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Unveiling Concept Attribution in Diffusion Models
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Abstract

Diffusion models have shown remarkable abilities
in generating realistic and high-quality images
from text prompts. However, a trained model re-
mains largely black-box; little do we know about
the roles of its components in exhibiting a con-
cept, such as objects or styles. In this work, we ap-
proach diffusion models’ interpretability problem
from a general perspective and pose a question:

“How do model components work jointly to demon-
strate knowledge?”. To answer this question, we
decompose diffusion models using component
attribution, systematically unveiling the impor-
tance of each component (specifically the model
parameter) in generating a concept. Extensive
experimental results validate the significance of
both positive and negative components pinpointed
by our framework, demonstrating the potential of
providing a complete view of interpreting genera-
tive models.

1. Introduction
Recent developments in diffusion models (Ho et al., 2020;
Luo, 2022; Sohl-Dickstein et al., 2015; Song et al., 2021)
have greatly improved the synthesizing capabilities, includ-
ing image quality and generating a wide range of knowledge.
However, these models lack interpretability; we do not fully
understand how they can achieve such impressive perfor-
mance and how they can generate images from only simple
text prompts. To investigate how generative models recall
concepts, a recent line of work studies which components in
the model store knowledge (Basu et al., 2023; Meng et al.,
2022). In language models, (Meng et al., 2022) propose
causal tracing to locate layers storing facts and reveal that
knowledge is localized in middle-layer MLP modules. This
method is later transferred to diffusion models in (Basu et al.,
2023), discovering the knowledge distributed hypothesis;
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this hypothesis shows that, different from language models,
knowledge is distributed amongst a set of UNet components
and the first self-attention layer of the text-encoder. These
approaches shed light on interpreting generative models,
enabling more effective model editing (Basu et al., 2024;
2023). Nevertheless, they only focus on coarse-grained com-
ponents (i.e., layers) and knowledge storage – modules that
are responsible for generating concepts, potentially ignoring
more subtle properties in the generative models and other
types of modules, respectively.

"A photo of
a cat"

Prompt

Diffusion model
Generated image

: negative components

: positive components

: other components
... ... ...

Figure 1. Overview of our framework. We show that there exist
positive and negative components in diffusion that increase or
decrease the probability of the target concept, respectively. Re-
moving those components will have the reverse effect.

This paper first poses a more general question: How do
components in diffusion models contribute to a generated
concept? We then introduce a framework that predicts
the model behavior given the presence of each component
based on an efficient linear counterfactual estimator (Shah
et al., 2024). Through this framework, called Component
Attribution for Diffusion Model (CAD), we advance the
understanding of how model components activate concepts
(e.g., objects, styles, or explicit contents) in diffusion mod-
els. In contrast to the prior work that focuses on the model’s
layers, CAD allows analysis of more fine-grained compo-
nents. Specifically, focusing on the most fine-grained com-
ponents, i.e., the model’s parameters, CAD could also iden-
tify concept-inducing (or positive) components similar to
knowledge storage; however, instead of the distributed hy-
pothesis in layers (Basu et al., 2023), CAD discovers the
localization hypothesis — knowledge is localized in a small
number of parameters. Surprisingly, besides the positive
components, CAD also reveals the existence of components
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that contribute negatively to generating the target concept,
which is missing in the previous studies. Ablating these
components decreases or increases the probability of gen-
erating the corresponding knowledge. As one example of
its utility, this holistic understanding of diffusion models
enables a lightweight model editing capability, i.e., to re-
move (positive) or recall (negative) a concept. Figure 1
illustrates the proposed CAD framework. In summary, our
contributions are:

• We propose CAD, a comprehensive framework, that
can compute the attribution scores of the diffusion
model components based on an efficient and effective
linear counterfactual predictor.

• Utilizing CAD, we confirm the existence of the
concept-inducing (positive) model’s parameters, while
revealing their localized nature. CAD also uncovers the
existence of another type of components – the concept-
amplification (negative) components.

• Leveraging these observations of localized positive
and negative components, we develop two lightweight
knowledge editing algorithms, CAD-Erase for concept
erasing and CAD-Amplify for concept amplification,
respectively, for diffusion models.

• We analyze CAD and evaluate the proposed editing
algorithms with extensive experiments, demonstrating
their practicality and effectiveness.

2. Concept Attribution in Diffusion Models
In this section, we provide the general formulation of con-
cept attribution in diffusion models, discuss the challenge
of solving this problem, and propose our CAD framework.

2.1. Decomposing Knowledge in Diffusion
We consider the diffusion model as a combination of build-
ing blocks wi. Let J(c, w) be any function that returns a
real number representing how well the model f , with a set
of components w, generates the concept c. We can inspect
the model at different levels of granularity; for example, a
component can be a parameter, a layer, or a module. Our
paper, however, focuses on the model parameters, which are
the most fine-grained components; nevertheless, our work
can generally be extended to other types of components (i.e.,
layers or modules).

Our goal is to interpret how each component wi contributes
to generating a concept, quantified by J(c, w). Specifically,
we estimate how J(c, w) changes if we remove a component
wi, i.e. setting its value to 0. Let w̃ be the new set of
components obtained by adjusting some components to 0,
we want to find a function g(0w̃; c) = J(c, w̃) where 0w̃ ∈
{0, 1}d, d is the number of components, and

(0w̃)i =

{
0 if w̃i = 0

1 if w̃i = wi.
(1)

Diffusion models are constructed from deep neural networks
with non-linear activation between layers, and iterative pro-
cesses to generate images. Consequently, the function g
might be complex and difficult to learn. Interestingly, Shah
et al. (2024) show that a simple linear function can well
approximate g in image classification models and language
models. Here, we also approximate g with a linear model:

J(c, w̃) = g(0w̃; c) ≈ αT
c 0w̃ + bc, αc ∈ Rd. (2)

Each coefficient αc,i represents how the component wi con-
tributes to the concept c.

