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Abstract

Hamiltonian Monte Carlo (HMC) is a popular Markov Chain Monte Carlo
(MCMC) algorithm to sample from an unnormalized probability distribution. A
leapfrog integrator is commonly used to implement HMC in practice, but its per-
formance can be sensitive to the choice of mass matrix used therein. We develop
a gradient-based algorithm that allows for the adaptation of the mass matrix by
encouraging the leapfrog integrator to have high acceptance rates while also ex-
ploring all dimensions jointly. In contrast to previous work that adapt the hyper-
parameters of HMC using some form of expected squared jumping distance, the
adaptation strategy suggested here aims to increase sampling efficiency by maxi-
mizing an approximation of the proposal entropy. We illustrate that using multiple
gradients in the HMC proposal can be beneficial compared to a single gradient-
step in Metropolis-adjusted Langevin proposals. Empirical evidence suggests that
the adaptation method can outperform different versions of HMC schemes by ad-
justing the mass matrix to the geometry of the target distribution and by providing
some control on the integration time.

1 Introduction

Consider the problem of sampling from a target density π on Rd of the form π(q) ∝ e−U(q), with
a potential energy U : Rd → R being twice continuously differentiable. HMC methods [20, 46, 9]
sample from a Boltzmann-Gibbs distribution µ(q, p) ∝ e−H(q,p) on the phase-space R2d based on
the (separable) Hamiltonian function

H(q, p) = U(q) +K(p) with K(p) =
1

2
p>M−1p.

The Hamiltonian represents the total energy that is split into a potential energy term U and a ki-
netic energy K which we assume is Gaussian for some symmetric positive definite mass matrix M .
Suppose that (q(t), p(t))t∈R evolve according to the differential equations

dq(t)

dt
=
∂H(q(t), p(t))

∂p
= M−1p(t) and

dp(t)

dt
= −∂H(q(t), p(t))

∂q
= −∇U(q(t)). (1)

Let (ϕt)t>0 denote the flow of the Hamiltonian system, that is for fixed t, ϕt maps each (q, p)
to the solution of (1) that takes value (q, p) at time t = 0. The exact HMC flow ϕ preserves
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volume and conserves the total energy i.e. H ◦ ϕt = H . Consequently, the Boltzmann-Gibbs
distribution µ is invariant under the Hamiltonian flow, that is µ(ϕt(E)) = µ(E) for any Borel
set E ⊂ R2d. Furthermore, the flow satisfies the generalized reversibility condition F ◦ ϕt =
ϕ−t ◦ F with the flip operator F(q, p) = (q,−p). Put differently, the Hamiltonian dynamics go
backward in time by negating the velocity. If an analytical expression for the exact flow were
available, one could sample from µ using the invariant Markov chain that at state (q, p) first draws
a new velocity p′ ∼ N (0,M) with the next state set to ϕT (q, p′) for some integration time T > 0.
Such a velocity refreshment is necessary as the HMC dynamics preserve the energy and so cannot
be ergodic. However, the Hamiltonian flow cannot be computed exactly, except for very special
potential functions. Numerical approximations to the exact solution of Hamiltonian’s equations are
thus routinely used, most commonly the leapfrog method, also known as (velocity) Verlet integrator
[28, 10]. For a step size h > 0 and L steps, such an algorithm updates the previous state q0 and a
new velocity p0 ∼ N (0,M) by setting, for 0 6 ` 6 L− 1,

p`+ 1
2

= p` −
h

2
∇U(q`); q`+1 = q` + hM−1p`+ 1

2
; p`+1 = p`+ 1

2
− h

2
∇U(q`+1). (2)

This scheme can be motivated by splitting the Hamiltonian wherein the kick mappings in the first
and third step update only the momentum, while the drift mapping in the second step advances only
the position q with constant speed. For T = Lh, the leapfrog integrator approximates ϕT (q0, p0)
by (qL, pL) while also preserving some geometric properties of ϕ, namely volume preservation and
generalized reversibility. The leapfrog method is a second-order integrator, making anO(h2) energy
error H(qL, pL) −H(q0, p0). A µ-invariant Markov chain can be constructed using a Metropolis-
Hastings acceptance step. More concretely, the proposed state (qL, pL) is accepted with the ac-
ceptance rate a(q0, p0) = min{1, exp [− (H(qL, pL)−H(q0, p0))]}, while the next state is set
to F(q0, p0) in case of rejection, although the velocity flip is inconsequential for full refreshment
strategies.

