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Abstract

In-Context Operator Networks (ICONs) have demonstrated the ability to learn operators
across diverse partial differential equations using few-shot, in-context learning. However,
existing ICONs process each spatial point as an individual token, severely limiting com-
putational efficiency when handling dense data in higher spatial dimensions. We propose
Vision In-Context Operator Networks (VICON), which integrate vision transformer architec-
tures to efficiently process 2D data through patch-wise operations while preserving ICON’s
adaptability to multi-physics systems and varying timesteps. Evaluated across three fluid
dynamics benchmarks, VICON significantly outperforms state-of-the-art baselines DPOT
and MPP, reducing the average last-step rollout error by 37.9% compared to DPOT and
44.7% compared to MPP, while requiring only 72.5% and 34.8% of their respective inference
times. VICON naturally supports flexible rollout strategies with varying timestep strides, en-
abling immediate deployment in imperfect measurement systems where sampling frequencies
may differ or frames might be dropped—common challenges in real-world settings—without
requiring retraining or interpolation. In these realistic scenarios, VICON exhibits remark-
able robustness, experiencing only 24.41% relative performance degradation compared to
71.37%-74.49% degradation in baseline methods, demonstrating its versatility for deployment
in realistic applications. Our scripts for processing datasets and code are publicly available
at https://github.com/Eydcao/VICON.

∗Equal contribution.
†Work partially done while at UCLA.
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1 Introduction

Machine learning has emerged as a powerful tool for solving Partial Differential Equations (PDEs). Traditional
approaches primarily operate on discrete representations, with Convolutional Neural Networks (CNNs)
excelling at processing regular grids Gupta & Brandstetter (2022), Graph Neural Networks (GNNs) handling
unstructured meshes Sanchez-Gonzalez et al. (2020); Lino et al. (2022); Cao et al. (2023), and transformers
capturing dependencies between sampling points within the same domains Cao (2021); Dang et al. (2022);
Jiang et al. (2023). However, these discrete approaches face a fundamental limitation: they lack PDE context
information (such as governing parameters) and consequently cannot generalize to new parameters or PDEs
beyond their training set.

This limitation led to the development of “operator learning,” where neural networks learn mappings from input
functions to output functions, such as from initial/boundary conditions to PDE solutions. This capability was
first demonstrated using shallow neural networks Chen & Chen (1995b;a), followed by specialized architectures
including the widely adopted Deep Operator Network (DeepONet) Lu et al. (2021), Fourier Neural Operator
(FNO) Li et al. (2021); Kovachki et al. (2023), and recent transformer-based operator learners Li et al. (2022;
2023); Ovadia et al. (2024). While these methods excel at learning individual parametric PDEs, they cannot
generalize across different PDE types, necessitating costly retraining for new equations or even different
timestep sizes.

Inspired by the success of large language models in multi-domain generation, researchers have explored
“multi-physics PDE models” to address this single-operator limitation. Common approaches employ pre-
training and fine-tuning strategies Chen et al. (2024); Herde et al. (2024); Zhang et al. (2024c), though these
require substantial additional data (typically hundreds of frames) and fine-tuning before deployment. This
requirement severely limits their practical applications in scenarios like online control and data assimilation,
where rapid adaptation with limited data sampling is essential.

To eliminate the need for additional data collection and fine-tuning, several works have attempted to achieve
few-shot or zero-shot generalization across multi-physics systems by incorporating explicit PDE information.
For example, the PROSE approach Liu et al. (2024c;b); Sun et al. (2024a); Jollie et al. (2024) processes the
symbolic form of governing equations using an additional transformer branch. Similarly, PDEformer Ye et al.
(2024) converts PDEs into directed graphs as input for graph transformers, while others embed symbol-tokens
directly into the model Lorsung et al. (2024). Despite these advances, such methods require explicit knowledge
of the underlying PDEs, which is often unavailable when deploying models in new environments.

To further lower barriers for applying multi-physics models in real-world applications, the In-Context Operator
Network (ICON) Yang et al. (2023a) offers a fundamentally different approach: ICON implicitly encodes
system dynamics through a few input-output function pairs, then extracts dynamics from these pairs in
an in-context fashion. This approach enables few-shot generalization without retraining or explicit PDE
knowledge, while the minimal required input-output pairs can be readily collected during deployment. A
single ICON model has demonstrated success in handling both forward and inverse problems across various
ODEs, PDEs, and mean-field control scenarios.

However, ICON’s computational efficiency becomes a critical bottleneck when handling dense data in higher
dimensions. Specifically, ICON treats each sampled spatial point as an individual token, leading to quadratic
computational complexity with respect to the number of points. This makes it computationally prohibitive
for practical 2D and 3D applications—to date, only one instance of a 2D case using sparse data points has
been demonstrated Yang et al. (2023a).

To address this limitation, we propose Vision In-Context Operator Networks (VICON), which leverage vision
transformers to process 2D functions using an efficient patch-wise approach. Going beyond classic vision
transformers that typically process patches from a single image, VICON extends the architecture to handle
sequences of input-output function pairs, enabling “next function prediction” capabilities while preserving
the benefits of in-context operator learning. The current implementation focuses on passive, autonomous
PDEs; extension to non-autonomous systems with external forcing is left for future work.

Our contributions include:
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• Development of VICON, a vision transformer-based in-context operator network for two-dimensional
time-dependent PDEs that maintains the flexibility of in-context operator learning while efficiently
handling dense data in higher dimensions.

• Comprehensive evaluation across diverse fluid dynamics systems comprising 879K frames with varying
timestep sizes, demonstrating substantial improvements over state-of-the-art models MPP McCabe
et al. (2023) and DPOT Hao et al. (2024) in both accuracy and efficiency. Our approach reduces the
averaged last-step rollout error by 37.9% compared to DPOT and 44.7% compared to MPP, while
requiring only 72.5% and 34.8% of their respective inference times.

• Enhanced flexibility supporting varying timestep strides and non-sequential measurements, offering
substantial robustness in realistic scenarios with imperfect data collection, e.g. with missing frames.
Under these scenarios, VICON exhibits only 24.41% relative performance degradation versus 71.37%-
74.49% degradation in baseline methods.

2 Related Work

Operator Learning. Operator learning Chen & Chen (1995b;a); Li et al. (2021); Lu et al. (2021) addresses
the challenge of approximating operators G : U → V , where U and V are function spaces representing
physical systems and differential equations, e.g., G maps initial/boundary conditions or system parameters to
corresponding solutions. Among the various operator learning approaches, DeepONets Lu et al. (2021; 2022)
employ branch and trunk networks to independently process inputs and query points, while FNOs Li et al.
(2021) leverage fast Fourier transforms to efficiently compute kernel integrations for PDE solutions in regular
domains. These methods have been extended to incorporate equation information Wang et al. (2021); Li
et al. (2024b), multiscale features Zhang et al. (2024a); Wen et al. (2022); Liu et al. (2024a), and adaptation
to heterogeneous and irregular meshes Zhang et al. (2023; 2024b); Li et al. (2024a); Wu et al. (2024).

However, these approaches typically learn a single operator, requiring retraining when encountering different
PDE types or timestep sizes. Our work aims to develop a unified model for multiple PDEs with few-shot
generalization capabilities based on limited observation frames.

Multi-Physics PDE Models. Foundation models in natural language processing Brown et al. (2020);
Touvron et al. (2023) and computer vision Ramesh et al. (2021) have demonstrated remarkable versatility
across diverse tasks. Drawing inspiration from this paradigm, recent research has explored developing unified
models for multiple PDEs in domains such as PDE discovery Schaeffer (2017) and computational fluid
dynamics Wang et al. (2024a). Several approaches follow pre-training and fine-tuning strategies Chen et al.
(2024); Herde et al. (2024), though these require additional resources for data acquisition and fine-tuning before
deployment. In parallel, researchers have developed zero- or few-shot multi-physics models by incorporating
additional information; for instance, the PROSE approach Liu et al. (2024c;b); Sun et al. (2024a); Jollie
et al. (2024); Sun et al. (2024b) directly encodes symbolic information of PDEs into the model. Other
methods achieving zero- or few-shot generalization include using physics-informed tokens Lorsung et al. (2024),
representing PDE structures as graphs Ye et al. (2024), or conditioning transformers on PDE descriptions Zhou
et al. (2025). However, all these techniques require prior knowledge of the PDEs as additional inputs. We
select two state-of-the-art models, MPP McCabe et al. (2023) and DPOT Hao et al. (2024), as our baselines.

