necessary inter-part relations and intra-part patterns56

[Li et al., 2022]. To better enable the transfer of long-range inter-part relations downstream, we57

propose a novel semantically-guided masking strategy based on chemical motifs. In Figure 1, we58

visually demonstrate our method for motif-aware attribute masking, where each molecular graph59

is decomposed into disjoint motifs. Then the node features for each node within the motif will be60

masked by a mask token. A graph decoder will predict the masked features of each node within the61

motif as the reconstruction task. The benefits of this strategy are twofold. First, because all features62

of the nodes within the motif are masked, our strategy reduces the amount of feature information63

being passed within the motif and relieves the propagation bottleneck, allowing for the greater64

transfer of inter-motif feature and structural information. Second, the masking of all intra-motif node65

features explicitly forces the decoder to transfer intra-motif structural information. A novel graph66

pre-training solution based on the Motif-aware Attribute Masking strategy, called MoAMa, is able67

to learn long-range inter-motif dependencies with knowledge of intra-motif structure. We evaluate68

our strategy on eight molecular property prediction datasets and demonstrate its improvement to69

inter-motif knowledge transfer as compared to previous strategies.70

2 Related Work71

Molecular graph pre-training The prediction of molecular properties based on graphs is impor-72

tant [Wu et al., 2017]. Molecules are scientific data that are time- and computation-intensive to73

collect and annotate for different property prediction tasks [Liu et al., 2023]. Many self-supervised74
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learning methods [Hu et al., 2020a, Hou et al., 2022, Zhang et al., 2021, Kim et al., 2022, Xia et al.,75

2023] were proposed to capture the transferable knowledge from another large scale of molecules76

without annotations. For example, AttrMask [Hu et al., 2020a] randomly masked atom attributes for77

prediction. GraphMAE [Hou et al., 2022] pre-trained the prediction model with generative tasks to78

reconstruct node and edge attributes. D-SLA [Kim et al., 2022] used contrastive learning based on79

graph edit distance. These pre-training tasks could not well capture useful knowledge for various80

domain-specific tasks since they fail to incorporate important domain knowledge in pre-training. A81

great line of prior work [Zhang et al., 2021, Rong et al., 2020, Sun et al., 2021] used graph motifs82

which are the recurrent and statistically significant subgraphs to characterize the domain knowledge83

contained in molecular graph structures, e.g., functional groups. However, their solutions were84

tailored to specific frameworks for either generation-based or contrast-based molecular pre-training.85

Additionally, explicit motif type generation/prediction inherently does not transfer intra-motif struc-86

tural information and is computationally expensive due to the large number of prediction classes. In87

this work, we study on the strategies of attribute masking with the awareness of domain knowledge88

(i.e., motifs), which plays an essential role in self-supervised learning frameworks [Xia et al., 2023].89

Masking strategies on molecules Attribute masking of atom nodes is a popular method in graph90

pre-training given its broad usage in predictive, generative, and contrastive self-supervised tasks [Hu91

et al., 2020a,b, Hou et al., 2022, You et al., 2020, 2021]. For example, predictive and generative92

pre-training tasks [Hu et al., 2020a, Hou et al., 2022, Xia et al., 2023] mask atom attributes for93

prediction and reconstruction. Contrastive pre-training tasks [You et al., 2020, 2021] mask nodes to94

create another data view for alignment. Despite the widespread use of attribute masking in molecular95

pre-training, there is a notable absence of comprehensive research on its strategy and effectiveness.96

Previous studies have largely adopted strategies from the vision and language domains [He et al.,97

2022, Devlin et al., 2018], where atom attributes are randomly masked with a predetermined ratio.98