2.2. CAD: Component Attribution for Diffusion Model
Assuming our focus is on a small subset of components
wi, i ∈ S and we want to examine how J(c, w) changes if
wi = 0, we can apply first-order Taylor expansion:∑

i∈S

αc,i = J(c, w)− J(c, w̃)

≈ (w − w̃)∇wJ(c, w) =
∑
i∈S

wi
∂J(c, w)

∂wi
. (3)

From Equations (2) and (3), we see that the coefficient
αc,i of wi can be approximated by wi

∂J(c,w)
∂wi

. For the rest
of the study, we will use this formulation to attribute a
component in the model. In particular, our method measures
the contribution of a component wi to the objective J , or
the attribution score, by wi

∂J(c,w)
∂wi

, which only requires a
single forward and backward pass instead of creating the
training data for the model in (2) with many forward passes.

3. Editing Diffusion Models with CAD
In this section, we investigate the application of CAD and
study how the model parameters impact concept genera-
tion. We then also propose two lightweight, inference-time
editing algorithms that remove (CAD-Erase) or amplify
(CAD-Amplify) a concept in diffusion models.

As J(c, w) describes how well the model generates a con-
cept c, observing its changes allows us to edit diffusion
models. Given the attribution scores of model components
computed using the proposed approach in Section 2.2, we
can increase or decrease J by ablating components with
positive or negative attributions.

3.1. Localizing and Erasing Knowledge

Previous works (Meng et al., 2022; Basu et al., 2023; 2024)
apply causal tracing to study which layers in generative
models store knowledge. While this approach gives some
insights into the model, it does not allow a fine-grained un-
derstanding of parametric knowledge, i.e., more fine-grained
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components may play different roles. In contrast, CAD al-
lows us to focus on the most fine-grained components, i.e.,
the model parameters, and examine the influence of each
parameter on generating a concept. Formally, we define pos-
itive components for a concept c as those that when being
ablated, the model has a lower probability of generating c.

Concept Erasure. We consider these positive components
as knowledge storage, and finding them allows us to locate
knowledge. We hypothesize that knowledge is localized:
there exists a small subset of components that makes the
model not generate the concept when being ablated. This
hypothesis also leads to a more accurate approximation due
to the first-order expansion in Section 2.2.

Hypothesis 1. Knowledge is localized in a small number of
components. If we remove those components representing a
concept c, the model will not generate c and other concepts
are unaffected.

Concept Attribution Objective. Another question is which
objective function J should be used. A naive choice is to
directly use the training loss. However, previous work in
concept erasing (Kumari et al., 2023) shows that optimizing
this objective to ablate concepts leads to sub-optimal perfor-
mance. Instead, we rely on the following objective function
(also used in (Kumari et al., 2023)):

Jcb(c, w) = Ext,t,ϵ∥Φ(xt, cb, t;w).sg()− Φ(xt, c, t;w)∥2
(4)

where c is the target concept, e.g. the object “parachute”,
cb is the base condition, e.g. the empty string “”, sg() is
the gradient stopping operator. Intuitively, we force the pre-
dicted noise conditioned on the target concept to be close to
the unconditioned noise, thus preventing the reverse process
from approaching the true conditional distribution.

CAD-Erase. We propose Algorithm 1, which erases a con-
cept from generative models, to validate Hypothesis 1. In
general, we compute the attribution value of components
by Equation (3) and remove the top-k positive components.
Note that, although there could exist a more effective al-
gorithm than masking the top-k positive or negative com-
ponents to erase or amplify (which we will introduce next)
concepts, respectively, our paper focuses on proposing a
general approach and its analysis on answer the question
of “How do components in diffusion models contribute to
the generated image?”. For example, one can finetune these
positive or negative components to achieve even better con-
cept erasure or amplification; however, this is beyond the
scope of our study and we leave it for future works.

3.2. Amplifying Knowledge in Diffusion Models

Our attribution framework offers a complete view of inter-
preting the model: besides positive components that are

responsible for generating a concept, there also exist compo-
nents with negative coefficients. We hypothesize that these
components suppress knowledge, i.e., decreasing the prob-
ability of inducing a concept. If we ablate these negative
components, the model will become more likely to generate
an image with the concept.

Hypothesis 2. Negative components exist and ablating them
will amplify knowledge.

Previous works in knowledge localization (Meng et al.,
2022; Basu et al., 2023) edit the model at modules stor-
ing knowledge. If Hypothesis 2 is correct, we can also edit
the model at those negative components. For instance, a
user, perhaps with malicious intention, can remove negative
components of a harmful concept to increase the chance that
the diffusion model generates this concept.

CAD-Amplify. We propose Algorithm 2 to amplify knowl-
edge by ablating negative components. This approach as-
sumes access to some images of the target concept and uses
the training loss of diffusion models as the objective J :

J(c, w) = −Ext,t,ϵ[∥ϵ− Φ(xt, c, t;w)∥22]. (5)

4. Experiments
In this section, we aim to verify and provide a comprehensive
empirical analysis of the knowledge localization hypothesis
in Section 4.1 and the existence of negative components in
Section 4.2.

4.1. CAD Can Locate Positive Components and Erase
Knowledge

The analysis in the previous section shows that CAD can
successfully identify positive and negative components. We
now utilize CAD to verify Hypothesis 1: knowledge is lo-
calized in diffusion models. We conduct experiments on
Stable Diffusion-1.4 with different types of knowledge, in
particular objects, nudity content, and art styles.

We focus on the UNet modules, which are responsible for
processing visual information. For each linear layer, we
remove no more than the top p% components in each row.

