Under review as a conference paper at ICLR 2026

REVISITING NODE AFFINITY PREDICTION
IN TEMPORAL GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Node affinity prediction is a common task that is widely used in temporal graph
learning with applications in social and financial networks, recommender systems,
and more. Recent works have addressed this task by adapting state-of-the-art
dynamic link property prediction models to node affinity prediction. However,
simple heuristics, such as Persistent Forecast or Moving Average, outperform these
models. In this work, we analyze the challenges in training current Temporal Graph
Neural Networks for node affinity prediction and suggest appropriate solutions.
Combining the solutions, we develop NAVIS - Node Affinity prediction model
using Virtual State, by exploiting the equivalence between heuristics and state space
models. While promising, training NAVIS is non-trivial. Therefore, we further
introduce a dedicated loss function for node affinity prediction. We evaluate NAVIS
on TGB and show that it outperforms the state-of-the-art, including heuristics.
Our source code is available at ht tps://anonymous.4open.science/r/
NAVIS-0257

1 INTRODUCTION

Temporal graphs provide a natural way to represent evolving interactions in systems such as trade
networks, recommender systems, social platforms, and financial transactions (Kumar et al., [2019;
Shetty & Adibil 2004;[Huang et al.l 2023)). A central challenge in this setting is future node affinity
prediction: forecasting how strongly a node will interact with other nodes at a future time. This
differs from future link prediction, which instead asks whether a particular edge will appear. In
contrast, affinity prediction requires producing a full ranking over potential neighbors, making it
more demanding but also more relevant to many real-world applications (MacDonald et al., 2015},
Bertin-Mahieux et al.,[2011}; Nadir1 & Takes, [2022; Shamsi et al.| [2022).

In the context of link-level prediction, recent progress in Temporal Graph Neural Networks (TGNNs),
including TGN (Rossi et al.l 2020), TGAT (Xu et al.| [2020), DyGFormer (Yu et al., 2023), and
GraphMixer (Cong et al., [2023)), has improved state-of-the-art performance. These methods rely
on local neighborhood sampling and nonlinear message-passing, which are effective for future link
prediction task. However, when applied to node affinity prediction, it is evident that they perform
worse than simple heuristics such as Persistent Forecast and Moving Average (Huang et al., [2023)).
This gap suggests that current TGNNs designs do not align well with the inductive biases required
for affinity prediction.

Accordingly, this paper aims to answer the following questions: why do heuristics outperform more
sophisticated TGNN s for future node affinity prediction? and can we push TGNNs to do better? We
argue that the advantage arises from a confluence of factors and identify several contributing issues that
collectively explain this phenomenon, including: (i) Expressivity. Existing TGNNs cannot represent
a simple Moving Average of past affinities, because their nonlinear updates and reliance on sampled
neighborhoods prevent them from maintaining the required linear memory. (ii) Loss mismatch.
Cross-entropy, commonly used as a loss function for link prediction, is not well-aligned with the
ranking nature of affinity tasks. (iii) Global temporal dynamics. Affinities often depend on shared
network-wide trends (e.g., regime shifts), which local sampling does not capture. (iv) Information
loss. TGNNs are broadly categorized into memory-based and non-memory-based architectures.
Memory-based models (e.g., TGN (Rossi et al.,|2020) and DyRep (Trivedi et al.| 2019)) maintain
per-node states; however, batch processing of events can cause short-term updates within a batch to be

https://anonymous.4open.science/r/NAVIS-0257
https://anonymous.4open.science/r/NAVIS-0257

Under review as a conference paper at ICLR 2026

~
J

= 0.025 70

2 B

= 0.020 L ¢ 60

© - c

L o S 50

o o

S 0015 = - -

o o s 40

wv () ST
£ 0.010 . =3 S ¢
7] {*}‘, lo%
= 0005 —pF SMA AR(T) EMA ours > 20 FF SMA AR(T) EMA Ours >
L Method Method

J

Figure 1: Synthetic node affinity experiment. Node affinities depend on a global, regime-switching
latent g(¢) with nonlinear component g(¢)? and node-specific phases. Baselines relying only on
per-node histories (PERSISTENT FORECAST, SMA, EMA) or a local AR(1) SSM cannot recover
the shared latent space, leading to higher error. OURS, indicating NAVIS, maintains a virtual global
state, achieves the lowest error on both metrics. In Appendix [C]we provide the full experiment details
and baseline descriptions.

missed (Feldman & Baskin} 2024)). In contrast, non-memory-based methods recompute embeddings
from scratch at prediction time and maintain no states, making them prone to overlooking earlier
updates in the evolving graph (Cong et al.l 2023} |Yu et al., [2023).

These observations guide and motivate our work. Our key idea is that heuristics like persistent
Forecast and Moving Average are not arbitrary fixes, but rather special cases of linear state space
models (SSMs) (Gu et al., 2021 2022; Eliasof et al., [2025)), which naturally provide memory and
long-range temporal dependencies. By embedding the structure of SSMs into a learnable TGNN, we
can retain the robustness of heuristics while extending their expressivity.

Building on this idea, we introduce NAVIS (Node Affinity prediction with Virtual State). NAVIS
maintains both per-node state and a virtual global state that co-evolve with the dynamic graph
structure, thereby providing a principled memory mechanism suitable for the requirements of future
node affinity prediction. Additionally, to address the loss mismatch, we propose a rank-based
objective that is better suited to ordinal affinity outputs. Importantly, we do not claim to have solved
the problem entirely: the approach still inherits limitations, for example, in modeling complex
multi-hop dependencies. Nonetheless, our results indicate meaningful progress that can shape the
future of node affinity prediction.

To illustrate the existing challenges and the effectiveness of NAVIS, we include a synthetic node-
affinity experiment in Figure[T] In this controlled setting, node affinities depend on a hidden global
process with nonlinear structure. Although simple heuristics outperform state-of-the-art TGNNs,
since they capture only per-node history, as TGNNS, they fail to recover the shared latent space.
By maintaining a virtual global state, NAVIS achieves the lowest error. Although simplified, this
example highlights the importance of global temporal dynamics and motivates one of the design
choices in NAVIS. We provide the full experiment details in Appendix [C]

Our contributions.

1. We theoretically show that simple heuristics are special cases of linear SSMs, and use this
connection to design a TGNN architecture that generalizes them, making it more expressive.

2. We analyze why cross-entropy loss is suboptimal for affinity prediction, and develop a
rank-based alternative that improves optimization and aligns with evaluation metrics.

3. We provide extensive experiments on the Temporal Graph Benchmark (TGB) and additional
datasets, demonstrating consistent improvements over both heuristics and prior TGNNSs.
The significance of our experiments is that they validate the importance of aligning model
inductive biases and training objectives with the task.

2 BACKGROUND

In this section, we provide essential information related to our work, from basic notations and
definitions, to simple future node affinity prediction baselines, which we generalize in NAVIS.

Under review as a conference paper at ICLR 2026

Notations and Definitions. We consider a continuous-time dynamic graph (CTDG) as a stream of
timestamped interactions between ordered node pairs drawn from the node set V = {1,...,n}. The
CTDG observed up to time ¢ is:
J(t

Ge = {(uj,v5,75,w5) VY, o))
where u;,v; € V denote source and target nodes, 7; € RT is the interaction time, w; € Risits
weight and J(¢) is the number of interactions occurred up to time ¢. The future node affinity prediction
problem seeks, for a query node v € V and a future time T > ¢, to estimate the node’s affinity to
every other node v € V \ {u} conditioned on G;. A parameterized model Fy produces the predicted
affinity scores vector

s = Fo(u,Gi,t") € RV,)
Given the ground truth affinities y realized at t*, we learn @ by minimizing a task-specific loss ¢:
i (F, th),y). 3
malrl; (Fo(u,Gi,t),y) 3
u

Historical Average. A simple interaction-level baseline is the historical average, which estimates
each source—destination affinity by the mean weight of all past interactions observed prior to ¢t

1
s(v):#uv S 4)

(u,0,75,w;)€Gy

Here #,,,, denotes the number of observed (u, v) interactions up to time ¢.

Moving Average and State Space Models. Allowing the tested models to use previous ground truth
affinity vectors at inference, instead of the full fine-grained CTDG, creates additional schemes to
predict the future affinity vectors. The Persistent Forecast (PF) heuristic is the most basic one that
utilizes previous affinity vectors. PF outputs the previous affinity vector as future prediction, i.e.:

S=X 5)

where x is the previous (most recent) ground truth affinity vector.
Another natural vector-level heuristic for future node affinity prediction is the Exponential Moving
Average (EMA), which maintains an estimate of a node’s affinity vector by exponentially weighting
recent affinity vectors:

S = hz = ()éh,;_l + (1 — Oé)X (6)

here, a € [0, 1] is the decay parameter and h;, h;_; are hidden states. Note that PF is a specific case
of EMA where a = 0.

