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ABSTRACT

We study Graph Convolutional Networks (GCN) from the graph signal processing
viewpoint by addressing a difference between learning graph filters with fully-
connected weights versus trainable polynomial coefficients. We find that by stack-
ing graph filters with learnable polynomial parameters, we can build a highly
adaptive and robust vertex classification model. Our treatment here relaxes the
low-frequency (or equivalently, high homophily) assumptions in existing vertex
classification models, resulting a more ubiquitous solution in terms of spectral
properties. Empirically, by using only one hyper-parameter setting, our model
achieves strong results on most benchmark datasets across the frequency spectrum.

1 INTRODUCTION

The semi-supervised vertex classification problem (Weston et al., 2012; Yang et al., 2016) in attributed
graphs has become one of the most fundamental machine learning problems in recent years. This
problem is often associated with its most popular recent solution, namely Graph Convolutional
Networks (Kipf & Welling, 2017). Since the GCN proposal, there has been a vast amount of research
to improve its scalability (Hamilton et al., 2017; Chen et al., 2018; Wu et al., 2019) as well as
performance (Liao et al., 2019; Li et al., 2019; Pei et al., 2020).

Existing vertex classification models often (implicitly) assume that the graph has large vertex ho-
mophily (Pei et al., 2020), or equivalently, low-frequency property (Li et al., 2019; Wu et al., 2019);
see Section 2.1 for graph frequency. However, this assumption is not true in general. For instance,
let us take the Wisconsin dataset (Table 1), which captures a network of students, faculty, staff,
courses, and projects. These categories naturally exhibit different frequency patterns1. Connections
between people are often low-frequency, while connections between topics and projects are often
midrange. This problem becomes apparent as GCN-like models show low accuracies on this dataset;
for example, see (Pei et al., 2020; Chen et al., 2020b; Liu et al., 2020).

This paper aims at establishing a GCN model for the vertex classification problem (Definition 1)
that does not rely on any frequency assumption. Such a model can be applied to ubiquitous datasets
without any hyper-parameter tuning for the graph structure.

Contributions. By observing the relation between label frequency and performance of existing
GCN-like models, we propose to learn the graph filters coefficients directly rather than learning the
MLP part of a GCN-like layer. We use filter stacking to implement a trainable graph filter, which
is capable of learning any filter function. Our stacked filter construction with novel learnable filter
parameters is easy to implement, sufficiently expressive, and less sensitive to the filters’ degree. By
using only one hyper-parameter setting, we show that our model is more adaptive than existing work
on a wide range of benchmark datasets.

The rest of our paper is organized as follows. Section 2 introduces notations and analytical tools.
Section 3 provides insights into the vertex classification problem and motivations to our model’s
design. Section 4 presents an implementation of our model. Section 5 summarizes related literature
with a focus on graph filters and state-of-the-art models. Section 6 compares our model and other
existing methods empirically. We also provide additional experimental results in Appendix A.

1“Frequency” is an equivalent concept to “homophily” and will be explained in Section 2.
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2 PRELIMINARIES

We consider a simple undirected graph G = (V,E), where V = {1, . . . , n} is a set of n vertices and
E ⊆ V × V is a set of edges. A graph G is called an attributed graph, denoted by G(X), when it is
associated with a vertex feature mapping X : V 7→ Rd, where d is the dimension of the features. We
define the following vertex classification problem, also known in the literature as the semi-supervised
vertex classification problem (Yang et al., 2016).
Definition 1 (Vertex Classification Problem). We are given an attributed graph G(X), a set of
training vertices Vtr ⊂ V , training labels Ytr : Vtr → C, and label set C. The task is to find a model
h : V → C using the training data (Vtr, Ytr) that approximates the true labeling function Y : V → C.

Let A be the adjacency matrix of the graph G, i.e., Ai,j = 1 if (i, j) ∈ E and 0 otherwise. Let
di =

∑
j Aij be the degree of vertex i ∈ V , and let D = diag(d1, . . . , dn) be the n × n diagonal

matrix of degrees. Let L = D −A be the combinatorial graph Laplacian. Let L = D−1/2LD−1/2

be the symmetric normalized graph Laplacian. We mainly focus on the symmetric normalized graph
Laplacian due to its interesting spectral properties: (1) its eigenvalues range from 0 to 2; and (2) the
spectral properties can be compared between different graphs (Chung & Graham, 1997). In recent
literature, the normalized adjacency matrix with added self-loops, Ã = I −L+ c, is often used as
the propagation matrix, where c is some diagonal matrix.

