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Abstract
Greenhouse gas (GHG) emissions have become a critical envi-
ronmental concern, significantly impacting global climate change.
Given the global coverage and multiple gas species that may be
emitted simultaneously, a comprehensive strategy is required to
capture the spatial-temporal variation and subtle atmospheric pho-
tochemical reactions. Current approaches to GHG detection rely
on detecting a single gas species using broad multispectral bands
in short-wave infrared but disentangling different chemical gases
and their ratios is not achievable. Hyperspectral imaging, a remote
sensing technology, has emerged as a powerful tool for detecting
and monitoring GHG concentrations in the atmosphere. While
traditional retrieval GHG algorithms, such as Matched Filters are
helpful, they are prone to false detection and typically require post-
processing, which may require manual interpretation. To address
these challenges, this position paper aims to advocate for explor-
ing foundation models, a self-supervised artificial intelligence (AI)
model to detect GHG from multimodal data (optical, LiDAR, and
weather observations/forecasts) that reconstruct missing data but at
the same time captures the physical and chemical processes in the
atmosphere across different spatial and temporal scale. In this con-
text, we present a conceptual outline of potential GHG foundation
models built on multimodel data that leverage spatial-temporal-
spectral reconstructions and learn from each data modality. We will
discuss the challenges associated with GHG FM implementation.
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1 Introduction
The primary GHGs in the atmosphere are carbon dioxide (CO2),
methane (CH4), and nitrous oxide (N2O), which together account
for about 95% of all GHG emissions. These gases absorb infrared ra-
diation and then re-emit them, causing the Earth’s surface to warm
up, a phenomenon known as the greenhouse effect. The warming
potential of greenhouse gases (GHGs) on Earth’s climate system is
well understood but current measurement and sensing technologies
can not provide a complete understanding of the spatio-temporal
evolution of emission sources, absorption sinks, quantification of
the emission and absorption, and photochemical reactions for all
gases [12].

GHG emission sources can be categorized as point, area, or mo-
bile sources and their emissions are either intermittent or persistent.
In general, point sources with persistent emissions are the easiest
to detect as they can be measured multiple times across different de-
tection modalities. Identifying and quantifying these major sources
is crucial for building accurate GHG inventories and designing,
prioritizing and validating GHG reduction and mitigation actions.

Ground based measurements (e.g. local sensors like CO2 weather
station measurements) and remotely sensed measurements (satel-
lites, airborne vehicles) of GHG emission/absorption are commonly
used to identify the sources/sinks and quantify the emission and
absorption of GHG. While ground based measurements are accu-
rate and give the surface level GHG fluxes, they are not scalable.
The recent launches of several satellites (including OCO2, GHGSat,
Sentinel 2 and 3, and Sentinel 5p) enable GHG emissions to be mon-
itored and quantified at an unprecedentedly high spatial (20 meters
to 7 kilometers) and temporal (1-16 days) resolution. However, satel-
lite measurements are occluded by clouds, aerosols, and are limited
sparse spatial and/or temporal (high revisit times) and/or spectral
resolutions.

Specifically, for GHG monitoring, fine spectral resolution is key
as greenhouse gases near the Earth’s surface attenuates the re-
flectance of the sunlight bounced from the Earth’s surface in specific
wavelengths. For instance, in the case of CH4, this happens primar-
ily in the short-wave infrared region within the wavelength ranges
of approximately 2.2–2.4 𝜇m, and for CO2, it is around 1.4–1.6 and
1.9–2.1 𝜇m [13]. The fine spectral resolution resolved by hyperspec-
tral imaging instruments allows the detection of subtle attenuations
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Figure 1: AI framework for detection of GHG sources and
estimation of GHG emissions.

in these spectral responses, which translate into absorption features
in the spectral response measured for each pixel.

AI based approaches such as physics based learning models, and
deep learning models have been investigated to learn representa-
tions and patterns from remote sensed data, including hyperspectral
data.