Since molecules are atoms held together by strict chemical rules, the data modality of molecular99

graphs is essentially different from natural images and languages. For molecular graphs, random100

attribute masking results in either over-reliance on intra-motif neighbors or breaking the inter-motif101

connections via random edge masking. In this work, we introduce a novel strategy of attribute102

masking, which turns out to capture and transfer useful knowledge from intra-motif structures and103

long-range inter-motif node features.104

3 Preliminaries105

Graph property prediction Given a graph G = (V, E) ∈ G with the node set V for atoms and106

the edge set E ⊂ V × V for bonds, we have a d-dimensional node attribute matrix X ∈ R|V|×d that107

represents atom features such as atom type and chirality. We use y ∈ Y as the graph-level property108

label for G, where Y represents the label space. For graph property prediction, a predictor with109

the encoder-decoder architecture is trained to encode G into a representation vector in the latent110

space and decode the representation to predict ŷ. The training process optimizes the parameters to111

make ŷ to be the same as the true label value y. A GNN is a commonly used encoder that generates112

k-dimensional node representation vectors, denoted as hv ∈ Rk, for any node v ∈ V:113

H = {hv : v ∈ V} = GNN(G) ∈ R|V|×k. (1)

Here H is the node representation matrix for the graph G. Without loss of generality, we implement114

Graph Isomorphism Networks (GIN) [Xu et al., 2019] as the choice of GNN in accordance with115

previous work [Hu et al., 2020a]. Once the set of node representations are created, a READOUT(·)116

function (such as max, mean, or sum) is used to summarize the node-level representation into117

graph-level representation hG for any G:118

hG = READOUT(H) ∈ Rk. (2)

The graph-level representation vector hG is subsequently passed through a multi-layer perceptron119

(MLP) to generate the label prediction ŷ, which exists in the label space Y:120

ŷ = MLP(hG) ∈ Y. (3)

GNN pre-training Random initialization of the predictor’s parameters would easily result in121

suboptimal solutions for graph property prediction. This is because the number of labeled graphs122

3



is usually small. It prevents a proper coverage of task-specific graph and label spaces [Hu et al.,123

2020a, Liu et al., 2023]. To improve generalization, GNN pre-training is often used to warm-up the124

model parameters based on a much larger set of molecules without labels. In this work, we focus on125

the attribute masking strategy for GNN pre-training that aims to predict the masked values of node126

attributes given the unlabeled graphs.127

4 Proposed Solution128

In this section, we present our novel solution named MoAMa for effectively pre-training graph neural129

networks on molecular data. We will give details about the strategy of motif-aware attribute masking130

and reconstruction. Each molecule G will have some portion of their node masked according to131

domain knowledge based motifs. We replace the node attributes of all masked nodes with a special132

mask token. Then, the GNN in Eq. (1) encodes the masked graph to the node representation space,133

and an MLP reconstructs the atom types for the attribute masked molecule.134

4.1 Knowledge-based Motif Extraction135

To leverage the expertise from the chemistry domain, we extract motifs for molecules using the136

BRICS (Breaking of Retrosynthetically Interesting Chemical Substructures) algorithm [Degen et al.,137

2008]. This algorithm leverages chemical domain knowledge by creating 16 rules for decomposition,138

the rules of which define the bonds that should be cleaved from the molecule in order to create a139

multi-set of disjoint subgraphs. Two key strengths of the BRICS algorithm over a motif-mining140

strategy [Geng et al., 2023] is that no training is required and important structural features, such as141

rings, are inherently preserved.142

For each graph G, the BRICS algorithm decomposes the full graph into separate motifs. We denote143

the decomposition result as MG = {M1,M2, ...,Mn}, which is a set of n motifs. Each motif144

Mi = (Vi, Ei), for i ∈ {1, 2, ..., n}, is a disjoint subgraph of G such that Vi ⊂ V and Ei ⊂ E . For145

each motif multi-set MG, the union of all motifs Mi ∈ MG should equal G. Formally, this means146

V =
⋃

i Vi and E = (
⋃

i Ei)
⋃
Ex, where Ex represents all the edges removed between motifs147

during the BRICS decomposition. Within the ZINC15 dataset [Sterling and Irwin, 2015], used for148

pre-training, each molecule has an average of 9.8 motifs, each of which have an average of 2.4 atoms.149

4.2 Motif-aware Attribute Masking and Reconstruction150

To perform motif-aware attribute masking, m motifs are sampled to form the multi-set M′
G ⊂ MG151

such that (
∑

(Vi,Ei)∈M′
G
|Vi|)/|V| = α, for α is a chosen ratio value. The motifs sampled for M′