2.1 GRAPH FREQUENCY

Graph signal processing (Shuman et al., 2012) extends “frequency” concepts in the classical signal
processing to graphs using the graph Laplacian. Let L = UΛU> be the eigendecomposition of the
Laplacian, where U ∈ Rn×n is the orthogonal matrix consists of the orthonormal eigenvectors of L
and Λ is the diagonal matrix of eigenvalues. Then, we can regard each eigenvector uk as a “oscillation
pattern” and its eigenvalue λk as the “frequency” of the oscillation. This intuition is supported by the
Rayleigh quotient as follows.

r(L, x) ,
x>Lx
x>x

=

∑
u∼v Lu,v(x(u)− x(v))2∑

u∈V x(u)2
. (1)

where
∑
u∼v sums over all unordered pairs for which u and v are adjacent, x(u) denotes the entry

of vector x corresponding to vertex u, and Lu,v is the (u, v)-entry of L. From the definition we
see that r(x) is non-negative and L is positive semi-definite. r(x) is also known as a variational
characterization of eigenvalues of L (Horn & Johnson, 2012, Chapter 4), hence 0 ≤ r(x) ≤ 2 for
any non-zero real vector x. We use the notation r(x) to denote the Rayleigh quotient when the
normalized graph Laplacian is clear from context. The Rayleigh quotient r(x) measures how the
data x is oscillating. Hence, in this study, we use the term “frequency” and the “Rayleigh quotient”
interchangeably. By the definition, the eigenvector ui has the frequency of λi.

The labeling y of the vertices is low-frequency if the adjacent vertices are more likely to have the
same label. This is a common assumption made by the spectral clustering algorithms (Shi & Malik,
2000; Ng et al., 2002; Shaham et al., 2018). Commonly used terms, homophily and heterophily, used
in network science, correspond to low-frequency and high-frequency, respectively.

2.2 GRAPH FILTERING

In classical signal processing, a given signal is processed by filters in order to remove unwanted
interference. Here, we first design a frequency response f(λ) of the filter, and then apply the
filter to the signal in the sense that each frequency component x̂(λ) of the data is modulated as
f(λ)x̂(λ). Graph signal processing extends this concept as follows. Same as in classical signal
processing, we design a filter f(λ). Then, we represent a given graph signal x ∈ R|V | as a linear
combination of the eigenvectors as x =

∑
i xiui. Then, we modulate each frequency component

by f(λ) as x =
∑
i f(λi)xiui. An important fact is that this can be done without performing the

eigendecomposition explicitly. Let f(L) be the matrix function induced from f(λ). Then, the filter is
represented by f(L)x.

As an extension of signal processing, graph signal processing deals with signals defined on graphs.
In definition 1, each column of the feature matrix X ∈ Rn×d is a “graph signal”. Let L = UΛU> be
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the eigendecomposition where U ∈ Rn×n consists of orthonormal eigenvectors. Signal X is filtered
by function f of the eigenvalues as follow.

X̄ = Uf(Λ)U>X = f(L)X (2)

In general, different implementations of f(L) lead to different graph convolution models. For instance,
GCN and SGC (Wu et al., 2019) are implemented by f(L) = (I−L+(D+ I)−1/2L(D+ I)−1/2)k,
where the constant term stems from the fact that self-loops are added to vertices and k is the filter
order. Generally, the underlying principle is to learn or construct the appropriate filter function f such
that it transforms X into a more expressive representation. The filter in GCN is called a low-pass
filter because it amplifies low-frequency components (Li et al., 2018; NT & Maehara, 2019).