Foundation models are designed as broad-spectrum models, ca-
pable of managing various tasks, and are trained on extensive data
quantities. These models can discern intricate patterns and relation-
ships in data, making them suitable for image analysis, language
processing, and decision-making. Their distinct advantage lies in
their more flexible architecture and their training on diverse tasks
and datasets, especially taking advantage of unlabeled data. This
results in foundation models learning general data representations,
applicable across numerous tasks and domains. Self-supervised
learning, used in foundation models, that can learn latent space
representations of missing data is ideally positioned to capture both
spatial-temporal-spectral data that may be blocked or is missing
in the datasets. While spectral reconstructions may be easier in
optical satellites like Sentinel-2 or Landsat, the close proximity of
bands and sharp spectral absorption of GHG gases, positions the
spatial-spectral FM models to identify GHG sources and quantify
magnitudes. The GHG FM model proposed has distinct advantages
compared to current single modality GFM models [5]:

• Accept multi modal data input in the form of raster images
as well as time series and point measurements data

• Themodel will learn spectral information fromhyperspectral
bands as well as translation of hyperspectral to multispectral
data

• Enforces the physics and chemistry constraints related to
energy fluxes, symmetry, and first principle physics laws.

In this paper, we discuss a conceptual outline of a potential so-
lution using multi modal/spectral/temporal foundation models to
monitor GHG emissions. For this, we propose to explore foundation
model technology [7, 11] and fuse it with real-time satellite observa-
tions, and AI-driven approaches (i.e., downscaling using a weather
foundation model and inverse modeling using a Physics-based ap-
proach available on SimulAI [6] to super-resolve emission sources

and sinks down to the scale of the GHG emission infrastructure.
A high-level sketch showing examples of input data and its use in
foundation models is shown in Figure 1.

2 Related work
2.1 Methane and carbon dioxide retrievals using

hyperspectral imagery
The pixel’s hyperspectral signature carries absorption patterns that
enable a retrieval algorithm to identify the presence of gases. An
example of such an algorithm is Matched Filters [4], a signal pro-
cessing technique used to identify specific patterns in a signal. They
operate by comparing the input signal with a predefined reference
signal which contains the pattern of interest. In the context of
GHG identification, linearized Matched Filters compare the shape
of the pixel’s response differing from its background (which needs
to be estimated) with the shape of unit absorption spectra of the
gas of interest, obtained from radiative transfer simulations [16].
The output of the filter, referred to as mixing ratio length in units
of ppmm (parts per million meter), represents the thickness and
concentration within a volume of equivalent absorption [16]. Due
to its simplicity, Matched Filters have been successfully applied
to detecting CH4 and CO2 using hyperspectral imaging, either
from airborne or spaceborne instruments [3, 16]. However, these
detections require further processing, often involving human in-
tervention, to distinguish legitimate sources from false detections
caused by land features that provide a similar match.

The scientific community is actively investigating alternative
methods to enhance automation in this process. Recent examples
include the application of deep learning models that utilize the
response of Matched Filters as input [15], and transformer archi-
tectures tailored to wavelengths sensitive to methane [9].

2.2 Foundation models
With the proven success of foundation models in natural language
processing and computer vision, there is an interest in applying the
same approaches to self-supervised models for geospatial applica-
tions [7]. Self-supervised learning (SSL) allows foundation models
to benefit from the massive volume of unlabeled geospatial data,
learning useful representations and correlations. These pre-trained
models can then be quickly adapted to specific tasks (usually called
downstream tasks) using a small volume of labeled datasets, re-
ducing the need for manual annotations. Given the very dynamic
patterns and processes in Earth Observations, many of the current
FoundationModel architectures are single modality models without
considering the complementary information carried by multimodel
datasets and the possibility of reconstructing spatial, temporal, and
spectral gaps.

