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Abstract

Visual representations can be defined as the activations of neuronal populations in response
to images. The activation of a neuron as a function over all image space has been described
as a “tuning landscape”. As a function over a high-dimensional space, what is the structure
of this landscape? In this study, we characterize tuning landscapes through the lens of level
sets and Morse theory. A recent study measured the in vivo two-dimensional tuning maps
of neurons in different brain regions. Here, we developed a statistically reliable signature
for these maps based on the change of topology in level sets. We found this topological
signature changed progressively throughout the cortical hierarchy, with similar trends found
for units in convolutional neural networks (CNNs). Further, we analyzed the geometry of
level sets on the tuning landscapes of CNN units. We advanced the hypothesis that higher-
order units can be locally regarded as isotropic radial basis functions, but not globally.
This shows the power of level sets as a conceptual tool to understand neuronal activations
over image space.

Keywords: level sets, invariance, visual neuroscience, natural image manifold, neural
tuning, radial basis function, generative adversarial network, iso-response curve

Figure 1: Conceptual schematics. A. The level sets of a schematic landscape. B. One
method for characterizing these sets: tracking topology through levels. C. A
second method: analyzing the geometry of each level set within and across the
connected components.

1. Introduction

The visual capabilities of humans and machines depend on the representations of their con-
stituent neuronal units. To a first approximation, a visual representation is a set of feature
functions over image space. For primate visual systems, these functions are instantiated
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by the firing rates of individual cortical neurons. For automated visual systems such as
deep artificial neural networks (ANNs), these functions are instantiated by the activations
of hidden units. The feature function is usually a continuous non-negative function of the
image: for neurons, the mean firing rate changes continuously with the image; for in silico
units, activation is a continuous function by design. Thus, we can picture the activation of
a neuron or unit over the entire image space as a tuning landscape (Wang and Ponce,
2022c). If we do so, one can then ask: what are the image transformations that leave a
unit’s activations unchanged? In the landscape picture, this translates to finding the iso-
response contours or level sets of the activation function (Figure 1A). Transforming images
within each level set will leave activations unchanged. This is a generalized definition of
“invariance,” the ability of a neuron to respond equally despite nuisance transformations
(Ito et al., 1995). At the population level, the intersection of individual neural level sets
defines the set of metamers for a population representation (Freeman and Simoncelli, 2011;
Feather et al., 2022). Thus, understanding the structure and visual content of level sets
can shed light on important neuronal functional properties — a collection of level sets is
similar to a computer tomography scan of the tuning landscape. Using tools from Morse
Theory (Milnor, 2016), one can track the shape and topology of level sets as a function of
the activation, revealing information such as the number of peaks, and the shape of each
peak (Figure 1B).

Here, we analyzed the tuning landscape of neurons and units through the lens of level
sets. Using data from a novel experimental design (Wang and Ponce, 2022c), we obtained
a collection of level sets on 2D tuning maps from neurons in visual cortex. By tracking
how the level-set topology changed as a function of activation, we developed a topological
signature for each tuning map. This signature was found to change systematically across
the visual hierarchy, advancing previous results. We also examined images within the level
sets to capture the feature attributes to which the unit was invariant. Finally, using level
sets, we studied the high-dimensional tuning landscape of units in an ANN trained for ob-
ject recognition. We found that higher-order units could be well-approximated by isotropic
radial basis functions locally, while globally exhibiting multiple separated peaks. In con-
trast, the tuning-landscape peaks of mid-level units were much more anisotropic, and better
connected by “mountain ridges”.

2. Formalism and Mathematical Background

Let us consider the tuning function of a neuron or unit, mapping images to non-negative
activation values1 f : I → R+. We assume f is a continuous function of the image. Since
image space I is compact2, this continuous function has a global maximum and minimum
value, according to the extreme value theorem (Rudin et al., 1976). The level set of a tuning
function on general image space I is defined as the set of images evoking the activation level
c, Ωc = {I ∈ I | f(I) = c}. In this study, the image space is parametrized by a generative
image model G : Rd → I (Dosovitskiy and Brox, 2016), so the level set lies on this d

1. For neurons, we will consider their mean firing rates in a given time window and disregard dynamics,
e.g., fluctuation and adaptation effects

2. When regarding an image as a red-green-blue (RGB) pixel array, the space of images is bounded.
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dimensional image manifold.

