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Abstract
Efficient language modeling is essential for001
low-resource languages and computationally002
constrained environments (Warstadt et al.,003
2023b). We introduce SLlama, a parameter-004
efficient LLama variant, leveraging RRHP,005
PWA, SPMLP, and Layer Weight Sharing to006
reduce model size while maintaining perfor-007
mance. These modifications reduce a model’s008
parameter count from vh + n11h2 to vh/4 +009
ng(3h

2 + 6h) where ng ≤ n while preserving010
linguistic competence. SLlama outperforms011
the state-of-the-art Baby Llama by 18.88%,012
specifically having a 31.72% gain in linguis-013
tic knowledge acquisition without distillation014
while retaining 63.3% of its GLUE perfor-015
mance at lower computational cost. Evalua-016
tions on GLUE, BLiMP, BLiMP Supplement,017
and Ewok confirm SLlama’s robustness, par-018
ticularly in syntactic and semantic generaliza-019
tion. Its efficiency in low-resource settings020
highlights potential for on-device NLP and mul-021
tilingual modeling, demonstrating that extreme022
model compression can preserve linguistic ca-023
pabilities.024

1 Introduction025

Despite the remarkable progress of language mod-026

els (LMs), state-of-the-art models such as GPT,027

Llama, and DeepSeek require substantial computa-028

tional resources, limiting their deployment on edge029

devices and in low-resource settings where access030

to high-performance hardware is constrained. This031

makes efficient small-scale language modeling an032

essential research area, particularly for applications033

requiring on-device inference.034

This work investigates parameter-efficient Trans-035

former models capable of learning language from036

minimal data, a critical challenge for resource-037

constrained language modeling. Inspired by the038

methodology of Warstadt et al. (2023a), we con-039

strain training data to 10 million tokens, hypothe-040

sizing that strategic architectural modifications can041

Figure 1: SLlama - Llama Architecture with Reduced
Embedding, Repeated Projection, Permuted Weight At-
tention, Shared Projection MLP and Weight Sharing

enable efficient language acquisition under such 042

conditions. Our central research question is: 043

How can we train a language-proficient model 044

on a small corpus (a few million tokens) while 045

ensuring the feasibility of resource-constrained 046

edge deployment? 047

Prior research has explored data-efficient train- 048

ing techniques, including approximate attention, 049

mixed-precision training, model/data parallelism, 050

importance sampling, pruning, and quantization 051

(Bai et al., 2024). However, the impact of archi- 052

tectural modifications on small-data LMs remains 053

underexplored. To address this gap, we systemat- 054

ically investigate model size reduction strategies 055

applied to the Llama architecture, holding dataset 056

size and training strategy constant. 057

Using the BabyLM Challenge dataset (Warstadt 058

et al., 2023a), our proposed SLlama (Small Llama) 059

achieves performance improvements of 18.88% 060
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and 14.32% over baselines trained on 10M and061