3 Hyperspectral data: EMIT products
EMIT is an imaging spectrometer designed to measure reflected
solar radiation across 285 distinct wavelengths, spanning the visible
to shortwave infrared range (381 to 2493 nanometers). Launched
in mid-2022, the EMIT instrument is installed on the International
Space Station and acquires hyperspectral images from Earth’s sur-
face regions within ±52° latitude. The open data portal includes the
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“high-confidence research-grade methane plume complexes from
point source emitters."1 This product contains manually delineated
individual or overlapping methane plumes, along with pixel con-
centration in ppm m derived from radiance images using Matched
Filters parameterized for each EMIT scene (atmospheric water va-
por modeled by the primary EMIT mission, path length, viewing
geometry), along with uncertainty data. The shape of the methane
plumes is determined by three independent experts who visually
inspect the Matched Filter results, review detection, and manually
outline the plumes [1].

4 Challenges and Considerations
In principle, GHG FM could be trained to detect multiple gases
simultaneously, meaning that the image patches could pass through
an encoder-decoder architecture only once. Conversely, Matched
Filters would detect a single gas at a time. Additionally, GHG FM
could optionally incorporate other data sources as input to the
detection process, such as weather data to verify if plumes are
dispersing along prevalent wind conditions to reduce false negative
detection. In our proposed framework the following distinguishing
elements are relevant for the FM model:

• Exploring the multimodal nature of the geospatial data con-
sisting of different modalities: optical, LiDAR, and weather

• Learning between various modalities of detection or between
different wavelengths of the hyperspectral images

• Integration of physics into models through loss function
constraints to create enhanced representations.

Below we point to some of the foreseen challenges.

4.1 Data availability and quality
We believe that open access to EMIT imagery (EMIT-L1B-L2A,
EMIT-L2A-RFL) and its derived products (L2B-CH4PLMMETA,
EMIT-L2B-CH4ENH) are valuable to fit the foundation models.
We can sample patches from thousands of images globally and use
a pretext task such as reconstructing masked parts of the image, to
perform semi-supervised learning on its massive dataset. A pretext
task in foundation models is a simple, yet challenging task, designed
to learn useful representations of the input data. The goal of pretext
tasks is to create a learning environment where the model can learn
to perform well without explicit supervision on the target task [17].
Pretext tasks can take various forms, such as image classification,
object detection, or semantic segmentation.

However, if data is sampled over large areas, and randomly, the
impact of using EMIT imagery that mostly is unlikely to include
point sources of greenhouse gases (GHG) during the self-supervised
learning might be a concern if the subsequent task is GHG moni-
toring.

While the gas enhancement output of Matched Filters, which
relies on physical principles, relates to gas concentration, how to
get concentration for training FM remains an open issue. One al-
ternative would be to rely on creating synthetic datasets, following
approaches similar to [8] or [14, 18].

1https://earth.jpl.nasa.gov/emit/data/data-portal/Greenhouse-Gases

4.2 Model interpretability
Deep learning/FM models can be quite challenging to interpret,
making it difficult to grasp the underlying rationale behind their
outputs. Imposing physics constraints in loss functions through
scientific machine learning principles [6] such as mass, energy,
and momentum conservation [2] produces more reliable and inter-
pretable models. However, adding physical knowledge to neural
network training may decrease convergence rates since the loss
minimization becomes stiffer depending on the complexity of the
embedded physics. The higher the fidelity of the physical descrip-
tion in the loss function, the slower the convergence of the optimiza-
tion problem. Interpreting Matched Filters in this context might be
relatively simpler due to the fewer parameters of the model.

4.3 The Encoding of Spectral Information
As discussed in Section 2.1, traditional methods for detecting GHG
on hyperspectral images typically involve constructing filters, that
exploit the relationship between bands to enhance the GHG signal.
Therefore, a successful model for effectively monitoring greenhouse
emissions is highly dependent on spectral information. In [10], the
authors propose a strategy for self-supervised training focused on
spectral modeling, it works by masking out random bands in the
original data and trying to predict it in an MAE fashion. The best
way to implement pre-training of a foundation model capable of
efficiently encoding spectral information is still unclear and an
open and interesting object of research.