Erasing objects. We study how CAD can identify ob-
ject classes in diffusion models and whether CAD can
erase them. We select 10 classes from ImageNette, “cas-
sette player”, “chain saw”, “church”, “English springer”,

“french horn”, “garbage truck”, “gas pump”, “golf ball”,
“parachute”, and “tench”. For each class, we compute com-
ponent attributions and ablate 0.1% components using Al-
gorithm 1. We generate 500 images per class and employ
the pre-trained ResNet50 model to classify the generated
images. We compare CAD with other state-of-the-art eras-
ing methods, in particular ConceptPrune (Chavhan et al.,
2025), ESD (Gandikota et al., 2023), UCE (Gandikota et al.,

3
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Table 1. The accuracy of generated images on target classes and other classes, predicted by the pre-trained ResNet50 model.

Classes Accuracy on target classes ↓ Accuracy on other classes ↑

SD-1.4 ConceptPrune ESD RECE UCE CAD-Erase SD-1.4 ConceptPrune ESD RECE UCE CAD-Erase

Cassette player 7.20 2.60 0.00 0.00 0.00 0.40 86.07 76.73 57.53 89.13 89.13 80.13
Chain saw 69.00 1.00 0.40 0.00 0.00 0.00 79.20 63.97 29.24 75.69 75.69 69.22
Church 76.20 21.00 3.60 1.20 15.20 1.60 78.40 65.00 65.24 80.50 80.20 73.49
English Springer 93.80 1.00 0.20 0.00 0.10 1.40 76.44 62.00 47.48 77.80 78.00 71.91
French horn 98.60 7.40 0.20 0.00 0.00 4.40 75.91 63.17 45.11 74.33 74.33 70.87
Garbage truck 85.60 1.40 0.00 0.00 15.60 3.80 77.36 65.62 47.36 65.40 77.51 63.69
Gas pump 79.00 36.80 0.00 0.00 0.00 0.20 78.09 68.28 48.58 79.02 79.02 67.69
Golf ball 95.80 28.60 0.20 0.00 0.60 4.20 76.22 65.55 48.90 79.00 78.78 73.27
Parachute 96.20 30.00 0.80 0.00 1.00 2.00 76.18 62.17 61.28 78.20 77.87 68.91
Tench 80.40 2.80 1.40 0.00 0.00 0.20 77.93 67.57 60.80 78.56 78.56 72.67

2024), and RECE (Gong et al., 2024). Table 1 reports the
accuracy on the erased class and other classes of CAD and
the other baselines.

Table 2. Ablating negative components identified by CAD signifi-
cantly increases the probability of generating the target class.

Classes Target class Other classes

SD-1.4 CAD-Amplify SD-1.4 CAD-Amplify

Cassette player 7.20 27.60 86.07 82.42
Chain saw 69.00 98.20 79.20 76.29
Church 76.20 93.80 78.40 74.38
Gas pump 79.00 94.60 78.09 77.33
Tench 80.40 93.40 77.93 77.56

First, we evaluate the capability of the base diffusion model
to generate images conditioned on text prompts. Table 1
shows that diffusion models can create high-fidelity images
that are correctly classified by ResNet50, except for some
hard classes such as “cassette player”. However, by ablat-
ing a small portion of parameters, CAD can successfully
erase objects, illustrated by low accuracies for the target
class. On the other hand, the accuracies for the other classes
are still high, implying that removing positive components
located by CAD do not have a significant impact on other
knowledge. We also provide qualitative results in Figure 6,
demonstrating that CAD erases the target concept without
affecting the other concepts. This observation verifies the
knowledge localization hypothesis 1.

Table 1 also implies that CAD-Erase, the model erasing
algorithm based on CAD, can serve as a competitive erasing
method. Specifically, CAD-Erase performs better in erasing
objects than ConceptPrune, another method that removes
parameters in the model. ESD yields similar accuracies
on the target classes to CAD-Erase; however, this method
sacrifices other knowledge, leading to low accuracies on the
other classes. CAD-Erase’s performance is on par with UCE
and RECE, two state-of-the-art concept erasing methods that
update the linear layer in cross-attention to map the target
concept in the prompt to other concepts. In some cases,
such as “church” and “garbage truck”, UCE still fails to
completely erase the concept while CAD-Erase reduces the
accuracy on those classes to no more than 3%.

4.2. Ablating Negative Components Strengthens
Knowledge

This section investigates the ability of CAD-Amplify, which
is based on CAD’s attribution framework, to amplify knowl-
edge, when removing the negative components.

Amplify objects. Table 1 shows that Stable Diffusion
still struggles to generate some classes, such as “cassette
player”, “chain saw”, “church”, “gas pump”. To com-
pute the objective in Equation (5), we select 5 images, for
each class, from the ImageNette dataset that are correctly
classified by the pre-trained ResNet50. We compute the
attribution scores and remove the negative components with
CAD-Amplify(Algorithm 2). Table 2 shows that CAD-
Amplify improves the accuracy of the target classes signifi-
cantly. More particularly, the accuracy of “cassette player”
is increased from 7.2% to 27.6%, and those of the other
classes are more than 90%. These results indicate the exis-
tence of the negative components, verifying Hypothesis 2.

We additionally provide qualitative results in Figure 7 to
further demonstrate that CAD-Amplify can amplify knowl-
edge. This figure illustrates pairs of images generated by
the original model and the ablated model, using the same
seeds. As can be observed, CAD-Amplify adds details of
the concept to the images, unleashing the target knowledge.

5. Conclusion
In this work, we study the contribution of each component,
i.e., the model parameter, in generating images in diffusion
models. We propose a framework based on first-order ap-
proximation to efficiently compute the attribution scores
and two editing algorithms to erase or amplify knowledge
in the diffusion model. Our empirical analysis confirms the
localization hypothesis, showing that knowledge is local-
ized in a small number of components. We also show the
existence of negative components that suppress knowledge,
and ablating them increases the probability of generating
the target concept. Our study provides a complete view of
interpreting diffusion models by analyzing both positive and
negative components. This understanding allows us to build
more trustworthy and reliable generative models.
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This Appendix provides additional details, analysis, and quantitative and qualitative results to support the main paper.
Section A and B discuss the limitations and societal impacts of our work. We review the related works in Section C.
Section E presents our editing algorithms. We report experimental setups and hyperparameters in Section F. We evaluate the
performance of our framework in erasing and amplifying concepts in Section G, H, I and J. Section K shows the performance
of CAD on different modules. Section L discusses the results of CAD with different ablation ratios. Section M studies the
other type of intervention on model components. We present experimental results for Stable Diffusion v2.1 in Section N and
additional qualitative results in Section O.