G152

must adhere to two criteria: (1) each node within the motif must be within a k-hop neighborhood (k153

equals number of GNN layers) of an inter-motif node, and (2) sampled motifs may not be adjacent.154

These two criteria guarantee inter-motif knowledge access for each masked node. To adhere to the155

above criteria and account for variable motif sizes, we allow for some flexibility in the value for α.156

We choose the bounds 0.15 < α < 0.25 in accordance to those used in previous works (α = 0.15157

[Hu et al., 2020a] and α = 0.25 [Hou et al., 2022]).158

Given a selected motif M ∈ M′
G, nodes within M have their attributes masked by replacing them159

with a mask token [MASK], which is a vector m ∈ Rd. Each element in m is a special value that is not160

present within the attribute space for that particular dimension. For example, we may set the attribute161

for the atom type dimension in m to the value 119, as we totally have 118 atom types [Hu et al.,162

2020a]. We use V[MASK] = {v ∈ Vi : Mi = (Vi, Ei) ∈ M′
G} to denote the set of all the masked163

nodes. We then define the input node features in the masked attribute matrix X[MASK] ∈ R|V|×d for164

any v ∈ V using the following equation:165

(X[MASK])v =

{
Xv, v /∈ V[MASK],

m, v ∈ V[MASK],
(4)

where (X[MASK])v and Xv denote the row of the node v in X[MASK] and X, respectively. With a166

GNN encoder, all nodes with attributes X[MASK] for the masked graph G[MASK] are encoded to the167

latent representation space according to Eq. (1): H = GNN(G[MASK]). H is then used to define the168

reconstruction loss of the node attributes:169

Lrec = Ev∈V[MASK] [log p(X|H)], (5)
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where p(X|H) for the reconstruction attribute value is inferred by a decoder. In practice, recon-170

struction loss is measured using the scaled cosine error (SCE) [Hou et al., 2022], which calculates171

the difference between the probability distribution for the reconstruction attributes and the one-hot172

encoded target label vector. This choice of reconstruction loss is further discussed in later sections.173

4.3 Inter-Motif Influence174

To measure the influence generally from (either intra-motif or inter-motif) source nodes on a target175

node v, we design a measure that quantifies the influence from any source node u in the same176

graph G, denoted by s(u, v). hv was learned by Eq. (1) and was influenced by node u. When the177

embedding of u is eliminated from GNN initialization, i.e., set h(0)
u = 0⃗, Eq. (1) would produce a178

new representation vector of node v, denoted by hv,w/o u. We use the L2-norm to define the influence:179

s(u, v) = ∥hv − hv,w/o u∥2. (6)
The collective influence from a group of nodes in a motif M = (VM , EM ) is measured as follows:180

smotif(v,M) =
1

|VM \ {v}|
∑

u∈VM\{v}

s(u, v). (7)

Suppose the target node v is in the motif Mv = (VMv , EMv ). Using Mv as the target motif, the181

influence from intra-motif and inter-motif nodes can be calculated as:182

sintra(v) = smotif(v,Mv); sinter(v) =

∑
M∈M\{Mv} |VM | × smotif(v,M)

|V \ VMv
|

. (8)

Usually the number of inter-motif nodes is significantly bigger than the number of intra-motif nodes,183

i.e., |V| ≫ |VMv
|, which reveals two issues in the influence measurements. First, when the target184

motif is too small (e.g., has only one or two nodes), the intra-motif influence cannot be defined or185

is defined on the interaction with only one neighbor node. Second, most inter-motif nodes are not186

expected to have any influence, so the average function in Eq. (7) would lead comparisons to be187

biased to intra-motif influence. To address the two issues, we constrain the influence summation188

to be on the same number of nodes (i.e., top-k) from the intra-motif and inter-motif node groups.189

Explicitly, this means u ∈ VM/{v} in Eq. (7) is sampled from the top-k most influencial nodes190

(top-3). The ratio of inter- to intra-motif influence over the graph dataset G is then defined as:191

InfRationode =
1∑

(V,E)∈G |V|
∑

(V,E)∈G

∑
v∈V

sinter(v)

sintra(v)
, (9)