In-Context Operator Networks. ICONs Yang et al. (2023a;b); Yang & Osher (2024) learn operators by
observing input-output function pairs, enabling few-shot generalization across various PDEs without requiring
explicit PDE representations or fine-tuning. These networks have demonstrated success in handling forward
and inverse problems for ODEs, PDEs, and mean-field control scenarios. However, ICONs face significant
computational challenges when processing dense data, as they represent functions through scattered point
tokens, resulting in quadratic computational complexity with respect to the number of sample points. This
limitation has largely restricted their application to 1D problems, with only sparse sampling feasible in
2D cases Yang et al. (2023a). Our work addresses these limitations by introducing a vision transformer
architecture that efficiently handles dense 2D data while preserving the benefits of in-context operator learning.
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Figure 1: VICON model overview. (a) The formation process for conditions (COND) and quantities of
interest (QOI) pairs. ∆t is randomly sampled during training. (b) Model illustration. The inputs to the
model are pairs of COND and QOI, which are patchified and flattened before feeding into the transformer
layers. The outputs, which represent different patches in the output frame, are transformed back to obtain
the final predictions. (c) With imperfect temporal measurements, VICON forms pairs using only clean data,
and does not need to fill missing frames.

3 Preliminaries

ICONs were introduced and developed in Yang et al. (2023a;b); Yang & Osher (2024). They adapt the
in-context learning framework from large language models, aiming to train a model that can learn operators
from prompted function examples.

Denote an ICON model as Tθ, where T is a transformer with trainable parameters θ. The model takes input
as a sequence comprising I pairs of conditions (c) and quantities of interest (q) as {⟨ci, qi⟩}Ii=1, where each
c, q contains multiple tokens representing a single function. The model outputs tokens representing future
functions at the positions of c, i.e., “next function prediction” similar to “next token predictions” in LLMs.
More precisely, for J ∈ {1, . . . , I − 1}, the model predicts q̃J+1 given the leading J pairs and the condition
cJ+1:

q̃J+1 = Tθ[cJ+1; {⟨ci, qi⟩}Ji=1]. (1)
For training parallelization, ICON uses a special causal attention mask to perform autoregressive learning
(i.e., the model only sees the leading J pairs and cJ+1 when predicting q̃J+1) and enables output of all
predictions within a single forward pass Yang et al. (2023b):

{q̃i}Ii=1 = Tθ[{⟨ci, qi⟩}Ii=1]. (2)

Training loss is computed as the mean squared error (MSE) between the predicted states q̃i and the ground
truth states qi. To ensure that the model receives sufficient contextual information about the underlying
dynamics, we only compute errors for the indices i > Imin, effectively requiring at least Imin examples in
context. This approach has shown empirical improvements in model performance.

After training, ICON can process a new set of ⟨c, q⟩ pairs in the forward pass to learn operators in-context
and employ them to predict future functions using new conditions:

q̃k = Tθ[ck; {⟨ci, qi⟩}Ji=1], (3)

where J ∈ {Imin, . . . , I − 1} is the number of in-context examples, Imin is the number of context examples
exempted from loss calculation, and k > I is the index of the condition for future prediction.
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Importantly, all pairs in the same sequence must be formed with the same operator mapping (i.e., the
same PDE and consistent timestep size within one sequence), while operators can vary across different
sequences/rows in the training batch to enable the model’s generalization ability to different combinations of
PDEs and timestep sizes.

4 Methodology

4.1 Problem Setup

We consider the forward problem for multiple time-dependent PDEs that are temporally homogeneous
Markovian, defined on domain Ω ⊆ R2 with solutions represented by u(x, t) : Ω× [0, T ]→ Rc, where c is the
number of channels. Given the initial I0 frames, {ui = u(·, ti) | i = 1, . . . , I0}, the task is to predict future
solutions.

Each solution frame is discretized as a three-dimensional tensor ut = u(·, t) ∈ RNx×Ny×c, where Nx and Ny

are the spatial grid sizes. Due to the homogeneous Markovian property, given the initial data {ut | t ≥ 0}
from some PDE indexed by ip, for a fixed ∆t, there exists an operator L = L(ip)

∆t that maps frame ut to
frame ut+∆t for any t ≥ 0. Our goal is to train a model that learns these operators L(ip)

∆t from the sequence
of function pairs generated from the initial frames. Notably, even within the same dataset and fixed ∆t,
different trajectories can exhibit different dynamics (e.g., due to different Reynolds numbers Re). These
variations are implicitly captured by the function pairs in our framework.

4.2 Vision In-Context Operator Networks

The original ICONs represent functions as scattered sample data points, where each data point is projected
as a single token. For higher spatial dimensions, this approach necessitates an excessively large number of
sample points and extremely long sequences in the transformer. Due to the inherent quadratic complexity of
the transformer, this approach becomes computationally infeasible for high-dimensional problems.

Inspired by the Vision Transformer (ViT) Dosovitskiy et al. (2021), we address these limitations by dividing
the physical fields into patches, where each patch is flattened and projected as a token. This approach, which
we call Vision In-Context Operator Networks (VICON), addresses the computational limitation of treating
each spatial point as an individual token, which leads to quadratic computational complexity with respect
to the number of points. This patch-wise approach has its forward process illustrated in Figure 1(b) and
detailed in the following.

First, the input ut and output ut+∆t functions are divided into patches {Ck ∈ RRx×Ry×c}Nc

k=1 and {Ql ∈
RRx×Ry×c}Nq

l=1, where Rx, Ry are the resolution dimensions of the patch and Nc and Nq are the number of
patches for the input and output functions, respectively. While Nq can differ from Nc (for instance, when
input functions require additional boundary padding, resulting in Nc > Nq), we maintain Nc = Nq throughout
our experiments. For notational clarity, we add the subscript i ∈ {1, . . . , I} to denote the pair index, where
Ck
i represents the k-th patch of the input function and Ql

i represents the l-th patch of the output function in
the i-th pair. These patches are then projected into a unified d-dimensional latent embedding space using a
shared learnable linear function fϕ : Rx ×Ry × c→ Rd:

ĉki = fϕ(Ck
i ), q̂li = fϕ(Ql

i), (4)

where k = 1, . . . , Nc and l = 1, . . . , Nq are the index of patches. We use the same projection fϕ for both
conditions and QoIs because in our setup, both represent the same physical fields at different timesteps;
sharing the projection enforces consistency in latent space regardless of whether a frame serves as context or
target.

We inject two types of learnable positional encoding before feeding the embeddings into the transformer:
(1) patch positional encodings to indicate relative patch positions inside the whole domain, denoted as
Ep ∈ RNp×d, where Np = max{Nc, Nq} and the encoding varies per patch (broadcast across points within
each patch); (2) function positional encodings to indicate whether a patch belongs to an input function
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(using Ec ∈ RI×d) or output function (using Eq ∈ RI×d), as well as their indices in the sequence, where the
encoding varies per condition/QoI in each pair (broadcast across patches and points of that condition/QoI):

cki = ĉki + Ep(k) + Ec(i), qli = q̂li + Ep(l) + Eq(i). (5)

The embeddings cki and qli are then concatenated to form the input sequence for the transformer:

c1
1 . . . cNc

1 , q1
1 . . . qNq

1 , . . . , c1
I . . . cNc

I , q1
I . . . qNq

I .

To support autoregressive prediction similar to Equation (2), VICON employs an alternating-sized (in the
case where Nc ̸= Nq) block causal attention mask, as opposed to the conventional triangular causal attention
mask as in mainstream generative large language models Brown et al. (2020) and large vision models Bai
et al. (2024). The mask is defined as follows:

M =


1Nc,Nc 0 · · · 0 0
1Nq,Nc 1Nq,Nq · · · 0 0

...
...

. . .
...

...
1Nc,Nc

1Nc,Nq
· · · 1Nc,Nc

0
1Nq,Nc

1Nq,Nq
· · · 1Nq,Nc

1Nq,Nq

 (6)

where 1m×n denotes an all-ones matrix of dimension m×n, and 0 represents a zero matrix of the corresponding
dimensions.

After obtaining the output tokens from Equation (2), we extract the tokens corresponding to the input patch
indices c1

i , . . . , cNc
i and denote them as q̃1

i , . . . , q̃Nc
i . These tokens are then projected back to the original

physical space using a shared learnable linear function gψ : Rd → RRx×Ry×c:

Q̃l
i = gψ(q̃li), (7)

which predicts Ql
i.

4.3 Prompt Normalization

To address the varying scales across different channels and prompts (i.e., sequences of pairs {⟨ci, qi⟩}Ii=1), we
normalize the data before feeding them into the model. A crucial requirement is to consistently normalize
functions within the same sequence, to ensure that the same operator is learned. Denoting the normalization
operators for c and q as Nc and Nq respectively, and the operator in the original space as L, the operator in
the normalized space L′ follows:

L′(Nc(u)) = Nq(L(u)). (8)

In this work, we simply set Nc = Nq, mainly because our maximum timestep stride smax = 5 is rela-
tively small (i.e., the scale distribution does not change dramatically). Specifically, given input sequence
{⟨ci, qi⟩}Ii=1, we compute the channel-wise mean µ = mean(c1, c2, . . . , cI) ∈ Rd and standard deviation
σ = std(c1, c2, . . . , cI) ∈ Rd of all conditions {ci}Ii=1, which are then used to normalize both the conditions
and QoIs. Training MSE loss is computed in the normalized space. To avoid division by zero, we set a
minimum threshold of 10−4 for the standard deviation.

