
Under review as a conference paper at ICLR 2021

SUBFORMER: A PARAMETER REDUCED TRANS-
FORMER

Anonymous authors
Paper under double-blind review

ABSTRACT

The advent of the Transformer can arguably be described as a driving force be-
hind many of the recent advances in natural language processing. However, de-
spite their sizeable performance improvements, as recently shown, the model
is severely over-parameterized, being parameter inefficient and computationally
expensive to train. Inspired by the success of parameter-sharing in pre-trained
deep contextualized word representation encoders, we explore parameter-sharing
methods in Transformers, with a specific focus on encoder-decoder models for
sequence-to-sequence tasks such as Machine Translation. We perform an analy-
sis of different parameter sharing/reduction methods and develop the Subformer,
a parameter efficient Transformer-based model which combines the newly pro-
posed Sandwich-style parameter sharing technique and self-attentive embedding
factorization (SAFE). Experiments on machine translation, abstractive summa-
rization, and language modeling show that the Subformer can outperform the
Transformer even when using significantly fewer parameters. On the WMT’14
English-German test set, we show we can perform equally well, and even some-
times outperform (+0.1 BLEU score) the Transformer-base model while using
40% fewer parameters. We also perform equally well as Transformer-big with
40% fewer parameters, achieve performance within 0.1 BLEU with 70% fewer
parameters, and outperform the model by 0.7 BLEU with 12M fewer parameters.
We also outperform the standard Transformer-XL model, achieving a significant
3.6 lower perplexity with 37% fewer parameters.1

1 INTRODUCTION

Many of the advances in natural language processing over the past few years can be attributed to
the self-attention-based Transformer (Vaswani et al., 2017) model. Improving performance on a
variety of tasks, the Transformer has led to better deeply contextualized representations (Devlin
et al., 2019; Liu et al., 2019; Lan et al., 2020) which result in substantial performance improvements
on a variety of downstream tasks, including better sequence-to-sequence models (Sutskever et al.,
2014; Bahdanau et al., 2014).

Despite their success, one main drawback of training these models is their computational cost, be-
ing a greatly limiting factor for many, with training times and memory usage ballooning as model
sizes increase to attain better performance. With this in mind, there has been recent interest in mak-
ing the Transformer more parameter-efficient (So et al., 2019; Wu et al., 2020; Lan et al., 2020;
Mehta et al., 2020a), with the aim of reaping its performance benefits while making the model more
computationally efficient and able to scale better.

Inspired by recent work in model parameter reduction (Lan et al., 2020) while still attaining similar
(or better) performance in the context of deeply contextualized word representations, we look to
explore whether these ideas and techniques can be applied to sequence-to-sequence models in a
simple manner.

Recent work on reducing parameters in Transformer models (Wu et al., 2020; So et al., 2019; Mehta
et al., 2020a) has to a great extent focused on automating their design with neural architecture search

1We release the code here: https://u.pcloud.link/publink/show?code=
kZSlqJXZ8gzUB1PdOfHmzsda8Bo1HQN8O46k

1

https://u.pcloud.link/publink/show?code=kZSlqJXZ8gzUB1PdOfHmzsda8Bo1HQN8O46k
https://u.pcloud.link/publink/show?code=kZSlqJXZ8gzUB1PdOfHmzsda8Bo1HQN8O46k

Under review as a conference paper at ICLR 2021

approaches that aim at finding more efficient Transformer variations using gradient descent. As such,
these techniques are expensive, requiring a significant amount of GPU hours to find good designs.
Instead, we look to address these issues by directly designing the Subformer, an intuitively-designed
parameter efficient Transformer-based model. The Subformer can be trained with lower memory
resources due to its vast parameter reduction. Training speed can also be significantly hampered
in distributed training, as the communication overhead is directly proportional to the number of
parameters in the model. Moreover, the Subformer can do all of this while still maintaining (or
gaining) performance when compared to challenging baselines.

The Subformer incorporates two novel techniques: (1) SAFE (Self-Attentive Factorized Embedding
Parameterization), in which we disentangle the embedding dimension from the model dimension,
and use a small Transformer-based layer to project the smaller embedding dimension to the model
dimension, allowing us to grow the hidden size of the model without significantly impacting the
embedding parameter count, and (2) Sandwich-style Cross Layer Parameter Sharing, in which we
develop a simple and intuitive technique for cross-layer parameter sharing to be effective in Trans-
former models (as we demonstrate that naively sharing parameters harms performance significantly),
which allows us to exploit the benefits of parameter sharing, i.e. increase of depth without impacting
parameter count.

To test our proposals we evaluate the Subformer on three challenging generative tasks: machine
translation, abstractive summarization and language modeling. Our experiments show that by in-
corporating our design choices and techniques, the Subformer is able to achieve similar or better
performance compared with a base/big Transformer with a ∼40% parameter reduction and mini-
mal modification to the original architecture —further reinforcing the aforementioned claims of the
Transformer’s over-parameterization (Fan et al., 2020; Mehta et al., 2020a; Lan et al., 2020). Specif-
ically, on WMT’14 EN-DE we achieve a BLEU score of 29.3, compared to Transformer-big’s 28.6
with 13M fewer parameters. We also outperform the standard Transformer-XL model, achieving a
significant 3.6 perplexity lower, with 37% fewer parameters.