InfRatiograph =
1

|G|
∑

G=(V,E)∈G

1

|V|
∑
v∈V

sinter(v)

sintra(v)
, (10)

where the average function is performed at the node level and graph level, respectively. Eq. (9)192

directly measures the influence ratios of all nodes v within the dataset G. However, this measure may193

include bias due to the distribution of nodes within each graph. We alleviate this bias in Eq. (10) by194

averaging influence ratios across each graph first.195

While the InfRatio measurements are able to compare general inter- and intra-motif influences, these196

measures combine all inter-motif nodes into one set and do not consider the number of motifs in each197

graph. We further define rank-based measures that consider the distribution of motif counts across G.198

Let {M1, ...,Mi, ...,Mn} be an ordered set, where Mi ∈ M and smotif(v,Mi) ≥ smotif(v,Mj) if199

i < j. If Mi = Mv, we define rankv = i. Note that graphs with only one motif are excluded as the200

distinction between inter and intra-motif nodes loses meaning. From this ranking, we define our score201

for inter-motif node influence averaged at the node, motif, and graph levels, derived from a similar202

score measurement used in information retrieval, Mean Reciprocal Rank (MRR) [Craswell, 2009]:203

MRRnode =
1∑

(V,E)∈G |V|
∑

(V,E)∈G

∑
v∈V

1

rankv
, (11)

MRRgraph =
1

|G|
∑

(V,E)∈G

1

|V|
∑
v∈V

1

rankv
(12)

MRRmotif =

N∑
n=2

|G(n)|
|G|

∑
(V,E)∈G(n) |V|

∑
(V,E)∈G(n)

∑
v∈V

1

rankv
, (13)

5



where G(n) ⊂ G is the set of graphs that contain n ∈ [2, ..., N ] motifs.204

Similar to the InfRatio measurements, MRRnode directly captures the impact of the influence ranks for205

each node within the full graph set, whereas MRRgraph alleviates bias on the number of nodes within206

a graph by averaging across individual graphs first. Because these rank-based measurements are207

intrinsically dependent on the number of motifs within each graph, we additionally define MRRmotif208

which weights the measurement towards popular motif counts within the data distribution.209

In information retrieval, MRR scores are used to quantify how well a system can return the most210

relevant item for a given query. Higher MRR scores indicate that relevant items were returned at211

higher ranks for each query. However, as opposed to traditional MRR measurements, where a higher212

rank for the most relevant item indicates better performance, lower scores are preferred for our MRR213

measurements as lower intra-motif influence rank indicate greater inter-motif node influence.214

4.4 Design Space of the Attribute Masking Strategy215

The design space of the motif-aware node attribute masking includes the following four parts:216

Masking distribution We investigate the influence of masking distribution to the masking strategy217

using two factors to control the distribution of masked attributes:218

• Percentage of nodes within a motif selected for masking: we propose to mask nodes from the219

selected motifs at different percentages. The percentage indicates the strength of the masked220

domain knowledge, which affects the hardness of the pre-training task of the attribute221

reconstruction.222

• Dimension of the attributes: We propose to conduct either node-wise or element-wise223

(dimension-wise) masking. Element-wise masking selects different nodes for masking in224

different dimensions according to the percentage, while node-wise masking selects different225

nodes for all-dimensional attribute masking in different motifs.226

Reconstruction target Existing molecular graph pre-training methods heavily rely on two atom227

attributes: atom type and chirality. Therefore, the reconstructive task could include one or both228

attributes using one or two different decoders. Experiments will find the most effective task definition.229

Reconstruction loss We study different implementations of reconstruction loss functions for Lrec.230

They include cross entropy (CE), scaled cosine error (SCE) [Hou et al., 2022], and mean square error231

(MSE). GraphMAE [Hou et al., 2022] suggested that SCE was the best loss function, however, it is232

worth investigating the effect of the loss function choices in the motif-based study.233