We want to explore here further the generalised speed measure introduced in [54] for adapting RWM
or MALA that aim to achieve fast convergence by constructing proposals that (i) have a high average
log-acceptance rate and (ii) have a high entropy. Whereas the entropy of the proposal in RWM or
MALA algorithms can be evaluated efficiently, the multi-step nature of the HMC trajectories makes
this computation less tractable. The recent work in [41] consider the same adaptation objective by
learning a normalising flow that is inspired by a leapfrog proposal with a more tractable entropy by
masking components in a leapfrog-style update via an affine coupling layer as used for RealNVPs
[19]. [60] sets the integration time by maximizing the proposal entropy for the exact HMC flow in
Gaussian targets, while choosing the mass matrix to be the inverse of the sample covariance matrix.

2 Related work

The choice of the hyperparameters h, L and M can have a large impact on the efficiency of the
sampler. For fixed L and M , a popular approach for adapting h is to target an acceptance rate of
around 0.65 which is optimal for iid Gaussian targets in the limit d→∞ [8] for a given integration
time. HMC hyperparameters have been tuned using some form of expected squared jumping dis-
tance (ESJD) [49], using for instance Bayesian optimization [56] or a gradient-based approach [40].
A popular approach suggested in [32] tunes L based on the ESJD by doubling L until the path makes
a U-turn and retraces back towards the starting point, that is by stopping to increase L when the dis-
tance to the proposed state reaches a stationary point [4]; see also [57] for a variation and [48] for a
version using sequential proposals. Modern probabilistic programming languages such as Stan [12],
PyMC3 [51], Turing [23, 58] or TFP [39] furthermore allow for an adaptation of a diagonal or dense
mass-matrix within NUTS based on the sample covariance matrix. The Riemann manifold HMC
algorithm from [25] has been suggested that uses a position dependent mass matrix M(x) based on
a non-separable Hamiltonian, but can be computationally expensive, requiring O(d3) operations in
general. An alternative to choose M or more generally the kinetic energy K was proposed in [43]
by analysing the behaviour of x 7→ ∇K(∇U(x)). Different pre-conditioning approaches have been
compared for Gaussian targets in [38]. A popular route has also been to first transform the target
using tools from variational inference as in [31] and then run a HMC sampler with unit mass matrix
on the transformed density with a more favourable geometry.
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A common setting to study the convergence of HMC assumes a log-concave target. In the case that
U is m1-strongly convex and m2-smooth, [45, 15] analyse the ideal HMC algorithm with unit mass
matrix where a higher condition number κ = m2/m1 implies slower mixing: The relaxation time,
i.e. the inverse of the spectral gap, grows linear in κ, assuming the integration time is set to T =

1
2
√
m2

. [14] establish non-asymptotic upper bounds on the mixing time using a leap-frog integrator
where the step size h and the number L of steps depends explicitly on m1 and m2. Convergence
guarantees are established using conductance profiles by obtaining (i) a high probability lower bound
on the acceptance rate and (ii) an overlap bound, that is a lower bound on the KL-divergence between
the HMC proposal densities at the starting positions q0 and q′0, whenever q0 is close to q′0. While
such bounds for controlling the mixing time might share some similarity with the generalised speed
measure (GSM) considered here, they do not lend themselves easily to a gradient-based adaptation.

3 Entropy-based adaptation scheme

We derive a novel method to approximate the entropy of the proposed position after L leapfrog
steps. Our approximation is based on the assumption that the Hessian of the target is locally con-
stant around the mid-point of the HMC trajectory, which allows for a stochastic trace estimator of
the marginal proposal entropy. We develop a penalised loss function that can be minimized using
stochastic gradient descent while sampling from the Markov chain in order to optimize a GSM.

3.1 Marginal proposal entropy

Suppose that CC> = M−1, where C is defined by some parameters θ and can be a diagonal
matrix, a full Cholesky factor, etc. Without loss of generality, the step size h > 0 can be fixed. We
can reparameterize the momentum resampling step p0 ∼ N (0,M) by sampling v ∼ N (0, I) and
setting p0 = C−>v. One can show by induction, cf. Appendix E for details, that the L-th step
position qL and momentum pL of the leapfrog integrator can be represented as a function of v via

qL = TL(v) = q0 −
Lh2

2
M−1∇U(q0) + LhCv − h2M−1ΞL(v), (3)

and

pL =WL(v) = C−>v − h

2
[∇U(q0) +∇U ◦ TL(v)]− h

L−1∑
i=1

∇U ◦ Ti(v) (4)

where

ΞL(v) =

L−1∑
i=1

(L− i)∇U ◦ Ti(v), (5)

see also [42, 21, 14] for the special case with an identity mass matrix. Observe that for L = 1
leap-frog steps, this reduces to a MALA proposal with preconditioning matrix M−1.