4.4 Datasets and Data Augmentation

We evaluate on three fluid dynamics datasets representing different physical regimes: 1)
PDEArena-Incomp Gupta & Brandstetter (2022) (incompressible Navier-Stokes equations), containing
2,496/608/608 trajectories (train/valid/test) with 56 timesteps each; 2) PDEBench-Comp-HighVis Takamoto
et al. (2022) (compressible Navier-Stokes with high viscosity), containing 40,000 trajectories of 21 timesteps
each; and 3) PDEBench-Comp-LowVis Takamoto et al. (2022) (compressible Navier-Stokes with numerically
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zero viscosity), containing 4,000 trajectories of 21 timesteps each. For PDEArena-Incomp, we follow the origi-
nal data split in Gupta & Brandstetter (2022). For PDEBench-Comp-HighVis and PDEBench-Comp-LowVis,
we randomly split trajectories in 80%/10%/10% proportions for training/validation/testing, respectively. For
all datasets during rollout, we set I0 = 10, i.e., we predict trajectories up to the last timestep given the initial
10 frames.

The temporally homogeneous Markovian property (Section 4.1) enables natural data augmentation for
training and flexible rollout strategy for inference (Section 4.5): by striding with larger timesteps to reduce
the number of autoregressive steps in long-term prediction tasks: ∆t = s∆τip | s = 1, 2, . . . , smax, where τip
is the timestep size for recording in trajectory ip. During training, for each trajectory in the training set, we
first sample a stride size s ∼ U{1, . . . , smax}, then form ⟨ut, ut+s∆τ ⟩ pairs for the corresponding operator.
We illustrate this augmentation process in Figure 1(a), where different strides are randomly sampled during
dataloading.

Additional dataset details appear in Appendix A.

4.5 Inference with Flexible Strategies

As mentioned in Section 4.4, VICON can make predictions with varying timestep strides. Given I0 initial
frames {ui}I0

i=1, we can form in-context example pairs {⟨ui, ui+s⟩}I0−s
i=1 . For j ≥ 1, we set the question

condition (ck in Equation (3)) as uj to predict uj+s, enabling s-step prediction.

For long-term rollout, we employ VICON in an autoregressive fashion. The ability to predict with different
timestep strides enables various rollout strategies. We explore two natural approaches: single-step rollout
and flexible-step rollout, where the latter advances in larger strides to reduce the number of rollout steps.

For single-step rollout, we simply follow the autoregressive procedure with s = 1. Flexible-step rollout involves
a more sophisticated approach: given a maximum prediction stride smax, we first make sequential predictions
with a gradually growing s = 1 to smax using uI0 as the question condition, obtaining {uI0+s}smax

s=1 . Using
each frame in this sequence as a question condition, we then make consistent smax-step predictions while
preserving all intermediate frames. This flexible-step strategy follows the approach in Yang & Osher (2024).

This strategy is also applicable to imperfect measurement cases where partial input frames are missing, e.g.,
due to sensor device error. In this case, we can still form pairs from the remaining frames, with minor
adjustments to the strategy generation algorithms, as shown in Figure 1(c).

More details (including algorithms and examples) on rollout strategies are provided in Appendix C.1 (for
perfect measurements) and in Appendix C.2 (for imperfect measurements).

4.6 Evaluation Metric

We evaluate the rollout accuracy of VICON using two different strategies described in Section 4.5. The
evaluation uses relative and absolute L2 errors between the predicted and ground truth frames, starting from
the frame I0 + 1. For relative scaling coefficients, we use channel-wise scaling standard deviation σ of ground
truth frames, which vary between different prompts.

5 Experimental Results

We benchmark VICON against two state-of-the-art sequence-to-sequence models: DPOT Hao et al. (2024)
(122M parameters) and MPP McCabe et al. (2023) (AViT-B architecture, 116M parameters), as well as
Specialist U-Net baselines Gupta & Brandstetter (2022) trained individually per dataset. Implementation
details for all baselines are provided in Appendix B. The vanilla ICON, which would require processing
over 114K tokens per frame (128×128×7), exceeds our available GPU memory and is thus computationally
infeasible for direct comparison on these datasets.
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(a) (b)

(c) (d)

Figure 2: Main experiment results. (a) Last step rollout errors on 3 datasets. VICON outperforms
MPP on all datasets and outperforms DPOT on 2 datasets. (b) VICON allows flexible rollout strategies to
reduce error accumulation and demonstrates stride extrapolation. (c) VICON is robust to imperfect temporal
measurements, while MPP and DPOT suffer from performance degradation. (d) VICON is smaller in size
and has faster rollout time per step.

For evaluation, we use both absolute and relative L2 RMSE (Section 4.6) on rollout predictions. Since
VICON offers the flexibility of predictions with different timestep strides, we evaluate our single trained
model using both single-step and flexible-step rollout strategies (Section 4.5) during inference.

For conciseness, we present summarized plots and tables in the main text, and defer complete results and visual-
izations to Appendix D. Ablation studies examining key design choices of VICON—including patch resolution,
positional encoding, and context length, as well as an alternative CNN-based architecture—are presented in
Appendix D.1. The checkerboard artifacts (e.g., in Figure 9) of the PDEBench-Comp-HighVis dataset are
discussed in Appendix D.2.

Table 1: Summary of Rollout Relative L2 Error (scaled by std) across different methods and
datasets. The best results are highlighted in bold. For flexible step rollout, step 3 works best for the
PDEArena-Incomp dataset. Specialist U-Net is trained individually per dataset with instance normalization
matching VICON’s preprocessing.

Rollout Relative L2 Error Case Ours (single step) Ours (flexible step) DPOT MPP Specialist U-Net

Last step
[1e-2]

PDEArena-Incomp 76.77 68.03 65.27 93.52 48.8
PDEBench-Comp-LowVis 39.11 39.11 48.92 65.32 55.9
PDEBench-Comp-HighVis 61.41 61.41 2866 185.3 39.9

All average
[1e-2]

PDEArena-Incomp 56.27 48.50 41.20 55.95 27.9
PDEBench-Comp-LowVis 27.08 27.08 37.72 46.68 35.7
PDEBench-Comp-HighVis 30.06 30.06 821.9 72.37 19.9

5.1 Superior Performance on Long-term Rollout Predictions

As demonstrated in Figure 2(a), Table 1, and Figure 3, VICON consistently outperforms baseline
methods on long-horizon predictions across all benchmarks—with the exception of DPOT on the
PDEArena-Incomp dataset, where our performance is comparable. Overall, VICON achieves an average
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Figure 3: Comparison of rollout errors (scaled by std) across different datasets and mod-
els. We show errors for two VICON rollout strategies: single step rollout and flexible rollout strategy.
For flexible step, step 3 works optimally for the PDEArena-Incomp dataset, while step 1 works best for
PDEBench-Comp-LowVis and PDEBench-Comp-HighVis.

reduction in relative L2 RMSE at the final timestep of 37.9% compared to DPOT and 44.7% compared to
MPP.

Notably, DPOT exhibits exceptionally poor performance on PDEBench-Comp-HighVis, with an 821.9% error
compared to our 30.06%. Our visualization of failure cases reveals that DPOT struggles with trajectories
with small pressure values compared to the dataset average. This may stem from DPOT’s lack of prompt
normalization, as compressible flow’s pressure channel exhibits large magnitude variations.

For the PDEArena-Incomp dataset, while VICON slightly underperforms DPOT and MPP initially, it quickly
surpasses MPP and achieves comparable performance to DPOT for longer-step rollouts. This demonstrates
VICON’s robustness in long-term predictions. Despite DPOT’s marginally better performance here, its poor
performance on the PDEBench-Comp-HighVis dataset limits its applicability in multi-physics settings.

To further contextualize VICON’s performance, we compare against Specialist U-Net baselines (U-Net-Mod64
from PDEArena Gupta & Brandstetter (2022)) trained individually per dataset. The only modification we
made is adding instance normalization matching VICON’s preprocessing, which we found essential for stabi-
lizing training on PDEBench-Comp-LowVis and PDEBench-Comp-HighVis datasets. As shown in Table 1,
while the specialist U-Net achieves strong performance on individual datasets it was optimized for, VICON
remains competitive across all datasets and even outperforms the specialist on PDEBench-Comp-LowVis,
demonstrating the advantage of our multi-physics approach in handling diverse physical systems without
per-dataset architectural engineering or retraining.

More detailed results are provided in Table 13 and Table 14 in Appendix D.

5.2 Flexible Rollout Strategies

As demonstrated in Figure 2(b) and Figure 5, VICON can select appropriate timestep strides based on
each dataset’s characteristics. While PDEBench-Comp-LowVis and PDEBench-Comp-HighVis perform best
with single-step rollout, PDEArena-Incomp achieves optimal results with a stride of 3 using our flexible-step
rollout strategy.