Additionally, attribute masking focuses on local graph structures and suffers from representation234

collapse [Hu et al., 2020a, Hou et al., 2022]. To address this issue, we use a knowledge-enhanced235

auxiliary loss Laux to complement Lrec. Given any two graphs Gi and Gj from the graph-based236

chemical space G, Laux first calculates the Tanimoto similarity [Bajusz et al., 2015] between Gi and237

Gj as Tanimoto(Gi, Gj) based on the bit-wise fingerprints, which characterizes frequent fragments238

in the molecular graphs. Then Laux aligns the latent representations with the Tanimoto similarity239

using the cosine similarity. Formally, we define:240

Laux =
∑
i,j

(
Tanimoto(Gi, Gj)− cosine(hGi

,hGj
)
)
, 1 ≤ i, j ≤ |G|, i ̸= j, (14)

where hGi and hGj are the graph representation of Gi and Gj , respectively. The full pre-training loss241

is L = βLrec + (1− β)Laux, where β is a hyperparameter to balance these two loss terms (β = 0.5).242

Decoder model The decoder trained via Eq. (5) could be a GNN or a MLP. Although the GNN243

decoder might be powerful [Hou et al., 2022], we are curious if the MLP delivers a comparable or244

better performance with higher efficiency.245

5 Experiments246

5.1 Experimental Settings247

Datasets Following the setting of previous studies [Hou et al., 2022, Kim et al., 2022, Xia et al.,248

2023], 2 million unlabeled molecules from the ZINC15 dataset [Sterling and Irwin, 2015] was used249

to pre-train the GNN models. To evaluate the performance on downstream tasks, experiments were250

conducted across eight binary classification benchmark datasets from MoleculeNet [Wu et al., 2017].251

6



Table 1: Test AUC (%) performance on eight molecular datasets comparing our method with baselines.
The best AUC-ROC values for each dataset are in bold.

MUV ClinTox SIDER HIV Tox21 BACE ToxCast BBBP Avg
No Pretrain 70.7±1.8 58.4±6.4 58.2±1.7 75.5±0.8 74.6±0.4 72.4±3.8 61.7±0.5 65.7±3.3 67.2

MCM Wang et al. [2022] 74.4±0.6 64.7±0.5 62.3±0.9 72.7±0.3 74.4±0.1 79.5±1.3 61.0±0.4 71.6±0.6 69.7
MGSSL Zhang et al. [2021] 77.6±0.4 77.1±4.5 61.6±1.0 75.8±0.4 75.2±0.6 78.8±0.9 63.3±0.5 68.8±0.9 72.3

Grover Rong et al. [2020] 50.6±0.4 75.4±8.6 57.1±1.6 67.1±0.3 76.3±0.6 79.5±1.1 63.4±0.6 68.0±1.5 67.2
AttrMask Hu et al. [2020a] 75.8 ±1.0 73.5±4.3 60.5±0.9 75.3±1.5 75.1±0.9 77.8±1.8 63.3±0.6 65.2±1.4 70.8
ContextPred Hu et al. [2020a] 72.5±1.5 74.0±3.4 59.7±1.8 75.6±1.0 73.6±0.3 78.8±1.2 62.6±0.6 70.6±1.5 70.9
GraphMAE Hou et al. [2022] 76.3±2.4 82.3±1.2 60.3±1.1 77.2±1.0 75.5±0.6 83.1±0.9 64.1±0.3 72.0±0.6 73.9
Mole-BERT Xia et al. [2023] 78.6±1.8 78.9±3.0 62.8±1.1 78.2±0.8 76.8±0.5 80.8±1.4 64.3±0.2 71.9±1.6 74.0

JOAO You et al. [2021] 76.9±0.7 66.6±3.1 60.4±1.5 76.9±0.7 74.8±0.6 73.2±1.6 62.8±0.7 66.4±1.0 71.1
GraphLoG Xu et al. [2021] 76.0±1.1 76.7±3.3 61.2±1.1 77.8±0.8 75.7±0.5 83.5±1.2 63.5±0.7 72.5±0.8 73.4
D-SLA Kim et al. [2022] 76.6±0.9 80.2±1.5 60.2±1.1 78.6±0.4 76.8±0.5 83.8±1.0 64.2±0.5 72.6±0.8 73.9