Ωc = {I = G(z), z ∈ Rd | f(G(z)) = c} (1)

When c is a regular value of the function f , the level set on a d-dim manifold is a (d− 1)-
dim hypersurface (per the implicit function theorem Hatcher (2000)). When c is a critical
value (e.g., the value of a peak or a saddle point), the level set may contain discrete points.
From Morse theory (Audin et al., 2014), if an interval [a, b] contains only regular values,
then the level set Ωa and Ωb has the same topology (it is homeomorphic). Using this fact,
when we find that the topology of a level set changes in an interval [a, b], we can conclude
there is a critical value (e.g., a second tuning peak) lying in this interval (for examples, see
Figure 1B). Thus, tracking the level set as a function of activation level can characterize
the landscape.

For a high-dimensional image space, fully representing and characterizing a d − 1 di-
mensional hypersurface is intractable. So, we used two strategies to study these: in Sec.3,
we consider a tuning function on a 2D sub-manifold in the image space; then, the level
sets become 1D curves—easier to study. In Sec.4, we sample discrete points from the
high-dimensional level sets and estimate their properties (Figure 1C).

3. Level Sets of Neuronal Tuning in vivo

In this section, we study the tuning landscapes of visual cortex neurons using level sets.
Because most datasets comprise arbitrary, irregularly sampled natural images, they do
not facilitate neuronal response interpolation needed to calculate a level set. In contrast,
generative image models allow for the dense sampling of visually similar stimuli and perfectly
suited level set extraction — thus, we used these generative models for our experiments.

Experimental Design. The activity of visual neurons in V1, V4, and posterior inferior
temporal (pIT) cortex were recorded using chronic microelectrode arrays (Microprobes for
Life Sciences). A generative image model G with 4096 latent dimensions (Dosovitskiy and
Brox, 2016) parameterized a naturalistic image manifold. We used this manifold to charac-
terize neuronal tuning functions and to find each site’s tuning peaks. In each experimental
session, one cortical site was selected as an experimental target (which could be a single
neuron or multi-unit cluster), and then the neuron-guided image synthesis or Evolution
approach (Ponce et al., 2019) was used to search for images that maximized firing rate
(Figure 2A). After responses converged (Loshchilov, 2014; Wang and Ponce, 2022a), the
evolutionary trajectory in the latent space was analyzed by principal component analysis
(PCA). Then, a 2D hemisphere was created in the subspace spanned by the top three PC
vectors of the trajectory (Figure 2B). We denoted the coordinate map of hemisphere as
φ : [−π/2, π/2]× [−π/2, π/2] → R4096, (θ, ϕ) 7→ z. Latent codes were sampled regularly on
the longitude-latitude (θ, ϕ) grid, and then mapped to images by G. This 2D hemisphere
was designed to section through the peak and to visualize the shape of tuning around opti-
mal stimuli3. Finally, the sampled images were shown to the subject and neuronal responses
r recorded. Each session led to a 2D tuning map, which could be understood as the com-
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posite function f ◦ G ◦ φ : (θ, ϕ) 7→ z 7→ I 7→ r, mapping spherical coordinates (θ, ϕ) to
neuronal activations r (firing rate averaged over [50, 200]ms after stimulus onset).

Level Set Extraction. As shown in Wang and Ponce (2022c), neurons from V1 to pIT
showed smooth tuning maps on the image manifold (Figure 2C). Spherical spline interpo-
lation was used to obtain a smooth function over the hemisphere (see appendix B.1 for
details). We sampled K = 21 levels uniformly between the min and max values of the
tuning map and extracted these level sets (Figure 2D,E).