3 SPECTRAL PROPERTIES OF FILTERS

Towards building a ubiquitous solution, we take an intermediate step to study the vertex classification
problem. Similar to the unsupervised clustering problem, an (implicit) low-frequency assumption
is commonly made. However, the semi-supervised vertex classification problem is more involved
because vertex labels can have complicated non-local patterns. Table 1 shows three groups of
datasets, each with different label frequency ranges. Notably, WebKB datasets (Wisconsin, Cornell,
Texas) have mixed label frequencies; some labels have low frequencies while others have midrange
frequencies. Therefore, in order to relax the frequency assumptions, we need to learn the filtering
function f(λ) in a similar way as proposed by Defferrard et al. (2016).

The filtering function f(λ) is often approximated using a polynomial of the graph Laplacian as

f(L) ≈ poly(L) =

K∑
i=0

θiLi. (3)

Because polynomials can uniformly approximate any real continuous function on a compact interval
(see, e.g., (Brosowski & Deutsch, 1981)), such approximation scheme is well-justified.

Kipf & Welling (2017) derived their GCN formulation as follows. In their equation 5, they approxi-
mated a graph filter gθ by Chebyshev polynomials Tk as

gθ ∗ x ≈
K∑
k=0

θkTk(D−1/2AD−1/2)x. (4)

Then, they took the first two terms and shared the parameters as θ0 = −θ1 to obtain their equation 7:

gθ ∗ x ≈ θ
(
IN +D−1/2AD−1/2

)
x ≈ θ (2IN − L) (5)

Finally, they extended a scalar θ to a matrix Θ to accommodate multiple feature dimensions as

Z = D̃−1/2ÃD̃−1/2XΘ (6)

Kipf & Welling (2017) claimed that the weight matrix Θ can learn different filters, and subsequent
works (e.g., (Veličković et al., 2018; Spinelli et al., 2020; Chen et al., 2020b)) also learned filters by
Θ. However, neither in theory nor practice it is the case (Oono & Suzuki, 2020). As the construction
suggest, a GCN layer only represents a filter of the form f(λ) ≈ 2− λ. To properly learn different
graph filters, we should learn the multiplying parameters θ0, θ1, . . . , θK in equation 3. In the next
section, we propose a learning model which directly learns these multiplying parameters.

4 MODEL DESCRIPTION

The previous discussion provided several insights: (1) Vertex classification model’s frequency is
decided by its filter, (2) a mechanism to match the frequencies of data is necessary, and (3) directly
learning the polynomial filter’s coefficients is more desirable if we do not want to make any frequency
assumption. Based on these observations, we implemented an adaptive Stacked Graph Filter (SGF)
model. Figure 1 visually describes SGF.
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Figure 1: Block description of SGF. Ã/L means we can plug either the augmented normalized
adjacency matrix or the symmetric normalized Laplacian into this model. In each filter layer, the
scalar α` controls the filter’s tangent and the scalar β` controls the filter’s vertical translation.

Design decisions. The novelty of our model is the stacked filter, and we directly learn the filtering
function by filter coefficients α and β, which makes SGF work well universally without frequency
hyper-parameters. The deep filter module consists of filters stacked on top of each other with skip-
connections to implement the ideas in Proposition 2. Each filter layer has two learnable scalars: α`
and β` which control the shape of the linear filter (Figure 1). Two learnable linear layers Win and
Wout with a non-linear activation serve as a non-linear classifier (NT & Maehara, 2019).

The input part of our architecture resembles APPNP (Klicpera et al., 2019) in the sense that the input
signals (vertex features) are passed through a learning weight, then fed into filtering. The output part
of our architecture resembles SGC (Wu et al., 2019) where we learn the vertex labels with filtered
signals. This combination naturally takes advantages of both bottom-up (APPNP) and top-down
(SGC) approaches. Compared to APPNP and SGC, besides the different in filter learning, our model
performs filtering (propagation) on the latent representation and classifies the filtered representation,
whereas APPNP propagates the predicted features and SGC classifies the filtered features.

From the spectral filtering viewpoint, our approach is most similar to ChebyNet (Defferrard et al.,
2016) since both models aim to learn the filtering polynomial via its coefficients. Chebyshev polyno-
mial basis is often used in signal processing because it provides optimal interpolation points (Cheney,
1966; Hammond et al., 2011). However, since we are learning the coefficients of an unknown polyno-
mial filter, all polynomial bases are equivalent. To demonstrate this point, we implement the Stacked
Filter module (Figure 1) using ChebNet’s recursive formula in Section 6. We find that Chebyshev
polynomial basis approach has similar performance to the stacked approach with one slight caveat
on choosing λmax. We empirically show this problem by setting the scaling factor λmax = 1.5. Note
that, as pointed out by Kipf & Welling (2017), such problem can be migrated simply by assuming
λmax = 2 so all eigenvalues stay in [−1, 1].