100M tokens, respectively. While weight sharing,062

a common compression technique, has a minimal063

effect on GLUE scores, we find that it adversely064

affects linguistic knowledge acquisition in small-065

data models. To address these limitations, we in-066

troduce alternative embedding weight reduction067

schemes, alongside novel attention mechanisms068

and reassessed layer-sharing techniques.069

1.1 Contributions070

Our key contributions are:071

1. A systematic study of the relationship between072

hyperparameters (hidden size, number of lay-073

ers) and their impact on linguistic, conceptual,074

and world knowledge.075

2. The development and implementation of novel076

weight reduction techniques, designed specifi-077

cally for small-data Transformer models.078

3. Empirical evidence that models trained on just079

10M tokens, with carefully optimized archi-080

tectures, can achieve competitive linguistic081

proficiency.082

To ensure transparency and reproducibility, we083

release code, trained models, and evaluation scripts084

on GitHub and Hugging Face.085

2 Preliminaries086

Architectural Backbone. Transformer models,087

underpinned by self-attention, have become the088

backbone of modern natural language processing.089

Self-attention mechanisms differ across architec-090

tures, with decoder-based models gaining promi-091

nence due to their autoregressive nature, which092

makes them well-suited for open-ended text gener-093

ation tasks (Lu et al., 2024). Among these, Meta’s094

Llama models (Touvron et al., 2023a,b; Grattafiori095

et al., 2024) have seen widespread adoption across096

academia and industry, owing to their efficient train-097

ing pipeline, optimized Transformer block imple-098

mentations, state-of-the-art performance, and broad099

availability.100

Architectural advancements in Transformer mod-101

els typically focus on:102

• Attention mechanisms, including efficiency103

optimizations and memory reduction tech-104

niques (Zhang et al., 2024a; Kitaev et al.,105

2020; Ainslie et al., 2023).106

• Positional encoding, crucial for representing 107

token order in sequence modeling (Su et al., 108

2023). 109

• Feed Forward Network (FFN) implementa- 110

tions, which affect model capacity and effi- 111

ciency (Liu et al., 2021). 112

• Normalization strategies, such as RMSNorm 113

and layer normalization, which improve stabil- 114

ity and convergence (Grattafiori et al., 2024; 115

Radford et al., 2019). 116

While Llama shares many similarities with other 117

decoder-based Transformers, it stands out due to its 118

fine-tuned architectural refinements, high-quality 119

data curation, and superior pretraining pipeline. 120

Given these advantages, we selected the Llama 121

architecture as the foundation for our model, ensur- 122

ing comparability with existing research. For our 123

experiments, we use Hugging Face’s implementa- 124

tion of Llama, retaining its default configurations 125

except for three key hyperparameters: (i) Hidden 126

size (h) (ii) Intermediate layer size (iii) Number 127

of layers (n). Following the recommendations of 128

Tang et al. (2024), we tie the embedding layer and 129

language model head, a widely used strategy to im- 130

prove parameter efficiency in small-scale language 131

models. 132

Small Data Training. Our experiments utilized 133

the BabyLM challenge dataset Choshen et al. 134

(2024), with a complete data description available 135

in Warstadt et al. (2023a). After initial hyperpa- 136

rameter search, all pretraining employed cosine 137

learning rate decay with minimum and maximum 138

rates of 4×10−5 and 4×10−4, respectively. We set 139

the gradient accumulation to 2, batch size to 128, 140

and sequence length to 256. Training runs were 141

conducted for 3,000 iterations based on the obser- 142

vation that optimal evaluation loss was typically 143

achieved by the 1,500th iteration (approximately 144

the 10th epoch) and a slight improvement at the 145

2,500th iteration. 146

The Baby Llama model (Timiryasov and Tastet, 147

2023), which was among the leading solutions in 148

the original BabyLM challenge and serves as the 149

state-of-the-art baseline for the second BabyLM 150

challenge1, was trained using knowledge distilla- 151

tion from two larger teacher models (Llama and 152

GPT2), with the student model reportedly outper- 153

forming the teachers. To isolate the effect of distil- 154

1https://github.com/babylm/
evaluation-pipeline-2024?tab=readme-ov-file
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Figure 2: Correlation of hidden size and number of layers to macro score (average of a model’s BLiMP, BLiMP
Supplement, GLUE, and Ewok scores) with Spearman correlations of 0.88 and 0.38, respectively.

Reduction Technique Model Size (M) BLiMP Sup. (%) Ewok (%) GLUE (%) Avg. (%)
Baby Llama 58.0000 69.80 (59.50) 50.70 63.30 60.80
EWT 2.3683 56.00 (50.47) 57.75 63.45 56.92
LHRP 2.8814 60.47 (49.22) 57.58 63.26 57.63
AHRP 2.8820 59.02 (52.80) 56.58 62.41 57.70
RRPH 2.8803 91.94 (77.61) 57.91 63.57 72.76
Llama Untied 4.4163 91.94 (77.61) 57.83 63.94 72.83

Table 1: Measuring the impact of parameter reduction of the embedding layer relative to Baby Llama (Timiryasov
and Tastet, 2023) and Embedding Weight Tying (EWT). The weights of the embedding layer and the language
model head were not tied for LHRP, AHRP, RRPH and Llama Untied.