MoAMa w/o Laux 78.5±0.4 84.2±0.8 61.2±0.2 79.5±0.5 76.2±0.3 84.1±0.2 64.6±0.1 71.8±0.7 75.0
MoAMa 80.0±0.8 85.3±2.2 64.6±0.5 79.3±0.6 76.5±0.1 80.1±0.5 63.0±0.4 72.8±0.9 75.3

Validation methods and evaluation metrics In accordance with previous work, we adopt a scaffold252

splitting approach [Hu et al., 2020a, Zhang et al., 2021]. Random splitting may not reflect the actual253

use case, so molecules are divided according to structures into train, validation, and test sets [Wu254

et al., 2017], using a 80:10:10 split for the three sets. We use the area under the ROC curve (AUC) to255

evaluate the performance of the classification models during 10 independent runs.256

Model configurations For fair comparison with previous work, a five-layer Graph Isomorphism257

Network (GIN) with an embedding dimension of 300 was chosen for the GNN encoder. The258

READOUT strategy is mean pooling. During pre-training and fine-tuning, models were trained for259

less than 100 epochs using the Adam optimizer and a learning rate of 0.001. The batch sizes for260

pre-training and fine-tuning are 256 and 32, respectively.261

5.2 Baselines262

There are two general types of baseline graph pre-training strategies that we evaluate our work263

against: contrastive learning tasks, such as D-SLA [Kim et al., 2022], GraphLoG [Xu et al., 2021],264

and JOAO [You et al., 2021], and attribute reconstruction, including Grover [Rong et al., 2020],265

AttrMask [Hu et al., 2020a], ContextPred [Hu et al., 2020a], GraphMAE [Hou et al., 2022], and266

Mole-BERT [Xia et al., 2023]. Additionally, we evaluate on motif-based pre-training strategies,267

MGSSL [Zhang et al., 2021], which recurrently generates the motif tree for any molecule, and MCM268

[Wang et al., 2022], which uses a motif-based convolution module to generate embeddings.269

5.3 Results270

We report AUC-ROC of different graph pre-training methods in Table 1. MoAMa outperforms all271

previous methods on five out of eight datasets. On average, MoAMa outperforms the best baseline272

method Mole-BERT [Xia et al., 2023] by 1.3% and the best contrastive learning methods D-SLA [Kim273

et al., 2022] by 1.4%. Even without the auxiliary loss Laux, our motif-aware masking strategy still274

maintains a performance improvement of 1.0%, which is still competitive with previous methods.275

5.4 Ablation Studies276

To verify motif-aware masking parameters, we conduct ablation studies on the selection of masking277

distributions, reconstruction target attribute(s), reconstruction loss function, and decoder model.278

Study on Masking Distributions For motif-aware masking, there is the choice of masking the279

features of all nodes within the motif or choosing to only mask the features of a percentage of nodes280

within each sampled motif. For our study, we choose a motif coverage parameter to decide what281

percentage of nodes within each motif to mask, ranging from 25%, 50%, 75%, or 100%.282

Furthermore, the masking strategy utilized by previous work performs node-wise masking [Hu et al.,283

2020a, Hou et al., 2022], where all features of a node are masked. An alternative strategy may be284

element-wise masking, where masked elements are chosen over all feature dimensions and implies285

that not all features of a node may necessarily be masked. Note that 100% masking will behave the286

exact same as node-wise masking, as 100% of nodes within a motif will have each feature masked.287
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Table 2: Strategy design for motif-aware attribute masking: (1) masking distribution, (2) reconstruc-
tion target, (3) reconstruction loss, and (4) decoder model. The chosen design is highlighted .