2 RELATED WORK

Improving Transformers Given the effectiveness of the Transformer, improving the architecture
has been of much interest to the NLP community. Within this domain, one branch of research
concerns the reduction of the quadratic complexity (w.r.t. sequence length) of the Transformer’s
core self-attention mechanism (Wu et al., 2019; Kitaev et al., 2020), pushing it down to linear
or log-linear complexity. The second branch of research regards improving the expressiveness of
Transformer models, by using more layers (Dou et al., 2018), or by improving the architecture (Wu
et al., 2019; So et al., 2019). A third branch of research regards improving the parameter efficiency
of Transformers. Approaches towards this goal include neural architecture search approaches (So
et al., 2019; Wu et al., 2020), where new Transformer-based architectures are learned using gradient
descent, more manually crafted approaches (Dehghani et al., 2018; Mehta et al., 2020a), as well as
weight-sharing approaches (Lan et al., 2020; Wu et al., 2019). The work most similar to ours is AL-
BERT (Lan et al., 2020) in which complete weight sharing is used to pre-train deep contextualized
word representations (Peters et al., 2018; Devlin et al., 2019). Different from this work, we focus on
common NLP generative/sequence-to-sequence tasks versus large-scale pre-training and develop an
approach to increase model capacity while reducing parameter footprint tailored to this setting.

Compressing Transformers We also find prior work on pruning and/or quantizing Transformer
models to reduce their size, either with a focus on sequence-to-sequence settings like machine trans-
lation (Prato et al., 2019), on encoder-based methods like BERT (Zafrir et al., 2019; Ganesh et al.,
2020) or with a more generic scope in mind (Cheong & Daniel, 2019; Lee et al., 2018b). Our ap-
proach is orthogonal to these since we directly aim at reducing the number of parameters of Trans-
former models by proposing architecture modifications and weight sharing techniques - allowing
training from scratch.

Reducing Embedding Dimensionality in Sequence Models As embeddings can substantially
increase the parameter count as the vocabulary size increases, especially in sequence modeling sce-
narios, embedding reduction techniques have been proposed, including using a linear projection to
project to a lower dimension (Baevski & Auli, 2019; Dai et al., 2019) or using combinations of

2

Under review as a conference paper at ICLR 2021

block sparse transformations (Mehta et al., 2020b;a). We propose a self-attention based projection
layer, which we empirically show to outperform the aforementioned linear projection method with
a similar parameter count.

3 THE SUBFORMER

In this section we describe the SUBFORMER. We first briefly review the original Transformer archi-
tecture, and then explain in depth the components and reasoning behind the design choices of our
model.

Notation We start by defining the notation to be used throughout the paper. We refer to the model
dimension as dm, the vocabulary size as V , and the number of layers as L. Note that, unlike standard
Transformer models, in which the embedding dimension is kept the same as dm, we disentangle to
embedding dimension to reduce parameter count (Sec. 3.2). For this reason we denote the embed-
ding dimension to be de. Unless specified otherwise, following standard practice (Vaswani et al.,
2017), the feed-forward projection dimension ~ds = 4ds, ~dm = 4dm, for the Sandwiched layer(s)
(Sec. 3.3) and the model layer(s), respectively. By default, we set L = 6 and the dimension of a
single attention head to be 64.

3.1 THE TRANSFORMER

In an encoder-decoder setting, the Transformer architecture is composed of an encoder and decoder
component, both of which are comprised of stacks of identical Transformer layers. Each one of these
layers is composed of two sub-layers: a multi-headed self-attention sub-layer and a feed-forward
sub-layer, which are defined by the following functions.2

MultiHeadAttention(x) = softmax(x>K(Qx))V x (1)
FeedForward(x) = W2(ReLU(W1x+ b1)) + b2 (2)

where Q,K,V ∈ Rdm×dm are trainable matrices used to compute the queries, keys and values
for the self-attention operation, ReLU denotes the ReLU activation (Nair & Hinton, 2010) and
W1 ∈ R~dm×dm , W2 ∈ Rdm×~dm are trainable weight matrices. This is followed by a residual
connection (He et al., 2016) and layer normalization (Ba et al., 2016).

3.2 SAFE: SELF-ATTENTIVE FACTORIZED EMBEDDINGS

We propose to reduce the number of parameters in our embedding layers, which can take up to
25+% of total parameter count in the case of Transformer base, using a small Transformer-based
layer. Specifically, we look to reduce the embedding size by disentangling the model dimension
from the embedding dimension, reducing the embedding dimension de, and then projecting this to
the model dimension dm using a small multi-head attention sub-layer followed by a feed-forward
module.