Under regularity conditions, see for instance [21], the transformation TL : Rd → Rd is a C1-
diffeomorphism. With ν denoting the standard Gaussian density, the density rL of the HMC proposal
for the position qL after L leapfrog steps is the pushforward density of ν via the map TL so that1

log rL(TL(v)) = log ν(v)− log |detDTL(v)|. (6)

Observe that the density depends on the Jacobian of the transformation TL : v 7→ qL. We would like
to avoid computing log |detDTL(v)| exactly. Define the residual transformation

SL : Rd → Rd, v 7→ 1

Lh
C−1TL(v)− v. (7)

Then DTL(v) = LhC(I +DSL(v)) and consequently

log |detDTL(v)| = d log(Lh) + log |detC|+ log |det(I +DSL(v))|. (8)

Combining (6) and (8) yields the log-probability of the HMC proposal

log rL(TL(v)) = log ν(v)− d log(Lh)− log |detC| − log |det(I +DSL(v))|. (9)

1We denote the Jacobian matrix of a function f : Rd → Rd at the point x as Df(x).
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Comparing the equations (3) and (7), one sees that SL(v) = c − h
LC
>ΞL(v) for some constant

c ∈ Rd that depends on θ but is independent of v and consequently, DSL(v) = − h
LC
>DΞL(v). We

next show a recursive expression for DSL with a proof given in Appendix B.
Lemma 1 (Jacobian representation). It holds that DS1 = 0 and for any ` ∈ {2, . . . , L}, v ∈ Rd,

DS`(v) = −h2
`−1∑
i=1

(`− i) i
`
C>∇2U (Ti(v))C (I +DSi(v)) . (10)

In particular, DS`(v) is a symmetric matrix. Suppose further that L2h2 < supq∈Rd
1

4‖C>∇2U(q)C‖ 2
.

Then for any ` ∈ {1, . . . , L} and v ∈ Rd, we have ‖DS`(v)‖2 <
1
8 .

Notice that the recursive formula (10) requires computing 1
2L(L−1) terms, each involving the Hes-

sian, in order to compute the Jacobian after L leapfrog steps. Consider for the moment a Gaussian
target with potential function U(q) = 1

2 (q − q?)>Σ−1(q − q?) for q? ∈ Rd and positive definite
Σ ∈ Rd×d. Then, due to (10), for any q ∈ Rd, v ∈ Rd,

DSL(v) = −h2
L−1∑
i=1

(L− i) i
L
C>Σ−1C(I +DSi(v)) = DL +RL(v),

where

DL = −h2C>Σ−1C

(
L−1∑
i=1

(L− i) i
L

)
= −h2L

2 − 1

6
C>Σ−1C (11)

and a remainder term RL(v) = −h2C>Σ−1C
(∑L−1

i=1 (L− i) iLDSi(v)
)

. From Lemma 1, we see

that if
∥∥C>Σ−1C

∥∥
2
6 1

4h2L2 , then I +DSL(v) and −DSL(v) are positive definite. Then RL is
also positive definite and log det(I +DL) 6 log |det(I +DSL(v))| and we can maximize the lower
bound instead. Put differently, for Gaussian targets, DSL can be decomposed into a component DL

that contains all terms that are linear in h2C>Σ−1C and that does not require a recursion; plus a
component RL that contains terms that are higher than linear in h2C>Σ−1C and that needs to be
solved recursively. Our suggestion is to ignore this second term. Note that R2 = 0 and an extension
can be to include higher order terms O

([
h2C>Σ−1C

]k)
, k > 1, in the approximation DL.

For an arbitrary potential energy U , equation (10) shows that evaluating DSL leads to a non-linear
function of the Hessians evaluated along the different points of the leapfrog-trajectory. We suggest
to replace it with a first order term with one Hessian evaluation which is however scaled accordingly.
Concretely, we maximize

L(θ) = log |det(I +DL)| with DL = −h2L
2 − 1

6
C>∇2U(qbL/2c)C (12)

as an approximation of log |det(I +DSL)|. The intuition is that we assume that the target density
can be approximated locally by a Gaussian one with precision matrix Σ−1 in (11) given by the Hes-
sian of U at the mid-point qbL/2c of the trajectory. We want to optimize L(θ) given in (12) even
if we do not have access to the Hessian ∇2U explicitly, but only through Hessian-vector products
∇2U(q)w for some vector w ∈ Rd. Vector-Jacobian products vjp(f, x, w) = w>Df(x) for dif-
ferentiable f : Rd → Rd can be computed efficiently via reverse-mode automatic differentiation, so
that∇2U(q)w = vjp(∇U, q, w)> can be evaluated with complexity linear in d.