Given an instance of Problem 1, let σ be an activation function (e.g., ReLU), Ã = I − (D +
I)−1/2L(D + I)−1/2 be the augmented adjacency matrix, α` and β` be the filter parameters at layer
`, a K-layer SGF is given by:

SGF: Input Ã SGF: Input L

H0 = σ(XWin) H0 = σ(XWin)

H` = α`ÃH`−1 + β`H0, ` = 1 . . .K H` = α`LH`−1 + β`H0, ` = 1 . . .K

ŷ = HKWout ŷ = HKWout

SGF can be trained with conventional objectives (e.g., negative log-likelihood) to obtain a solution to
Problem 1. We present our models using the augmented adjacency matrix to show its similarity to
existing literature. However, as noted in Figure 1, we can replace Ã with L.
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The stacked filter is easy to implement. Moreover, it can learn any polynomial of order-K as follows.
The closed-form of the stacked filter (Figure 1) is given by

βKI +

K∑
i=1

(

K∏
j=i

αj)βi−1LK−i+1 (7)

where β0 = 1. Because each term of equation 7 contains a unique parameter, we obtain the following.
Proposition 2. Any polynomial poly(L) of order K can be represented by the form equation 7.

Note that the same result holds if we replace L in equation 7 by Ã. In practice, we typically set
the initial values of αi = 0.5 and update them via the back-propagation. The learned αi is then
likely to satisfy |αi| < 1, which yields a further property of the stacked filter: it prefers a low-
degree filter, because the coefficients of the higher-order terms are higher-order in αi which vanishes
exponentially faster. This advantage is relevant when we compare with a trivial implementation of
the polynomial filter that learns θi directly (this approach corresponds to horizontal stacking and
ChebyNet (Defferrard et al., 2016)). In Appendix A.1, we compare these two implementations and
confirm that the stacked filter is more robust in terms of filter degree than the trivial implementation.

5 RELATED WORK

GCN-like models cover a subset of an increasingly large literature on graph-structured data learning
with graph neural networks (Gori et al., 2005; Scarselli et al., 2008). In general, vertex classification
and graph classification are the two main benchmark problems. The principles for representation
learning behind modern graph learning models can also be split into two views: graph propaga-
tion/diffusion and graph signal filtering. In this section, we briefly summarize recent advances in
the vertex classification problem with a focus on propagation and filtering methods. For a more
comprehensive view, readers can refer to review articles by Wu et al. (2020), Grohe (2020), and also
recent workshops on graph representation learning2.

Feature Propagation. Feature propagation/message-passing and graph signal filtering are two
equivalent views on graph representation learning (Defferrard et al., 2016; Kipf & Welling, 2017).
From the viewpoint of feature propagation (Scarselli et al., 2008; Gilmer et al., 2017), researchers
focus on novel ways to propagate and aggregate vertex features to their neighbors. Klicpera et al.
(2019) proposed PPNP and APPNP models, which propagate the hidden representation of vertices.
More importantly, they pioneered in the decoupling of the graph part (propagation) and the classifier
part (prediction). Abu-El-Haija et al. (2019) also proposed to use skip-connections to distinguish
between 1-hop and 2-hop neighbors. Zeng et al. (2020) later proposed GraphSAINT to aggregate
features from random subgraphs to further improve their model’s expressivity. Pei et al. (2020)
proposed a more involved geometric aggregation scheme named Geom-GCN to address weaknesses
of GCN-like models. Most notably, they discussed the relation between network homophily and
GCN’s performance, which is similar to label frequency r(Y ) in Table 1. Spinelli et al. (2020)
introduced an adaptive model named AP-GCN, in which each vertex can learn the number of “hops”
to propagate its feature via a trainable halting probability. Similar to our discussion in Section 3, they
still use a fully-connected layer to implement the halting criteria, which controls feature propagation.
AP-GCN’s architecture resembles horizontal stacking of graph filters where they learn coefficients
θ directly. However their construction only allows for binary coefficients3. We later show that full
horizontal stacking models (more expressive than AP-GCN) is less stable in terms of polynomial
order than our approach (Appendix A.1). More recently, Liu et al. (2020) continued to address the
difficulty of low homophily datasets and proposed a non-local aggregation based on 1D convolution
and the attention mechanism, which has a “reconnecting” effect to increase homophily.