This dataset-dependent performance reflects the characteristics of each dataset and the challenges of learning
larger timestep strides. PDEBench-Comp-LowVis and PDEBench-Comp-HighVis record data with larger
timestep sizes, making the learning of larger stride predictions more challenging due to increased dynamics
complexity. Additionally, the fewer number of total rollout steps (even with stride=1) in these datasets
cancels out the benefits of reducing rollouts when using multi-stride. Conversely, PDEArena-Incomp records
data with smaller timesteps, making both single- and multi-stride prediction learning more feasible. Under
this condition, multi-stride reduces the total rollout steps and error accumulation, achieving an 11.4% error
reduction with a balanced stride (smax = 3).
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When evaluated with unseen strides (smax = 7), VICON maintains comparable performance to single-step
strategies for PDEArena-Incomp, indicating that it extracts underlying operators through context pairs
rather than memorizing dynamics. This generalization capability provides tolerance when deployed to
real-world settings where device sampling rates often differ from a fixed training set—an advantage we further
demonstrate in the next section.

5.3 Importance of In-Context Learning

To validate the importance of in-context learning, we compare VICON against a non-in-context ViT baseline
(with similar architecture: 162M parameters, 12 layers, hidden dimension 1024 for attention, and 4096 for
FFN, time stride ∆t = 1 for training) on the PDEArena-Incomp dataset. The results in Table 2 demonstrate
that vanilla ViT cannot generalize to different timestep strides without in-context examples:

Table 2: Non-in-context ViT baseline comparison on PDEArena-Incomp dataset

Model Param Size Stride 1 Error Stride 2 Error
(1e-2) (1e-2)

VICON (Last step) 88 M 76.77 68.03
ViT (Last step) 162 M 73.94 95.03
VICON (All average) 88 M 56.27 48.50
ViT (All average) 162 M 50.17 63.15

The significant performance degradation (95.03 vs 73.94 for last step error) demonstrates that vanilla ViT
cannot generalize to different ∆t without in-context examples, validating our approach’s effectiveness.

Additionally, we evaluated the impact of incorrect context pairs on VICON’s performance using the
PDEArena-Incomp dataset (Table 3).

Table 3: Impact of incorrect context pairs on VICON performance

Experiment Setting Average Rollout Error
Correct (stride 1) 0.55
Mix context pairs with stride 1 and 2 0.88
Context pairs with stride 2 0.92
Random noise context pairs 1.57

The clear performance degradation with incorrect context pairs confirms that VICON effectively utilizes
in-context information rather than simply memorizing patterns.

5.4 Robustness to Imperfect Temporal Measurements

Real-world experimental measurements frequently suffer from imperfections—sampling rates may differ
from the training set, and frames can be missing due to device errors. Sequence-to-sequence models like
MPP and DPOT require either retraining with new data or interpolation that introduces noise. In contrast,
VICON elegantly handles such imperfections by forming context pairs from available frames only (Figure 1(c)).
The algorithm for generating pairs with imperfect measurements appears in Appendix C.2.

We evaluate VICON against baselines on all benchmarks under two scenarios: (1) half sampling rate (dropping
every other frame) and (2) random frame dropping (removing 1-3 frames per sequence). Results for the
PDEBench-Comp-LowVis dataset in Figure 2(c) (with complete results in Figure 8) show that VICON experi-
ences only 24.41% relative performance degradation compared to 71.37%-74.49% in baselines—demonstrating
remarkable robustness to measurement imperfections.
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5.5 Turbulence Kinetic Energy Analysis

Turbulence kinetic energy (TKE), defined as 1
2 (ũ2

x+ ũ2
y), is a critical metric for quantifying a model’s ability to

capture turbulent flow characteristics. Here, ũ = u− u denotes the fluctuation of velocity from its statistical
equilibrium state u.

Within our datasets, only a subset of PDEBench-Comp-LowVis, specifically those initialized with fully
developed turbulent fields (see Appendix D.5 of Takamoto et al. (2022)), is suitable for TKE analysis. After
filtering these entries, we compare the mean absolute error (MAE) of the TKE between VICON, DPOT, and
MPP. Our approach achieves a TKE error of 0.016, significantly outperforming MPP’s error of 0.049, while
achieving performance comparable to DPOT’s error of 0.012. Visualizations of TKE errors are presented in
Figure 6 in Appendix D.

5.6 Benefits of Multi-Physics Joint Training

We empirically examine whether VICON benefits from multi-physics training by comparing two strategies:
(1) training a single model jointly on all three datasets versus (2) training separate models specialized for
individual datasets. For fair comparison, we maintained identical batch sizes across all trainings while
adjusting the steps for separate training to be slightly more than one-third of the joint training duration,
ensuring comparable total computational costs between approaches.

As shown in Figure 7, joint training significantly outperforms separate training across all three datasets. We
attribute this performance gain to the underlying physical similarities across these fluid dynamics problems,
where exposure to diverse yet related flow patterns enhances the model’s generalization ability.

5.7 Context Sampling Strategy

By default, VICON forms context pairs from initial frames within a single trajectory, which we term intra-
trajectory context. This design choice is motivated by practical online deployment scenarios where only
a few initial measurements are available, and system parameters (e.g., viscosity, forcing terms) may be
unknown—making retrieval of historical trajectories with the same underlying operator infeasible.

As a theoretical question, we additionally investigate whether VICON can leverage cross-trajectory context,
i.e., context pairs from different trajectories governed by the same operator. As detailed in Appendix D.3,
VICON trained with cross-trajectory context achieves similar performance with mixed contexts during rollout
(only 0.012 increase in average error). This demonstrates the model’s capability to leverage cross-trajectory
information when available. Nevertheless, we argue that intra-trajectory context remains more practical as it
avoids the need for maintaining trajectory databases and online operator identification.

5.8 Computational Efficiency

In Figure 2(d) and Table 16, we compare the computational resources required by VICON and baselines.
Our model demonstrates superior efficiency across multiple metrics. Compared to MPP, VICON requires
approximately one-third of the inference time per frame while using 75% of the total parameters. VICON also
outperforms DPOT, requiring 28% fewer parameters and 28% less inference time.

It is important to note that, in theory, VICON incurs approximately 4× computational cost compared
to non-paired, sequence-to-sequence baselines when all other settings (e.g., patch size) are identical, as it
processes both condition and QoI, doubling the total token length with quadratic attention complexity.
However, this computational overhead is justified by the significant performance improvements and unique
capabilities (handling imperfect measurements, flexible timestep strides). Additionally, this cost can be
reduced to 2× (linear) at inference time using KV caching, where all context pairs except the final pair
remain fixed across rollout steps, allowing their key-value multiplications to be cached.

It is important to note that while post-training (such as fine-tuning) on a sequence-to-sequence model may
achieve the same accuracy on one physical condition and save this 2× cost overhead, the fine-tuned model
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loses the ability to predict accurately when physical parameters may change on-the-fly during deployment,
while VICON provides superior flexibility.

6 Conclusion and Future Work

We present VICON, a vision-transformer-based in-context operator network that efficiently processes dense
physical fields through patch-wise operations. VICON overcomes the computational burden of original in-
context operator networks in higher spatial dimensions while preserving the flexibility to extract multi-physics
dynamics from few-shot contexts. Our comprehensive experiments demonstrate that VICON achieves superior
performance in long-term predictions, reducing the average last-step rollout error by 37.9% compared to
DPOT and 44.7% compared to MPP, while requiring only 72.5% and 34.8% of their respective inference
times. The model supports flexible rollout strategies with varying timestep strides, enabling natural
application to imperfect real-world measurements where sampling frequencies differ or frames are randomly
dropped—scenarios where VICON experiences only 24.41% relative performance degradation compared to
71.37%-74.49% degradation in baseline models.

Despite these advances, several challenges remain for future investigation. We empirically showed in Section 5.6
the benefits of multi-physics training, yet scaling to larger and more diverse datasets presents practical
challenges. Specifically, generating high-fidelity physics simulation data across multiple domains requires
substantial computational resources and specialized domain expertise including mesh generation, physical
modeling, and numerical solver integration.

Furthermore, the current approach does not yet extend to 3D applications, as token sequence length would
grow cubically, exceeding our computational budget. Potential remedies for 3D scaling include: (1) using
VAE-like techniques/transformers to compress and evolve the fields in the latent space, then applying attention
mechanisms to decode at any location Wang et al. (2024b); Li et al. (2023), and (2) employing crop-like
methods to learn evolution of fixed-width windows similar to CNNs. These approaches could potentially be
combined to address the cubic scaling challenge.

Since VICON is an autoregressive model, it still suffers from error accumulation of the final pair’s condition
frame during rollout. Future work could explore resolving error accumulation through techniques such as
injecting Gaussian noise or using push-forward methods Brandstetter et al. (2021).

The channel-union approach is also limited when incorporating domains beyond fluid dynamics with funda-
mentally different state variables. Recent advances in inter-channel attention mechanisms Holzschuh et al.
(2025) offer promising directions for handling channel scaling issues when expanding to more diverse physics
systems.