lation, we conducted initial experiments to charac-155

terize the inherent capabilities of the Llama archi-156

tecture and to establish the relationship between its157

key configuration parameters (hidden size, interme-158

diate size, and number of layers) and performance159

on the aforementioned evaluation tasks. Starting160

with a hidden size of 64 (to minimize resource con-161

sumption), we varied the number of layers from 2162

to 12. We observed that the macro-average scores163

for models with six and eight layers were similar,164

as were those for models with ten and twelve layers.165

Based on this, we focused subsequent experiments166

on layer counts of 2, 4, 6, and 10 while logarithmi-167

cally increasing the hidden size from 64 to 1,024.168

The model with a hidden size of 512 and 2 layers169

achieved the best average macro score.170

Evaluation and Analysis Evaluation was per-171

formed using the pipeline provided by Choshen172

et al. (2024); Gao et al. (2023), encompassing four173

tasks: BLiMP, BLiMP supplement (Warstadt et al.,174

2023c), GLUE (Wang et al., 2019), and Ewok175

(Ivanova et al., 2024). These tasks assess linguistic176

competence (BLiMP), conceptual understanding177

(GLUE), and general world knowledge (Ewok).178

Further analysis, presented in Figure 2 , explored179

the correlation between model size parameters (hid- 180

den size and number of layers) and the model’s 181

performance across the different evaluation dimen- 182

sions (linguistic competence, world knowledge, 183

and conceptual understanding). While statistical 184

significance was generally weak, several trends 185

emerged: 1) a weak but consistent positive corre- 186

lation between hidden size and BLiMP score (lin- 187

guistic knowledge); 2) an inconsistent positive rela- 188

tionship between hidden size and GLUE score; 3) a 189

strong and consistent negative correlation between 190

hidden size and world knowledge; 4) an inconsis- 191

tent positive trend between the number of layers 192

and linguistic competence; 5) a weak positive trend 193

between the number of layers and conceptual under- 194

standing; and 6) a noticeable weak negative trend 195

between the number of layers and linguistic com- 196

petence. These observations suggest the need to 197

carefully balance horizontal (hidden size) and ver- 198

tical (number of layers) scaling, particularly with 199

limited data. However, the positive impact of in- 200

creasing layer count for smaller hidden sizes was 201

evident, supporting previous findings (Liu et al., 202

2024). Based on these preliminary experiments, 203

we observed that a hidden size of 64 and 6 lay- 204
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ers serves as a suitable configuration for exploring205