Figure 2: Example Manifold experiment (in vivo) (Wang and Ponce, 2022c). A. Process
of image optimization as driven by a V4 multiunit in monkey B (Evolution ex-
periment). Image frame color denotes mean firing rate evoked per generation
(same color scale as C). B. Latent space geometry of Evolution trajectory and
Manifold sampling grid, plotted in the 3D subspace spanned by the PC1,2,3 vec-
tors of the Evolution trajectory, adapted from Wang and Ponce (2022c, Figure
2). C. Raw neuronal response as a tuning map over the Manifold images. D.
Spherical interpolation of tuning map and all level sets. E. One circular level set
with corresponding image loop.

3.1. Topological Signature of Level Sets on Tuning Maps

First, we examined the topology of each level set. Since each level set Ωc is a 1D manifold,
it has to be the union of segments that are topologically homeomorphic to either a circle
S1 or a line (0, 1) (Hatcher, 2000). Based on this fact, for each level set, we computed the
number of segments (connected components) that are homeomorphic to circles NS and to
lines NL. We tracked these numbers NS , NL as a function of the activation level c. We call
this the topological signature of the level sets.

We found that generally, at a high activation levels, the topology of the level set was a circle
S1. At lower activations, the level set became more elongated and fractured. We tracked

3. This specific way of sampling was informed by the spherical geometry of the latent space of the generator
G (Wang and Ponce, 2022a, Figure B.1). In this latent space, angular distance was a better correlate of
perceptual distance than linear distance; changing the vector norm largely changes image contrast. So,
we fixed the vector norm and sample vectors on a sphere.
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Figure 3: Topological signatures of level sets in vivo. A-C. Example tuning maps and their
topological signatures. (Left panel) K level set contours on the tuning manifold.
(Right panel) Solid lines and dots denote the number of branches, loops and
lines on each level as a function of neuronal activation level. A. A sharp single
peak surrounded by many circle segments. B. A broader single peak, with more
line segments. C. An irregular, multi-peak landscape, with multiple circular and
line segments. D. UMAP plot of individual cortical sites (color indicates area of
origin). E. Same plot with color coding of index iloop.

the level set topology down from the peak and defined an index iloop as the lowest level
where the level set was still a single circle. This index quantifies the level where the level
set changed its topology, either by intersecting the boundary or going through a second
peak. Since all levels between iloop and K are homeomorphic to a loop, we can infer that
above the level iloop, the landscape looks exactly like a bell (homeomorphic to a disk D2).

To see how this topological signature translated to the landscape’s geometry, we investi-
gated a few examples in Figure 3. A sharp isolated peak on the tuning map (A) was reflected
by many level sets with a single circular component at a high activation level. A broader
peak (B) was encoded by multiple line-like level sets, since the mountain slope intersected
with the boundary of the hemisphere. A more fractured and multi-peak landscape (C ) led
to multiple connected components, even at high activation levels.

We then performed a population analysis using dimensionality reduction (UMAP) (McInnes
et al., 2018) on the topological signatures of all tuning maps (n = 90). We used the number
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of loops NS and lines NL at K levels as the feature and Manhattan distance as the metric.
The UMAP analysis revealed a spectrum of topological features across all neurons (Fig-
ure 3D). We found that the index iloop strongly correlated with this spectrum (Spearman
correlations with UMAP coordinate 1,2 were 0.923, p = 3× 10−38 and 0.82, p = 8× 10−23),
providing one interpretation of this map. When we labeled the UMAP points by their visual
area, we found that the progression of visual hierarchy (V1 to V4 to pIT) mapped onto this
spectrum (Figure 3E). The index iloop decreased across the ventral hierarchy (Spearman
correlation of iloop with hierarchical level was −0.565, p = 6.5 × 10−9; one-way ANOVA
of iloop and cortical area, F = 23.01, p = 9.1 × 10−9 ). Simply put, more IT neurons
have tuning maps as in example A, while more V1 neurons have maps as in example C. In
topological terms, a narrow isolated tuning peak resulted in more loop-like level sets and
lower iloop, while multi-peaks on a highland led to non-connected level sets at a high level,
leading to a higher iloop.