A. Limitations
In this work, we only focus on the most fine-grained model components, i.e., the model parameters, and study their
contributions to concept generation. We do not examine other types of components, such as layers or modules, which can
potentially influence multiple concepts at once. Furthermore, we study the contribution of model components to a concept
represented in the generated image, which is the final result of the reverse process in diffusion models. Extending our work
to analyze model attribution to a specific stage in the reverse process or a spatial location in the image is an interesting
direction for future work.

In addition, as our work only focuses on identifying and analyzing positive and negative components in diffusion models, the
proposed lightweight erasing and amplification algorithms may not be the most performant. Nevertheless, one can develop
more sophisticated approaches, e.g., fine-tuning the highly influential components, that may achieve better concept-editing
performance than ours. Again, we leave this for future work.

When removing objects, we observe that CAD-Erase slightly compromises some other knowledge, i.e., decreases the
accuracies on other classes. This means that although knowledge is generally localized, there could still exist some
components of those being removed that are responsible for multiple pieces of knowledge. Studying the entanglement of
parametric knowledge would be an interesting future direction.

B. Societal Impacts
Our work proposes a framework that facilitates the analysis of diffusion models and allows us to understand how model
components work. On the one hand, this framework could be potentially misused to induce harmful behaviors in generative
models, such as amplifying explicit content or misinformation in generated images. On the other hand, future research could
employ our approach to safeguard the model by identifying harmful components.

C. Related Works
Interpreting Neural Networks. Several research has extensively studied the black-box mechanism of neural networks to
explain their behaviors. A line of works (Selvaraju et al., 2020; Chattopadhay et al., 2018; Wang et al., 2020) visualize
important input regions of classification models by using the gradient of feature map activations. Sundararajan et al. (2017)
formalize the problem of attributing the input and propose two axioms to design attribution methods. Fundamentally
different from those studies, we aim to attribute the model components, specifically parameters, in diffusion models.

Knowledge Localization. Previous work explored how language model components store factual knowledge (Hao et al.,
2021; Dai et al., 2022) or used model attribution to analyze the impact of individual components in the image classification
and language prediction task(Shah et al., 2024). However, due to the iterative generative process and the difference in
knowledge storing, applying these approaches to diffusion models is challenging. Another line of research (Basu et al., 2023;
2024; Hase et al., 2024; Meng et al., 2022; Syed et al.; Conmy et al., 2023; Zhang & Nanda, 2024) utilizes causal analysis to
identify critical layers for knowledge in language models and T2I Latent Diffusion variants. For instance, modifying specific
layers can alter factual information or remove unwanted visual elements. While these methods have shown successes in
localizing knowledge, Hase et al. (2024) discover that editing non-causal layers can also modify stored facts in language
models. This finding implies that causal analysis may answer a different question from model editing. Furthermore, these
approaches inspect the activations, which are dependent on the input, whereas our work studies the parameters of the model.
Dravid et al. (2024) examine the weight space of several customized diffusion models; in contrast, our work offers an
efficient approach to studying individual model component roles.

Concept Erasure. Latent diffusion models (LDMs) can generate undesirable content (e.g., nudity, outdated information,
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copyrighted artistic styles) due to their large and uncontrolled training datasets. Early efforts address this problem involved
fine-tuning Cross-Attention layers (Gandikota et al., 2023; Kim et al., 2023; Kumari et al., 2023; Zhang et al., 2024b; Orgad
et al., 2023) or editing the text-encoder (Arad et al., 2024; Basu et al., 2023). In addition, several research (Gandikota
et al., 2024; Lu et al., 2024; Xiong et al., 2024) highlight the necessity to remove multiple concepts simultaneously in
real-world scenarios. More recent works aim to improve robustness of erasing methods to red-teaming attacks, including
ConceptPrune (Chavhan et al., 2025), RECE (Gong et al., 2024), RACE (Kim et al., 2024), and pruning methods (Yang
et al., 2024a). These methods enable efficient erasure of various contents while ensuring minimal interference with the
unedited ones.

Concept Amplification. Motivated by Dreambooth (Ruiz et al., 2023), Cones (Liu et al., 2023) inserts new objects into the
model by identifying concept neurons. In contrast, CAD-Amplify locates components to magnify existing knowledge in
diffusion models. Dai et al. (2022) also proposes a method to amplify facts, but relies on amplifying positive neurons. Our
work is the first study showing the existence of negative components and how to systematically locate them.

Red-Teaming Attacks. Although fine-tuning eliminates undesirable concepts in text-to-image models, recent studies (Yang
et al., 2024c; Chin et al., 2024; Zhang et al., 2024c; Yang et al., 2024b; Zhang et al., 2024a; Tsai et al., 2024; Pham et al.,
2024) show that this approach remains unreliable against adversarial prompt attacks. These safety mechanisms can be
bypassed by both black-box (e.g., SneakyPrompt (Yang et al., 2024c), Ring-A-bell (Tsai et al., 2024)) and white-box attacks
(e.g., P4D (Chin et al., 2024), UnlearnDiff (Zhang et al., 2024c)), leading to the regeneration of sensitive content. These
attacks highlight the need for robust defenses that fully remove concepts while preserving image quality. More importantly,
we can also employ these attacks to test if a concept has been truly erased from a model.