Suppose the multiplication with DL is a contraction so that all eigenvalues of DL have abso-
lute values smaller than one. Then one can apply a Hutchinson stochastic trace estimator of
log |det(Id +D,L)|with a Taylor approximation, truncated and re-weighted using a Russian-roulette
estimator [44], see also [29, 5, 13] for similar approaches in different settings. More concretely, let
N be a positive random variable with support on N and let pk = P (N > k). Then,

L(θ) = log det(I +DL) = EN,ε

[
N∑
k=1

(−1)k+1

kpk
ε> (DL)

k
ε

]
, (13)
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where ε is drawn from a Rademacher distribution. While this yields an unbiased estimator for L(θ)
and its gradient as shown in Appendix A.1 if DL is contractive, it can be computationally expensive
if N has a large mean or have a high variance if DL has an eigenvalue that is close to 1 or −1, see
[44, 17]. Since both the first order Gaussian approximation as well as the Russian Roulette estimator
hinges on DL having small absolute eigenvalues, we consider a constrained optimisation approach
that penalises such large eigenvalues. For the random variableN that determines the truncation level
in the Taylor series, we compute bN = (DL)Nε/

∥∥(DL)Nε
∥∥

2
and µN = b>NDLbN . Note that this

corresponds to applying N times the power iteration algorithm and with |λ1| > |λ2| > . . . > |λd|
denoting the eigenvalues of the symmetric matrix DL, almost surely µn → λ1 for n → ∞, see
[26]. For some δ ∈ (0, 1), we choose some differentiable monotone increasing penalty function
h : R→ R such that h(x) > 0 for x > δ and h(x) = 0 for x 6 δ and we add the term γh(|µN |) for
γ > 0 to the loss function that we introduce below, see Appendix A.2 for an example of h.

3.2 Adaptation with a generalised speed measure

Extending the objective from [54] to adapt the HMC proposal, we aim to solve

arg min
θ

∫ ∫
π(q0)ν(v)

[
− log a ((q0, v), (TL(v),WL(v))) + β log rL(TL(v))

]
dvdq0, (14)

where TL, WL, rL as well as the acceptance rate a depend on q0 and the parameters θ we want to
adapt. Also, the hyper-parameter β > 0 can be adapted online by increasing β if the acceptance rate
is above a target acceptance rate α? and decreasing β otherwise. We choose α? = 0.67, which is
optimal for increasing d under independence assumptions [8]. One part of the objective constitutes
minimizing the energy error ∆(q0, v) = H(TL(v),WL(v)) − H(q0, C

−>v) that determines the
log-acceptance rate via log a(q0, C

−>v) = min{0,−∆(q0, v)}. Unbiased gradients of the energy
error can be obtained without stopping any gradient calculations in the backward pass. However,
we found that a multi-step extension of the biased fast MALA approximation from [54] tends to
improve the adaptation by stopping gradients through∇U as shown in Appendix A.3.

Suppose that the current state of the Markov chain is q. We resample the momentum v ∼ N (0, I)
and aim to solve (14) by taking gradients of the penalised loss function

−min{0,−∆(q, v)} − β (d log h+ log |detC|+ L(θ)− γh(|µN |)) ,

as illustrated in Algorithm 1, which also shows how we update the hyperparameters β and γ. The
adaptation scheme in Algorithm 1 requires to choose learning rates ρθ, ρβ , ργ and can be viewed
within a stochastic approximation framework of controlled Markov chains, see for instance [2, 1, 3].
Different conditions have been established so that infinite adaptive schemes still converge to the
correct invariant distribution, such as diminishing adaptation and containment [50]. We have used
Adam [37] with a constant step size to adapt the mass matrix, but have stopped the adaptation after
some fixed steps so that any convergence is preserved and we leave an investigation of convergence
properties of an infinite adaptive scheme for future work.