the impact of architectural modifications in subse-206

quent experiments, minimizing computational cost,207

memory usage, and experimental time.208

3 Model Reduction209

Having established a more computationally ef-210

ficient baseline compared to Baby Llama, we211

proceeded with systematic model size reduction.212

While architectural innovations in Transformer213

models often target complexity reduction, very few214

emphasize decreasing parameter count (Liu et al.,215

2024). Consequently, research has focused on min-216

imizing the memory footprint of these models by217

reducing parameters within the embedding layer,218

language model head, and MLP units (Tang et al.,219

2024; Liu et al., 2024; Zhang et al., 2024b). Al-220

though vocabulary size (v) reduction is a common221

practice (Tang et al., 2024), we chose to maintain222

the vocabulary size in the Hugging Face Llama3223

implementation (Grattafiori et al., 2024). We argue224

that while reducing the vocabulary size offers im-225

mediate gains through a smaller prediction space, it226

may harm the representation of out-of-vocabulary227

(OOV) words due to increased sub-word tokeniza-228

tion. Therefore, our investigation of parameter re-229

duction schemes, detailed below, focuses on the230

embedding layer, Feed Forward Network, and the231

self-attention blocks of a Transformer model.232

3.1 Embedding Parameter Reduction233

Embedding Weight Tying (EWT) is a widely used234

technique for reducing language model size by shar-235

ing the weights of the embedding layer with those236

of the language model head (Liu et al., 2020). This237

reduces the model’s parameter count by vh, where238

h is the hidden size and v is the vocabulary size.239

Mnih and Teh (2012) hypothesized that rows cor-240

responding to semantically similar words should241

exhibit near-identical representations—such that242

the input embedding encodes synonyms in a com-243

parable manner, while the output embedding as-244

signs similar score distributions to interchangeable245

words. Expanding on this, Press and Wolf (2017)246

empirically demonstrated that tying input and out-247

put embeddings produces a joint representation248

more closely aligned with the output embedding249

of an untied model, leading to improved perplexity250

both with and without dropout. However, their find-251

ings also suggest that untied embeddings evolve252

into distinct representations.253

Our study extends this distinction to linguistic 254

knowledge acquisition, revealing that embedding 255

sharing adversely affects a model’s linguistic com- 256

petence. Specifically, in an untied model, the out- 257

put embedding retains less fundamental linguistic 258

knowledge, whereas the input embedding preserves 259

richer linguistic representations, as shown in Ta- 260

ble 1. These findings highlight the necessity of 261

maintaining layer-specific representational nuances 262

when reducing model size. To address this, we pro- 263

pose alternative parameter-reduction strategies that 264

optimize efficiency while preserving the linguistic 265

integrity of intermediate representations. 266

Inspired by the Mixed Dimension Embeddings 267

(MDE) approach proposed by Pansare et al. (2022) 268

and Ginart et al. (2021), we explored reducing the 269

dimensionality of the embedding layer. Specifi- 270

cally, we reduced the hidden size (h) of the em- 271

bedding layer by a factor of four (hr) . Given 272

that the hidden layers of the decoder are initialized 273

with h, a projection scheme is required to map the 274

reduced embedding dimension to the original hid- 275

den size h. We investigated three such projection 276

methods: Linear Hidden-Size Reduction and Pro- 277

jection (LHRP), Attention Hidden-Size Reduction 278

and Projection (AHRP), and Repeated Reduced 279

Hidden-Size and Projection (RRHP). LHRP em- 280

ploys a linear layer as described in Equation 1, 281

effectively reducing the parameters from vh to vhr. 282

This method technically projects the embedding 283

vector into a larger dimensional space, effectively 284

assuming the relationship between the small and 285

large representations is linear. 286

Linear(x,A) = xAT + b (1) 287

where: 288

x ∈ Rm×hr 289

A ∈ Rhr×h 290

291

AHRP leverages the conventional attention mech- 292

anism described in Equation 2. AHRP utilises 293

vhr+2hr+h2/r parameters instead of vh. Concep- 294

tually, AHRP magnifies the cogent dimensions of 295

the smaller representations. Finally, RRHP initial- 296

izes the embedding layer with the reduced hidden 297

size hr and repeats the resulting representation r 298

times before feeding it to the decoder layers, ef- 299

fectively repeating the information encoded in the 300

smaller representation r times. This method re- 301

duces the parameter count by 3vhr. 302

Following the training configurations described 303
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previously, we trained and evaluated models in-304