Pruning Approaches. Similar to our algorithms, many studies (Han et al., 2015; Frankle & Carbin, 2018) have investigated
pruning neural networks, primarily for time and memory efficiency. Specifically, (Molchanov et al., 2017; Lee et al., 2018;
Tanaka et al., 2020) use gradient information to identify and remove less important parameters, thereby improving inference
speed. In contrast, our approach removes parameters that have the most significant positive or negative contributions to
either erase or amplify knowledge.

D. The Challenge of Learning αc.
One way to find αc in Section 2 is by treating Equation (2) as a machine learning model (Shah et al., 2024). We can
create a size-N dataset Dc = {(0w(i) , J(c, w(i))) : 0w(i) ∈ {0, 1}d}Ni=1 by randomly masking out some components of the
diffusion model (i.e., to create the input w(i)). Then, we train a linear regression model and obtain αc as the coefficient in
the model. Considering the number of components, this approach requires a significantly high number of data points and
thus function evaluations. For instance, Shah et al. (2024) created 100, 000 data points for image classification and 200, 000
for language modeling to examine a single prediction. Furthermore, since diffusion models require an iterative process to
generate data, generating such data points is significantly more time-consuming. Therefore, this approach of generating data
to learn αc for a concept is prohibitively expensive or inefficient.

E. Algorithms

Algorithm 1 CAD-Erase
Require: Diffusion model Φ, target concept c, base condi-

tion cb, the number of components k.
Ensure: Diffusion model Φ′ with a lower chance to gener-

ate concept c.
Generate a set of x conditioned on c.
Compute the scores wi

∂J
∂wi

with Eq. (4).
Locate top-k components wi ∈ S with the (positive)
attribution.
Set wi ← 0, wi ∈ S.

Algorithm 2 CAD-Amplify
Require: Diffusion model Φ, target concept c, the n.o.

components k, images x of concept c.
Ensure: Diffusion model Φ′ with a higher chance to gen-

erate concept c.
Compute the scores wi

∂J
∂wi

with Eq. (5).
Locate top-k components wi ∈ S with the lowest (neg-
ative) attribution.
Set wi ← 0, wi ∈ S
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F. Experimental Setup
In our study, we compare our method with other concept erasure techniques and test its robustness against red-teaming

attacks. We conduct the experiments on RTX A5000 GPUs. To evaluate erasing methods and prompt attacks, we use their
official implementations. We provide details on the hyperparameters and setups used from these methods as follows:

• For Stable Diffusion v1.4:

– ESD: We follow the setting in the original paper and fine-tune the UNet with a learning rate of 1e− 5. To compute
the objective, we generate images of the target class with a guidance scale of 3. The scale of negative guidance in
the objective is set to 1.

– UCE. We apply UCE across ten objects within the Imagenette class and for the artistic styles of Picasso, Van
Gogh, Rembrandt, Andy Warhol, and Caravaggio, including the nudity concept. The method includes a “preserve”
parameter in artist styles, which retains styles not targeted for erasure. We follow that setting, by erasing only one
artist style at each checkpoint while keeping the rest.

– RECE. This method continues to fine-tune models using checkpoints previously erased by UCE. We utilize public
checkpoints, which are available at https://huggingface.co/ChaoGong/RECE. These checkpoints
include models fine-tuned to erase concepts such as nudity and Van Gogh style, besides 5 objects such as church,
garbage truck, English springer, golf ball, and parachute.

– ConceptPrune. We follow the setting provided by the author. Note that the original paper only evaluates on
SD-v1.5. For the nudity concept, we apply a mask at the initial denoising step with t̂ = 9 and a sparsity level
of k = 1%. For object removal in the Imagenette classes, we use t̂ = 10 and k = 2%. The same parameters
are applied to the erasure of artist styles. Additionally, the “select ratio” parameter m determines the threshold
for applying the binary mask to the model weights. The method prunes only those neurons that exceed m%
throughout the initial time steps t̂. As this parameter is not detailed in their work, we set m = 0.5 to balance the
removal and retaining ability.

• For Stable Diffusion v2.1:

– UCE. We conduct the same experiments with Stable Diffusion v1.4 for all the concepts: object, artistic style, and
nudity.

– RECE. For nudity content, we set λ at 1e− 1. In object removal scenarios where UCE has successfully erased
four objects with an accuracy of 0.00%, RECE focuses on the remaining objects. For the difficult object “church”,
we use λ = 1e− 3, and for easy objects like “golf ball”, “parachute”, “cassette player”, “gas pump”, and “garbage
truck”, we use λ = 1e− 1. We fine-tune for 10 epochs for nudity and 5 epochs for object removal, consistent
with the hyperparameters used in the paper.

• For nudity and object evaluation:

– We follow the settings in prior studies.
– To accelerate the benchmark process, we use a batch size of 16 for Stable Diffusion v1.4 and 8 for Stable Diffusion

v2.1. This allows us to evaluate using a single A5000 GPU. We maintain a consistent seed of 0 for all benchmark
experiments.

F.1. CAD Well Approximates the Change in the Objective

In diffusion models, as mentioned in Section 2, attributing the components is time-consuming and more complicated due to
their iterative generation process. Our approach mitigates the computational challenge of learning the regression model by
first-order approximation, balancing the trade-off between efficiency and effectiveness.

First, we evaluate how good the proposed first-order approximation is and whether CAD can accurately capture component
attributions. We randomly ablate a small portion of parameters wi, i ∈ S, in Stable Diffusion-1.4 and obtain the correspond-
ing change in the objective. We also use CAD to compute the predicted change, indicated by

∑
i∈S wi

∂J
∂wi

. We repeat this
process 1000 times and evaluate CAD. Figure 2 illustrates that our predicted values estimate well the actual changes in
the objective with a good Pearson correlation. This analysis confirms the reliability of the proposed approximation, and
consequently CAD, as a useful tool for analyzing the contribution of each component to a concept.
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Table 3. The effect of ablating parameters in different modules.