Finally, adapting VICON to handle irregular domains such as graphs or meshes would broaden its applications
to areas like solid mechanics and molecular dynamics. Techniques such as geometric deep learning extensions,
masked patch modeling, or point-cloud modeling are potential future directions to handle irregular geometries.
The original ICON framework has demonstrated success across various problem types including inverse
problems and steady-state tasks Yang et al. (2023a), suggesting potential for extending VICON beyond
forward temporal prediction. Addressing these challenges will advance the promising paradigm of in-context
learning for a broader range of physical systems.
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A Dataset Details

A.1 PDEArena-Incomp Dataset

The incompressible Navier-Stokes dataset comes from PDEArena Gupta & Brandstetter (2022). The data
are generated from the equation

∂tu + u · ∇u = −∇p + µ∆u + f , (9)
∇ · u = 0. (10)

The space-time domain is [0, 32]2 × [18, 105] where dt = 1.5 and the space resolution is 128× 128. A scalar
particle field is being transported with the fluids. The velocity fields satisfy Dirichlet boundary conditions,
and the scalar field satisfies Neumann boundary conditions. The forcing term f is randomly sampled. The
quantities of interest are the velocities and the scalar particle field.

A.2 PDEBench-Comp-HighVis and PDEBench-Comp-LowVis Datasets

The PDEBench-Comp-HighVis and PDEBench-Comp-LowVis datasets come from PDEBench Compressible
Navier-Stokes dataset Takamoto et al. (2022). The data are generated from the equation

∂tρ +∇ · (ρu) = 0, (11)
ρ(∂tu + u · ∇u) = −∇p + η∆u + (ζ + η/3)∇(∇ · u), (12)

∂t

(
ε + ρu2

2

)
= −∇ ·

((
ε + p + ρu2

2

)
u− u · σ′

)
. (13)

The space-time domain is T2× [0, 1] where dt = 0.05. The datasets contain different combinations of shear and
bulk viscosities. We group the ones with larger viscosities into the PDEBench-Comp-HighVis dataset,
and the ones with extremely small (1e-8) viscosities into the PDEBench-Comp-LowVis dataset. The
PDEBench-Comp-HighVis dataset has space resolution 128 × 128. The PDEBench-Comp-LowVis dataset
has raw space resolution 512× 512 and is downsampled to 128× 128 through average pooling for consistency.
The quantities of interest are velocities, pressure, and density.

A.3 QOI Union and Channel Mask

Since each dataset contains different sets of quantities of interest, we take their union to create a unified
representation. The unified physical field has 7 channels in total, with the following ordering:

1. Density (ρ)

2. Velocity in the x direction (ux)

3. Velocity in the y direction (uy)

4. Pressure (P )

5. Vorticity (ω)

6. Passively transported scalar field (S)

7. Node type indicator (0: interior node, 1: boundary node)

For each dataset, we use a channel mask to indicate its valid fields and only calculate loss on these channels.
The node type channel is universally excluded from loss calculations across all datasets.
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Table 4: Model Configuration Details

Patch Configuration
Input patch numbers 8× 8
Output patch numbers 8× 8
Patch resolution 16× 16
Positional Encodings Shapes
Patch positional encodings [64, 1024]
Function positional encodings [20, 1024]
Transformer Configuration
Hidden dimension 1024
Number of attention heads 8
Feedforward dimension 2048
Number of layers 10
Dropout rate 0.0
Number of COND & QOI pairs 10
Number of QOI exempted from loss calculation 5

Table 5: Optimization Hyperparameters

Parameter Value
Learning Rate Schedule
Scheduler Cosine Annealing with Linear Warmup
Peak learning rate 1× 10−4

Final learning rate 1× 10−7

Warmup steps 20,000
Total steps 200,000
Optimization Settings
Optimizer AdamW
Weight decay 1× 10−4

Gradient norm clip 1.0

B Experiment Details

B.1 VICON Model Details

Here we provide key architectural parameters of VICON model implementation in Table 4.

B.2 Training Details

We implement our method in PyTorch Paszke et al. (2019) and utilize data parallel training Li et al. (2020)
across two NVIDIA RTX 4090 GPUs. We employ the AdamW optimizer with a cosine learning rate schedule
that includes a linear warmup phase. We apply gradient clipping with a maximum norm of 1.0 to ensure
training stability. All optimization parameters are detailed in Table 5.

B.3 MPP Details

For a fair comparison, we retrain MPP McCabe et al. (2023) using our training dataset with the same model
configurations and optimizer hyperparameters (batch size is set to the maximum possible on our device). We
evaluate MPP using the same testing setup and metric.
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Algorithm 1: GenerateSingleStepStrategy
Input: D: Number of demonstrations to use
R: Number of ground truth reference steps
T: Total steps in sequence
Output: S: Strategy list of example pairs and question pairs

1 S ← [ ]
2 Ei ← range(0, D) /* example input indices: 0,1,...,D-1 */
3 Eo ← range(1, D+1) /* example output indices: 1,2,...,D */
4 for i from R to T-1 do
5 Qi ← i - 1 /* question input is previous frame */
6 Qo ← i /* question output is current frame */
7 S.append((Ei, Eo), Qi, Qo)
8 end
9 return S

B.4 DPOT Details

For a fair comparison, we retrain DPOT Hao et al. (2024) using our training dataset with the same model
configurations and optimizer hyperparameters (batch size is set to the maximum possible on our device). We
evaluate DPOT using the same testing setup and metric.

B.5 Specialist U-Net Details

We use U-Net-Mod64, the strongest baseline from the PDEArena benchmark Gupta & Brandstetter (2022),
trained individually per dataset. This architecture employs a U-Net with modified residual blocks and 64 base
channels. We keep the architecture consistent across all datasets, only adjusting the input/output channel
dimensions to match each dataset’s state variables. We believe this is fair because in realistic deployment,
one cannot architecturally re-engineer a model for every new measurement stream encountered.

Additionally, we include instance normalization matching VICON’s preprocessing (channel-wise normalization
using statistics computed from initial frames), which we found essential for stabilizing training on the
PDEBench datasets (PDEBench-Comp-LowVis and PDEBench-Comp-HighVis). Without this normalization,
training on compressible flows diverges due to the large magnitude variations in the pressure channel. The
batch size is set to the maximum possible on our device. Each specialist model is trained on its respective
dataset only, in contrast to VICON’s joint multi-physics training.

C Algorithms and Examples of Strategy Generation

C.1 Strategy with Full Temporal Sequence

Algorithm for single-step strategy. Algorithm 1 presents our approach for generating single-step rollout
strategies when all temporal frames are available. This strategy maintains a fixed stride of 1 between
consecutive frames, providing stable but potentially error-accumulating predictions.

Algorithm for flexible-step strategy. Algorithm 2 describes our approach for generating flexible-step
strategies with variable strides up to a maximum value. This approach reduces the total number of rollout
steps required, potentially mitigating error accumulation for long sequences.

Rollout Strategy Example. We demonstrate two rollout strategies in Tables 6 and 7, showing single-step
and flexible-step strategies, respectively. In both cases, the initial frames span from time step 0 to 9, and we
aim to predict the trajectory up to time step 20.
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Algorithm 2: GenerateFlexibleStepStrategy
Input: D: Number of demonstrations to use
R: Number of ground truth reference steps
M: Maximum stride between pairs
T: Total steps in sequence
Output: S: Strategy list of example pairs and question pairs
/* Require R >= M + 1 to ensure examples exist for each stride */

1 S ← [ ]
2 Ec ← {} /* example condition indices by stride */
3 Eq ← {} /* example query indices by stride */

/* Prepare example pairs for each stride */
4 for s from 1 to M do
5 Nd ← min(D, R - s) /* available examples for this stride */
6 Eqo ← range(R - Nd, R) /* output indices for examples */

/* If we need more examples than available, repeat them */
7 reps ← ⌈D / Nd⌉ /* ceiling division */
8 Eqo ← repeat(Eqo, reps)[0:D] /* repeat and truncate to D */
9 Eqo.sort() /* ensure increasing order */

10 Ec[s] ← Eqo - s /* input indices are s steps before outputs */
11 Eq[s] ← Eqo /* store output indices */
12 end

/* Generate rollout strategy */
13 for i from R to T-1 do
14 dist ← i - R + 1 /* distance from last reference frame */
15 s ← min(dist, M) /* select appropriate stride */
16 Qi ← i - s /* question input index */
17 Qo ← i /* question output index */
18 S.append((Ec[s], Eq[s]), Qi, Qo)
19 end
20 return S

Table 6: Single-step Rollout Strategy Example

Rollout index Examples (COND, QOI) Question COND Predict QOI
1 (0,1) (1,2) (2,3) (3,4) (4,5) (5,6) (6,7) (7,8) (8,9) 9 10
2 (0,1) (1,2) (2,3) (3,4) (4,5) (5,6) (6,7) (7,8) (8,9) 10 11
3 (0,1) (1,2) (2,3) (3,4) (4,5) (5,6) (6,7) (7,8) (8,9) 11 12
4 (0,1) (1,2) (2,3) (3,4) (4,5) (5,6) (6,7) (7,8) (8,9) 12 13
5 (0,1) (1,2) (2,3) (3,4) (4,5) (5,6) (6,7) (7,8) (8,9) 13 14
6 (0,1) (1,2) (2,3) (3,4) (4,5) (5,6) (6,7) (7,8) (8,9) 14 15
7 (0,1) (1,2) (2,3) (3,4) (4,5) (5,6) (6,7) (7,8) (8,9) 15 16
8 (0,1) (1,2) (2,3) (3,4) (4,5) (5,6) (6,7) (7,8) (8,9) 16 17
9 (0,1) (1,2) (2,3) (3,4) (4,5) (5,6) (6,7) (7,8) (8,9) 17 18
10 (0,1) (1,2) (2,3) (3,4) (4,5) (5,6) (6,7) (7,8) (8,9) 18 19
11 (0,1) (1,2) (2,3) (3,4) (4,5) (5,6) (6,7) (7,8) (8,9) 19 20