Design Space MUV ClinTox SIDER HIV Tox21 BACE ToxCast BBBP Avg

(1)

100% Motif Coverage 80.0±0.8 85.3±2.2 64.6±0.5 79.3±0.6 76.5±0.1 80.1±0.5 63.0±0.4 72.8±0.9 75.3
75% Node-wise 74.9±1.1 82.3±0.4 60.1±0.3 78.8±0.9 76.1±0.1 82.3±0.4 63.4±0.1 72.1±1.0 73.7
75% Element-wise 74.8±0.7 84.9±1.0 58.7±0.1 79.7±0.7 75.6±0.1 85.7±0.4 63.4±0.2 72.6±0.4 74.4
50% Node-wise 76.6±1.2 86.4±0.6 58.3±0.1 78.1±0.3 75.1±0.2 81.9±0.3 64.6±0.1 72.7±0.1 74.2
50% Element-wise 73.9±0.2 71.2±4.0 61.2±0.4 77.5±0.8 74.9±0.4 81.1±0.7 62.5±0.1 70.6±1.8 71.6
25% Node-wise 76.6±1.5 86.3±0.7 62.4±0.2 78.4±0.2 75.9±0.2 81.8±0.1 65.1±0.1 74.7±0.2 75.1
25% Element-wise 75.2±1.5 82.1±0.4 58.3±0.1 77.8±1.5 75.5±0.2 81.5±0.2 63.1±0.1 71.6±0.3 73.1

(2)

Atom Type 80.0±0.8 85.3±2.2 64.6±0.5 79.3±0.6 76.5±0.1 80.1±0.5 63.0±0.4 72.8±0.9 75.3
Chirality 76.3±1.8 75.1±0.9 59.8±0.5 77.9±0.1 76.6±0.1 79.8±0.5 63.8±0.2 73.8±0.7 72.9
Both w/ one decoder 76.2±1.4 74.4±1.1 62.4±0.9 78.2±1.1 75.5±0.6 82.1±0.4 64.3±0.2 72.9±0.2 73.3
Both w/ two decoders 75.9±0.9 81.5±0.1 60.5±0.1 78.5±0.9 75.8±0.2 82.0±1.0 63.7±0.3 73.4±0.3 73.9

(3)
Scaled Cosine Error 80.0±0.8 85.3±2.2 64.6±0.5 79.3±0.6 76.5±0.1 80.1±0.5 63.0±0.4 72.8±0.9 75.3
Cross Entropy 78.8±1.1 84.5±0.7 65.4±0.2 78.6±0.4 76.3±0.1 82.4±0.2 62.9±0.5 72.3±0.2 75.1
Mean Squared Error 80.0±0.5 84.1±1.4 64.6±0.5 78.3±0.4 76.8±0.2 80.5±0.6 62.8±0.3 71.8±0.6 74.9

(4) GNN decoder 80.0±0.8 85.3±2.2 64.6±0.5 79.3±0.6 76.5±0.1 80.1±0.5 63.0±0.4 72.8±0.9 75.3
MLP decoder 78.8±0.5 85.2±0.1 65.5±0.3 78.1±0.6 76.2±0.2 82.1±0.6 62.8±0.8 71.7±0.4 75.1

We provide the predictive performance within Table 2. The predictive performance for the node-wise288

masking outperforms the element-wise masking for both 25% and 50% node coverage. At 75%289

coverage, element-wise masking outperforms node-wise. However, the full coverage masking strategy290

outperforms all other masking strategies, due to the hardness of the pre-training task, which enables291

greater transfer of inter-motif knowledge.292

Study on Reconstruction Targets The choice of attributes to reconstruct for GNNs towards293

molecular property prediction has traditionally been atom type [Hu et al., 2020a, Hou et al., 2022].294

However, there are other choices for reconstruction that could be explored. We verify the choice295

of reconstruction attrbutes by comparing the performance of the baseline model against models296

trained by reconstructing only chirality, both atom type and chirality using two separate decoders,297

or both properties using one unified decoder. From Table 2, we note that predicting solely atom298

type yields the best pre-training results. The second best strategy was to predict both atom type and299

chirality using two decoders. In this case, the loss of the two decoders are independent, leading to the300

conclusion that the chirality prediction task is ill-suited to be the pre-training task. Because choice of301

chirality is limited to four extremely imbalanced outputs, the useful transferable knowledge may be302

significantly lesser than that of atom prediction, which, for the ZINC15 dataset, has nine types.303