Classes Accuracy on the target class↓ Accuracy on other classes↑

FF Attn1 Attn2 Residual FF Attn1 Attn2 Residual

Cassette player 0.40 0.00 2.00 11.60 80.13 59.38 37.44 34.44
Chain saw 0.00 0.40 13.60 16.00 69.22 44.80 50.13 20.38
Church 1.60 0.80 43.80 3.80 73.49 60.27 39.82 10.20
English Springer 1.40 1.00 21.60 16.20 71.91 61.96 34.49 15.38
French horn 4.40 3.00 30.60 46.40 70.87 66.93 51.47 18.93
Garbage truck 3.80 6.40 1.40 2.20 63.69 50.71 39.64 35.91
Gas pump 0.20 8.20 15.60 16.60 67.69 58.51 31.16 40.49
Golf ball 4.20 29.20 61.60 35.20 73.27 69.40 44.80 5.89
Parachute 2.00 3.80 54.20 28.00 68.91 55.96 36.58 14.33
Tench 0.20 0.00 9.60 13.60 72.67 52.27 57.73 12.73

Average 1.82 5.28 25.40 18.96 71.19 58.02 42.33 20.87
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Pearson correlation: 0.506

Figure 2. The attribution scores predicted by CAD and the actual values of the objective.

G. Erasing Nudity

Table 4. The number of nudity content classified by Nudenet on images generated from I2P prompts. We also provide CLIP-Score and
FID computed on the COCO dataset to evaluate the quality of generated images on normal prompts.

Model Armpits Belly Buttocks Feet Breast (F) Genitalia (F) Breast (M) Genitalia (M) Anus Total↓ CLIP-Score↑ FID ↓

SD-1.4 169 197 26 28 271 29 60 18 0 798 31.32 14.127
ConceptPrune 21 5 3 13 11 1 0 8 0 62 31.16 15.260
ESD 17 15 6 4 22 12 1 11 0 88 30.27 14.495
RECE 19 27 4 5 17 4 13 9 0 98 30.94 14.633
UCE 60 65 7 5 60 7 14 11 0 229 31.25 14.561
CAD-Erase 6 3 3 6 6 6 0 13 0 43 31.30 12.440

CAD-Amplify 229 242 31 34 360 33 44 18 0 991 – –

Next, we investigate the other abstract concepts, in particular explicit content. We locate and ablate the top 0.075% positive
components with the prompt “naked”. To assess the performance of the new model, we generate images from 4702 prompts
in the I2P benchmark and detect nudity content by Nudenet. We validate the performance on unrelated knowledge by
generating images with 30, 000 prompts in the COCO dataset (Lin et al., 2014). Table 4 shows the results of CAD and the
other baselines.

As can be observed, CAD-Erase achieves the highest performance in erasing nudity content compared to other state-of-the-
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Figure 3. The first two rows contain images generated by the original model and erasing methods on I2P prompts. We add * for
publication. We ablate components of concept “naked” and generate images conditioned on nudity content. The last two rows contain
generated images conditioned on other knowledge. Prompt (1): “High-resolution photograph of a bustling street market, vibrant colors”;
Prompt (2): “Realistic landscape of rolling hills, vibrant greenery”.

art methods, illustrated by the lowest number of nudity classes predicted by Nudenet. Meanwhile, CAD-Erase still well
preserves unrelated knowledge, resulting in low FID (12.440) and a high CLIPScore (31.30), similar to that of the base
model and better than all other erasing methods. Figure 3 illustrates images generated by the original model and the ablated
model from our method. As can be observed, CAD-Erase successfully erases explicit content and keeps other knowledge
intact, while other methods fail to erase in some cases and also change the content on normal prompts. These results confirm
knowledge localization of nudity content.

H. Erasing with Adversarial Prompts

Table 5. The number of nudity content and the drop in percentage from the original model classified by Nudenet 3.4.2 on images generated
from adversarial prompts. Lower is better.

Model MMA Ring-a-bell

SD-1.4 1941 (−00.00%) 414 (−00.00%)
ConceptPrune 98 (−94.95%) 83 (−79.95%)
ESD 279 (−85.62%) 95 (−77.05%)
RECE 481 (−75.22%) 4 (−99.03%)
UCE 971 (−49.97%) 64 (−84.54%)
CAD-Erase 62 (−96.81%) 5 (−98.79%)

Table 6. The attack success rate of white-box attacks on the erased models. Lower is better.

Model Nudity
Object

Church Parachute Tench

P4D UnlearnDiff P4D UnlearnDiff P4D UnlearnDiff P4D UnlearnDiff

ConceptPrune 0.76 0.78 0.84 0.76 0.92 0.92 0.39 0.34
ESD 0.69 0.76 0.56 0.60 0.48 0.54 0.28 0.36
RECE 0.63 0.68 0.42 0.54 0.28 0.30 0.10 0.10
UCE 0.83 0.84 0.50 0.60 0.42 0.48 0.10 0.20
CAD-Erase 0.69 0.68 0.40 0.48 0.46 0.56 0.18 0.22

Recent works (Yang et al., 2024c; Tsai et al., 2024; Yang et al., 2024b) show that current erasing methods do not completely
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remove knowledge from the model, and propose attack methods that create adversarial prompts to induce the erased model
to still generate harmful content. We evaluate our method on two unsafe prompt sets, MMA and Ring-A-Bell, in Table 5.
MMA successfully elicits explicit content from ConceptPrune, ESD, RECE, and UCE models, resulting in 98, 279, 481,
and 971 predicted nudity classes, respectively. In contrast, CAD-Erase only generates a small number of nudity classes,
implying our method erases substantially explicit content in diffusion models. On the other hand, ConceptPrune and
UCE are prone to Ring-A-Bell prompts, while RECE and CAD only generate around 5 predicted nudity classes. We also
evaluate the model with white-box attacks (Chin et al., 2024; Han et al., 2024). Table 6 reports the attack success rate of
white-box attacks in making the erased model generate the target concept. As we can observe, CAD-Erase is more robust
than ConceptPrune, ESD, and UCE, and is on par with RECE. These results also further support the localization hypothesis,
implying that knowledge is stored in a small number of components that are correctly identified by CAD.