Given a vocabulary size of V , the usage of a standard embedding layer would result in V × dm
parameters. However, considering that the power of Transformers lies in their ability to learn con-
textual representations with deep models, using a smaller value of de for non-contextual embed-
dings and then projecting to dm, is intuitively an effective method for parameter reduction (Lan
et al., 2020). When using our self-attentive projection module, our parameter count would result in
V × de + 5d2e + de × dm parameters3, which results in a significant parameter reduction for values
of de � dm. Current models (Baevski & Auli, 2019; Dai et al., 2019; Lan et al., 2020) often use a
single linear projection, i.e. V × de + de × dm. Building on this method, we empirically show that
contextualizing this projection with a small Transformer-based layer results in stronger performance
with a minimal addition of parameters — especially in the encoder-decoder case, where the decoder
input embedding layer and output projection are often tied (Table 1).

2Note that we omit bias terms from Equation 1 for clarity.
3Note that V × de represents the embedding layer, 5d2e represents the query, key, and value projections and

2 output feed-forward layers, and de × dm represents the linear projection from the embedding dimension to
the model dimension.

3

Under review as a conference paper at ICLR 2021

MODEL Param. BLEU

de = 128, Linear 48M 26.0
de = 256, Linear 53M 27.1
de = 256, 2-Layer Linear 54M 27.2
de = 128, SAFE 48M 26.6
de = 256, SAFE 54M 27.6

Vaswani et al. (2017) 65M 27.3
TRANSFORMER-BASE (reimpl.) 61M 27.7

Table 1: Experiments on the impact on SAFE vs a regular linear projection using TRANSFORMER-
BASE on the WMT’14 EN-DE machine translation benchmark

3.3 SANDWICH-STYLE PARAMETER SHARING

Weight sharing techniques, despite being surprisingly effective, have been relatively unexplored so
far with regard to Transformer Encoder-Decoder Models. However, this has been shown to be a
powerful technique for leveraging models with large capacity and less memory usage/computation
(Dehghani et al., 2018; Lan et al., 2020; Wu et al., 2019).

Given that the output of each layer depends directly on its two sub-layers —MultiHeadAttention and
FeedForward, when discussing alternatives for parameter sharing across transformer layers there
are several options. As we aim to leverage the aforementioned properties of weight sharing, we
performed preliminary experiments, investigating the capabilities of weight sharing in the following
four settings.

1. Naively sharing all encoder and all decoder layers —that is including both of their sub-
layers, following Lan et al. (2020). This is denoted as All-Shared.

2. Naively sharing all encoder and all decoder layers, but allowing each layer l ∈ [2, ·, L] to
have an independent feed-forward sub-layer. We denote this as All-Shared (Independent
FFN).

3. Sharing weights across layers l ∈ [1, . . . , L − 1] such that layer L remains independent
—denoted as All-Shared (except last).

4. Sharing every two layers, i.e. [1, 2], [3, 4], [5, 6] in the case of a 6-layer transformer —
denoted as Every 2 layers shared.

5. Finally, we only share the middle or central layers (i.e. 2 ≤ l ≤ L − 1), leaving layers 1
and L to have independent sets of parameters —denoted as SANDWICH.

MODEL Enc. layers Dec. Layers Param. BLEU

All-Shared 6 6 24M 14.3
All-Shared (Independent FFN) 6 6 27M 22.4
All-Shared (except last) 6 6 31M 23.2
Every 2 layers shared 6 6 38M 27.2
SANDWICH 6 6 38M 27.3
SANDWICH 8 8 38M 27.7

Vaswani et al. (2017) 6 6 65M 27.3
TRANSFORMER-BASE (Our reimpl.) 6 6 61M 27.7

Table 2: Experiments performed on WMT’14 EN-DE using different parameter sharing techniques.
For each setting, we report tokenized BLEU scores on the test set.

Table 2 summarizes the results of our exploratory study. As can be seen, naive parameter shar-
ing/tying approaches do not offer any advantages, hurting performance significantly (∼50 %) when
compared to the regular Transformer. However, our results also show that when combined prop-
erly, using Sandwich-style parameter sharing, we can attain a good balance of parameter reduction
and performance. In this context, we surmise that the success of Sandwich-style parameter sharing

4

Under review as a conference paper at ICLR 2021

on this sequence-to-sequence task is a consequence of the following property: When compared to
tasks such as pre-training deep contextualized word representations, tasks such as machine transla-
tion require informative token-level representations for each input token to be accurately translated.
Sandwich-style parameter sharing allows the input and output layer (arguably the most important
layers) to be trained independently allowing them to learn different operations than the shared sand-
wich layers, reasonably satisfying the above conditions.

3.4 MODEL ARCHITECTURE: PUTTING IT ALL TOGETHER

Sandwich	Module
(shared	layers)

Linear

Model	Layer

Linear

Model	Layer

Sandwich	Module
(shared	layers)

Linear

Model	Layer

Linear

Model	Layer

Output	Projection

Embedding	layer

SAFE

Embedding	layer

SAFE

Figure 1: The SUBFORMER. In the graphic above there are four main components: (1) the blue
portions, denoted by de are the SAFE (self-attentive factorized embedding) and output projection
layers. (2) The model layers which are placed at the top and bottom of the model (colored red,
denoted by dm). (3) The Sandwich Module, in which we use a wider shared layer to compose
the central part of our encoder/decoder. (4) The projection layers, which allow for the interaction
between the model layers and Sandwich Module despite their different dimensions (colored yellow).