As shown in Table 7, the flexible-step strategy initially uses smaller strides to build sufficient examples, then
employs maximum strides for later rollouts, as detailed in Section 4.5. We note that repeated in-context
examples appear in Table 7, which is common when the maximum stride is large and the initial frames cannot
form enough examples. While the number of in-context examples in VICON is flexible and our model can
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Table 7: Flexible-step Rollout Strategy Example (smax = 5)

Rollout index Examples (COND, QOI) Question COND Predict QOI
1 (0,1) (1,2) (2,3) (3,4) (4,5) (5,6) (6,7) (7,8) (8,9) 9 10
2 (0,2) (0,2) (1,3) (2,4) (3,5) (4,6) (5,7) (6,8) (7,9) 9 11
3 (0,3) (0,3) (1,4) (1,4) (2,5) (3,6) (4,7) (5,8) (6,9) 9 12
4 (0,4) (0,4) (1,5) (1,5) (2,6) (2,6) (3,7) (4,8) (5,9) 9 13
5 (0,5) (0,5) (1,6) (1,6) (2,7) (2,7) (3,8) (3,8) (4,9) 9 14
6 (0,5) (0,5) (1,6) (1,6) (2,7) (2,7) (3,8) (3,8) (4,9) 10 15
7 (0,5) (0,5) (1,6) (1,6) (2,7) (2,7) (3,8) (3,8) (4,9) 11 16
8 (0,5) (0,5) (1,6) (1,6) (2,7) (2,7) (3,8) (3,8) (4,9) 12 17
9 (0,5) (0,5) (1,6) (1,6) (2,7) (2,7) (3,8) (3,8) (4,9) 13 18
10 (0,5) (0,5) (1,6) (1,6) (2,7) (2,7) (3,8) (3,8) (4,9) 14 19
11 (0,5) (0,5) (1,6) (1,6) (2,7) (2,7) (3,8) (3,8) (4,9) 15 20

Algorithm 3: GetAvailablePairs
Input: D: Number of demonstrations needed
dt: Desired time stride between pairs
Fa: List of indices of available frames
Output: P: List of input-output index pairs with the specified stride

1 Fa.sort()
2 P ← [ ] /* Initialize empty pairs list */

/* Find all pairs with stride dt */
3 for i from 0 to len(Fa) - 1 do
4 for j from i + 1 to len(Fa) - 1 do
5 if Fa[j] - Fa[i] == dt then
6 P.append((Fa[i], Fa[j]))
7 end
8 end
9 end

10 if P is empty then
11 return [ ]
12 end

/* If we don’t have enough unique pairs, repeat them */
13 if len(P) < D then
14 reps ← ⌈D / len(P)⌉ /* ceiling division */
15 RP ← repeat(P, reps)[0:D] /* repeat pairs and truncate to D */
16 P ← RP
17 end
18 return P

accommodate fewer examples than the designed length, our preliminary experiments indicate that the model
performs better with more in-context examples, even when some examples are repeated.

C.2 Strategy with Imperfect Temporal Sequence

When facing imperfect temporal sampling where certain frames are missing, we can still form valid demonstra-
tion pairs from the available frames. Algorithm 3 presents this adaptive pair selection process, which serves as
a fundamental building block for all strategy generation algorithms in scenarios with irregular temporal data.
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Algorithm 4: GenerateSingleStepStrategyWithDrops
Input: D: Number of demonstrations to use
S: Fixed stride between pairs
T: Total steps in sequence
Fa: List of indices of available frames
Output: St: Strategy list of (E, Qi, Qo) tuples

1 St ← [ ]
2 Fa.sort()
3 Fs ← Fa[-1] /* the starting frame for rollout */
4 P ← GetAvailablePairs(D, S, Fa) /* pairs with fixed stride */
5 if P is empty then
6 return [ ] /* No available pairs with the specified stride */
7 end
8 Fc ← Fa.copy() /* accumulated frames (current + predicted) */
9 for i from (Fs + 1) to (T - 1) do

10 Ci ← i - S /* potential condition index */
11 if Ci ̸∈ Fc then
12 continue /* Cannot predict frame i with stride S */
13 end
14 Pdt ← P[s]

/* The example pairs for predicting frame i */
15 Qi ← i - s /* question input index */
16 Qo ← i /* question output index */
17 S.append(Pdt, Qi, Qo)
18 Fc.append(Qo) /* The predicted frame can be used for future steps */
19 end
20 return St

Algorithm for single-step strategy with drops. Algorithm 4 extends the single-step strategy to handle
scenarios where frames are missing from the input sequence, adaptively forming strategies from available
frames while maintaining the fixed stride constraint.

Algorithm for flexible-step strategy. Algorithm 5 presents our solution for generating flexible-step
rollout strategies when frames are missing, dynamically selecting appropriate strides based on available frames
and previous predictions.

Rollout Strategy Example with Missing Frames. Tables 8 and 9 illustrate our adaptive strategies
when frames 2, 5, and 9 are missing from the initial sequence (with all other settings identical to those in
Appendix C.1). The tables demonstrate single-step and flexible-step (max stride: 3) approaches, respectively,
highlighting how our algorithm dynamically selects appropriate example pairs to maintain prediction capability
despite missing temporal data.

D Additional Experimental Results.

D.1 Ablation Studies

Impact of Patch Resolutions. We conducted ablation studies on patch resolution by varying patch sizes
(4, 8, 16, 32, 64) to find a balance between spatial granularity and computational resource constraint. While
smaller patches theoretically capture finer details, they generate longer token sequences, hitting memory
caps due to transformer’s quadratic complexity. For patch size 8, we reduced token dimensions (512→256)
and feedforward dimensions (1024→512). For patch size 4, we applied further reductions (token dim 128,
feedforward dim 256, layers 10→5) to fit within 80GB A100 memory—yet training still required 188 hours (vs
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Figure 4: Ablation studies across the three datasets. Top row (a-c): Impact of patch resolutions
(4, 8, 16, 32, 64) showing optimal performance at patch size 16. Middle row (d-f): Effect of different
positional encoding combinations. Bottom row (g-i): Performance variation with different context lengths
(6, 8, 10 pairs).
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Algorithm 5: GenerateFlexibleStepStrategyWithDrops
Input: D: Number of demonstrations to use
M: Maximum stride between pairs for rollout
T: Total steps in the sequence
Fa: List of indices of available frames
Output: S: Strategy list of (E, Qi, Qo) tuples, where E are the list of example pair indices (Ei, Eo) and

Qi, Qo are the question and output indices
1 S ← [ ]
2 Fa.sort()
3 Fs ← Fa[-1] /* the starting frame for rollout */
4 P ← {} /* dictionary of available pairs */
5 for dt from 1 to M do
6 Pdt ← GetAvailablePairs(D, dt, Fa) /* pairs with stride dt in Fa */
7 if Pdt is not empty then
8 P[dt] ← Pdt
9 end

10 end
11 Ms ← max(P.keys()) /* maximum available stride */
12 Fc ← Fa.copy() /* accumulated frames (current + predicted) */
13 for i from (Fs + 1) to (T - 1) do
14 dt ← i - Fs
15 Mt ← min(dt, M, Ms) /* maximum stride for current step */
16 found ← False
17 for s in P.keys().sorted(reverse=True) where s ≤ Mt do
18 Ci ← i - s /* potential condition index */
19 if Ci ∈ Fc then

/* Found a starting index to obtain frame i */
20 found ← True
21 break
22 end
23 end
24 if not found then

/* We cannot predict frame i */
25 continue
26 end

/* The example pairs for predicting frame i */
27 Pdt ← P[s]
28 Qi ← i - s /* question input index */
29 Qo ← i /* question output index */
30 S.append(Pdt, Qi, Qo)
31 Fc.append(Qo)

/* The Qo frame is obtained and can be used for future rollouts */
32 end
33 return S

58 hours for ps=16) and inference slowed to 9.55 sec/step (vs 8.7 ms for ps=16). Patches below 4×4 remained
infeasible even with these aggressive reductions. Figure 4(a-c) shows that patch size 16 achieves optimal
performance across all datasets—balancing sequence length and representational capacity. Performance
degradation with coarser patches (32, 64) aligns with expectations, while degradation with finer patches
stems from the necessary reduction in hidden dimensions, highlighting a fundamental challenge in scaling to
3D applications.
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Table 8: Single-step Rollout Strategy Example with Missing Frames