An alternative is the Simple Moving Average (SMA) with window size w, which averages over a
finite window. Its recursive form is:

w—1 1

s—hi=Y"1h 4 ™)
w

—X.
w
EMA and SMA use an infinite geometric decay, retaining long but diminishing memory. Although
these filters can capture long-term dynamics, they are limited to fixed, hand-crafted memory kernels.
To move beyond such ad-hoc designs, we can view EMA through the lens of latent dynamical
systems.

Departing from simple averaging approaches, State Space Models (SSMs) provide a principled
framework to model temporal sequences via hidden state evolution and observation processes
(Hamiltonl, |1994} [Aoki, [2013)). A discrete linear SSM is defined as:

hi = Ahi_l + BX7 (8)
s = Ch,; + Dx, ©

Where A, B, C, D are learnable matrices.
Beyond Moving Average. We show that vector-level heuristics are instances of SSMs. This reveals

a clear hierarchy in model expressiveness, where SSMs are more expressive, generalizing Moving
Average.

Under review as a conference paper at ICLR 2026

(NAVIS

g——>{Linear [——>

h;_ > Tinear ——>
x >[Tinear ——>

Figure 2: NAVIS architecture for node affinity prediction. The current state and previous affinity
vector are projected through linear transformations and aggregated into a new state. A lightweight
gated mechanism ensures a persistent, linear input—output. The predicted affinity vector is then
produced directly from this state based on the virtual global state.

Theorem 1 (Linear SSMs generalize basic heuristics). Let H be the set of basic heuristics (PF, SMA,
EMA), Fiin-ssm be the set of maps realizable by the linear SSM in Equation[8|and Equation[9} Then,
the following strict inclusion holds:

H C Flin-sSM- (10)

Proof. H C Fiin-ssm. First, we show containment (C). Each heuristic corresponds to a specific
choice of (A, B, C,D):

« EMA(0): A=ol,B=(1-a)I,C=1D =0.

* SMA(w): A= B=1IC=1D=0.
*PFFA=0,B=0,C=0,D=1

Next, we show the inclusion is strict (C). Consider a set of 2 x 2 SSM matrices with A =
diag(aq, as), B = diag(l — a1,1 — as), C = I, D = 0 where «; # ag. These models” weights
on past inputs cause each entry in the affinity vector to decay at a different rate. This behavior cannot
be replicated by the single decay of an EMA. Thus, Flin-gssm \ H # 9. O

Implications. This hierarchy that stems from Theorem [I]reveals the potential of SSMs: although
simple heuristics outperform any state-of-the-art TGNN, a carefully designed SSM-based TGNN can
potentially outperform these heuristics because it generalizes them.

3 METHOD

This section contains our key contributions and is organized as follows: in Section [3.1] we detail
factors that hinder TGNNs performance for future node affinity prediction. Motivated by these
findings, in Section [3.2] we introduce our model. In Section[3.3| we detail how to train it effectively.

3.1 WHAT HINDERS TGNNS IN FUTURE NODE AFFINITY PREDICTION

As established in Section [2] common heuristics like PF and EMA are special cases of SSMs.
This advantage of SSMs over heuristics is achieved due to the fact that SSMs can output a linear
combination of the previous affinity vector and the previous predicted affinity vector. We now discuss
another important theoretical direction: RNN (Elman, |{1990), LSTM (Hochreiter & Schmidhuber],
1997) or GRU (Cho et al., [2014)) cells — that are commonly used in popular memory-based TGNNs

Under review as a conference paper at ICLR 2026

(Trivedi et al., 2019; Rossi et al.,[2020; [Tjandra et al.|, 2024) — cannot express the most basic heuristic
of PF, thereby hindering memory-based TGNNs performance.

Theorem 2. Let {h;};>(be the hidden states generated by a single standard RNN cell, LSTM cell,
or GRU cell driven by inputs {x;};>1 C R?. There do not exist parameters of these cells such that,
for all t and all input sequences, h; = x; (PF).

Proof. We assume the standard elementwise nonlinearities o(u) = 1-&-% € (0,1) and tanh(u) €
(—1,1). Below, we present the equations that define common recurrent models.

(RNN) h; = $(Wihi—1 + W,a; +b), ¢ = tanh. (11)

i =o(Wilhi_1;x;] +b;), £ =o(Wylhi_1;x;] + by),
(LSTM) o0; = o(Wylhi—1;x;] + by), g = tanh(Wy[h;_1;x;] + by), (12)
C; = fz ®cCci—1 + 1Z ® g, hi =0; ® tanh(ci).

z; = o(W.[hi_1;x] +b.), r; = o(W,lhi_1;%x] +b,),
(GRU) h; = tanh(W[r; ® h;_1;%x;] +b), (13)
h; = (1-2)®h;_; +2 6h,.

We show that no choice of parameters in RNN, LSTM or GRU yields the map h; = x;.

RNN: h; = tanh(Wyh;_; + W,x; + b) takes values in (—1,1)%, while the mapping x; — h; is
unbounded on R?. Hence, equality Vx; is impossible.

LSTM: h; = o; ® tanh(c;) with o; € (0,1)? and tanh(c;) € (—1,1)? implies h; € (—1,1)9, again
contradicting the unbounded range of h;.

GRU: Seth;_; = 0. Then h; = z; ® h; with z; € (0,1)% and h; = tanh(-) € (—1,1)<, hence
h; € (-1, 1)d cannot equal x; for arbitrary x; € R, O

Theorem [2| has profound implications: any memory-based TGNN that applies standard memory
cells cannot represent even the simplest heuristic — Persistent Forecasting (PF), which have been
proven empirically to perform exceptionally well on node affinity tasks. This theoretical result is
at the underpinnings of our work, and motivates us to generalize heuristics while remaining more
expressive. Thus, we design NAVIS as a simple learnable linear SSM. Tjandra et al.| (2024) showed
that identifying the target node when updating the node state of the source node is a necessary
property. Without this property, TGNNs cannot express the persistent forecast heuristic. In the proof
of Theorem 2] we explicitly assume that the target node is identified via its corresponding index in the
affinity vector of the source node. Hence, Theorem E]holds even when the target node is identified,
revealing another necessary condition for expressing the persistent forecast heuristic.

Current TGNNs Underutilize Available Temporal Information

We argue that a major source of empirical underperformance in TGNNs is the systematic loss
of temporal information. Memory—based TGNNs often rely on batching for tractable runtimes;
however, batching can obscure multiple interactions that affect the same node within a single batch
window, thereby dropping intermediate state transitions (Feldman & Baskin, [2024). In contrast,
non—-memory architectures, e.g., DyGFormer (Yu et al2023)), GraphMixer (Cong et al.| [2023), and
DyGMamba (Ding et al., [2025)), avoid within-batch omissions by maintaining a buffer of recent
events and recomputing node embeddings on demand. To bound latency, these buffers are fixed in
size; once filled, the oldest events are evicted, discarding potentially informative long-term interaction
events. This hard truncation differs from EMA, where the influence of older events decays but
remains non-zero, allowing previous interaction events to shape future affinity predictions. A further,
underexploited source of information is the evolving global graph state. Memory—based TGNNs
typically use few message-passing layers per state update, limiting the incorporation of broader
context (Rossi et al., [2020), while non—memory methods commonly restrict buffered events to 1-hop

Under review as a conference paper at ICLR 2026

neighborhoods. Even new sophisticated state-of-the-art TGNNs do not utilize the full global state (Lu
et al.,[2024} |Gravina et al.| 2024). We leverage these observations to design a TGNN that preserves
fine-grained temporal transitions, retains long-term interaction events, and integrates global graph
context to maximize the use of available information to give an accurate prediction for future node
affinity.