corporating these reduction schemes. The perfor-305

mance of each technique is presented in Table 1.306

The unexpected performance increase observed307

with RRHP led us to investigate the lower scores ob-308

tained with the other methods. Through the Llama309

Untied model, we discovered that weight-tying was310

the primary cause. The significant performance311

improvement observed specifically on the BLiMP312

task suggests that architectural choice is paramount313

to performance, with weight tying adversely af-314

fecting the linguistic knowledge encoded within315

the embedding layer. While we acknowledge the316

limitations of generalizing from our specific exper-317

imental setup, our findings support the observation318

by Eldan and Li (2023) that deeper layers are pri-319

marily responsible for conceptual understanding,320

as reflected in the relatively stable GLUE scores.321

Based on our findings, we recommend RRHP as a322

preferred parameter reduction technique over em-323

bedding weight tying for small language models324

trained on limited data. However, we emphasize325

that the optimal choice of parameter reduction tech-326

nique ultimately depends on the specific applica-327

tion requirements.328

Attn_weight(Q,K) = softmax
(
QKT

√
dk

)
(2)329

Attn(Q,K, V ) = Attn_weight(Q,K)V (3)330

where:331

Q ∈ Rhr×hr332

K ∈ Rhr×hr333

V ∈ Rhr×h334

335

3.2 Self-Attention Parameter Reduction336

While the multi-head attention mechanism has been337

instrumental in the success of language models,338

its computational and memory demands remain a339

concern. Consequently, optimized attention im-340

plementations with reduced complexity have been341

proposed (Zhang et al., 2024a; Kitaev et al., 2020),342

often demonstrating comparable performance to343

standard multi-head attention (MHA). Although344

the inference-time memory consumption associ-345

ated with the key–value (KV) cache is a compelling346

challenge, this work focuses on reducing the param-347

eter count required for self-attention within small348

language models, thereby effectively reducing the349

memory demand of a model both at training and in-350

ference time especially in resource constrained en- 351

vironments. Drawing inspiration from the embed- 352

ding parameter reduction strategies discussed pre- 353

viously, we introduce three novel attention mecha- 354

nisms aimed at reducing parameter count: Shared 355

Key Query Attention (SKQA), Repeat-Reduced- 356

Attention (RRA), and Permutated Weight Attention 357

(PWA). 358

The design of SKQA stems from the interpre- 359

tation of the attention mechanism as a similarity 360

selection process, which is particularly relevant in 361

language modeling. The attention weights are com- 362

puted according to Equation (2), and the attention 363

output is derived using Equation (3). Equation (2) 364

can be viewed as computing a probability distri- 365

bution of inter-token similarity when K and Q are 366

equivalent. We investigated the feasibility of this 367

similarity-based attention by equating the weights 368

of K and Q; effectively reducing parameter count 369

by h2. 370

RRA, in contrast, was inspired by the Repeated 371

Reduced Hidden-Size and Projection reduction 372

technique described earlier, that is, Q,K, V ∈ 373

Rh×hr and are subsequently repeated. Finally, 374

PWA was motivated by the embedding layer re- 375

duction strategy presented by Li et al. (2017); Al- 376

gorithm 1 illustrates its implementation. PWA ef- 377

fectively reduces memory demand from 4h2 to 6h. 378

The average absolute difference in perplexity from 379

the baseline MHA implementation is 0.077645 (a 380

negligble value), indicating similar convergence 381

behaviour but with a reduced parameter count. The 382

performance of each intra-layer reduction tech- 383

nique on downstream tasks is presented in Table 2. 384

PWA demonstrates the best balance between model 385

size and overall performance, closely followed by 386

SKQA, as shown in Table 2. Relative to SKQA, 387

PWA reduces parameter count by a larger factor. 388

While RRA achieved convergence and maintained 389

competitive GLUE and Ewok scores, the model’s 390

linguistic competence suffered. 391

3.3 MLP Block Parameter Reduction 392

The Multi-Layer Perceptron (MLP) or Feed- 393

Forward Network (FFN) within a Transformer ar- 394

chitecture constitutes a significant portion of the 395

model’s parameters. Typically, the MLP consists of 396

two fully connected layers: an expansion layer that 397

increases the dimensionality of the input from hid- 398

den size h to intermediate size nh (3h in our case), 399

and a projection layer that reduces the dimension- 400

ality back to h. This results in a substantial number 401
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Reduction Technique Model Size (M) BLiMP Sup. (%) Ewok (%) GLUE (%) Avg. (%)
MHA (Baseline) 4.42 91.94 (77.61) 57.71 63.72 72.75
MHAR 2.88 91.94 (77.61) 58.08 63.64 72.82
PWA 4.32 91.94 (77.61) 57.52 63.47 72.64
PWAR 2.78 91.94 (77.61) 57.76 63.02 72.58
RRA 4.34 59.20 (52.51) 57.88 63.33 58.23
RRAR 2.81 62.28 (51.65) 57.87 62.83 58.66
SKQA 4.42 91.94 (77.61) 58.25 63.18 72.75
SKQAR 2.88 91.94 (77.61) 57.71 63.75 72.75

Table 2: Performance of different attention parameter reduction methods. ModelR variants utilize Repeat Embedding
Reduction. MHA is equivalent to Llama Untied in Table 1