As a comparison, we performed the same Manifold experiments on units from a deep
neural network (for details see B.4). The same level set analysis revealed a trend of
topological signature change across the layers, similar to that across the ventral hierarchy
(for in silico experiments, Spearman correlation of iloop with the layer depth was −0.589,
p = 0, df = 9502. For qualitative comparison of the mean topological signature, see Fig-
ures 8 and 7).

3.2. Emergent invariance in level sets

Figure 4: Example of an interpretable image transformation of one level set in vivo. A
circular level set that mapped to a color/hue circle in the image space. A. (Left)
The circular level set on the tuning map of an IT neuron in monkey A. (Middle)
The peak image on the manifold. (Right) The feature attribution mask high-
lighting the image region that correlated the most with the neural activation.
For details see Sec.B.2. B. The image content of the level set, with the feature
attribution mask emphasizing the region important to the neuron. C. Natural
images that were also strongly activating. Firing rates are labeled at the corner
and encoded in the color frame.

Next, we examined the visual content of each level set to study its associated feature
invariance. We found that the image transformations of a subset of level sets were highly
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interpretable. For example, in one case, a pIT neuron guided the Evolution search towards
a red-pink round object (Figure 4A). We extracted and visualized the level set at a high
level (80% max). Intriguingly, the circular level set looping around the peak corresponded
nearly perfectly to a hue circle with approximately the same spherical shape as the “object”.
Thus we could describe the image transform along this level set as “changing the color of
the object by rotating along the hue circle”. More formally, we can define a group action of
a S1 circle group transforming the image by traveling on the circle. We also examined the
same neuron’s responses to natural images in the same session (Figure 4C). Though their
activation level was not as high as the peak image, they had different colors: an orange, a
green apple, brown toast, etc. This suggests that this IT neuron was relatively invariant to
the object’s color. More generally, since circular level sets were common on the landscape,
especially around tuning peaks, we conclude that it is relatively simple to create image
transformations to which a neuron will be invariant. Crucially, we also noted that many
level sets corresponded to image transformations that were hard to summarize in simple
words (see Figure 9). We will discuss the implications of this observation in the end.

4. Level Sets of Deep Neural Network Units

Next, we characterized the tuning landscape of deep neural network units on the same
generative image manifold. Without in vivo experimental constraints, we were able to
explore the full image manifold and characterize level sets more comprehensively. This
could generate testable hypotheses for neural representations in vivo.

Methods. Here we used an optimization method to sample from level sets and char-
acterize them using these samples. Since each level set Ωc can have multiple connected
components, we were interested in both local and global properties (i.e. structure of one
component or across components). We analyzed local properties by first finding a local
maximum, and then searching for level set images starting from that maximum. Global
properties were analyzed by searching for level set images starting from random initial-
izations. Pictorially, a local search ends at points near the connected component around
a given peak; a global search ends with points lying on different “peaks” (Figure 5A).
By analyzing the distance structure among images within a component (local) or across
components (global), we could characterize the geometry of the tuning landscape.

More concretely, we first performed an initial Evolution to obtain one activation max-
imizing image I∗ = G(z∗) and its code z∗ as the base. Then, we searched for level set
images using the objective Eq.2. The first term penalized the deviation of activation from
the level c; the second term minimized or maximized the perceptual distance from a target
I∗, depending on the sign of β. For a local characterization, the search was initialized from
the peak z∗; for a global characterization, from a random vector. We used the perceptual
image distance LPIPS (Zhang et al., 2018) as D, and masked the images by their receptive
field masks (methods detailed in appendix B.3). For each unit, we performed the search
under three main conditions: local search, minimizing image distance (β = 5); local search,
maximizing image distance (β = −5) ; global search, maximizing image distance (β = −5).
We also performed the local and global search with β = 0 as baseline conditions.