Study on Reconstruction Loss Functions For the pretraining task, we have three choices of error304

functions to calculate training loss. A standard error function used for masked autoencoders within305

computer vision [He et al., 2022, Zhang et al., 2022, Germain et al., 2015] is the cross-entropy loss,306

whereas previous GNN solutions utilize mean squared error (MSE) [Hu et al., 2020b, Park et al.,307

2019, Salehi and Davulcu, 2019, Wang et al., 2017]. GraphMAE [Hou et al., 2022] proposed that308

cosine error could mitigate sensitivity and selectivity issues:309

Lrec =
1

|V[MASK]|
∑

v∈V[MASK]

(1− XT
v Hv

||Xv|| · ||Hv||
)γ , γ ≥ 1. (15)

This equation is called the scaled cosine error (SCE). H are the reconstructed features, X are the310

ground-truth node features, and γ is a scaling factor (γ = 1) We investigate the effect these different311

error functions have on downstream predictive performance in Table 2 and find that SCE outperforms312

CE and MSE, in accordance with previous work.313

Study on Decoder Model Choices We follow the GNN decoder settings from previous work [Hou314

et al., 2022] to conduct our study to determine which decoder leads to better downstream predictive315

performance. In Table 2, we show that our method outperforms the MLP-decoder strategy, which316

support previous work that show MLP-based decoders lead to reduced model expressiveness because317

of the inability of MLPs to utilize the high number of embedded features [Hou et al., 2022].318

5.5 Inter-motif Influence Analysis319

In Table 3, we report the two InfRatio and three MRR measurements for our model and several320

baselines. A higher influence ratio indicates that inter-motif nodes have a greater effect on the target321
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Table 3: Measurements of inter-motif knowledge transfer using pre-trained models. A higher ratio is
preferred for the InfRatio measurements, and a lower score is preferred for the MRR measurements.

Model Avg Test AUC InfRationode ↑ InfRatiograph ↑ MRRnode ↓ MRRgraph ↓ MRRmotif ↓
AttrMask 70.8 0.70 0.44 0.66 0.64 0.51
MGSSL 72.3 0.60 0.38 0.77 0.75 0.64
GraphLoG 73.4 0.79 0.50 0.61 0.59 0.48
D-SLA 73.8 0.76 0.49 0.67 0.66 0.44
GraphMAE 73.9 0.76 0.48 0.64 0.61 0.49
Mole-BERT 74.0 0.66 0.42 0.72 0.70 0.59

MoAMa 75.3 0.80 0.51 0.59 0.55 0.41
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Figure 2: Inter-motif knowledge transfer score by motif count. A higher MRR(n)
inter score denotes

greater inter-motif knowledge transfer.

node. The relatively low values indicate that the intra-motif node influence is still highly important for322

the pre-training task, but our method demostrates the highest inter-motif knowledge transfer amongst323

the baselines. We see that there is a small positive correlation between the average test AUC for each324

model and the InfRatio measurements, which supports our claim that greater inter-motif knowledge325

transfer leads to higher predictive performance. For the MRR measurements, our method boasts326

the lowest scores, which indicates less intra-motif knowledge dependence and greater inter-motif327

knowledge transfer.328

For the sake of clear visualization, we define an inter-motif score which indicates inter-motif knowl-329

edge transfer according to the number of motifs n within a graph:330

MRR(n)
inter = 1− 1∑

(V,E)∈G(n) |V|
∑

(V,E)∈G(n)

∑
v∈V

1

rankv
. (16)

Figure 2 shows that our method outperforms all other models in terms of inter-motif knowledge331

transfer as shown by the higher MRR(n)
inter scores across different motif counts. Additionally, the332

inter-motif knowledge transfer using our method becomes more pronounced on graphs with higher333

numbers of motifs.334

6 Conclusions335

In this work, we introduced a novel motif-aware attribute masking strategy for attribute reconstruction336

during graph model pre-training. This motif-aware masking strategy outperformed existing methods337

that used random attribute masking, and achieved competitive results with the state-of-the-art methods338

because of the explicit transfer of long-range inter-motif knowledge and intra-motif structural339

information. We quantitatively verify the increase in inter-motif knowledge transfer of our strategy340

over previous works using inter-motif node influence measurements.341
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