3.2 NAVIS: NODE AFFINITY PREDICTION WITH A GLOBAL VIRTUAL STATE

Motivated by Section[3.1} we propose NAVIS— a node-affinity prediction model that utilizes a linear
state-space mechanism to maintain a state h € R? for each node, and a virtual global state g € R4,
where d = |V| denotes the affinity-space dimension. Transitions are computed by a learnable linear
SSM that enforces the output to be a linear combination of the inputs, akin to an EMA, but with
flexibility to allow the coefficient o to be computed at runtime from the current events rather than
being fixed. Concretely, we define NAVIS as the following sequence of update steps:

zp = o(Wanx + Wiphi—1 + bp),
h,=2z,0h;_1 +(1-2z,) Ox,

zs = 0(Wysx + Wish; + Wyeg + by),
s=z;0h;+ (1 —2z,) Ox,

(14)

where x,h; ;,h;,g,s € R? are the previous affinity vector, previous node state, updated
node state, virtual global vector, and predicted affinity vector, respectively. The parameters
Wan, Wiy Was, Whe, Wys € R'*%4 are learnable weights, by, b, € R? are learnable biases, and
o is the sigmoid function, forcing z, zs to be in [0, 1], to maintain conceptual similarity with « in
Equation (). In Figure 2] we provide a detailed scheme of NAVIS.

We compute the virtual global vector g by maintaining a buffer of the most recent previous affinity
vectors, globally. Then, the virtual global vector is computed by performing aggregation over all the
vectors in the buffer. The goal of the global vector is to detect a global trend (e.g, a new song or a
new TV series that is globally streamed) before we are queried about a specific node. In practice,
aggregating the buffer with the most recent vector selection is efficient and empirically effective, as
we show later in Section 4l

Handling a full CTDG. When a previous affinity vector is unavailable and predictions must rely
solely on interaction weights of the CTDG, we estimate the previous affinity vector of u, x, via X.
We initialize X = 0 and, upon each weighted interaction between source node u and destination node
v, add the interaction weight to the v-th entry of X. When X is required for prediction, we normalize
it by dividing by the sum of its entries. After computing the future affinity vector of u we again set
x=0.

Key Properties of NAVIS. We note that NAVIS generalizes EMA and other heuristics by allowing
the gates zj, and z to adapt to new information, in contrast to a fixed «. Large gate values enable the
model to retain long-term information when beneficial. Notably, NAVIS does not rely on neighbors’
hidden states, unlike other memory-based TGNNSs, and therefore is compatible with the t-Batch
mechanism (Kumar et al.,[2019), enabling efficient batching without missing updates. In addition,
we show in Appendix [F that incorporating global information via g can improve the accuracy of the
predicted affinity vector when global trends affect the nodes’ affinities.

NAVIS for large-scale graphs. For graphs with [N nodes, the number of learnable parameters in
NAVIS scales as O (), which can be prohibitive for graphs with millions of nodes. To make NAVIS
practical at this scale, we introduce a sparsified affinity prediction pipeline. Specifically, for each
node we retain only the entries corresponding to candidate target nodes. In real-world settings, such
as streaming services where users and movies are nodes and interactions are edges, we are interested
in each user’s affinity to movies rather than to other users. In practice, this substantially reduces the
parameter count of NAVIS. For example, on the tgbn-token dataset (Shamsi et al., [2022), which
records user—token interactions, NAVIS requires about (5,000) parameters, while the graph contains
over (60,000) nodes. We further provide a detailed empirical runtime and memory analysis of NAVIS

in Appendix

Under review as a conference paper at ICLR 2026

3.3 LEARNING WITH RANK-BASED L0SS: WHY CROSS-ENTROPY FAILS

With NAVIS specified in Section [3.2] we now turn to the question of how fo train it effectively.
Because most downstream uses of affinity vectors depend on the induced ordering of candidates
rather than the actual affinity values (Huang et al., 2023; [Tjandra et al., 2024), the choice of the loss
function is critical. Most TGNNSs use the cross-entropy loss (Luo & Li, 2022} Yu et al.|[2023; [Tjandra
et al.| 2024)), which treats the output as a categorical distribution and ignores ordinal structure. As we
show next, this property is suboptimal, and requires a designated loss to address this limitation.

The Limitation of Cross-Entropy Loss. Let y, s € R be the ground-truth and predicted affinity
vectors. The cross-entropy loss reads:
legr(s,y) Z y(v) log[softmax(s)](v). (15)
veV

By construction, this loss is suboptimal because it penalizes well-ranked predictions with mismatched
magnitudes. We formalize this claim in Theorem 3]

Theorem 3 (Cross-Entropy is Suboptimal for Ranking). There exist infinitely many triplets of y, a
ground-truth affinity vector, and s1, Sa, two predicted affinity vectors such that:

rank(sy) = rank(y) and rank(sy) # rank(y), where {cg(s1,y) > {cr(S2,Y)

Proof. Sety =[0.4,0.35,0.25], s; = [0.8,0.15,0.05] (correct rank), s = [0.35,0.4, 0.25] (wrong
rank). Then 1.091 = lcg(s2,y) < Lor(s1,y) = 1.105, where s; ranks the same as y while so does
not. Since /cg is a continuous function, there are infinitely many such triplets. O

To address this shortcoming, we train NAVIS using Lambda Loss (Burges et al.,[2006) that is defined

as follows:
1
{Lambda (S, Y) E log, ((T(S_S)> dij |Am — A,

Yi>Yj

(16)

where 7; is the index of the node at rank ¢ after sorting the affinity scores and A, , d;;, D; are defined
as:
2Ymi — 1

1 1
b2l

Dyi—ji - Dyizjlta

0 maXDCGa ; D’L = logQ(l + Z) (17)

and maxDCG is the maximum Discounted Cumulative Gain (DCG) computed by:

maxg/ Z?Zl WZ(% The loss in Equation (16) was previously shown to be effective for ranking
tasks (Burges et al., 2011} Wang et al.l [2018). This loss directly optimizes rank-based objectives
via pairwise ‘“lambdas” that approximate the gradient of non-differentiable ranking-based metrics,

focusing learning on swaps that most impact the final ranking.

Pairwise Margin Regularization. In our experiments, we discovered that the use of the loss in
Equation (16) alone is not sufficient for future node affinity prediction tasks, as we elaborate in
Appendix [F} Hence, we suggest the following regularization:

lReg(S,y) = Z max(0, —(Sz; — sx;) + 4A), (18)

Yi>Yj

Here, A is a hyperparameter that represents the minimum margin required between each pair of
affinity scores. The goal of this regularization is to prevent NAVIS from incorrectly learning to shrink
the affinity scores to minimize Equation (16).

4 EXPERIMENTS

We evaluate NAVIS across multiple future node affinity prediction benchmarks and compare it with
recent state-of-the-art baselines, including both heuristics and TGNNs. Sections 4.1 and {f.2] present
our key empirical findings, and Appendix [F] provides additional ablation studies. Our experiments
aim to address the following research questions: (RQ1) How does NAVIS perform compared to prior

Under review as a conference paper at ICLR 2026

Table 1: NDCG@ 10 on TGB datasets (1 higher is better). NAVIS is benchmarked against TGNNs
that use all available graph messages. Boldface marks the best method.

GraphMixer 0.394£0.17 0.375+£0.11 0.3614+0.04 0.352£0.03 0.347+0.01 0.31440.01
DyGFormer 0.408+0.58 0.388+0.64 0.371+0.06 0.365+£0.20 0.348+0.02 0.316+0.01
DyGMamba 0.393£0.001 0.374+£0.001 0.35940.001 0.351£0.001 0.34740.000 0.31440.000

Method tgbn-trade tgbn-genre tgbn-reddit tgbn-token
etho! Val. Test Val. Test Val. Test Val. Test
Moving Avg 0.793 0.777 0.496 0.497 0.498 0.480 0.401 0.414
Historical Avg 0.793 0.777 0.478 0.472 0.499 0.481 0.402 0.415
JODIE 0.394£0.05 0.374£0.09 0.3584+0.03 0.350£0.04 0.345+0.02 0.31440.01 - -
TGAT 0.395+0.14 0.3754+0.07 0.360+0.04 0.352£0.03 0.3454+0.01 0.314+0.01 - -
CAWN 0.393£0.07 0.374+£0.09 - - - - - -
TCL 0.394+£0.11 0.3754+£0.09 0.362+0.04 0.354£0.02 0.3474+0.01 0.314+0.01 - -

DyRep 0.394+0.001 0.37440.001 0.35740.001 0.351£0.001 0.34440.001 0.3124+0.001 0.15140.006 0.1414-0.006
TGN 0.445£0.009 0.409+0.005 0.44340.002 0.423£0.007 0.482+0.007 0.40840.006 0.251£0.000 0.20010.005
TGNv2 0.807£0.006 0.735+0.006 0.48140.001 0.469£0.002 0.5444+0.000 0.50740.002 0.321£0.001 0.29440.001

NAVIS (ours) 0.872£0.001 0.863+0.001 0.5124+0.001 0.520+£0.001 0.564+0.001 0.55240.001 0.423+£0.001 0.444+-0.001

Table 2: NDCG@ 10 on TGB datasets using only previous ground-truth labels (1 higher is better).
This setting is suited for heuristics. Boldface marks the best method. Baselines have no standard
deviation because they are pre-defined and deterministic.