argmin
z

|f(G(z))− c|+ βD(G(z), I∗) (2)
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Figure 5: Characterizing level sets for in silico units. A. Conceptual schematics showing
level sets as hyper-surfaces and our strategy for characterizing them. B. Image
samples from two level sets (0.2, 0.5) for a unit in layer 4 (images masked by
its receptive field). Each column shows three samples obtained under the same
search condition (local min, local max, global max image distance). The base
image (local maximum) is shown in the rightmost column. C. Examples of image
distance - activation level curve, in three different layers. D. Ratio of global
versus local max image distance in a level set, as a function of layer. E. Ratio of
local max versus min image distance in a level set, as a function of layer.

Model network We chose the adversarially trained ResNet50-robust (He et al., 2016;
Engstrom et al., 2019), as the in silico visual hierarchy to be compared with the ventral
stream. This choice was made based on its high ranking on the Brain-Score leaderboard
(Schrimpf et al., 2018) at the time of this study. We sampled six layers and 60 units per
layer; for each unit, we searched for 11 activation levels, with 5 different search conditions,
and 40 repetitions, totaling 792,000 optimization runs.

4.1. Global Topology of Level Sets

First, we focused on the basic topological property of path-connectedness of the level set.
We made the assumption that if a level set was path-connected, a gradient-based search
within the set could explore every point in it. So, we compared the level-set samples found
by local versus global searches, both maximizing distances to the base image I∗. Specifically,
we compared their image distances to the base image. The ratio of image distance between
global and local search estimates the ratio of the distance between connected components
and the “radius” of one component. Indeed, we found that the global search resulted in
a larger diversity of level-set images, which were further apart from the initial peak I∗

(Figure 5B,C). Throughout the hierarchy, the ratio of the mean image distance between the
global and the local search was always greater than one (Figure 5D). Thus, we conclude that
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these level sets were generally not path-connected, and the tuning landscapes exhibited peaks
at multiple locations which are not connected by a ridge. We also note that the global/local
ratio for hierarchically higher units was larger, and the ratio for mid-hierarchical units was
closer to one (layer3.B2, mean±std 1.53 ± 0.24, layer3.B5, 1.62 + 0.30, N = 60). This
suggests that the landscape of mid-level units was “more connected” — meaning that when
traveling along one level set component, the farthest distance one can reach was close to
the farthest one can get globally. Pictorially, this means that the peaks of mid-level units
were connected by “mountain ridges”. In contrast, the peaks of high-level units were more
isolated, and each local component was farther apart.

4.2. Local Geometry of the Level Sets and Tuning Peak Isotropy

Next, we examined the local geometry of the level sets. We computed the ratio between the
max and min image distances D to the peak from one local component Ω̄c. λmaxmin(c) =
maxI∈Ω̄c

D(I,I∗)

minI∈Ω̄c
D(I,I∗) The max-min ratio λmaxmin is closely related to the condition number of the

Hessian matrix at the tuning peak, given a local quadratic approximation to the neural
tuning function. The numerator points to the flattest direction to the level set, while the
denominator points to the steepest direction from the peak. So, using this index we can
quantify the perceptual anisotropy of the tuning peak.

We found that for mid-layer units, the ratio was large, i.e., there was a large gap
between the minimum and maximum image changes that induced a certain level of activation
decrease (Figure 5CE). In contrast, for the higher order visual representations (especially
the penultimate layer in ResNet50-robust), the ratio was surprisingly close to 1 (mean±std,
1.77± 0.46, N = 60) — so even the “fastest” descent and “slowest” descent path from the
peak had a similar slope. This highlights the isotropic nature of the peak.