I. Erasing Art Styles

Table 7. LPIPS scores of erasing methods on different artist styles. Lower scores indicate more similarity.

Artist LPIPS on the target artist↑ LPIPS on other artists↓

ESD RECE UCE CAD-Erase ESD RECE UCE CAD-Erase

Picasso 0.332 0.143 0.108 0.258 0.279 0.077 0.056 0.127
Van Gogh 0.412 0.253 0.202 0.198 0.303 0.104 0.075 0.089
Rembrandt 0.417 0.275 0.210 0.320 0.331 0.11 0.084 0.152
Andy Warhol 0.449 0.321 0.294 0.208 0.276 0.109 0.085 0.056
Caravaggio 0.394 0.210 0.178 0.243 0.326 0.093 0.073 0.138

We also study whether the localization hypothesis applies to image styles. We conduct experiments on the styles of 5 famous
artists: “Picasso”, “Van Gogh”, “Rembrandt”, “Andy Warhol”, and “Caravaggio”. For each artist, we generate images
with their style from 20 description prompts. We report the LPIPS score of images generated by SD-1.4 and the model
created by CAD and other erasing methods in Table 7. Figure 4 illustrates qualitative results of CAD on the target artist and
other artists. Overall, our method distorts the style in the image while maintaining other styles of the artists. However, for
artists with similar styles, such as “Rembrandt” and “Caravaggio”, removing one style can affect the other. We hypothesize
that some knowledge is not entirely disentangled and some components can be responsible for many concepts.
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Figure 4. Qualitative results of CAD on erasing artist styles. CAD erases the style of “Picasso” from diffusion but keeps the style of other
artists such as “Rembrandt” and “Van Gogh”.
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J. Amplify Nudity Content
We also investigate how CAD-Amplify (Algorithm 2) increases the probability of generating images with explicit content.
Similar to previous experiments, we remove the top 0.1% negative components of the concept “naked” and evaluate on
I2P prompts with Nudenet. We also study to what extent other erasing methods remove knowledge, and whether we can
restore knowledge by ablating negative components with CAD-Amplify. Table 4 illustrates Nudenet’s detections on images
generated by the base SD-1.4 and CAD-Amplify, and on images generated by the state-of-the-art erasing ESD and ESD
with our CAD-Amplify’s algorithm. As can be observed, CAD-Amplify increases the chance of eliciting nudity images,
compared to the base model SD-1.4, by removing only a small number of parameters. CAD-Amplify also increases the
chance of generating nudity images from the model that is erased by ESD.

K. Ablation Study
In this section, we study our framework in different modules of diffusion models. Specifically, we prune positive parameters
in different modules, such as feed-forward layers (FF), self-attention (Attn1), cross-attention(Attn2), and residual connections.
Table 3 reports the accuracy of images generated by CAD-Eraseon different modules on the erased class and other classes. As
can be observed, parameters in modules other than feed-forward layers are highly entangled, removing positive parameters
of a concept affects other concepts.

Table 8. The accuracy of generated images by SD v2.1 on target classes and other classes, predicted by the pretrained ResNet50 model.

Classes Accuracy on target classes↓ Accuracy on other classes↑

SD-2.1 UCE RECE CAD-Erase SD-2.1 UCE RECE CAD-Erase

Cassette player 15.60 0.20 0.00 0.20 88.22 79.17 69.95 87.38
Chain saw 98.40 0.00 0.00 1.40 71.95 71.95 71.95 74.40
Church 90.60 23.20 6.80 38.00 79.88 69.97 65.57 81.60
English Springer 98.60 0.00 0.00 4.00 70.73 70.73 70.73 77.13
French horn 98.80 0.00 0.00 2.40 78.97 74.28 74.28 76.82
Garbage truck 84.00 0.60 0.20 4.20 80.62 74.33 64.17 78.60
Gas pump 90.00 0.20 0.00 6.40 79.95 69.88 57.57 76.98
Golf ball 93.80 0.20 0.00 1.80 79.53 75.68 64.15 79.22
Parachute 63.20 0.80 0.00 0.20 82.93 73.00 69.64 78.87
Tench 76.60 0.00 0.00 1.00 81.44 71.42 71.42 78.29

Table 9. The number of nudity content classified by Nudenet on images generated from I2P prompts. We also provide CLIP-Score and
FID computed on the COCO dataset to evaluate the quality of generated images on normal prompts.

Model Armpits Belly Buttocks Feet Breast (F) Genitalia (F) Breast (M) Genitalia (M) Anus Total↓ CLIP-Score↑ FID ↓

SD-2.1 232 106 35 116 225 13 15 19 0 761 31.58 12.860
RECE 4 0 1 7 4 0 0 2 0 18 29.32 15.760
UCE 93 42 2 48 79 1 18 21 0 304 31.33 12.785
CAD-Erase 79 19 13 74 73 1 0 18 0 277 31.57 12.872

CAD-Amplify 230 106 36 124 240 13 19 18 0 786 – –

L. The Effect of The Ratio of Ablated Components

As mentioned in Section 4, some components may be responsible for many concepts. Thus, ablating too many positive
components can lead to degradation in the generation quality of other concepts. To investigate this behavior, we evaluate
CAD in erasing objects with different numbers of ablated components. Figure 5 illustrates the accuracy with different
ablation ratios, showing that high ratios decrease the accuracy of other classes. However, this drop occurs after the accuracy
on the erased class reaches almost 0%, thus, we can expect a high disentanglement of knowledge in the model.