Algorithm 1 Permutated Weight Attention

Require: h, n,m > 0
Ensure: permutation(n,m) > 3h
permutes← list of permutation(n,m)
θ ← Embedding(n, h)
q_idx← permutes[0:h]
k_idx← permutes[h:2h]
v_idx← permutes[2h:3h]
Q = Linear(x, θ[q_idx])
K = Linear(x, θ[k_idx])
V = Linear(x, θ[v_idx])
attn = Attn(Q,K, V )

of parameters: 6h2 for both expansion and down-402

ward projection layers. Furthermore, the Llama403

architecture incorporates a gate projection layer,404

introducing an additional h2 parameters totaling405

7h2. Given this parameter count, the MLP block406

in transformer models is a prime candidate of over-407

parametrization, making it a key target for parame-408

ter reduction strategies. To reduce this parameter409

overhead, we introduce a novel modification to the410

MLP block: Shared Projection MLP (SPMLP). In411

SPMLP, we share the weights between the expan-412

sion and projection layers, effectively reducing the413

parameter count by 3h2 parameters. This weight414

sharing strategy not only reduces the model’s mem-415

ory footprint but also encourages a more symmetri-416

cal and potentially more efficient information flow417

within the MLP block while having a direct imple-418

mentation. Although we observe a minor decline419

in overall performance, the balance between model420

efficiency and parameter reduction remains com-421

pelling. We show the impact of SPMLP on model422

performance in Table 3.423

3.4 Inter-Layer Weight Reduction Strategies 424

To further reduce model size, we explored two com- 425

mon inter-layer weight reduction techniques: layer 426

reuse and weight sharing. Layer reuse (Liu et al., 427

2024) passes the hidden state through a layer mul- 428

tiple times (in our case, twice). Thus, if layer reuse 429

r = 2, the model is intialized with n/r layers 430

where n is the number of layers, effectively reduc- 431

ing model size by 11nh2/2 parameters provided 432

no reduction scheme was introduced. On the other 433

hand, Weight sharing (Lan et al., 2020) ties the 434

weights of multiple layers, significantly reducing 435

the number of parameters to 11ngh
2 where ng is 436

the number of groups the layers are divided into . 437

We implemented both techniques, sharing weights 438

across all layers in the model for the weight-sharing 439

approach. Table 3 presents the performance of mod- 440

els employing these reduction strategies. While the 441

macro-average scores across the three models show 442

minimal variation, the substantial parameter reduc- 443

tion achieved through weight-sharing presents a 444

compelling trade-off. However, the observed per- 445

formance decline suggests a potential loss of fine- 446

grained information, warranting further investiga- 447

tion. Notably, while weight sharing in conjunc- 448

tion with SPMLP results in a slight performance 449

degradation, the substantial reduction in model size 450

justifies its consideration, particularly within the 451

context of this study, which prioritizes memory 452

efficiency. 453

4 SLlama Architecture and Discussions 454

Based on our experimental findings, we intro- 455

duce SLlama (Small Llama), a parameter-efficient 456

variant of Llama incorporating Repeated Reduced 457

Hidden Size and Projection (RRHP), Permutated 458

Weight Attention (PWA), Shared Projection Multi- 459

Layer Perceptron (SPMLP), and Layer Weight 460
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Reduction Technique Model Size (M) BLiMP Sup. (%) Ewok (%) GLUE (%) Avg. (%)
Reuse 2.67 91.94 (77.61) 57.84 63.83 72.81
ReuseS 2.67 91.94 (77.61) 57.63 62.40 72.41
Share 2.63 91.94 (77.61) 57.76 63.14 72.62
ShareS 2.61 91.94 (77.61) 57.22 62.33 72.28

Table 3: Impact of inter-layer and SPMLP weight reductions techniques. TechniqueS utilizes Shared Projection
MLP (SPMLP) .

Model Hidden Size Macro Score (%)
Llama 128 72.45
SLlama 128 71.62
Llama 192 72.01
SLlama 192 71.85
Llama 256 72.34
SLlama 256 71.31

Table 4: Scaling Llama and SLlama Models by increas-
ing the hidden size while maintaining the number of
layers at 6. SLlama mirroring the nuances of Llama
Architecture.