With the aforementioned techniques/components, i.e. SAFE (Section 3.2) and Sandwich-style Pa-
rameter Sharing (Section 3.3), we will now explain the SUBFORMER architecture (see Fig. 1).

As we closely follow the Transformer architecture (Vaswani et al., 2017), the SUBFORMER is com-
posed of four main components, for both the encoder and decoder: the embedding layer, the model
layers, the sandwich module and the projection layers. Figure 1 offers an overview of how these
components are put together. As we want to exploit the parameter reduction effect of sandwich style
parameter sharing while increasing model capacity, we increase the width of the sandwich layer. We
disentangle the sandwiched layer dimension from that of the model layer, allowing the sandwich
layer width to be larger than the rest of the model. For this reason, we denote the dimension of the
sandwiched layer to be ds and its corresponding feed-forward dimension to be ~ds.

Embedding layer When using SAFE, the embedding layer is composed of a regular token →
vector embedding matrix E ∈ RV×de . This is followed by projecting the embeddings (summed
with the positional encodings (Vaswani et al., 2017), denoted by PE) to the model dimension dm
using SAFE.

e = SAFE
(
E(x) + PE(x)

)
(3)

Model layers Once we have our SAFE embeddings, we now feed them through the first model
layer - the base of the sandwich. The output of this first layer is then projected to the sandwich
dimension ds, by way of a linear projection parameterized by weight matrix W p

1 ∈ Rdm×ds and
bias vector bp1 ∈ Rds . Once fed through the shared sandwich layers, we then project the output back
to the model dimension using a linear projection parameterized by matrix W p

2 ∈ Rds×dm and bias

5

Under review as a conference paper at ICLR 2021

vector bp2 ∈ Rdm . The output of the projection is then fed through the final model layer to produce
the output vectors.

When using SAFE embeddings, as we tie the decoder’s output projection layer (returning a distri-
bution over the vocabulary) with the decoder’s input embedding matrix, we project the decoder’s
last hidden state (with dimension dm) to de. We do this using a two layer multi-layer perceptron:
W 2

o (W
1
o x + bo1) + bo1, where W 1

o ∈ R2de×dm ,b1
o ∈ R2de and W 2

o ∈ Rde×2de , b2o ∈ Rde . Also,
when we perform encoder attention in the decoder’s Sandwich Module, we simply linearly project
the query from the decoder from ds to dm and then project it back to ds once the attention operation
is complete.

4 EXPERIMENTS

4.1 EVALUATION BENCHMARKS

We apply our method to a variety of sequence modeling tasks: Neural machine translation, Sum-
marization, and language modeling. Our models are implemented in PyTorch (Paszke et al., 2019)
using our own modification of fairseq (Ott et al., 2019). Additional implementation and training
details with hyper-parameter settings are in the Appendix.

Machine Translation We evaluate our model on two standard machine translation benchmarks:
(1) WMT’14 English-German (EN-DE) (4.5M train/3K valid/3K test sent. pairs), and (2) WMT’16
English-Romanian (EN-RO) (610K train/3K valid/3K test sent. pairs). We make use of the same pre-
processed data used by Ghazvininejad et al. (2019) for WMT’14 EN-DE, with a 32K BPE (Sennrich
et al., 2016) vocabulary, as well as the same data as Lee et al. (2018a) for WMT’16 EN-RO, with
a 35K BPE vocabulary. Following previous work, we evaluate all models using tokenized BLEU
(Papineni et al., 2002) and perform de-hypenation on WMT’14 EN-DE (Vaswani et al., 2017).

For this task, we follow the training setup of Ghazvininejad et al. (2019): we use the same weight
initialization scheme as BERT (Devlin et al., 2019), sampling weights from N (0, 0.02), initializing
biases to zero and setting layer normalization parameters β and γ to be 0 and 1, respectively. For
regularization we use the best of [0.1, 0.2, 0.3] dropout, weight decay of 0.01, while using label-
smoothed cross entropy loss with ε = 0.1. We train using an effective batch size of 128K tokens.
The models are trained using Adam (Kingma & Ba, 2014), with hyper-parameters β = (0.9, 0.999)
and ε = 10−6. We warm up the learning rate to a peak of 5 × 10−4 within 10K iterations and then
decay the learning rate with the inverse square root schedule. When creating the final model, we
use the checkpoint with the lowest loss on the development set, and generate using a beam size of 5
(Vaswani et al., 2017), tuning the length penalty of α ∈ [0.0, 0.2,. . . , 2.0] in the validation set. We
perform early stopping, training for a maximum of 250K iterations.

Abstractive Summarization We test the model’s ability to process long documents on the CNN-
DailyMail summarization benchmark (Hermann et al., 2015; Nallapati et al., 2016) comprising over
280K news articles paired with multi-sentence summaries. Articles are truncated to 400 tokens (See
et al., 2017) and we use a BPE vocabulary of 32K types (Edunov et al., 2019). We follow the training
schedule of Edunov et al. (2019). During inference, we tune generation length in the range of {40,
50, 60} and use tri-gram blocking, following standard practice. Evaluation is performed using the
ROUGE metric (Lin, 2004), which is the de-facto for the task.