M. Intervention by Amplifying Components
In Section 2, we study the causal effect of model components by removing them from the model. We also perform another
intervention that amplifies the effect of model components by rescaling the magnitude of model components. Intuitively,
increasing the magnitude of negative components could also suppress the target concept, although knowledge may still
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Figure 5. The accuracy on CAD with different ablation ratios on the erased class and other classes.

Table 10. Intervening diffusion by knocking out or amplifying components.

Classes
Accuracy on target classes↓ Accuracy on other classes↑

Amplifying Knocking out Amplifying Knocking out
scale=1.5 scale=2 scale=3 scale=1.5 scale=2 scale=3

Cassette player 7.80 0.20 0.00 0.40 86.09 80.11 41.42 81.33
Chain saw 69.40 0.20 0.00 0.20 79.24 65.80 6.71 71.87
Church 76.60 1.40 0.00 3.00 78.44 74.47 33.16 74.24
English Springer 93.60 1.20 0.00 0.60 76.56 72.22 42.20 69.36
French horn 98.80 11.40 0.20 0.60 75.98 71.60 51.18 68.09
Garbage truck 85.60 9.00 0.00 2.20 77.44 62.78 27.96 64.73
Gas pump 78.00 0.20 0.00 1.60 78.29 66.71 28.40 66.04
Golf ball 95.80 8.20 1.40 5.40 76.31 73.84 65.13 73.20
Parachute 96.20 2.80 0.00 1.60 76.27 67.56 32.49 67.44
Tench 80.80 0.00 0.00 0.20 77.98 71.33 29.29 67.93

Average 78.26 3.46 0.16 1.58 78.26 70.64 35.79 70.42

exist in positive components. The main problem of this approach is that it’s hard to determine the scale for a meaningful
intervention; choosing a low value may not be enough to erase the target concept, while a high value may affect other
knowledge. We evaluate the performance of the model when model components are scaled up by different values. Table 10
reports the performance when amplifying negative components or knocking out positive components, showing that not
all scales are suitable to verify the role of model components. With an appropriate value, i.e., 2, intervening negative
components also remove the target knowledge while retaining other knowledge, confirming the effect of those components.

N. Additional Results on Stable Diffusion v2.1
In this section, we report the performance of our two algorithms on Stable Diffusion v2.1 to further support our analysis.

Erasing objects. Table 8 shows the accuracy of SD-2.1 erased by Algorithm 1 on the target class and other classes. As can
be observed, CAD erases the target knowledge significantly while remaining unrelated knowledge.

Erasing nudity. Table 9 evaluates CAD in erasing nudity, showing that removing positive components in SD-2.1 also
significantly decreases the probability of generating explicit contents and keeps the quality of generated images on normal
prompts.

Amplifying objects. We also apply Algorithm 2 to amplify knowledge in SD-2.1. Table 11 demonstrates that CAD increases
objects in SD-2.1. CAD can also amplify knowledge of explicit contents, as shown in Table 9.

O. Additional Qualitative Results

In this section, we provide additional qualitative results to demonstrate how CAD augments knowledge in diffusion models
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Table 11. Ablating negative components on SD-2.1.
Classes SD-2.1 CAD

Cassette player 15.60 18.60
Parachute 63.20 96.40

compared to other methods.

Figure 8 illustrates generated images conditioned on sensitive prompts of the original SD-1.4 and different erasing methods.
CAD removes explicit content in the model and maintains the quality on normal prompts.

Figure 9 shows images generated from a SD-1.4 that has been erased knowledge of ”Van Gogh“ style by different methods.
CAD successfully erases the target art style and maintains the quality of other styles. RECE and UCE also keep knowledge
of other styles but change the original content.

Figure 10 provides generated images after erasing knowledge of objects in SD-2.1 We also show qualitative results of
erasing explicit content in SD-2.1 in Figure 11.

Figure 12 demonstrates how CAD amplifies knowledge in SD-2.1.
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Figure 6. The qualitative results of CAD. Removing positive components to “English Springer” prevents diffusion from generating that
concept. Meanwhile, the model still retains knowledge of other classes such as “Church” and “Parachute”.
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Figure 7. The first row contains generated images conditioned on “church” and “chain saw” but are incorrectly classified by ResNet50.
The second row contains images generated from the model in which negative components are ablated, with the same seed as the first row.
Our algorithm amplifies visual features in generated images and makes them closer to the target concept.
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Figure 8. Qualitative results of erasing sensitive content in SD-1.4 with CAD. We add * for publication. Prompt (1): “High-detail image
of a city skyline at dusk, lights on”; Prompt (2): “Hyper-realistic image of a car on a winding road, motion blur”; Prompt (3): “Photo of a
cozy living room with a fireplace, warm lighting”; Prompt (4): “Realistic depiction of a serene beach at sunset, calm waves”.
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Figure 9. Erasing ”Van Gogh“ style with different methods.
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Figure 10. Qualitative results of erasing objects in SD-2.1 with CAD.
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Figure 11. Qualitative results of erasing sensitive content in SD-2.1 with CAD. We add * for publication. Prompt (1): “Impressionist
landscape of a Japanese garden in autumn, with a bridge over a koi pond”; Prompt (2): “Art Nouveau painting of a female botanist
surrounded by exotic plants in a greenhouse”; Prompt (3): “Gothic painting of an ancient castle at night, with a full moon, gargoyles,
and shadows”; Prompt (4): “Black and white street photography of a rainy night in New York, reflections on wet pavement”; Prompt
(5): “Underwater photography of a coral reef, with diverse marine life and a scuba diver for scale”; Prompt (6): “Documentary-style
photography of a bustling marketplace in Marrakech, with spices and textiles”; Prompt (7): “Cyberpunk cityscape with towering
skyscrapers, neon signs, and flying cars”; Prompt (8): “Concept art for a post-apocalyptic world with ruins, overgrown vegetation, and a
lone survivor”.
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Figure 12. Qualitative results of amplifying knowledge in SD-2.1 with CAD.
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