Sharing across key components. Compared to Baby461

Llama (Timiryasov and Tastet, 2023), SLlama has462

around 20× fewer parameters and improves linguis-463

tic knowledge acquisition by 31.72% without any464

knowledge distillation while maintaining a com-465

parable GLUE score with significantly fewer re-466

sources.467

SLlama’s strong performance on linguistic tasks468

with minimal data highlights its potential for highly469

resource-constrained language modeling. Unlike470

existing compression methods, SLlama demon-471

strates superior robustness in rigorous linguistic472

evaluations, making it a viable candidate for ef-473

ficient language modeling. As shown in Table 4,474

our reduction strategies preserve key performance475

characteristics of larger models while significantly476

lowering computational costs. These findings rein-477

force SLlama’s promise as a resource-efficient yet478

high-performing model for NLP applications.479

4.1 Language Model Evaluation Metrics480

Our findings align with prior research showing that481

embedding weight tying does not significantly af-482

fect GLUE scores. However, we reveal a criti-483

cal limitation: while conceptual understanding re-484

mains stable, weight tying severely impairs linguis-485

tic competence, particularly in low-resource set-486

tings. This highlights the need for evaluation met-487

rics that capture both fundamental and advanced488

language skills, as standard benchmarks may over-489

look linguistic and cultural knowledge essential for 490

real-world applications. 491

Given this impact, we support calls for more 492

comprehensive evaluation frameworks that assess 493

language structure, semantic generalization, and 494

cultural representation (Tao et al., 2024; Bhatt and 495

Diaz, 2024). Future NLP evaluations should incor- 496

porate metrics for cultural acquisition, conceptual 497

transfer, and linguistic diversity, ensuring that com- 498

pression techniques do not compromise essential 499

language understanding. As research advances in 500

small-scale, resource-efficient NLP, it is crucial 501

to develop evaluation methodologies that balance 502

efficiency with linguistic and cultural fidelity. 503

4.2 Parameter Budgeting 504

Repeated Reduced Hidden Size and Projection 505

(RRHP) and Permutated Weight Attention (PWA) 506

preserve linguistic knowledge and conceptual un- 507

derstanding despite aggressive reductions in em- 508

bedding and attention parameters, challenging con- 509

ventional assumptions about scaling laws in Trans- 510

former models. This finding underscores the impor- 511

tance of efficient parametrization over sheer model 512

size, suggesting that many current models may be 513

over-parametrized. Given the central role of self- 514

attention in Transformers, our results indicate that 515

extreme parameter reduction within attention mech- 516

anisms does not necessarily degrade performance, 517

provided architectural adaptations are implemented 518

to maintain expressivity. 519

5 Related Work 520

The pursuit of powerful yet efficient language mod- 521

els has driven significant research. While scaling 522

models through increased data and parameters has 523

yielded impressive results, e.g., PALM (Chowdh- 524

ery et al., 2022) and GPT-3 (Brown et al., 2020), 525

the associated computational costs are prohibitive 526

for many applications. This has spurred research 527

on data-efficient training methods, architectural in- 528

novations, and model compression techniques. 529
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Data-Efficient Language Models. Research on530