4 Numerical experiments

This section illustrates the mixing performance of the entropy-based sampler for a variety of target
densities. First, we consider Gaussian targets either in high dimensions or with a high condition
number. Our results confirm (i) that HMC scales better than MALA for high-dimensional Gaussian
targets and (ii) that the adaptation scheme learns a mass matrix that is adjusted to the geometry of the
target. This is in contrast to adaptation schemes trying to optimize the ESJD [49] or variants thereof
[40] that can lead to good mixing in a few components only. Next, we apply the novel adaptation
scheme to Bayesian logistic regression models and find that it often outperforms NUTS, except in a
few data sets where some components might mix less efficiently. We also compare the entropy-based
adaptation with Riemann-Manifold based samplers for a Log-Gaussian Cox point process models.
We find that both schemes mix similarly, which indicates that the gradient-based adaptation scheme
can learn a suitable mass matrix without having access to the expected Fisher information matrix.
Then, we consider a high-dimensional stochastic volatility model where the entropy-based scheme
performs favourably compared to alternatives and illustrate that efficient sparsity assumptions can be
accommodated when learning the mass matrix. Finally, we show in a toy example how the suggested
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Algorithm 1 Sample the next state q′ and adapt β, γ and θ.

1: Sample velocity v ∼ N (0, I) and set p = C−>v.
2: Apply integrator LF to obtain (q`, p`,∇U(q`))06`6L = LF(q, p).
3: Stop gradients ∇U(q`) = stop grad(∇U(q`)) for 0 6 ` 6 L.
4: Compute ΞL(v) using (5).
5: Compute ∆(q0, v) using (16) and set a = min{1, e−∆(q0,v)}.
6: Compute η̄N , y = RADEMACHER().
7: Set L(θ) = stop grad(y)>DLε.
8: Set bN = stop grad

(
η̄N
‖η̄N‖22

)
and µN = b>NDLbN .

9: E(θ) = −min{0,−∆(q0, v)} − β (d log h+ log |detC|+ L(θ)− γh(|µN |)) .
10: Adapt θ ← θ − ρθ∇θE(θ).
11: Adapt β ← Πβ [β(1 + ρβ(a− α?)]. #Πβ projects onto a compact set; default value [10−2, 102].
12: Adapt γ ← Πγ [γ + ργh(|µN |)]. #Πγ projects onto a compact set; default value [103, 105].
13: Sample u ∼ U(0, 1) and set q′ = 1{u6a} qL + 1{u>a} q.

14: function DL(w):
15: #DL(w) = DLw computes Hessian-vector products efficiently
16: z = vjp(∇U, stop grad(qbL/2c), Cw)>

17: return −h2 L2−1
6 C>z

18: end function

19: function RADEMACHER:
20: Sample Rademacher random variable ε and truncation level N .
21: Initialise y ←− 0 and η̄0 = ε.
22: for k = 1...N do
23: #Apply a spectral normalisation for stability if DL is not a contraction; δ′ ∈ (0, 1).
24: Set η̄k = DLη̄k−1 · min {1, δ′ ‖η̄k−1‖2 / ‖DLη̄k−1‖2} and y ← y + (−1)k

pk
η̄k.

25: end for
26: return η̄N , y
27: end function

approach might be modified to sample from highly non-convex potentials. Our implementation2

builds up on tensorflow probability [39] with some target densities taken from [53]. We used 10
parallel chains throughout our experiments to adapt the mass matrix.

4.1 Gaussian targets

Anisotropic Gaussian distributions. We consider sampling from a multivariate Gaussian distri-
bution N (0,Σ) with strictly convex potential U(q) = 1

2q
>Σ−1q for different covariance matrices

Σ. For c > 0, assume a covariance matrix given by Σij = δij exp (c(i− 1)/(d− 1) log 10). We set
(i) c = 3 and d ∈ {103, 104} and (ii) c = 6 and d = 100, as considered in [52]. The eigenvalues
of the covariance matrix are thus distributed between 1 to 100 in setting (i), while they vary from
1 and 106 in setting (ii). The preconditioning factor C is assumed to be diagonal. We adapt the
sampler for 4 × 104 steps in case (i) and for 105 steps in case (ii). We compared it with a NUTS
implementation in tensorflow probability (TFP) [39] with a default maximum tree depth of 10 and
step sizes adapted using dual averaging [32, 47] that we denote by N in the figures below. Addition-
ally, we consider a further adaptation of NUTS by adapting a diagonal mass matrix using an online
variance estimate of the accepted samples as implemented in TFP and denoted AN subsequently.
We also consider two objectives as a replacement of the generalised speed measure (GSM): (a) the
ESJD and (b) a weighted combination of the ESJD and its inverse as suggested in Levy et al. [40],
without any burn-in component, which we denote L2HMC, see Appendix D for a precise definition.
We compute the minimum and mean effective sample size (minESS and meanESS) of all functions
q 7→ qi over i ∈ {1, . . . , d} as shown in Figure 1a-1b for d = 103 in case (i) with leapfrog steps
ranging from L = 1 to 10. It can be observed that HMC adapted with the GSM objective performs