Language Modeling We evaluate on the large-scale WIKITEXT-103 dataset (Merity et al., 2016),
which contains 103M tokens and has a vocabulary of nearly 270K types. Models are evaluated in
terms of perplexity on the test portion.

4.2 BASELINES

To test how well we are able to increase parameter efficiency while maintaining perfor-
mance, we compare with current state-of-the-art-methods: namely, the TRANSFORMER-BASE and
TRANSFORMER-BIG models from Vaswani et al. (2017), for all tasks. For the machine translation
tasks we compare with DELIGHT (Mehta et al., 2020a) which is contemporaneous work to ours, and
with the Evolved Transformer (So et al., 2019), as well as RNMT+ (Chen et al., 2018) and Dou et al.

6

Under review as a conference paper at ICLR 2021

BASE MODELS
WMT’14 EN-DE WMT’16 EN-RO

Param. BLEU Params. BLEU

EVOLVED TRANSFORMER (So et al., 2019) 48M 27.7 — —
EVOLVED TRANSFORMER (So et al., 2019) 64M 28.2 — —
DELIGHT (Mehta et al., 2020a) 37M 27.6 22M 34.3
DELIGHT (Mehta et al., 2020a) 54M 28.0 52M 34.7

TRANSFORMER (Vaswani et al., 2017) 65M 27.3 62M 34.2†

TRANSFORMER (Our reimpl.) 61M 27.7 62M 34.1

Only SANDWICH 38M 27.3 — —
Only SAFE, de = 256 54M 27.6 — —

SUBFORMER-SMALL 38M 27.7 20M 34.1
SUBFORMER-BASE 52M 28.1 48M 34.7
SUBFORMER-MID 63M 28.5 — —

Table 3: Results for machine translation on WMT’14 EN-DE and WMT’16 EN-RO task, for our
base models. Note that the † superscript indicates results from Kasai et al. (2020).

BIG MODELS Param. BLEU

TRANSFORMER-BIG (Vaswani et al., 2017) 213M 28.4
RNMT+ (Chen et al., 2018) 379M 28.5
TRANSFORMER-BIG (Our reimpl.) 210M 28.6
EVOLVED TRANSFORMER (So et al., 2019) 222M 29.0
Dou et al. (2018) 356M 29.2

SANDWICH-BIG 122M 28.6

SUBFORMER-XLARGE 197M 29.3

Table 4: Results on the WMT’14 EN-DE for our large models

(2018) who propose using deep representations for NMT. For language modeling, we compare to the
base Transformer-XL (Dai et al., 2019) and Deep Equilibrium Model (Bai et al., 2019), which also
employs parameter sharing. Lastly, for our summarization task, we compare with specialized archi-
tectures such as Pointer-Generator Networks (See et al., 2017), and Convolutional Seq2Seq-based
models (Fan et al., 2018), as well as the Transformer model from Edunov et al. (2019).

5 RESULTS AND DISCUSSION

5.1 MACHINE TRANSLATION

We use the following settings for our models: (1) SUBFORMER-SMALL has dm = 512, ds = 768,
de = 256 and L = 8, (2) SUBFORMER-BASE has dm = 512, ds = 1024, ~ds = 3072, de = 320,
(3) SUBFORMER-MID has dm = 768, ds = 768, de = 350 and (4) SUBFORMER-XLARGE has
dm = 1024, ds = 2048 and de = 512. For WMT’16 EN-RO, our small model has dm = 320,
ds = 512 and de = 192 and our base model has dm = 512, ds = 640, and de = 384.

Table 3 and Table 4 summarize our results on the WMT’14 EN-DE and WMT’16 EN-RO datasets,
respectively. Firstly, we take note that our re-implementations of the Transformer baselines outper-
form Vaswani et al. (2017) (base model: 27.3→ 27.7, big model: 28.4→ 28.6.) We surmise that
this is due to training for longer and with a larger batch size.

Table 3 shows that SUBFORMER-BASE outperforms all baselines, with similar or fewer parameters.
Specifically, when compared to the baseline Transformer model, we reduce parameters by 40%,
outperforming the model by 0.1 BLEU on WMT’14 EN-DE. SUBFORMER-BASE, with 52M pa-
rameters outperforms DELIGHT by 0.1 BLEU with less parameters, while also outperforming our
Transformer-base baseline by 0.4 BLEU with 7M less parameters. SUBFORMER-MID achieves a
BLEU score of 28.5, outperforming the base Transformer and Evolved Transformer (w/64M params)

7

Under review as a conference paper at ICLR 2021

MODEL Param. Context Length PPL

QRNN (Merity et al., 2018) 151M — 33.00

DELIGHT (Mehta et al., 2020a) 99M 480 24.14
TRANSFORMER-XL (Dai et al., 2019) 151M 640 24.03
Deep Equilibrium Model (DEQ) (Bai et al., 2019) 110M — 23.20

Transformer (4 Layer) 96M 480 26.42
Transformer (8 Layer) 146M 480 22.32

SUBFORMER 96M 480 20.39

Table 5: Results on the WIKITEXT-103 (Merity et al., 2016) language modeling benchmark.