Rollout index Examples (COND, QOI) Question COND Predict QOI
1 (0,1) (0,1) (0,1) (3,4) (3,4) (6,7) (6,7) (7,8) (7,8) 8 9
2 (0,1) (0,1) (0,1) (3,4) (3,4) (6,7) (6,7) (7,8) (7,8) 9 10
3 (0,1) (0,1) (0,1) (3,4) (3,4) (6,7) (6,7) (7,8) (7,8) 10 11
4 (0,1) (0,1) (0,1) (3,4) (3,4) (6,7) (6,7) (7,8) (7,8) 11 12
5 (0,1) (0,1) (0,1) (3,4) (3,4) (6,7) (6,7) (7,8) (7,8) 12 13
6 (0,1) (0,1) (0,1) (3,4) (3,4) (6,7) (6,7) (7,8) (7,8) 13 14
7 (0,1) (0,1) (0,1) (3,4) (3,4) (6,7) (6,7) (7,8) (7,8) 14 15
8 (0,1) (0,1) (0,1) (3,4) (3,4) (6,7) (6,7) (7,8) (7,8) 15 16
9 (0,1) (0,1) (0,1) (3,4) (3,4) (6,7) (6,7) (7,8) (7,8) 16 17
10 (0,1) (0,1) (0,1) (3,4) (3,4) (6,7) (6,7) (7,8) (7,8) 17 18
11 (0,1) (0,1) (0,1) (3,4) (3,4) (6,7) (6,7) (7,8) (7,8) 18 19

Table 9: Flexible-step Rollout Strategy Example with Missing Frames (max stride: 3)

Rollout index Examples (COND, QOI) Question COND Predict QOI
1 (0,1) (0,1) (0,1) (3,4) (3,4) (6,7) (6,7) (7,8) (7,8) 8 9
2 (1,3) (1,3) (1,3) (4,6) (4,6) (4,6) (6,8) (6,8) (6,8) 8 10
3 (0,3) (0,3) (0,3) (1,4) (1,4) (3,6) (3,6) (4,7) (4,7) 8 11
4 (0,3) (0,3) (0,3) (1,4) (1,4) (3,6) (3,6) (4,7) (4,7) 9 12
5 (0,3) (0,3) (0,3) (1,4) (1,4) (3,6) (3,6) (4,7) (4,7) 10 13
6 (0,3) (0,3) (0,3) (1,4) (1,4) (3,6) (3,6) (4,7) (4,7) 11 14
7 (0,3) (0,3) (0,3) (1,4) (1,4) (3,6) (3,6) (4,7) (4,7) 12 15
8 (0,3) (0,3) (0,3) (1,4) (1,4) (3,6) (3,6) (4,7) (4,7) 13 16
9 (0,3) (0,3) (0,3) (1,4) (1,4) (3,6) (3,6) (4,7) (4,7) 14 17
10 (0,3) (0,3) (0,3) (1,4) (1,4) (3,6) (3,6) (4,7) (4,7) 15 18
11 (0,3) (0,3) (0,3) (1,4) (1,4) (3,6) (3,6) (4,7) (4,7) 16 19
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Positional Encodings. We evaluated different combinations of positional encodings as shown in Figure 4(d-
f). Our architecture employs two types of encodings: patch position encodings (for spatial relationships
between patches) and function encodings (differentiating input/output in different pairs) (Section 4.2).

The results demonstrate that including both encoding types consistently yields the best performance across
all datasets. Notably, function encodings have a more significant impact than patch encodings, highlighting
the importance of distinguishing between the condition and qoi beyond what causal masking (equation 6)
provides.

The impact of patch encodings varies across datasets: they show minimal effect on the PDEBench
datasets (PDEBench-Comp-LowVis and PDEBench-Comp-HighVis) yet significantly improve performance
on PDEArena-Incomp. We attribute this to the different stiffness of these systems. In compressible flows
(PDEBench), spatial interactions naturally decay with distance, creating consistent and monotonic spatial
correlations between patches. In contrast, Navier-Stokes equations exhibit infinite stiffness where correla-
tions between any spatial locations are instantaneous and determined by the global velocity field, creating
non-monotonic and case-dependent relationships. Explicitly encoding spatial positions therefore becomes
particularly beneficial for PDEArena-Incomp, as it reduces the learning complexity for these non-local
dependencies.

Varying Context Length. We investigated how the number of in-context examples affects model perfor-
mance, as shown in Figure 4(g-i). Following insights from the original ICON work Yang et al. (2023a), we
evaluated context lengths of 6, 8, and 10 pairs, balancing performance against computational efficiency. The
results show that 10 in-context examples deliver significantly better results for PDEBench-Comp-LowVis com-
pared to shorter contexts, while for the remaining datasets, 10 and 8 in-context examples perform similarly
(both outperforming 6 examples).

Alternative Architecture: CNN-ICON. We explored an alternative architecture (CNN-ICON) that
uses a CNN encoder to compress entire frames into single latent vectors, followed by the ICON transformer
structure. The encoder consists of a 4-level CNN with residual blocks (7×128×128 → 512-dim latent via
global average pooling), paired with a symmetric CNN decoder. This results in 1 token per frame compared
to VICON’s 64 tokens (8×8 patches). We matched the model sizes: 86.5M parameters (vs VICON’s 87.8M),
identical transformer configuration (6 layers, 8 heads, dim=512), and same training protocol (200K steps).

Table 10: CNN-ICON vs VICON comparison (normalized RMSE, scaled by std)

Dataset Model Step 1 Step 5 Step 10 Last Avg

PDEArena-Incomp CNN-ICON 0.323 0.467 0.643 1.194 0.912
VICON 0.110 0.206 0.305 0.680 0.485

PDEBench-Comp-LowVis CNN-ICON 0.750 0.875 1.012 1.013 0.905
VICON 0.154 0.245 0.375 0.391 0.271

PDEBench-Comp-HighVis CNN-ICON 0.390 0.767 1.939 2.364 1.162
VICON 0.052 0.163 0.498 0.614 0.301

As shown in Table 10, VICON outperforms CNN-ICON by 1.9–3.9× across all datasets. We attribute this
performance gap to information loss when compressing entire frames into single vectors, which discards
spatial structure crucial for accurate PDE prediction. This finding motivated our patch-based design, which
preserves local spatial information while maintaining computational efficiency.

D.2 Analysis of Checkerboard Artifacts in PDEBench-Comp-HighVis

In our experiments, we observed block-like artifacts in the error/difference maps for the
PDEBench-Comp-HighVis dataset that align with the model’s 16×16 patch structure. Through detailed
analysis, we identified two contributing factors: 1) drastic field value variation across the trajectory time
horizon, and 2) a training-inference normalization mismatch.
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Drastic field value variation across trajectory time horizon. High-viscosity flows rapidly dissipate
kinetic energy, causing velocity fields to become nearly stationary after approximately 10 frames. Our analysis
of standard deviations across different time ranges reveals these differences:

Table 11: Standard deviation analysis across time phases for PDEBench datasets. The bolded veloc-
ity channels show PDEBench-Comp-HighVis has extreme variation between early and late phases, unlike
PDEBench-Comp-LowVis with nearly consistent variation. This dynamic difference makes training a uni-
formed model particularly challenging.

Dataset Velocity u Velocity v Pressure
All 1-10 >10 All 1-10 >10 All

PDEBench-Comp-HighVis 0.359 0.511 0.091 0.351 0.506 0.049 14.254
PDEBench-Comp-LowVis 0.989 1.104 0.873 1.036 1.165 0.903 29.687

Training-inference normalization mismatch. During training, context pairs are sampled uniformly
across all frames. During inference, context pairs are sampled from initial frames only. As shown in Table 11,
the standard deviations at these two different time ranges are vastly different, which results in normalization
mismatch and exacerbates prediction errors in the already-challenging problem. Future work could explore
using global statistics from multiple trajectories instead of single-trajectory instance normalization during
deployment. Other potential remedies include using overlapping patches or moving patch positions during
rollout, though these represent engineering improvements orthogonal to our core contributions.

D.3 Cross-Trajectory Context Sampling

We investigate whether VICON can leverage context pairs from different trajectories governed by the same
underlying operator, as suggested in the original ICON framework. Using the PDEArena-Incomp dataset
(which provides 32 distinct trajectories per operator), we compare VICON trained with intra-trajectory
context only versus a mixture of intra- and cross-trajectory context (50/50 split).

Table 12: Cross-trajectory context experiment on PDEArena-Incomp (normalized RMSE, scaled by std)

Training Setup Inference Setup Avg Error
VICON (trained with intra-traj only) intra-traj context 0.563

cross-traj context 0.609
VICON (trained with mixed context) intra-traj context 0.556

cross-traj context 0.568

As shown in Table 12, VICON is capable of leveraging cross-trajectory information when trained appropriately.
The model trained with mixed context achieves competitive performance in both settings, with only a
marginal gap (0.556 vs 0.568) between intra- and cross-trajectory inference.