Method tgbn-trade tgbn-genre tgbn-reddit tgbn-token

Val. Test Val. Test Val. Test Val. Test
Persistent Forecast 0.860 0.855 0.350 0.357 0.380 0.369 0.403 0.430
Moving Avg 0.841 0.823 0.499 0.509 0.574 0.559 0.491 0.508

NAVIS (ours) 0.87240.001 0.863£0.001 0.51740.001 0.528+0.001 0.584+0.001 0.56910.001 0.493+0.001 0.513+0.001

art for future node affinity prediction? (RQ2) Does our method generalize across various types of
graphs? (RQ3) What is the contribution of each component in NAVIS?

Experimental setup We compare NAVIS to the following TGNN baselines JODIE(Kumar et al.,
2019), TGAT(Xu et al., [2020), CAWN (Wang et al., [2021b), TCL (Wang et al.l 2021a)), Graph-
Mixer(Cong et al., [2023),DyGFormer(Yu et al., 2023),DyRep(Trivedi et al., 2019), TGN(Ross1
et al.| 2020), TGNv2(Tjandra et al., 2024) and the standard heuristics presented in (Huang et al.|
2023)) and in (Tjandra et al.| 2024)). Following the standard protocols (Huang et al.l 2023)), we use
a 70%-15%-15% chronological split, train for 50 epochs, use a batch size of 200, and report the
average NDCG@ 10 (Jarvelin & Kekaldinen, [2002)) over three runs. We include both future node
affinity prediction settings: (1) using the full fine-grained CTDG up to the prediction time, and (2)
using only previous ground-truth affinity vectors. Previous TGNNs only support the first setting
(Tjandra et al.,|[2024), and, therefore, only heuristics are included in the second setting comparisons.

4.1 NODE AFFINITY PREDICTION ON TGB

To answer (RQ1), we use the TGB datasets for node affinity prediction (Huang et al., 2023) :
tgbn-trade, tgbn-genre, tgbn-reddit, and tgbn-token. As shown in Tables |I| and
NAVIS outperforms all baselines in both experimental settings. It improves over the best-
performing TGNN, TGNv2, by +12.8% on tgbn—t rade. Notably, many TGNNs underperform
simple heuristics, which aligns with our theoretical analysis that they are not optimized for ranking
and underutilize available temporal information. In contrast, NAVIS linear design and rank-aware
loss enable superior performance.

4.2 GENERALIZATION TO LINK PREDICTION DATASETS

To answer (RQ2), we repurpose four temporal link prediction datasets (Wikipedia(Kumar et al.,
2019), Flights(Strohmeier et al., 2021)), USLegis(Fowler, 2006), and UN Vote(Voeten et al., | 2009))
for the future node affinity prediction task. We detail how we adjust these datasets in Appendix [B]
TGNNs are known to operate well on these datasets (Yu et al.,2023), and, therefore, should constitute
a strong baseline. As shown in Tables [3]and[f] NAVIS consistently outperforms both TGNN and
heuristic baselines, with gains ranging from +13.9% to +20% over the second performing TGNN,
suggesting NAVIS generalizes well to many dynamic graph datasets. Similar to the results in Tables|T]

Under review as a conference paper at ICLR 2026

Table 3: NDCG@10 on converted link prediction datasets (1 higher is better). NAVIS is benchmarked
against TGNNSs that use all available graph messages. Boldface marks the best method.

Wikipedia Flights USLegis UNVote
Method Val. Test Val. Test Val. Test Val. Test
Historical Avg 0.547 0.555 0.487 0.499 0.274 0.287 0.926 0.917
Moving Avg 0.547 0.555 0.029 0.028 0.150 0.154 0.926 0.918
DyRep 0.019+£0.022 0.02340.026 0.000+0.000 0.000£0.000 0.23140.031 0.123+0.061 0.800£0.002 0.8044-0.002
DyGFormer 0.058+0.002 0.058+0.002 - - 0.271£0.036 0.22040.057 0.817+0.007 0.809+40.005
DyGMamba 0.046£0.003 0.0504-0.002 - - 0.246£0.015 0.15440.044 0.814+0.002 0.80440.002
TGN 0.056£0.005 0.0654+0.006 0.2494+0.003 0.227£0.007 0.21940.022 0.190+0.024 0.807+0.003 0.79240.006
TGNv2 0.478+0.005 0.43340.004 0.326+0.008 0.299+0.014 0.32340.036 0.253+0.040 0.824+0.008 0.8131+0.010

NAVIS (ours) 0.564+0.001 0.573£0.001 0.4894+0.001 0.499+0.001 0.331+0.001 0.3474+0.001 0.969+0.001 0.95240.001

Table 4: NDCG@ 10 on converted link prediction datasets using only previous ground-truth labels (T
higher is better). Baselines have no standard deviation because they are pre-defined and deterministic.
Boldface marks the best method.

Wikipedia Flights USLegis UNVote
Method Val. Test Val. Test Val. Test Val. Test
Persistent Forecast 0.499 0.507 0.296 0.307 0.328 0.320 0.963 0.917
Moving Avg 0.538 0.552 0.468 0.482 0.250 0.276 0.963 0.953

NAVIS (ours) 0.559+0.001 0.566£0.001 0.482+0.001 0.494+0.001 0.333£0.001 0.32610.001 0.971+0.001 0.953+0.001

and 2} other TGNN's fall behind simple heuristics even though they were shown to produce great
results on these datasets for future link prediction tasks, strengthening that the TGNN s design choices
mentioned earlier in Sections [3.1]and [3.3] are incompatible for future node affinity prediction.

4.3 ABLATION STUDY

To answer (RQ3), we conduct an ablation study to isolate the contribution of each core component
of NAVIS: (1) the linear state update mechanism (vs. the commonly used GRU), (2) the inclusion
of the global virtual vector g, and (3) the proposed loss (vs. cross-entropy, CE). Full results are
provided in Appendix [F] The ablations show that each component contributes substantially to the
overall performance.

5 RELATED WORK

Expressivity in Temporal Graphs. The dominant view of expressivity in graph learning is measured
by the Weisfeiler-Lehman (WL) test’s ability to distinguish non-isomorphic graphs (Gilmer et al.|
2017; Xu et al., [2019). This concept extends to temporal graphs, with temporal-WL (Souza et al.,
2022) for CTDG and supra Laplacian WL (Galron et al. 2025) for DTDG, where models are
evaluated on their capacity to differentiate evolving graph structures (Kazemi et al.|[2020; ENNADIR
et al.| |2025). We diverge from this perspective by focusing on functional expressivity: a model’s
ability to represent specific mathematical operations. While prior models aim to capture complex
graph topology, they often cannot represent a simple Moving Average, a critical function for affinity
prediction.

Heuristics and State Space Models. According to the recent literature, simple heuristics, like
Moving Average, often outperform complex TGNNs on various relevant benchmarks (Huang et al.|
2023 |Cornell et al., 2025)), suggesting the problem is fundamentally sequential. Recent work formally
establishes the equivalence between linear SSMs and Moving Average (Eliasof et al., 2025) and
explores their use in language modeling (Gu et al., 2022} |Gu & Daol 2024) and dynamic link
prediction (Li et al., | 2024; | Ding et al., 2025)). While these works connect SSMs to temporal data, our
approach is distinct. We are the first to explicitly leverage the formal equivalence between heuristics
and SSMs to design an architecture, NAVIS, that is purpose-built for node affinity prediction.

Temporal link prediction on weighted dynamic graphs. Temporal link prediction (TLP) on
weighted dynamic graphs (Qin et al} 2023} |[Yang et al.| 2019; |Lei et al.| [2019) is the task in which,
given a discrete-time weighted dynamic graph (a sequence of snapshots of the graph at specific

Under review as a conference paper at ICLR 2026

points in time), the model is required to predict the next snapshot, i.e., the weighted adjacency
matrix at a future time. Although this task resembles node affinity prediction, there are several
key differences. First, the downstream objectives differ, and accordingly different metrics are used
to measure performance in each setting. In TLP on weighted dynamic graphs, the end goal is to
construct the entire future weighted adjacency matrix. Hence, metrics such as RMSE, MSE, and
MAE are often used. In node affinity prediction, however, the goal is to rank different nodes with
respect to a specific node by their affinity to it, and therefore ranking metrics such as NDCG or MRR
are used. Moreover, TLP on weighted dynamic graphs operates in a discrete-time setting, while node
affinity prediction operates in a continuous-time setting. Consequently, solutions for the former
let all 2023} [Yang et al.l 2019} [Lei et al.,[2019) operate on the full graph at each change, which may
lead to unreasonable runtime if applied in the latter setting. In addition, upon each query, TLP on
weighted dynamic graphs requires computing the full weighted adjacency matrix, while for node
affinity prediction only the affinity scores between the queried node and the other nodes need to be
computed. These factors are likely to hinder methods for TLP on weighted dynamic graphs from
transferring well to node affinity prediction, and vice versa.