2https://github.com/marcelah/entropy_adaptive_hmc
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well in terms of minESS/sec for L > 1, whereas the ESJD or L2HMC objectives yield poor mixing
as measured in terms of the minESS/sec. The meanESS/sec statistics are more similar for the differ-
ent objectives. These observations provide some empirical evidence that the ESJD can be high even
when some components mix poorly, which has been a major motivation for the GSM objective in
[54]. The mass matrix learned using the GSM adapts to the target covariance as can be seen from the
the condition numbers of C>Σ−1C in Figure 1c becoming relatively close to 1. The GSM objective
also yields acceptance rates approaching 1 for increasing leap-frog steps and multiplication with
DL becomes a contraction as shown in Appendix F.1, Figure 7. Results for d = 104 can be found
in Figure 8 in Appendix F.1 which indicate that as the dimension increases, using more leap-frog
steps becomes more advantageous. For the case (ii) of a very ill-conditioned target, results in Table
1 show that the GSM objective leads to better minESS/sec values, while further statistics shown in
Figure 9 illustrate that the GSM also yields to higher minESS/sec values compared to NUTS with
an adapted mass matrix. We want to emphasize that for fixed L, high acceptance rates for HMC
need not be disadvantageous. This is illustrated in Figure 11 in Appendix F.4 for a Gaussian target
N (0, I) in dimension d = 10, where tuning just the step-size to achieve a target acceptance rate can
lead to slow mixing for some L, because the proposal can make a U-turn.

(a) (b) (c)

Figure 1: Minimum (1a) and mean (1b) effective sample size of q 7→ qi per second after adaptation
for an anisotropic Gaussian target (d = 1000). The condition number of the transformed Hessian
C>Σ−1C are shown in (1c).

Correlated Gaussian distribution. We sample from a 51-dimensional Gaussian target with co-
variance matrix given by the squared exponential kernel plus small white noise as in [54], with
k(xi, xj) = exp

(
− 1

2 (xi − xj)2/0.42
)

+ .01δij on the regular grid [0, 4]. We consider a general
Cholesky factor C. The adaptation is performed over 105 steps. Results over 10 runs are shown in
Figure 10 in Appendix F.3 and summarized in Table 2.

Table 1: MinESS/sec for gradient-
based adaptation schemes targeting an
ill-conditioned Gaussian density (d = 100).

Steps GSM ESJD L2HMC

1 122.3 (15.5) 0.1 (0.01) 0.1 (0.01)
5 753.8 (22.2) 0.1 (0.02) 0.1 (0.02)
10 570.0 (37.4) 0.6 (395.2) 0.1 (0.05)

Table 2: MinESS/sec for gradient-based
adaptation schemes targeting a correlated
Gaussian density (d = 51).

Steps GSM ESJD L2HMC

1 63.8 (3.9) 0.8 (1.6) 0.3 (0.1)
5 390.0 (5.0) 2.0 (5.4) 2.7 (2.3)
10 282.7 (7.8) 0.9 (3.7) 0.4 (0.9)

4.2 Logistic regression

Consider a Bayesian logistic regression model with n data points yi ∈ {0, 1} and d-dimensional
covariates xi ∈ Rd for i ∈ {1, . . . , n}. Assuming a Gaussian prior with covariance matrix Σ0 im-
plies a potential function U(q) =

∑n
i=1

[
−yix>i q + log

(
1 + ex

>
i q
)]

+ 1
2q
>Σ−1

0 q. We considered
six datasets (Australian Credit, Heart, Pima Indian, Ripley, German Credit and Caravan) that are
commonly used for benchmarking inference methods, cf. [16]. The state dimension ranges from
d = 3 to d = 87. We choose Σ0 = I and parameterize C via a Cholesky matrix. We adapt over
104 steps. HMC with a moderate number of leap-frog steps tends to perform better for four out of
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six data sets, with subpar performance for the Australian and Caravan data in terms of minESS/sec,
albeit with higher mean ESS/sec across dimensions. The adaptive HMC algorithm tends to perform
well if DL is contractive during iterations of the Markov chain such as for the German Credit data
set as shown in Figure 2, where the eigenvalues of DL are estimated using a power iteration. If this
is not the case as for the Caravan data in Figure 3, the adapted HMC algorithm can perform worse
than MALA or NUTS. More detailed diagnostics for all data sets can be found in Appendix G.