MODEL Param. ROUGE-1 ROUGE-2 ROUGE-L

PTR-GEN+COV (See et al., 2017) — 39.5 17.3 36.4
CNN (Fan et al., 2018) — 40.4 17.4 37.2
TRANSFORMER (3 Layer) 57M 40.0 17.5 36.7
TRANSFORMER (Edunov et al., 2019) 77M 40.1 17.6 36.8

SUBFORMER-BASE 57M 40.9 18.3 37.7

Table 6: Results on the CNN-Daily Mail Summarization task (Nallapati et al., 2016; See et al., 2017)

by 0.8 and 0.3 BLEU, respectively. The result is within 0.1 BLEU from the Transformer-big model
(210M params), despite a 70% parameter reduction. We believe that these results demonstrate the
empirical efficacy of the techniques leveraged in the SUBFORMER.

For our big/large set of models, which are evaluated on WMT’14 EN-DE, SANDWICH-BIG achieves
the same performance as our Transformer-big re-implementation, but with 40% less parameters —
shown in Table 4. We believe that this is an indication towards the larger capability of Sandwich-
style parameter sharing as the encoder/decoder layers get wider, while also providing further em-
pirical evidence with respect to the over-parameterized nature of the Transformer architecture.
SUBFORMER-XLARGE, with 197M parameters achieves a significant 0.7 BLEU score gain over
Transformer-big, despite using 13M less parameters. This again strongly suggests that the current
Transformer architecture is over-parameterized, and that training every parameter independently is
not necessary to achieve good performance on large translation benchmarks, further validating the
effectiveness of our approach.

5.2 LANGUAGE MODELING

When training the SUBFORMER, we follow the schedule of Baevski & Auli (2019) and use adaptive
input embeddings (Baevski & Auli, 2019) instead of regular or SAFE embeddings , following com-
mon practice. We optimize using Nesterov’s accelerated gradient optimizer (Sutskever et al., 2013),
warming up the learning rate to 1.0 for 16K iterations, and then annealing for 270K iterations using
a cosine annealing schedule. We set dm = 768, ~dm = 4096 and ds = 2048, ~ds = 6144 and L = 12.
We also train two Transformer baselines with the same setup - one with the same amount of param-
eters and another with a similar parameter count to Transformer-XL - to provide better context for
comparison.

Seen in Table 5, the SUBFORMER outperforms all the baselines by a significant margin (between 1.9
and 12.6 perplexity), with a significant reduction in parameters. This demonstrates the surprising
effectiveness of the SUBFORMER and the Sandwich-style parameter sharing technique.

5.3 ABSTRACTIVE SUMMARIZATION

For the CNN/Daily Mail summarization task we use a the same configuration as SUBFORMER-
BASE, however we set de = 256. As can be seen in Table 6, the Subformer outperforms two Trans-
former baselines with both the same parameter count and its respective Transformer-base configu-
ration, demonstrating the Subformer’s performance on a variety of tasks and with longer sequences.

8

Under review as a conference paper at ICLR 2021

Training/Inference Speed As our SUBFORMER largely follows the Transformer model (Vaswani
et al., 2017), we are able to reap the benefits of many operations being performed in parallel. How-
ever, in the case of DELIGHT, despite is parameter efficiency, we find that due to many operations
being performed in a sequential manner with the addition of block sparsity, the model is surpris-
ingly much slower at both training and inference time when compared to both our model and the
base Transformer. For comparison, at inference, DELIGHT (38M params) processes 1536 tokens/s,
while TRANSFORMER-BASE and SANDWICH-BASE processes 5135 tokens/s (tested on a single
Tesla V100 with a batch size of 384 on the test set of WMT’14 EN-DE).

6 CONCLUSION

In this paper we have presented the Subformer, a parameter-efficient Transformer-based model with
a larger capacity, despite its very small parameter footprint. The Subformer is composed of two
novel techniques, self-attentive embedding factorization and Sandwich-style parameter sharing. De-
spite their simplicity, these techniques reduce the parameter count of Transformer models heavily,
while also improving performance significantly, ultimately offering additional empirical evidence
regarding the over-parameterization issue in Transformer models. We also believe the contribution
of Sandwich-style parameter sharing to be important as naively sharing parameter sharing doesn’t
work as one may expect, in these settings. We hope that this work incites interest in using parameter
sharing techniques for a wider range of Transformer models, and more parameter sharing techniques
for more efficient, highly performant models with larger capacity and expressiveness.

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Alexei Baevski and Michael Auli. Adaptive input representations for neural language modeling. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=ByxZX20qFQ.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate, 2014.

Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. Deep equilibrium models, 2019.

Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin Johnson, Wolfgang Macherey, George Fos-
ter, Llion Jones, Mike Schuster, Noam Shazeer, Niki Parmar, Ashish Vaswani, Jakob Uszko-
reit, Lukasz Kaiser, Zhifeng Chen, Yonghui Wu, and Macduff Hughes. The best of both
worlds: Combining recent advances in neural machine translation. In Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 76–86, Melbourne, Australia, July 2018. Association for Computational Linguistics. doi:
10.18653/v1/P18-1008. URL https://www.aclweb.org/anthology/P18-1008.