6 CONCLUSION

In this work, we identified critical gaps in the design of TGNNs for future node affinity prediction.
These gaps, including an inability to express simple heuristics such as moving averages and Persistent
Forecast, often lead these baselines to outperform TGNNs. We further showed that current under-
performance also stems from the use of suboptimal, non-ranking losses such as cross-entropy. To
address this, we introduced NAVIS, a novel architecture grounded in the ability of linear state-space
models to generalize heuristic behavior. By incorporating a virtual state to capture global dynamics
and a carefully designed rank-aware loss, NAVIS preserves the robustness of heuristics while offering
greater expressive power. Extensive experiments demonstrate that NAVIS consistently outperforms
state-of-the-art models and heuristics across multiple benchmarks, underscoring the importance of
aligning a model’s inductive biases and training objectives with the specific demands of the task.

Limitations and future work Although NAVIS has shown strong performance, both theoretically,
by generalizing common heuristics that excel in node affinity prediction, and empirically on TGB
benchmarks, NAVIS remains elementary, and further research in this direction is required. For
example, NAVIS currently utilizes a basic virtual global state based on recency selection from a
global buffer to capture trends in dynamic graphs. Advanced aggregation schemes over the global
buffer (e.g., attention-based mechanisms) and more sophisticated buffer-eviction strategies (e.g.,
non-deterministic eviction) may improve the modeling of global state and further enhance TGNN
performance on node affinity prediction. In addition, NAVIS computes node affinities as a linear
combination of the input and current state, with coefficients in [0, 1] that are adaptive to both.
Consequently, NAVIS cannot, for example, represent certain non-linear functions. This limitation
could be addressed by adding a third non-linear component with an associated coefficient such that
all three coefficients sum to 1. We leave to future work the investigation of how to best combine
linear and non-linear components to enable TGNNs to perform optimally on the node affinity task.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Masao Aoki. State Space Models: A Unifying Framework. Springer, Berlin, Germany, 2013. ISBN
978-3-642-35040-6.

Thierry Bertin-Mahieux, Daniel PW Ellis, Brian Whitman, and Paul Lamere. The million song
dataset. In Ismir, volume 2, pp. 10, 2011.

Christopher Burges, Robert Ragno, and Quoc Le. Learning to rank with nonsmooth cost functions.
Advances in neural information processing systems, 19, 2006.

Christopher Burges, Krysta Svore, Paul Bennett, Andrzej Pastusiak, and Qiang Wu. Learning to rank
using an ensemble of lambda-gradient models. In Proceedings of the learning to rank Challenge,
pp- 25-35. PMLR, 2011.

Kyunghyun Cho, Bart Van Merriénboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for
statistical machine translation. Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of
SIGDAT, a Special Interest Group of the ACL, pp. 1724-1734, 2014.

Weilin Cong, Si Zhang, Jian Kang, Baichuan Yuan, Hao Wu, Xin Zhou, Hanghang Tong, and
Mehrdad Mahdavi. Do we really need complicated model architectures for temporal networks?
The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda,
May 1-5,2023.

Filip Cornell, Oleg Smirnov, Gabriela Zarzar Gandler, and Lele Cao. On the power of heuristics in
temporal graphs, 2025. URL https://arxiv.org/abs/2502.04910!.

Zifeng Ding, Yifeng Li, Yuan He, Antonio Norelli, Jingcheng Wu, Volker Tresp, Michael M. Bron-
stein, and Yunpu Ma. DyGMamba: Efficiently modeling long-term temporal dependency on
continuous-time dynamic graphs with state space models. Transactions on Machine Learn-
ing Research, 2025. ISSN 2835-8856. URL https://openreview.net/forum?id=
sgbAJdvVuha.

Moshe Eliasof, Alessio Gravina, Andrea Ceni, Claudio Gallicchio, Davide Bacciu, and Carola-
Bibiane Schonlieb. Grama: Adaptive graph autoregressive moving average models. In The
Forty-Second International Conference on Machine Learning, 2025.

Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179-211, 1990.

Sofiane ENNADIR, Gabriela Zarzar Gandler, Filip Cornell, Lele Cao, Oleg Smirnov, Tianze Wang,
Levente Z6lyomi, Bjorn Brinne, and Sahar Asadi. Expressivity of representation learning on
continuous-time dynamic graphs: An information-flow centric review. Transactions on Machine
Learning Research, 2025. ISSN 2835-8856. URL https://openreview.net/forum?
id=M7Lhr2anjg. Survey Certification.

Or Feldman and Chaim Baskin. Leveraging temporal graph networks using module decoupling. In
The Third Learning on Graphs Conference, 2024.

James H Fowler. Legislative cosponsorship networks in the us house and senate. Social networks, 28
(4):454-465, 2006.

Yaniv Galron, Fabrizio Frasca, Haggai Maron, Eran Treister, and Moshe Eliasof. Understanding and
improving laplacian positional encodings for temporal gnns. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, pp. 420—437. Springer, 2025.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263-1272. Pmlr, 2017.

Alessio Gravina, Giulio Lovisotto, Claudio Gallicchio, Davide Bacciu, and Claas Grohnfeldt. Long
range propagation on continuous-time dynamic graphs. In International Conference on Machine
Learning, pp. 16206-16225. PMLR, 2024.

11

https://arxiv.org/abs/2502.04910
https://openreview.net/forum?id=sq5AJvVuha
https://openreview.net/forum?id=sq5AJvVuha
https://openreview.net/forum?id=M7Lhr2anjg
https://openreview.net/forum?id=M7Lhr2anjg

Under review as a conference paper at ICLR 2026

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In First
Conference on Language Modeling, 2024. URL |https://openreview.net/forum?id=
tEYskwlVY2.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré.
Combining recurrent, convolutional, and continuous-time models with linear state space layers.
Advances in neural information processing systems, 34:572-585, 2021.

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=uYLFoz1lv1AC.

James D Hamilton. State-space models. Handbook of econometrics, 4:3039-3080, 1994.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735-1780, 1997.

Shenyang Huang, Farimah Poursafaei, Jacob Danovitch, Matthias Fey, Weihua Hu, Emanuele Rossi,
Jure Leskovec, Michael Bronstein, Guillaume Rabusseau, and Reihaneh Rabbany. Temporal graph
benchmark for machine learning on temporal graphs. Advances in Neural Information Processing
Systems, 36, 2023.

Kalervo Jarvelin and Jaana Kekaldinen. Cumulated gain-based evaluation of ir techniques. ACM
Transactions on Information Systems (TOIS), 20(4):422-446, 2002.

Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter Forsyth, and
Pascal Poupart. Representation learning for dynamic graphs: A survey. The Journal of Machine
Learning Research, 21(1):2648-2720, 2020.

Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory in temporal
interaction networks. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 1269-1278, 2019.

Kai Lei, Meng Qin, Bo Bai, Gong Zhang, and Min Yang. Gcn-gan: A non-linear temporal link
prediction model for weighted dynamic networks. In IEEE INFOCOM 2019-1EEE conference on
computer communications, pp. 388-396. IEEE, 2019.

Dongyuan Li, Shiyin Tan, Ying Zhang, Ming Jin, Shirui Pan, Manabu Okumura, and Renhe Jiang.
Dyg-mamba: Continuous state space modeling on dynamic graphs, 2024. URL https://
arxiv.orqg/abs/2408.06966.

Xiaodong Lu, Leilei Sun, Tongyu Zhu, and Weifeng Lv. Improving temporal link prediction via
temporal walk matrix projection. Advances in Neural Information Processing Systems, 37:141153—
141182, 2024.

Yuhong Luo and Pan Li. Neighborhood-aware scalable temporal network representation learning. In
Learning on Graphs Conference, pp. 1-1. PMLR, 2022.

Graham K MacDonald, Kate A Brauman, Shipeng Sun, Kimberly M Carlson, Emily S Cassidy,
James S Gerber, and Paul C West. Rethinking agricultural trade relationships in an era of global-
ization. BioScience, 65(3):275-289, 2015.