(a) (b) (c)

Figure 2: Minimum (2a) and mean (2b) effective sample size for a Bayesian logistic regression
model for German credit data set (d = 25) after adaptation. Estimates of the eigenvalues of DL in
2c.

(a) (b) (c)

Figure 3: Minimum (3a) and mean (3b) effective sample size for a Bayesian logistic regression
model for caravan data set (d = 87) after adaptation. Estimates of the eigenvalues of DL in 3c.

4.3 Log-Gaussian Cox Point Process

Inference in a log-Gaussian Cox process model is an ideal setting for Riemann-Manifold
(RM) MALA and HMC [25], as a constant metric tensor is used therein that does not de-
pend on the position, making the complexity no longer cubic but only quadratic in the di-
mension d of the target. Consider an area on [0, 1]2 discretized into grid locations (i, j), for
i, j = 1, . . . , n. The observations yij are Poisson distributed and conditionally independent
given a latent intensity process {λ}ij with means λij = m exp(xij) for m = n−2 and a la-
tent vector x drawn from a Gaussian process with constant mean µ and covariance function
Σ(i,j),(i′,j′) = σ2

x exp{−
√

(i− i′)2 + (j − j′)2/(nβ)}. The target is proportional to p(y, x) ∝∏n×n
i,j exp [yijxij −m exp(xij)] exp

[
−(x− µ1)>Σ−1(x− µ1)/2

]
. For the RM based samplers,

the preconditioning matrix is M = Λ + Σ−1 where Λ is a diagonal matrix with diagonal elements
{m exp(µ + Σii)}i and step sizes adapted using dual averaging. We generate simulated data for
d ∈ {64, 256} and adapt for 2000 steps using a Cholesky factor C. Figure 18 in Appendix H illus-
trates that the entropy-based adaptation can achieve a higher minESS/sec score for d = 64 with high
acceptance rates for increasing leap-frog steps. The RM samplers perform slightly better in terms of
minESS/sec for d = 256, see Figure 4 and Figure 19 for a comparison of the inverse mass matrices.

4.4 Stochastic volatility model

We consider a stochastic volatility model [36, 34] that has been used with minor variations for
adapting HMC [25, 32, 57]. Assume that the latent log-volatilities follow an autoregressive AR(1)

8



(a) (b) (c)

Figure 4: Minimum (4a) and mean (4b) effective sample size for a Cox process in dimension d =
256 after adaptation. Estimates of the eigenvalues of DL using power iteration in (4c).

process so that h1 ∼ N (0, σ2/(1 − φ2)) and for t ∈ {1, . . . , T − 1}, ht+1 = φht + ηt+1 with
ηt ∼ N (0, σ2). The observations follow the dynamics yt|ht ∼ N (0, exp(µ + ht)). The prior
distributions for the static parameters are: the persistence of the log-volatility process (φ + 1)/2 ∼
Beta(20, 1.5); the mean log-volatility µ ∼ Cauchy(0, 2); and the scale of the white-noise process
σ ∼ Half-Cauchy(0, 1). We reparametrize φ and σ with a sigmoid- and softplus-transformation,
respectively. Observe that the precision matrix of the AR(1) process is tridiagonal. Since a Cholesky
factor of such a matrix is tridiagonal, we consider the parameterization C = B−1

θ for an upper-
triangular and tridiagonal matrix Bθ. The required operations with such banded matrices have a
complexity of O(d), see for instance [22]. For comparison, we also consider a diagonal matrix
C. We apply the model to ten years of daily returns of the S&P500 index, giving rise to a target
dimension of d = 2519. In order to account for the different number of gradient evaluations, we
use 3.5 × 104/L steps for the adaptation and for evaluating the sampler based on L ∈ {1, . . . , 10}
leapfrog steps. We run NUTS for 1000 steps which has a four times higher run-time compared to
the other samplers. In addition to using effective sample size to assess convergence, we also report
the potential scale reduction factor split-R̂ [24, 55] where large values are indicative of poor mixing.
We report results over three replications in Figure 5 with more details in Figure 20, Appendix I.
First, HMC with moderately large L tends to improve the effective samples per computation time
compared to the MALA case, while also having a smaller R̂. Second, using a tridiagonal mass
matrix improves mixing compared to a diagonal one, particularly for the latent log-volatilities as
seen in the median ESS/sec or median R̂ values. The largest absolute eigenvalue of DL tends to be
smaller for a tridiagonal mass matrix and the acceptance rates are approaching 100% more slowly
for increasing L. Third, NUTS seems less efficient as does using a dual-adaptation scheme.