Robin Cheong and Robel Daniel. Transformers. zip: Compressing transformers with pruning and
quantization. Technical report, Stanford University, Stanford, California, 2019.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc Le, and Ruslan Salakhutdinov.
Transformer-xl: Attentive language models beyond a fixed-length context. Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, 2019. doi: 10.18653/v1/
p19-1285. URL http://dx.doi.org/10.18653/v1/P19-1285.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Universal
transformers, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https:
//www.aclweb.org/anthology/N19-1423.

9

https://openreview.net/forum?id=ByxZX20qFQ
https://openreview.net/forum?id=ByxZX20qFQ
https://www.aclweb.org/anthology/P18-1008
http://dx.doi.org/10.18653/v1/P19-1285
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423

Under review as a conference paper at ICLR 2021

Zi-Yi Dou, Zhaopeng Tu, Xing Wang, Shuming Shi, and Tong Zhang. Exploiting deep repre-
sentations for neural machine translation. Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, 2018. doi: 10.18653/v1/d18-1457. URL http:
//dx.doi.org/10.18653/v1/D18-1457.

Sergey Edunov, Alexei Baevski, and Michael Auli. Pre-trained language model representations for
language generation. In Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 4052–4059, Minneapolis, Minnesota, June 2019. Association for Com-
putational Linguistics. doi: 10.18653/v1/N19-1409. URL https://www.aclweb.org/
anthology/N19-1409.

Angela Fan, David Grangier, and Michael Auli. Controllable abstractive summarization, 2018.

Angela Fan, Edouard Grave, and Armand Joulin. Reducing transformer depth on demand with
structured dropout. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=SylO2yStDr.

Prakhar Ganesh, Yao Chen, Xin Lou, Mohammad Ali Khan, Yin Yang, Deming Chen, Marianne
Winslett, Hassan Sajjad, and Preslav Nakov. Compressing Large-Scale Transformer-Based Mod-
els: A Case Study on BERT. arXiv:2002.11985 [cs, stat], February 2020.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Mask-predict: Parallel
decoding of conditional masked language models. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-IJCNLP), pp. 6112–6121, Hong Kong, China,
November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1633. URL
https://www.aclweb.org/anthology/D19-1633.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa
Suleyman, and Phil Blunsom. Teaching Machines to Read and Comprehend. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett (eds.), Advances in Neural Information Pro-
cessing Systems 28, pp. 1693–1701. Curran Associates, Inc., 2015. URL http://papers.
nips.cc/paper/5945-teaching-machines-to-read-and-comprehend.pdf.

Jungo Kasai, James Cross, Marjan Ghazvininejad, and Jiatao Gu. Non-autoregressive machine
translation with disentangled context transformer, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer, 2020.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Sori-
cut. Albert: A lite bert for self-supervised learning of language representations. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?
id=H1eA7AEtvS.

Jason Lee, Elman Mansimov, and Kyunghyun Cho. Deterministic non-autoregressive neural se-
quence modeling by iterative refinement. In Proceedings of the 2018 Conference on Empir-
ical Methods in Natural Language Processing, pp. 1173–1182, Brussels, Belgium, October-
November 2018a. Association for Computational Linguistics. doi: 10.18653/v1/D18-1149. URL
https://www.aclweb.org/anthology/D18-1149.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. SNIP: Single-shot Network Pruning
Based on Connection Sensitivity. In International Conference on Learning Representations,
September 2018b.

10

http://dx.doi.org/10.18653/v1/D18-1457
http://dx.doi.org/10.18653/v1/D18-1457
https://www.aclweb.org/anthology/N19-1409
https://www.aclweb.org/anthology/N19-1409
https://openreview.net/forum?id=SylO2yStDr
https://www.aclweb.org/anthology/D19-1633
http://papers.nips.cc/paper/5945-teaching-machines-to-read-and-comprehend.pdf
http://papers.nips.cc/paper/5945-teaching-machines-to-read-and-comprehend.pdf
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://www.aclweb.org/anthology/D18-1149

Under review as a conference paper at ICLR 2021

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization
Branches Out, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguis-
tics. URL https://www.aclweb.org/anthology/W04-1013.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach, 2019.

Sachin Mehta, Marjan Ghazvininejad, Srinivasan Iyer, Luke Zettlemoyer, and Hannaneh Hajishirzi.
Delight: Very deep and light-weight transformer, 2020a.

Sachin Mehta, Rik Koncel-Kedziorski, Mohammad Rastegari, and Hannaneh Hajishirzi. Define:
Deep factorized input token embeddings for neural sequence modeling. In International Confer-
ence on Learning Representations, 2020b. URL https://openreview.net/forum?id=
rJeXS04FPH.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. An analysis of neural language modeling
at multiple scales, 2018.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines.
In ICML, 2010.