4.4 Example of applications
4.4.1 CO2 estimates. We have conducted preliminary experiments
to assess a model’s effectiveness in estimating CO2 from hyperspec-
tral data. In these experiments, we used a simple Random Forest
regressor and a Vision transformer model pre-trained on The Envi-
ronmental Mapping and Analysis Program (EnMAP) hyperspectral
sensor. These experiments were conducted on a small dataset of
144 (224×224 dimensional images). We used OCO2 and OCO3 data
as labels and corresponding EnMAP data as input. Because of the
difference in revisit time of EnMAP (27 days) and OCO2/3 satel-
lites (16 days), the two datasets are matched if they are within 15
days data acquisition interval for the OCO2/3 and EnMAP data.
The model provides an RMSE of 2.8 ppm on a range of 10 ppm
using a spatial-spectral Vision transformer and an RMSE of 0.49
ppm using a Random Forest model. The results clearly show that
hyper-spectral data can be used to estimate CO2. The higher RMSE
from the Spatial-spectral Vision transformer might be because of
fewer labeled samples (the 144 images used are sparse and contain
some repetition in the OCO2/3 data because of the coarser spatial
resolution of OCO2/3 compared to EnMAP).

4.4.2 CH4 Plume segmentation. Figure 2 illustrates a preliminary
example of binary CH4 plume segmentation using EMIT-L1B-RAD
imagery. For this, we randomly sampled ≈23k image patches of
size 64×64 pixels, originating from 540 EMIT images for training,
and disjoint sets of 68 images for validation, and 68 for testing,
randomly split from acquisitions from August 2022 to February
2024. All images were known to have methane plumes as delineated
in the companion EMIT-L2B-CH4PLMMETA metadata. To sample

https://earth.jpl.nasa.gov/emit/data/data-portal/Greenhouse-Gases
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Figure 2: Detail of the agreement between EMIT reference
plume masks and the corresponding segmentation obtained
using U-Net applied to {mag1c,RGB} inputs. Each of the 576
images in the 24×24 grid corresponds to a patch with dimen-
sions of 64×64 pixels randomly sampled from the test set,
roughly 3.8 km×3.8 km on the ground. Correctly predicted
methane pixels (true positives) are shown in white, correctly
predicted non-methane (true negatives) in black, underpre-
diction (false negatives) in cyan, and overprediction (false
positives) in red.

positive and negative cases for the presence of plume, we randomly
sampled patches centered in 10 coordinates inside the reference
plume masks and 50 elsewhere in each image. From each EMIT
image, we retained the output of the “mag1c” [4] implementation
of the Matched Filter2 and include the RGB channels to form the
4-channel input (like in [15]) to the segmentation model, which is a
U-Net with a “resnet50” decoder. We trained a segmentation model
for 40 epochs, using Adam optimizer with an initial learning rate of
0.001 and final 0.0005, minimizing the average Dice loss over batches
of 128 patches. Preliminary results suggest that it is challenging
to match the plumes delineated by the polygons available in the
EMIT-L2B-CH4PLMMETA product used as a reference. In this task,
we achieved a pixel-wise F1 score of 0.52 in the test set. Optimizing
how the hyperspectral bands are used may lead to improved results,
instead of the ad hoc selection of mag1c output and RGB channels.

5 Conclusion
GFM offers significant potential for improving greenhouse monitor-
ing and management practices. By addressing challenges related to
data quality, and model interpretability we can harness the power
of these technologies to identify emission hot spots and to inform
mitigation strategies. Foundation models have been little explored
in the context of retrieving GHG plumes and quantifying emissions,
2It uses 50 bands corresponding to wavelengths 2122–2488 nm, with the mean and
covariance matrix computed from the full radiance image.

and we believe that combining multimodal sensing with spectral
learning and enforcing AI models using physics constraints can
advance GHG detection.
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