We imagine that similar efficient parameterizations of M orM−1 can be used for different generali-
sations of the above stochastic volatility model, such as including p sub-diagonals for log-volatilities
having a higher-order AR(p) dynamics or multivariate extensions using a suitable block structure.
Likewise, this approach might also be useful for inferences in different Gaussian Markov Random
Field models with sparse precision matrices.

(a) (b) (c)

Figure 5: Minimum (5a) and median (5b) effective sample size per second and maximum R̂ of
q 7→ qi for a stochastic volatility model (d = 2519) after adaptation.
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4.5 Learning non-linear transformations

To illustrate an extension to sample from highly non-convex targets by learning a non-linear trans-
formation within the suggested framework as explained in greater detail in Appendix C, we con-
sider sampling from a two-dimensional Banana distribution that results from the transformation
of N (0,Λ) where Λ is a diagonal matrix having entries 100 and 1 via the volume-preserving
map φb(x) = (x1, x2 + b(x2

1 − 100)), for b = 0.1, cf. [27]. We consider a RealNVP-
type [19] transformation f = f3 ◦ f2 ◦ f1 where f1(x1, x2) = (x1, x2 · g(s(x1)) + t(x1),
f2(x1, x2) = (x1 · g(s(x2)) + t(x1), x2) and f3(x1, x2) = (c1x1, c2x2). The functions s and t
are neural networks with two hidden layers of size 50. For numerical stability, we found it beneficial
to use a modified affine scaling function g as a sigmoid function scaled on a restricted range such as
(0.5, 2), as also suggested in [6]. As an alternative, we also consider learning a linear transforma-
tion f(x) = Cx for a Cholesky matrix C as well as NUTS and a standard HMC sampler with step
size adapted to achieve a target acceptance rate of 0.65. Figure 6 summarizes the ESS where each
method uses 4× 105 samples before and after the adaptation. Whereas a linear transformation does
not improve on standard HMC, non-linear transformations can improve the mixing efficiency.

(a) (b) (c)

Figure 6: Minimum (6a) and mean (6b) effective sample size per second as well as minimum effec-
tive sample size (6c) for a Banana-shaped target in dimension d = 2 after adaptation.

5 Discussion and Outlook

Limitations. Our approach to learn a constant mass matrix can struggle for targets where the Hes-
sian varies greatly across the state space, which can yield relatively short integration times with very
high acceptance rates. While this effect might be mitigated by considering non-linear transforma-
tions, it remains challenging to learn flexible transformations efficiently in high dimensions.

Variations of the entropy objective. Recent work [18, 11] have suggested to add the cross-
entropy term

∫
π(q)

∫
r(q′|q) log π(q′)dq′dq to the entropy objective for optimizing the parameters

of a Metropolis-Hastings kernel with proposal density r(q′|q). Algorithm 1 can be adjusted to such
variations, possibly by stopping gradients through∇U as for optimizing the energy error term.

Variations of HMC. We have considered a standard HMC setting for a fixed number of leap-frog
steps. One could consider a mixture of HMC kernels with different numbers of leap-frog steps and
an interesting question would be how to learn the different mass matrices jointly in an efficient way.

Instead of a full velocity refreshment, partial refreshment strategies [33] can sometimes mix better.
The suggested adaptation approach can yield very high acceptance rates particularly for increasing
leap-frog steps and the learned mass matrix can be used with a partial refreshment. However, it
would be interesting to analyse if the adaptation can be adjusted to such persistent velocity updates.
It would also be of interest to analyse if similar ideas can be used to adapt different numerical
integrators such as those suggested in [7] for target densities relative to a Gaussian measure or for
multinomial HMC with an additional intra-trajectory sampling step [9, 59].

Our focus was on learning a mass matrix so that samples from the Markov chain can be used for
estimators that are consistent for increasing iterations. However, unbiased estimators might also be
constructed using coupled HMC chains [30] and one might ask if the adapted mass matrix leads to
shorter meeting times in such a setting.
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