Ramesh Nallapati, Bowen Zhou, Cicero Nogueira dos santos, Caglar Gulcehre, and Bing Xiang.
Abstractive text summarization using sequence-to-sequence rnns and beyond, 2016.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier,
and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. arXiv preprint
arXiv:1904.01038, 2019.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Associa-
tion for Computational Linguistics, pp. 311–318, Philadelphia, Pennsylvania, USA, July 2002.
Association for Computational Linguistics. doi: 10.3115/1073083.1073135. URL https:
//www.aclweb.org/anthology/P02-1040.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d\textquotesingle
Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems 32,
pp. 8026–8037. Curran Associates, Inc., 2019. URL http://papers.nips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. Deep contextualized word representations. In Proc. of NAACL, 2018.

Gabriele Prato, Ella Charlaix, and M. Rezagholizadeh. Fully Quantized Transformer for Improved
Translation. ArXiv, 2019.

Abigail See, Peter J. Liu, and Christopher D. Manning. Get to the point: Summarization with
pointer-generator networks. Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), 2017. doi: 10.18653/v1/p17-1099. URL
http://dx.doi.org/10.18653/v1/P17-1099.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1715–1725, Berlin, Germany, August 2016. Association
for Computational Linguistics. doi: 10.18653/v1/P16-1162. URL https://www.aclweb.
org/anthology/P16-1162.

11

https://www.aclweb.org/anthology/W04-1013
https://openreview.net/forum?id=rJeXS04FPH
https://openreview.net/forum?id=rJeXS04FPH
https://www.aclweb.org/anthology/P02-1040
https://www.aclweb.org/anthology/P02-1040
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://dx.doi.org/10.18653/v1/P17-1099
https://www.aclweb.org/anthology/P16-1162
https://www.aclweb.org/anthology/P16-1162

Under review as a conference paper at ICLR 2021

David R So, Chen Liang, and Quoc V Le. The evolved transformer. arXiv preprint
arXiv:1901.11117, 2019.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initial-
ization and momentum in deep learning. In International conference on machine learning, pp.
1139–1147, 2013.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to Sequence Learning with
Neural Networks. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and
K. Q. Weinberger (eds.), Advances in Neural Information Processing Systems 27, pp.
3104–3112. Curran Associates, Inc., 2014. URL http://papers.nips.cc/paper/
5346-sequence-to-sequence-learning-with-neural-networks.pdf.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan, Kyunghyun Cho, and Jason Weston.
Neural text generation with unlikelihood training. In International Conference on Learning Rep-
resentations, 2020. URL https://openreview.net/forum?id=SJeYe0NtvH.

Felix Wu, Angela Fan, Alexei Baevski, Yann N. Dauphin, and Michael Auli. Pay less attention with
lightweight and dynamic convolutions, 2019.

Zhanghao Wu, Zhijian Liu, Ji Lin, Yujun Lin, and Song Han. Lite transformer with long-short range
attention, 2020.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat. Q8BERT: Quantized 8Bit BERT.
arXiv:1910.06188 [cs], October 2019.

A APPENDIX

A.1 TRAINING DETAILS

Training done on 8 GPUs was done on a single DGX-1 Machine. Training on 16 GPUs was done
using multiple compute nodes of a compute cluster. We train all base/small models on 8 NVIDIA
Tesla V100 GPUs. For all big/large models, we train on 16 NVIDIA Tesla V100 GPUs.

A.1.1 MACHINE TRANSLATION

We train using 8192 tokens per GPU on an 8-GPU machine with an update frequency of 2, for
small, base models. For large models, we train on 16 GPUs with 4096 tokens per GPU with an
update frequency of 2.

A.1.2 ABSTRACTIVE SUMMARIZATION

We follow Edunov et al. (2019) and use the offical ROUGE-1.5.5.pl script with parameters -m
-a -n 2.

A.1.3 LANGUAGE MODELING

When training our langauge model, we use 8 GPUs with 1536 tokens per GPU and an update fre-
quency of 3, following Welleck et al. (2020).

12

http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
https://openreview.net/forum?id=SJeYe0NtvH

Under review as a conference paper at ICLR 2021

Model	Block
(all	parameters
independent)

Model	Block
(all	parameters
independent)

Output	Projection

Embedding	layerEmbedding	layer

Layer	 Layer	

Layer	

Layer	

Layer	

Layer	

(a) The Transformer

Sandwich	Module
(shared	layers)

Linear

Model	Layer

Linear

Model	Layer

Sandwich	Module
(shared	layers)

Linear

Model	Layer

Linear

Model	Layer

Output	Projection

Embedding	layer

SAFE

Embedding	layer

SAFE

(b) The SUBFORMER

Figure 2: Comparison between the Subformer and Transformer.

13

	Introduction
	Related Work
	The Subformer
	The Transformer
	SAFE: Self-Attentive Factorized Embeddings
	Sandwich-style Parameter Sharing
	Model Architecture: Putting it all together

	Experiments
	Evaluation Benchmarks
	Baselines

	Results and Discussion
	Machine Translation
	Language Modeling
	Abstractive Summarization

	Conclusion
	Appendix
	Training Details
	Machine Translation
	Abstractive Summarization
	Language Modeling