data efficiency has explored dataset reduction via531

k-means clustering (Kaddour, 2023), deduplica-532

tion (Lee et al., 2022), and selective high-quality533

data curation (Gunasekar et al., 2023; Mueller534

and Linzen, 2023; Eldan and Li, 2023; Huebner535

et al., 2021). These studies highlight the impor-536

tance of data diversity in model performance (Lu537

et al., 2024; Mekala et al., 2024). Aligning with538

this work, we train SLlama on a constrained 10M-539

token dataset, inspired by the BabyLM challenge540

(Warstadt et al., 2023b,a; Choshen et al., 2024), to541

advance efficient language modeling with limited542

data.543

Model Compression Techniques and Small Lan-544

guage Model Design. Prior work has tackled545

the memory demands of large embedding tables546

in recommender systems using techniques like547

ROBE (Desai et al., 2022), MEmCom (Pansare548

et al., 2022), Mixed Dimension Embeddings (Gi-549

nart et al., 2021), and Slim Embeddings (Li et al.,550

2017). Beyond embeddings, inter-layer weight551

sharing and factorized embedding parameteriza-552

tion (Lan et al., 2020) have reduced model size553

in BERT (Devlin et al., 2019). Building on these554

efforts, we propose novel embedding weight reduc-555

tion schemes and alternative attention mechanisms556

to minimize model size while preserving linguistic557

capabilities.558

While model compression reduces memory foot-559

print, small model design optimizes architectures560

for edge deployment. The rise of large models such561

as GPT-3 (Brown et al., 2020) has fueled interest562

in efficient alternatives such as OPT (Zhang et al.,563

2022), Phi (Gunasekar et al., 2023), and PanGu-π564

(Tang et al., 2024), which achieve strong perfor-565

mance with fewer parameters and innovations that566

challenge the assumption that architecture has min-567

imal impact given a fixed resource budget (Kaplan568

et al., 2020). Our work extends this research by569

introducing SLlama, a parameter-efficient architec-570

ture optimized for high-quality language modeling571

on limited data.572

Weight Sharing and Efficient Attention Mech-573

anisms. Weight sharing is a common compres-574

sion technique (Tang et al., 2024; Lan et al., 2020;575

Ainslie et al., 2023), but its effectiveness varies576

across model components. While prior work577

(Liu et al., 2020) suggests normalizing embedding578

weights to mitigate degradation, our study system-579

atically assesses its impact. We find that sharing580

weights between key and query modules in self- 581

attention preserves performance while reducing 582

parameters. However, sharing input and output 583

embeddings degrades linguistic competence, high- 584

lighting the need for selective weight-sharing strate- 585

gies to maintain representation quality and expres- 586

siveness. 587

Recent efforts to optimize multi-head attention 588

have focused on reducing computational complex- 589

ity and memory consumption, particularly by refin- 590

ing the KV cache (Zhang et al., 2024a; Kitaev et al., 591

2020). While techniques like GQAm (Ainslie et al., 592

2023) enhance inference efficiency, they primarily 593

target runtime performance rather than structural 594

efficiency. In contrast, our work aims to explic- 595

itly minimize the parameter count within the atten- 596

tion mechanism, reducing the overhead required 597

for computing attention weights and outputs while 598

maintaining model effectiveness. 599

6 Conclusion 600

This study demonstrates the feasibility of training 601

effective language models with limited data and 602

resources. By leveraging architectural innovations 603

such as RRHP, PWA, SPMLP, and Layer Weight 604

Sharing, we enhance the linguistic capabilities of 605

small models trained on just 10M tokens. Our 606

findings show that careful design can mitigate per- 607

formance degradation, enabling compact yet pow- 608

erful models. This work advances accessible AI by 609

supporting deployment on personal devices and im- 610

proving resource-constrained language modeling. 611

We anticipate ultra-compact models pushing PWA 612

to its limits, redefining trade-offs between parame- 613

ter count, computational cost, and capability. 614

Future research should explore whether adaptive 615

architectures can dynamically allocate resources 616

rather than statically distributing parameters across 617

layers. This introduces parameter budgeting as 618

a complementary paradigm to FLOP-based effi- 619

ciency metrics, offering a more nuanced framework 620

for scaling in resource-constrained NLP applica- 621

tions. A deeper understanding of parameter effi- 622

ciency could enable models to achieve state-of-the- 623

art performance with significantly reduced compu- 624

tational footprints, fostering adaptive architectures 625

that allocate resources based on task complexity. 626

This shift from static, over-parametrized models 627

to dynamically efficient architectures has profound 628

implications for low-resource language modeling, 629

edge deployment, and sustainable AI development. 630
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Limitations631

While this study demonstrates promising results,632

several limitations must be considered. Our find-633

ings are primarily based on the LLaMA architec-634

ture, and while certain trends may generalize, fur-635

ther research is needed to assess the applicability of636

our techniques across diverse model architectures.637

Additionally, the BabyLM dataset, while useful638

for studying small-data training, lacks linguistic639

diversity, limiting the evaluation of our models to640

English. Future work should explore performance641

on more diverse datasets, including low-resource642

languages, and assess the models’ ability to acquire643

commonsense and factual knowledge.644

Moreover, real-world deployment challenges re-645

main, particularly regarding performance on edge646

devices, where quantization-related degradation647

has yet to be fully examined. The scalability of648

our compression techniques to larger models and649

datasets also requires further investigation. Ulti-650

mately, striking an optimal balance between model651

efficiency and linguistic richness is an ongoing652

challenge, and future research should focus on re-653

fining model reduction strategies to ensure robust654

language representation while maintaining compu-655

tational efficiency.656
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