Amirhossein Nadiri and Frank W Takes. A large-scale temporal analysis of user lifespan durability
on the reddit social media platform. In Companion Proceedings of the Web Conference 2022, pp.
677-685, 2022.

James W Pennebaker, Martha E Francis, and Roger J Booth. Linguistic inquiry and word count:
Liwc 2001. Mahway: Lawrence Erlbaum Associates, 71(2001):2001, 2001.

Meng Qin, Chaorui Zhang, Bo Bai, Gong Zhang, and Dit-Yan Yeung. High-quality temporal link

prediction for weighted dynamic graphs via inductive embedding aggregation. IEEE Transactions
on Knowledge and Data Engineering, 35(9):9378-9393, 2023.

12

https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC
https://arxiv.org/abs/2408.06966
https://arxiv.org/abs/2408.06966

Under review as a conference paper at ICLR 2026

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael
Bronstein. Temporal graph networks for deep learning on dynamic graphs. CoRR, abs/2006.10637,
2020.

Kiarash Shamsi, Friedhelm Victor, Murat Kantarcioglu, Yulia Gel, and Cuneyt G Akcora. Chartalist:
Labeled graph datasets for utxo and account-based blockchains. Advances in Neural Information
Processing Systems, 35:34926-34939, 2022.

Jitesh Shetty and Jafar Adibi. The enron email dataset database schema and brief statistical report.
Information sciences institute technical report, University of Southern California, 4(1):120-128,
2004.

Amauri Souza, Diego Mesquita, Samuel Kaski, and Vikas Garg. Provably expressive temporal
graph networks. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.),
Advances in Neural Information Processing Systems, volume 35, pp. 32257-32269. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/fi1e/d029c97ee0dbl62c60f2ebc9cb93387e-Paper—-Conference.pdfl.

Martin Strohmeier, Xavier Olive, Jannis Liibbe, Matthias Schifer, and Vincent Lenders. Crowd-
sourced air traffic data from the opensky network 2019-2020. Earth System Science Data, 13(2):
357-366, 2021.

Benedict Aaron Tjandra, Federico Barbero, and Michael M Bronstein. Enhancing the expressivity
of temporal graph networks through source-target identification. In NeurIPS 2024 Workshop on
Symmetry and Geometry in Neural Representations, 2024.

Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. Dyrep: Learning
representations over dynamic graphs. In 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.

Erik Voeten, Anton Strezhnev, and Michael Bailey. United Nations General Assembly Voting Data.
Harvard Dataverse, 2009. URL https://doi.org/10.7910/DVN/LEJUQZ.

Lu Wang, Xiaofu Chang, Shuang Li, Yunfei Chu, Hui Li, Wei Zhang, Xiaofeng He, Le Song, Jingren
Zhou, and Hongxia Yang. Tcl: Transformer-based dynamic graph modelling via contrastive
learning. CoRR, abs/2105.07944, 2021a.

Xuanhui Wang, Cheng Li, Nadav Golbandi, Michael Bendersky, and Marc Najork. The lambdaloss
framework for ranking metric optimization. In Proceedings of the 27th ACM international
conference on information and knowledge management, pp. 13131322, 2018.

Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. Inductive representation
learning in temporal networks via causal anonymous walks. 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021b.

Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Inductive represen-
tation learning on temporal graphs. 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. URL https
//openreview.net/forum?id=ryGs6iA5Km.

Min Yang, Junhao Liu, Lei Chen, Zhou Zhao, Xiaojun Chen, and Ying Shen. An advanced deep
generative framework for temporal link prediction in dynamic networks. IEEE transactions on
cybernetics, 50(12):4946—4957, 2019.

Le Yu, Leilei Sun, Bowen Du, and Weifeng Lv. Towards better dynamic graph learning: New
architecture and unified library. Advances in Neural Information Processing Systems, 36:67686—
67700, 2023.

13

https://proceedings.neurips.cc/paper_files/paper/2022/file/d029c97ee0db162c60f2ebc9cb93387e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/d029c97ee0db162c60f2ebc9cb93387e-Paper-Conference.pdf
https://doi.org/10.7910/DVN/LEJUQZ
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km

Under review as a conference paper at ICLR 2026

A DATASETS STATISTICS AND DESCRIPTION

In our empirical evaluation, we employed the following dynamic graph datasets, each capturing a dis-
tinct dynamic system and providing varied graph structures, edge features, and temporal resolutions:

* TGBN-TRADE (MacDonald et al., 2015): models global agricultural commerce among
UNe-affiliated countries over 1986-2016 as a time-evolving network: countries are the nodes
and directed links record, for each calendar year, the aggregate value of agricultural goods
moved from one country to another. Because entries are reported yearly, the temporal
resolution is annual. The accompanying learning objective is to anticipate, for a chosen
country, how its overall agricultural trade will be apportioned across partner countries in the
subsequent year—that is, the next-year distribution of trade shares.

* TGBN-GENRE (Bertin-Mahieux et al.,[201 1)) models listening behavior as a weighted bipartite
graph linking users to musical genres. Nodes consist of users and genre labels; time-stamped
edges indicate that a user listened to a track associated with that genre, with the edge weight
reflecting the fraction of a track’s composition attributed to that genre. The downstream
objective is a ranking problem: for each user, predict the genres they are most likely to
engage with during the upcoming week.

* TGBN-REDDIT (Nadiri & Takes|,[2022)) models Reddit as a temporal bipartite graph linking
users and subreddits. Nodes represent both entities, and a timestamped edge records a
user’s post within a subreddit. The dataset covers activity from 2005 through 2019. The
predictive objective is, for each user, to produce a next-week ranking of subreddits by
expected engagement intensity.

* TGBN-TOKEN (Shamsi et al.l 2022) models a bipartite interaction graph linking wallet users
to cryptocurrency tokens. Nodes consist of users and tokens, and directed edges record
transfers from a user to a particular token. Edge weights capture the logarithmic normalized
transaction quantity. The predictive objective is to estimate, for the next week, how often
each user will engage with different classes of tokens.

* WIKIPEDIA(Kumar et al.l 2019): models a bipartite, time-stamped interaction graph derived
from a single month of edit activity. Nodes correspond to editors and articles, and each
interaction edge denotes an edit event. Every edge is annotated with its event time and a
feature vector from the Linguistic Inquiry and Word Count framework (LIWC (Pennebaker
et al.l 2001))) summarizing the edit’s linguistic characteristics. The predictive objective for
this converted version of the dataset is to predict the expected engagement intensity of each
editor with existing articles.

* Flights (Strohmeier et al.,2021): models air traffic patterns during the COVID-19 period
as a temporal network in which airports are nodes and connections represent observed
routes between them. Each connection carries a timestamp and an associated intensity, with
the edge weight recording how many flights operated on that route on a given day. The
downstream objective is to rank future airport destinations intensity, given the source airport.

» USLegis (Fowler, [2006): models the collaboration dynamics of the U.S. Senate as a temporal,
weighted network: senators are represented as nodes, ties are created whenever a pair co-
sponsors the same bill, and each tie is stamped with the time of occurrence. Edge weights
record the frequency of joint sponsorships within a legislative term, capturing how often
two members work together. The predictive objective is to estimate the joint sponsorship
frequencies for the next term.

* UNVote (Voeten et al.,2009): models the United Nations General Assembly roll-call record
from 1946 through 2020 as a time-evolving graph: countries are nodes, and an edge appears
between two countries whenever they cast matching affirmative (“yes”) votes on the same
resolution. Each edge carries a timestamp and a weight, where the weight counts how many
times that pair of countries voted “yes” together over the period. The predictive objective is
to estimate the joint positive votes for the next period.

14

Under review as a conference paper at ICLR 2026

Table 5: Statistics of various datasets used in our experiments

Dataset Domain #Nodes #Edges Bipartite Duration
TGBN-TRADE Economy 255 468,245 False 30 years
TGBN-GENRE Interaction 1,505 17,858,395 True 4 years

TGBN-REDDIT Social 11,766 27,174,118 True 15 years
TGBN-TOKEN Cryptocurrency 61,756 72,936,998 True 2 years

WIKIPEDIA Social 9,227 157,474 True 1 month
FLIGHTS Transport 13,169 1,927,145 False 4 months
USLEGIS Politics 225 60,396 False 12 terms
UNVOTE Politics 201 1,035,742 False 72 years

B CONVERTING LINK PREDICTION DATASETS TO NODE AFFINITY PREDICTION
DATASETS

Each of the future link-prediction datasets we use (Wikipedia, Flights, USLegis, and UNVote)
comprises a CTDG with weighted interaction events between node pairs. For each dataset and node,
we define the ground-truth future affinity vector as the normalized sum of weighted interaction it
received over a specified period (day, week, year, etc.). Immediately before the start of a new period,
the task is to predict each node’s affinities for the upcoming period. Table [6|summarizes the periods
used for each dataset.