While these results demonstrate VICON’s flexibility, we maintain that intra-trajectory context is more practical
for deployment scenarios. Cross-trajectory sampling requires: (1) a pre-existing database of trajectories,
and (2) a retrieval mechanism to ensure sampled trajectories share the same (often unknown) operator. In
contrast, our intra-trajectory approach is self-contained and better suited for real-time forecasting where only
the current trajectory is available.

D.4 More Results and Visualizations

Detailed Results. Tables 13 and 14 summarize the relative and absolute L2 rollout errors across different
timesteps for all evaluated models on the three datasets.
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Table 13: (Comparison) Summary of Rollout Relative L2 Error (scale by std) for different methods
across various cases. The best results are highlighted in bold.

Rollout Relative L2 Error Case Ours (single step) Ours (flexible step) DPOT MPP

Step 1
[1e-2]

PDEArena-Incomp 11.01 11.01 5.97 6.17
PDEBench-Comp-LowVis 15.40 15.40 25.24 16.37
PDEBench-Comp-HighVis 5.18 5.18 42.76 20.90

Step 5
[1e-2]

PDEArena-Incomp 22.68 20.62 11.70 14.81
PDEBench-Comp-LowVis 24.45 24.45 36.05 45.45
PDEBench-Comp-HighVis 16.25 16.25 286.3 42.93

Step 10
[1e-2]

PDEArena-Incomp 35.67 30.53 20.74 27.89
PDEBench-Comp-LowVis 37.54 37.54 49.47 64.11
PDEBench-Comp-HighVis 49.83 49.83 2016 144.46

Last step
[1e-2]

PDEArena-Incomp 76.77 68.03 65.27 93.52
PDEBench-Comp-LowVis 39.11 39.11 48.92 65.32
PDEBench-Comp-HighVis 61.41 61.41 2866 185.3

All average
[1e-2]

PDEArena-Incomp 56.27 48.50 41.20 55.95
PDEBench-Comp-LowVis 27.08 27.08 37.72 46.68
PDEBench-Comp-HighVis 30.06 30.06 821.9 72.37

Table 14: (Comparison) Summary of Rollout Absolute L2 Error for different methods across various
cases. The best results are highlighted in bold.

Rollout L2 Error Case Ours (single step) Ours (flexible step) DPOT MPP

Step 1
[1e-2]

PDEArena-Incomp 5.63 5.63 3.02 3.12
PDEBench-Comp-LowVis 21.74 21.74 29.47 24.47
PDEBench-Comp-HighVis 1.43 1.43 6.22 4.73

Step 5
[1e-2]

PDEArena-Incomp 10.38 9.46 5.37 6.79
PDEBench-Comp-LowVis 31.23 31.23 43.57 57.50
PDEBench-Comp-HighVis 2.34 2.34 14.48 6.52

Step 10
[1e-2]

PDEArena-Incomp 14.65 12.55 8.55 11.49
PDEBench-Comp-LowVis 45.39 45.39 59.43 78.54
PDEBench-Comp-HighVis 3.21 3.21 25.79 8.98

Last Step
[1e-2]

PDEArena-Incomp 16.50 14.56 14.03 19.47
PDEBench-Comp-LowVis 48.69 48.69 63.06 85.60
PDEBench-Comp-HighVis 3.39 3.39 27.98 9.56

All average
[1e-2]

PDEArena-Incomp 16.26 14.31 11.86 15.77
PDEBench-Comp-LowVis 34.44 34.44 46.60 60.68
PDEBench-Comp-HighVis 2.48 2.48 16.86 7.04

Generalization to different timestep strides. Figure 5 illustrates VICON’s performance with varying
timestep strides (smax = 1, 3, 5, 7) across all three datasets, demonstrating the model’s ability to adapt to
different temporal resolutions without retraining.

Turbulence Kinetic Energy (TKE) Predictions. Figure 6 displays the visualization of TKE fields for
ground truth and model predictions, highlighting VICON’s superior ability to preserve critical turbulent flow
structures compared to baseline approaches.

Comparison between joint training vs separate training. Figure 7 and Table 15 quantify the
performance differences between jointly trained and separately trained models, demonstrating the significant
advantages of multi-physics training across all datasets.

Computational Efficiency. Table 16 summarizes the computational resources required by each method,
showing VICON’s advantages in terms of training cost, inference speed, and model parameter count compared
to both DPOT and MPP baselines.
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Figure 5: Comparison of rollout errors across different datasets, using single-step and flexible-step strategies
with varying maximum step sizes (smax = 1, 3, 5, 7).
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Figure 6: Comparison of turbulence kinetic energy predictions. (Top-left) Ground truth TKE field,
(Top-right) model predictions, (Bottom) model error.

Rollout with imperfect measurements. Figure 8 show the rollout results with imperfect temporal
measurements.

Visualizations. We compare the output of different models in Figure 9, Figure 10, and Figure 11. Figures
12 and 13 present additional visualizations of the VICON model outputs compared to ground truth and
baseline predictions, highlighting the qualitative advantages of our approach.
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(a) PDEBench-Comp-LowVis
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(b) PDEBench-Comp-HighVis
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Figure 7: Comparing rollout errors (single step, scale by std) for joint versus separate training
strategies. For separate training (individual models for each dataset), we maintain the same batch sizes
as in joint training while adjusting training steps to be slightly more than one-third of the joint training
duration, ensuring comparable total computational costs across both approaches.
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(a) VICON
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(b) DPOT
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(c) MPP
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(d) VICON
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(e) DPOT
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(f) MPP
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(g) VICON
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(h) DPOT
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Figure 8: Comparison of rollout errors (scale by std) with different input data noise levels across
all datasets. Each column (left to right) shows VICON, DPOT, and MPP models, while each row (top to
bottom) represents PDEBench-Comp-LowVis, PDEBench-Comp-HighVis, and PDEArena-Incomp datasets.
For MPP and DPOT which require fixed dt and context window, interpolation is used to generate missing
frames, while VICON can directly handle irregular temporal data without interpolation.
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Figure 9: Comparing outputs from different models. The target is the first 6 output steps from
PDEBench-Comp-HighVis dataset (x-velocity channel). For each model (each row), we display the difference
between target and model output. Errors (rescaled by std) for the full trajectory are listed after the model
names.
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Figure 10: Comparing outputs from different models. The target is the first 6 output steps from
PDEBench-Comp-LowVis dataset (pressure channel). For each model (each row), we display the difference
between target and model output. Errors (rescaled by std) for the full trajectory are listed after the model
names.
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Figure 11: Comparing outputs from different models. The target is the first 6 output steps from
PDEArena-Incomp dataset (particle density channel). For each model (each row), we display the difference
between target and model output. Errors (rescaled by std) for the full trajectory are listed after the model
names.
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(a) A sequence of 5 output steps for PDEBench-Comp-HighVis dataset. The channel plotted is the pressure field in
equation equation 12.

(b) A sequence of 5 output steps for PDEArena-Incomp dataset. The channel plotted is the x-velocity in equation
equation 9.

Figure 12: Example outputs for the VICON model. (a) The pressure field of
PDEBench-Comp-HighVis dataset, and (b) the x-velocity field of PDEArena-Incomp dataset. Each col-
umn represents a different timestep.
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(a) The channel plotted is the y-velocity field in equation equation 9.

(b) The channel plotted is the density field in equation equation 9.

(c) The channel plotted is the pressure field in equation equation 9.

Figure 13: More example outputs for the VICON model. Showing 5 output steps for the
PDEBench-Comp-LowVis dataset as governed by equation equation 9: (a) y-velocity, (b) density, and
(c) pressure fields. Each column represents a different timestep.
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Table 15: Summary of Rollout Relative L2 Error Metrics (single step, scale by std) for 2 Training
Strategies. The best results are highlighted in bold. For separate training (a model on each dataset), each
run’s batch size is controlled to be the same as joint training. To ensure fair comparison, we maintain the
same batch sizes as joint training for each separate training run while adjusting their training steps to be
slightly more than one-third of the joint training duration, ensuring comparable total computational costs.

Rollout Relative L2 Error [1e-2] Case Joint Separate

Step 1
PDEArena-Incomp 11.10 9.66

PDEBench-Comp-LowVis 15.61 19.68
PDEBench-Comp-HighVis 5.79 9.74

Step 5
PDEArena-Incomp 23.00 24.09

PDEBench-Comp-LowVis 24.56 37.63
PDEBench-Comp-HighVis 19.73 39.81

Step 10
PDEArena-Incomp 36.18 41.66

PDEBench-Comp-LowVis 37.47 57.17
PDEBench-Comp-HighVis 57.88 131.6

Last Step
PDEArena-Incomp 77.81 123.0

PDEBench-Comp-LowVis 39.03 59.11
PDEBench-Comp-HighVis 71.17 163.5

All average
PDEArena-Incomp 56.26 76.35

PDEBench-Comp-LowVis 27.08 40.75
PDEBench-Comp-HighVis 30.06 65.19

Table 16: (Comparison) Summary of Resource and Timing Metrics for different methods.

Resource and Timing Metrics Ours DPOT MPP
Training cost [GPU hrs] 58 70 64

Rollout time per step [ms] 8.7 12.0 25.7
Model Param Size 88M 122M 116M
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