In summary, we can interpret these results in the context of the radial basis function
(Poggio and Girosi, 1990). It has been proposed that in a multidimensional space, the
tuning of neurons could be viewed locally as a radial basis function (Wang and Ponce,
2022c). Here, we validated that the tuning landscapes of higher-order visual units can
be locally approximated well by isotropic radial basis functions: any direction deviating
from the peak has a similar slope. However, this approximation does not hold globally,
as images sampled from other components of the level set did not fall on the same trend
Figure 5. This suggests we should not limit global characterization of tuning to just one
radial basis function, and certainly not to readily interpretable tuning variables (Wang and
Ponce, 2022c). In contrast, for mid-level units, there exist some very flat and also very steep
paths deviating from the peak, illustrated by an elongated level set with large aspect ratio.
Thus even locally, their tuning landscapes are anisotropic and exhibit certain “untuned”
directions. This result is consistent with the model proposed in Wang and Ponce (2022c,
Figure 6), where higher visual neurons have more tuned axes than the middle ones and
appear to be more isotropic.

5. Discussion

In machine learning, the concept of level sets has been a classic tool for representing and
analyzing shapes (Osher et al., 2004). In neuroscience, it has been used under the name of
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“iso-response method” to understand the computation that integrates two or three features
in early sensory neurons (e.g. locust auditory receptor, retina ganglion cells, V1 neurons,
Gollisch et al. (2002); Rust et al. (2005); Horwitz and Hass (2012); Gollisch and Herz (2012)).
In this work, we extended this tradition and applied this concept to analyze the geometry
of tuning landscapes of neurons throughout the visual hierarchy. Thanks to the advance of
image generative models and closed-loop experiment techniques, we can obtain level sets
both for higher visual neurons and in the high-dimensional space of complex natural images.
As we showed, the geometry of level sets exhibited trends across the visual hierarchy that
were consistent in vivo and in silico (Figures 8 and 7). This adds another quantitative
tool for comparing representations in brains and machines, in addition to representation
similarity analyses (Kriegeskorte and Wei, 2021).

The next stage for visual neuroscience is to define how neurons respond across naturalis-
tic image transformations, specifically characterizing their selectivity and invariance. When
considering neuronal responses across a large image manifold (via the tuning landscape per-
spective), it appears trivial to define a group action (i.e. image transformation) of a S1
circle group on a local image domain, to which the neuron activation is “invariant.” The
group action is to transform the image by rotating on the circular level set. More generally,
the level set of a function on a d dimensional manifold is a d − 1 dim hypersurface. We
hypothesize that if a neuron is tuned to d dimensions, one should find a d− 1 dimensional
hypersphere-like level set around its local maximum, where the neuron will be invariant to
any transformation on the hypersphere. This may have implications for the development
of equivariant neural networks.

There are compelling examples where the level sets on the tuning landscape contained
interpretable image transformations (e.g. color of the object), but more often than not,
there are no easy labels for the transformations characterized by the set. This is likely
because neurons/units just learn useful features, and signal distances to these features,
regardless of interpretability. By being tuned to multiple features, the diminishing presence
of one feature can be compensated by the persistence of another. Thus, nameable image
transformations (e.g., rotation) may be a small fraction of all the image transforms to which
a unit or neuron is invariant.
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Appendix A. Related Work