Table 6: Chosen period for link property prediction datasets.

Dataset Period
Wikipedia Day
Flights Day

USLegis Legislative term
UNVote Year

Our code release includes a step-by-step guide on processing these datasets and integrating them into
the TGB framework to support future research on node-affinity prediction.

C SYNTHETIC EXPERIMENT

We construct a controlled continuous-time dynamic graph (CTDG) where each node u € {1,..., N}
emits events according to a Poisson process (rate \) over a horizon [0, T']. Node affinities at time ¢
are governed by a shared global latent g(t) that switches between two damped-oscillatory regimes.
Concretely, on a grid with step At, g(t) follows a piecewise AR(2) process with coefficients chosen
to approximate low- and high-frequency damped cosines; regime switches are exogenous and
uncorrelated with any single node’s local history. Each node is assigned a phase ¢,,, a mixing
coefficient (3,,, and a small bias ~,,. The instantaneous (pre-softmax) affinity logits are a nonlinear
readout of the global state [g(t), g(t)?],

Lu(t) = Bucos(dy)g(t) + Busin(ou) (g(t)2 - 1) + Y + eu(t),

and, for each source node u, we mask self-transitions and apply a softmax over destinations to obtain
ground-truth affinity distributions. The forecasting task is one-step prediction of a node’s destination
distribution at query times, given only the previous ground-truth affinity vectors at inference. We
compare per-node, history-only baselines that cannot share information across nodes—Persistent
Forecast (PF; last observation), Simple Moving Average (SMA; window w=y>5), Exponential Moving
Average (EMA; a=0.2), and a diagonal per-node AR(!).

15

Under review as a conference paper at ICLR 2026

Table 7: MRR on TGB datasets (1 higher is better). NAVIS is benchmarked against TGNNs that use
all available graph messages. Boldface marks the best method.

Method tgbn-trade tgbn-genre tgbn-reddit tgbn-token
Val. Test Val. Test Val. Test Val. Test
TGNv2 0.604+0.01 0.53+£0.01 0.43+0.01 0.40+0.01 0.43+0.01 0.40+0.01 0.2840.01 0.264+0.01

NAVIS (ours) 0.784+0.00 0.77+0.001 0.40+0.00 0.42+0.00 0.45+0.00 0.4410.001 0.39+0.00 0.4140.00

Table 8: Recall on TGB datasets (T higher is better). NAVIS is benchmarked against TGNNs that use
all available graph messages. Boldface marks the best method.

Method tgbn-trade tgbn-genre tgbn-reddit tgbn-token
Val. Test Val. Test Val. Test Val. Test
TGNv2 0.60£0.01 0.56+0.01 0.32+0.01 0.314+0.01 0.1940.01 0.18£0.01 0.05£0.00 0.05£0.00

NAVIS (ours) 0.754+0.00 0.72+0.00 0.344+0.00 0.33+0.00 0.214+0.00 0.20+0.00 0.3040.00 0.28+0.00

D IMPLEMENTATION DETAILS

We initialized each linear layer in NAVIS with values drawn uniformly from the range [—v/d, v/d],
where d is the input dimension of the layer. No normalization of the output vector s were required as
the ground true affinity scores in TGB are already normalized. The final loss we used is £ mbda +
ClRreg, where C is a regularization coefficient. In the experiments we set C = 1. We adopted standard
hyperparameters, consistent with prior work: batch size 200, Adam optimizer, and learning rate
10~4, Following the TGB protocol, all models were trained for 50 epochs, and the checkpoint
with the best performance on the validation set was selected. We set the regularization margin to
A = 1073, During training, NAVIS computes the loss only over the top-20 affinities, ensuring that
loss computation requires constant time and memory. We used a single NVIDIA GeForce RTX 3090
GPU and a single AMD Ryzen 9 7900X 12-Core Processor CPU.

E ADDITIONAL RESULTS

Additional Evaluation Metrics We additionally compare NAVIS to the best performing baseline
in each setting and report the results in terms of MRR (the average value of m, where RANK is
the predicted rank of the ground-truth top-scored node) and Recall@ 10 (the average number of top-10
ground-truth nodes ranked within the top-10 predicted scores). We report the results in Tables [7]to[10]
From the results, we observe that the performance gap between the baselines increases under the
MRR metric but decreases under the Recall@ 10 metric. This can be explained by our objective,
which penalizes mismatches on top-ranked ground-truth nodes (e.g., ranks 1-3) more strongly than
on lower-ranked ones (e.g., ranks §—10).

Noisy data experiment To examine the robustness of NAVIS, we performed an additional ex-
periment on noisy data. We used the tgbn-genre benchmark and, for each node that received its
N-th update, we added an extra random update from that node to a random node and weighted the
interaction with largest magnitude of affinity. We ran this experiment twice, once with N = 10 and a
second time with /N = 20, and did not observe a significant change in the performance of NAVIS
on the dataset. This experiment provides empirical evidence that NAVIS is robust to noise such as
short-term spikes.

What NAVIS learns? Table |2 the Persistent Forecast baseline performs better than Moving
Average on tgbn-trade, while on tgbn-genre the opposite holds. This means that tgbn-genre requires
more memory to accurately perform node affinity prediction while in tgbn-trade one needs to rely

16

Under review as a conference paper at ICLR 2026

Table 9: MRR on TGB datasets using only previous ground-truth labels (1 higher is better). This
setting is suited for heuristics. Boldface marks the best method. Baselines have no standard deviation
because they are pre-defined and deterministic.

Method tgbn-trade tgbn-genre tgbn-reddit tgbn-token
Val. Test Val. Test Val. Test Val. Test
Moving Avg 0.77 0.78 0.31 0.32 0.41 0.40 0.44 0.47

NAVIS (ours) 0.7740.00 0.78+0.00 0.414+0.00 0.42+0.00 0.474+0.00 0.46+0.00 0.46+0.00 0.48+0.00

Table 10: Recall@10 on TGB datasets using only previous ground-truth labels (1 higher is better).
This setting is suited for heuristics. Boldface marks the best method. Baselines have no standard
deviation because they are pre-defined and deterministic.

Method tgbn-trade tgbn-genre tgbn-reddit tgbn-token
Val. Test Val. Test Val. Test Val. Test
Moving Avg 0.74 0.73 0.29 0.30 0.25 0.24 0.30 0.29

NAVIS (ours) 0.7440.00 0.73+0.00 0.344+0.00 0.34+0.00 0.254+0.00 0.24+0.00 0.3040.00 0.29+0.00

more on the newly arrived data. To examine what NAVIS learns in these two regimes, we measured
the average values of zj, and z, from Equation (T4), which control the relative influence of the
memory component. We expect lower values on tgbn-trade to resemble persistent forecast and larger
values on tgbn-genre to resemble moving average. The measured values are z;, = 0.48, z;, = 0.49
for tgbn-trade and z;, = 0.90, z; = 0.84 for tgbn-genre. This alignment between the learned 2y, 25
and the heuristic that performs better on each dataset provides empirical evidence that NAVIS learns
the intended heuristic behavior in practice.

Additional SSM comparison We further compared NAVIS to an additional general SSM baseline,
the S4 block (Gu et al.| [2022), and report the results in Table E The comparison was performed
under the same ground-truth label setting as in our main experiments. Both our method and the
S4 block utilized the same learning rate, batch size, and number of training epochs. The results
in Table[TT] show that although the S4 block achieves relatively strong performance on the tested
benchmark, NAVIS still outperforms it, indicating that there remains substantial room for improving
general SSM architectures on this benchmark.

F ABLATION OF DESIGN CHOICES

Table [I2] shows the ablation study results on the four TGB test sets. The results confirm that each
component provides a significant impact on NAVIS performance. The full NAVIS with our suggested
linear state updating-mechanism, global vector, and ranking loss establishes the strongest performance.
Replacing the ranking loss with cross-entropy causes a notable drop in performance, validating our
theoretical motivation. Switching to the GRU mechanism and removing the global signal further
degrades performance, highlighting the importance of each component in the final design.

We further ablate on the regularization term of our loss, and performed an additional experiment on
the TGB datasets where the regularization term is not included in the loss computation. We report the
results in Table I3

Applying our proposed regularization not only significantly improves the performance of NAVIS,
but also accelerates convergence, with convergence typically reached in roughly 30 epochs.

We also performed an empirical analysis on the effect of the hyperparameters of delta and batch size
on the perfance of NAVIS, and report the results inTable[T4] From Table[I4] we can see that on the
tested datasets and batch size values has no effect on the performance of NAVIS. In addion, choosing
too small or too large values for delta can slightly hurt the performance of NAVIS.

Additionally, we performed an analysis to examine the effect of the global buffer size and its
aggregation scheme on the performance of NAVIS, compared to the recency selection aggregation

17

Under review as a conference paper at ICLR 2026

Table 11: NDCG@10 on TGB datasets using only previous ground-truth labels (1 higher is better).
Boldface marks the best method.

tgbn-trade tgbn-genre
Method Val. Test Val. Test
S4 0.819+£0.005 0.796+0.002 0.45140.001 0.46140.001
NAVIS (ours) 0.8724+0.001 0.863+0.001 0.517+0.001 0.528+0.001

Table 12: Ablation study of NAVIS components on TGB test sets. (v') denotes inclusion and (X)

denotes exclusion.

State Update Global vector Loss tgbn-trade tgbn-genre tgbn-reddit tgbn-token

Linear v Rank 0.863+0.001 0.5284+0.001 0.5694+0.001 0.513+0.001
GRU X Rank 0.85040.001 0.398+0.001 0.454+0.001 0.444+0.001
Linear X Rank 0.85740.001 0.521+£0.001 0.557£0.004 0.51140.001
Linear v CE 0.85940.001 0.461£0.001 0.5304+0.001 0.50840.001

scheme used in previous experiments. We report the results in Table [T3]

The results in Table [I3]

show that changing the aggregation scheme or the size of the buffer has little to no effect on the
existing implementation of NAVIS. The slight drop in performance when the buffer size is 8 and
the aggregation scheme is mean may be explained by the reliance on relatively old values in the
buffer. We leave the exploration of new and more sophisticated virtual global state mechanisms (e.g.,
attention-based aggregation) for future work.

G MEMORY AND RUNTIME ANALYSIS

We conducted a runtime and memory analysis to examine the efficiency of NAVIS. In Table [T
we report the number of parameters of the TGNN baselines and NAVIS. NAVIS not only requires
the fewest parameters among the compared methods, but also scales well to large graphs due to the
sparsification pipeline detailed in Section [3.2]

In Table [T7] we report a runtime comparison for a single training epoch and inference between
NAVIS, heuristics, and TGNN baselines. NAVIS is more efficient than the TGNN baselines and has
a runtime comparable to the heuristics. Since all methods use the same batch size, their throughput
is proportional to their runtime. Since the heuristics do not contain learnable parameters they only
require a single pass over the training data to compute node states before entering the validation and
test phases. Other methods require multiple iterations over the training data (epochs) like standard
deep learning models.

H THEORETICAL REMARKS

In Theorem 2] we showed that standard memory cells (RNN, LSTM, and GRU) cannot express the
simple Persistent Forecast heuristic. The proof assumes that the input to the cells may be unbounded,
and since tanh and other nonlinear activation functions have bounded images, this prevents the
memory cells from expressing this heuristic. A natural question is what happens when the input x
is bounded, e.g., in [0, 1] or [—1, 1]. Recall that persistent forecast is defined by h; = x;, while an
RNN cell is defined by h; = tanh(Wy,h;—1 + Woa; +b). Denote f(z;) = Wyhi—1 + Wyx; +b. To
obtain h; = x;, we need tanh(f(x;)) = x;, i.e., tanh = f~! on the relevant range by composition
of functions. However, f‘1 must be affine, as the inverse of an affine function, which contradicts the
fact that tanh is not affine. The same argument applies to h in the GRU cell from Equation . This
also holds for any non-affine activation on [—1, 1], such as ReLU or leaky ReLU. On [0, 1], ReLU

18

Under review as a conference paper at ICLR 2026

Table 13: Results of NAVIS in terms of NDCG@ 10 on TGB datasets, with and without the suggested
regularization term. (v') denotes inclusion and (X) denotes exclusion.

o tgbn-genre tgbn-reddit tgbn-token
Regularization Val. Test Val. Test Val. Test
X 0.51040.001 0.52040.001 0.57040.001 0.55340.001 0.48740.001 0.51040.001
v 0.5174+0.001 0.5284+0.001 0.584+0.001 0.569+0.001 0.493+0.001 0.513+0.001

Table 14: Analysis of different batch sized and deltas, results are measured in NDCG@ 10 on test sets
of datasets from TGB, averaged for 3 runs.

Hyperparameter tgbn-trade tgbn-genre
delta=0.1 0.863+0.001 0.526+0.001
delta=0.01 0.863+0.001 0.528+0.001
delta=0.001 0.863+0.001 0.52740.001
batch size = 100 0.863+0.001 0.528+0.001
batch size =200 0.863+0.001 0.528+0.001
batch size =400 0.863+0.001 0.52840.001

Table 15: Ablation study of NAVIS components on TGB test sets. (v') denotes inclusion and (X)
denotes exclusion.

Buffer size Aggregation scheme tgbn-trade tgbn-genre

Recent Selection ~ 0.863+0.001 0.52840.001
4 MEAN 0.863£0.001 0.528+0.001
4 Time Decay 0.863£0.001 0.528+0.001
8 MEAN 0.8634+0.001 0.527+0.001
8 Time Decay 0.863£0.001 0.528+0.001

is equal to the identity, and hence applying ReLLU to inputs normalized to this range allows these
memory cells to learn the Persistent Forecast heuristic.

Tjandra et al.| (2024) state that There exists a formulation of TGNv2 that can represent persistent fore-
casting and moving average of order k. To prove this claim Tjandra et al.| (2024) utilize permutation
matrices, block matrix and a dedicated generator vector for the memory module of TGNv2. However,
in practice TGNV2 is officially implemented with a GRU cell as the memory module. We showed in
Theorem [2] that GRU cell cannot express the simple Persistent Forecast heuristic.

In Theorem [3] we proved that the cross-entropy loss is suboptimal by showing that there exist two
rankings such that one ranks the elements identically to the ground truth while the other does not, yet
under cross-entropy the latter achieves a smaller loss, contrary to what is desired in the task of node
affinity prediction. We then argued that there exist infinitely many such examples since the cross-
entropy loss is a continuous function. Consider the cross-entropy loss evaluated on the ground-truth
order vector and a correctly ordered score vector as a function of the first entry of the correctly ordered
vector (all other entries are fixed). Denote this function by f(x). Let L, be the cross-entropy loss of
a fixed incorrectly ordered vector, and define A := f(z) — Li,. > 0. By continuity of f, there exists
d > 0 such that for any 2’ satisfying |2’ — x| < § we have |f(2") — f(x)| < A/2, which implies
f(a") > Liy.. Since there are infinitely many such z’, we obtain infinitely many correctly ordered
score vectors that incur a larger cross-entropy loss than the incorrectly ordered vector.

19

Under review as a conference paper at ICLR 2026

Table 16: Number of parameters of TGNN baselines and NAVIS, compared to the total number of
nodes in each TGB benchmark for node affinity prediction.

Method tgbn-trade tgbn-genre tgbn-reddit tgbn-token

#Nodes 255 1505 11766 61756

DyGMamba 255125 257963 259998 -
DyGFormer 1027877 1030715 1032750 -

TGN 207655 233713 252398 283401
TGNv2 6433023 6565377 6660282 6817769
NAVIS 1280 2570 3495 5010

Table 17: Training and inference runtimes of the TGNN baselines, heuristics and NAVIS on the
tgbn-genre dataset.

Method Training runtime (sec) Inference runtime (sec)
Persistent Forecast / Moving Avg 34 6
DyGMamba 2080 381
DyGFormer 1440 304

TGN 170 33

TGNv2 130 36

NAVIS 46 8

20

	Introduction
	Background
	Method
	What Hinders TGNNs in Future Node Affinity Prediction
	NAViS: Node Affinity Prediction with a Global Virtual State
	Learning with Rank-Based Loss: Why Cross-Entropy Fails

	Experiments
	Node Affinity Prediction on TGB
	Generalization to Link Prediction Datasets
	Ablation study

	Related Work
	Conclusion
	Datasets statistics and description
	Converting link prediction datasets to node affinity prediction datasets
	Synthetic experiment
	Implementation Details
	Additional results
	Ablation of Design Choices
	Memory and Runtime analysis
	Theoretical remarks