Iso-response Set of Tuning Functions There is a rich history of analyzing the level
sets of tuning functions for biological neurons and artificial units. Much of this literature
can be found under the terms of iso-response sets. For in silico units, Paiton et al. (2020)
analyzed the iso-response surfaces of units in a sparse coding network, and found that one
direction of adversarial perturbations was orthogonal to the surface. This makes sense since
this was the “steepest” tuning direction. For biological neurons, Rust et al. (2005, Figure 5)
analyzed the iso-response contours of primate V1 neurons on the 2D plane spanned by the
activities of two linear filters (subunits). By inspecting the shape of the ellipsoidal contours
and their alignment with the axes, the authors inferred the form of nonlinear operations
combining the linear filters. Horwitz and Hass (2012) used a closed-loop experiment to find
the iso-response surface for V1 neurons in the 3d color space spanned by cone-photoreceptor
activity space. By analyzing the geometry of these 2D surfaces (e.g., some being planar,
others ellipsoidal or cup-shaped), they identified different linear or nonlinear computations
used by these V1 neurons used to integrate cone input signals. Gollisch and Herz (2012)
reviewed experimental results on the iso-response curve: the locust auditory receptors,
with respect to the intensity of two pure tones in superposition (Gollisch et al., 2002);
retina ganglion cells, with respect to the contrast levels of two patches; and V1 neurons
with respect to colors (Horwitz and Hass, 2012). They proposed that by analyzing the
geometry of the “iso-response” curve on the plane spanned by two stimulus features, one
could disambiguate different feature integration mechanisms. They also suggested that
closed-loop optimization was crucial to estimate these level sets. These previous works
focused on early sensory neurons or receptors and analyzed contours in simple stimulus
spaces. Here, we extended this approach to neurons in higher visual cortices (V4 and
pIT) within complex naturalistic image manifolds. This advance was made possible by our
closed-loop experimental approach that could find neurons’ “preferred” stimuli and by the
use of an image generator that could manipulate images smoothly.

Shifting to studies of perception, Zetzsche et al. (1999) found the set of stimuli that had a
just noticeable distance (JND) from a given Gabor patch on a 2D image space. By comparing
the shape of the contour formed by these stimuli under different parametrizations (Zetzsche
et al., 1999, Fig.5,6), the authors found that certain parametrization schemes (such as polar
coordinates) were more fitting to perception because they led to more isotropic, circular
contours. This argument can also apply to the more isotropic tuning peaks for higher
visual units in our study. It suggests the latent space parametrization of images is more
“natural” for higher visual neurons like IT.
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Level Sets in Machine Learning A level set is a classic concept in multivariate calculus
and geometry. In machine learning, it is a popular tool for representing d− 1 dimensional
hyper-surface data with a scalar function on d dimensional spaces (Osher et al., 2004). The
level set method is also a classic approach for image segmentation, which represents the
boundary of an object by the level sets of a function on the 2D plane. More recently, the
neural implicit function method represents 2D shapes and surfaces by the level sets of a 3D
volumetric function parametrized by a neural network (Chen and Zhang, 2019). In many
cases, the function learned by the network is the signed distance function (SDF) to the object
surface (Park et al., 2019). In these works, the level set is a tool to learn and represent a
target signal. In contrast, in our work, we used level sets to analyze representations already
learned in biological and computational visual systems.

Object Manifold in Neural Representation One similar line of work is the one study-
ing the geometry of object manifolds (Chung et al. (2018); Cohen et al. (2020)). Our con-
ceptual pictures complement each other: they consider the manifold in the neural activation
space, traced by the neural activations to the different views of the same object. We consid-
ered the level set manifolds in the image space, traced by the different images that evoked
comparable neuronal responses.

Appendix B. Method details

B.1. Details for Spherical Interpolation

In Wang and Ponce (2022c), images and associated responses were organized on a regular
grid of spherical coordinates θ, ϕ. Thus, the spherical geometry needed to be taken into ac-
count when interpolating the responses. We used the RectSphereBivariateSplinemethod
in SciPy to interpolate and smooth neuronal response on the hemisphere. We realized that
neuronal response noise would affect all downstream analyses, so we set the smoothing pa-
rameter s as the sum of the squared standard error of the mean (sem) of response over the
tuning map. This balanced the reconstruction error and the smoothness of the map.

For contour extraction, we used the marching squares algorithm (Lorensen and Cline,
1987) implemented in skimage.measure.find contours function for each contour line.
Finally, we re-parametrized each contour line with arc length parametrization and sampled
the curve uniformly. Namely, the latent codes were sampled with equal angular distance
along the curve. The resulting level sets were shown in Figure 2D,E.

B.2. Feature Attribution Mask

For the in vivo level set analysis, we masked the image with a “feature attribution mask”,
which can be estimated using a recently developed method Wang and Ponce (2022b). Con-
ceptually, this is a data-driven way to find the image region and pattern that correlate the
most with the neuronal responses. Briefly, this method took in all the image and response
pairs in the Evolution trajectory and correlated every unit activation in a convolutional
neural network with the neuronal response. Then the covariance tensor was factorized into
the combination of a few rank-1 factors, each one being the product of a spatial mask and
a feature vector. Finally, we fit a simple linear model to determine the relative weights of
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the factors. We used these weights to combine the spatial masks and obtained the alpha
mask on the image as in Figures 4 and 9.

B.3. Receptive Field Estimation

For the in silico level set analysis, the image was masked by a “receptive field mask”.
Simply, we estimated the receptive field by computing the gradient from the activation to
the image pixels ∇If(I), then we repeat this by sampling white noise images 200 times and
averaging these gradient maps

EI∼unif [0,1]∇If(I)

This average gradient map is normalized and smoothed to be the receptive field mask, as
in Figures 5, 10, 11, 12 and 13

B.4. Manifold Experiment in silico

As in Wang and Ponce (2022c), we conducted Evolution and Manifold experiments on
units sampled along the ResNet50-robust. We sampled units from the center of feature
maps of every channel in the CNN, totaling 38012 units from 10 layers (relu, layer1.B1,
layer2.B0, layer2.B2, layer3.B0, layer3.B2, layer3.B4, layer4.B0, layer4.B2, fc ,
B is the abbreviation for Bottleneck layer). In each experiment, the receptive field of the
unit was measured; the image was resized to fit the receptive field of the unit. Then the
same Evolution and Manifold experiments were applied to the unit to obtain its activation
maximizing image and the 2D tuning maps around the image. Then the tuning maps were
analyzed by the same level set topology analysis as in Sec. 3.

Appendix C. Extended Results
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Figure 6: Neuronal fluctuation in vivo. Left. The surface plot shows the spherical interpo-
lation of a tuning map in vivo (a neuron in IT of monkey A). 3d scatter shows the
single trial neuronal responses to each image. Right. 1d section through the 2D
tuning map, showing the single trial firing rates (scatter), mean response (blue),
and the spherical interpolated activation curve (red). This motivates us to use
the smoother interpolated curve when computing the level sets.
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Figure 7: Mean topological signature per visual area in vivo. Each curve shows the
mean±sem of number of loops (A), lines (B), and branches i.e. connected com-
ponents (C) as a function of level index; each color corresponds to a given visual
area (V1, V4, or IT).
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Figure 8: Mean topological signature per layer in network ResNet50-robust. Each curve
shows the mean±sem number of loops (A), lines (B), and branches i.e. connected
components (C) as a function of level index; each color corresponds to a given
layer.
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Figure 9: Examples of level sets lacking readily interpretable image transformations. Ex-
amples from A. V1, B. V4, and C. IT are showed in the three panels. Figure
layout in each panel is similar to Figure 4.
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Figure 10: in silico Level set image samples for an mid-level unit in layer 3. Upper Level
set images for three levels are shown (0.2, 0.5, 0.8 max activation level). Samples
obtained with the same objective are shown in a column. Three objectives were
local min, local max and global max image distance search. Lower Summary of
all level set images for this unit. The large gap between the local min and local
max distance highlights the anisotropy of the peak. The smaller gap between
the local max and global max signifies the different connected components of
the level set are not too far away. For examples with another organization, see
Figure 11, Figure 12, Figure 13.
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Figure 11: in silico Level set image samples across activation levels of a unit in Layer2-B3.
Upper left Initial peak, base image I∗. Upper right Summary of all level set
images for this unit. Lower, Each block collect the level set images obtained in
one optimization condition: from top to bottom, local min distance, local max
distance, global max distance. Column from left to right shows level set images
for 0.0 to 1.0 max activation level, two images per level per condition.
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Figure 12: in silico level-set image samples across activation levels of a unit in Layer3-B5.
Same organization as in previous figure.
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Figure 13: in silico level-set image samples across activation levels of a unit in Layer4-B2.
Same organization as in previous figure.
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