Graph Filtering. GCN-like models can also be viewed as graph signal filters where vertex feature
vectors are signals and graph structure defines graph Fourier bases (Shuman et al., 2012; Defferrard
et al., 2016; Li et al., 2018; Wu et al., 2019). This graph signal processing view addresses label
efficiency (Li et al., 2019) and provides an analogue for understanding graph signal processing using

2See, e.g., https://grlplus.github.io/
3In the manuscript, they showed a construction using coefficients of graph Laplacian, but the actual imple-

mentation used GCNConv (which is I − L+ c) from pytorch-geometric.
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traditional signal processing techniques. For example, the Lanczos algorithm is applied in learning
graph filters by Liao et al. (2019). Bianchi et al. (2019) applies the ARMA filter to graph neural
networks. Similar to (Klicpera et al., 2019), Wu et al. (2019) and NT & Maehara (2019) also follow
the decoupling principle but in a reversed way (filter-then-classify). (Chen et al., 2020b) built a deep
GCN named GCNII which holds the current best results for original splits of Cora, Citeseer, and
Pubmed. They further showed that their model can estimate any filter function with an assumption
that the fully-connected layers can learn filter coefficients (Chen et al., 2020b, Proof of Theorem 2).

6 EXPERIMENTAL RESULTS

We conduct experiments on benchmark and synthetic data to empirically evaluate our proposed
models. First, we compare our models with several existing models in terms of average classification
accuracy. Our experimental results show that our single model can perform well across all frequency
ranges. Second, we plot the learned filter functions of our model to show that our model can learn
the frequency range from the data — such visualization is difficult in existing works as the models’
filters are fixed before the training process.

6.1 DATASETS

We use three groups of datasets corresponding to three types of label frequency (low, midrange, high).
The first group is low-frequency labeled data, which consists of citation networks: Cora, Citeseer,
Pubmed (Sen et al., 2008); and co-purchase networks Amazon-Photo, Amazon-Computer (Shchur
et al., 2018). The second group is network datasets with midrange label frequency (close to 1):
Wisconsin, Cornell, Texas (Pei et al., 2020); and Chameleon (Rozemberczki et al., 2019). The last
group consists of a synthetic dataset with high label frequency (close to 2). For the Biparite dataset,
we generate a connected bipartite graph on 2,000 vertices (1,000 on each part) with an edge density
of 0.025. We then use the bipartite parts as binary vertex labels. Table 1 gives an overview of these
datasets; see Appendix B.3 for more detail.

Table 1: Overview of graph datasets, divided to three frequency groups

DATASETS |V | |E| d |C| r(Y ) r(X) Type
Cora 2,708 5,278 1,433 7 0.23 ± 0.04 0.91 ± 0.10 Citation
Citeseer 3,327 4,676 3,703 6 0.27 ± 0.03 0.81 ± 0.19 Citation
Pubmed 19,717 44,327 500 3 0.55 ± 0.02 0.87 ± 0.07 Citation
Amz-Photo 7,487 119,043 745 8 0.25 ± 0.04 0.82 ± 0.04 Co-purchase
Amz-Computer 13,381 245,778 767 10 0.27 ± 0.05 0.83 ± 0.04 Co-purchase

Wisconsin 251 450 1703 5 0.87 ± 0.08 0.89 ± 0.23 Web
Cornell 183 277 1703 5 0.86 ± 0.11 0.86 ± 0.32 Web
Texas 183 279 1703 5 0.98 ± 0.03 0.84 ± 0.32 Web
Chameleon 2,277 31,371 2325 5 0.81 ± 0.05 0.99 ± 0.01 Wikipedia

Bipartite 2,000 50,182 50 2 2.0 ± 0.00 1.0 ± 0.00 Synthetic

6.2 VERTEX CLASSIFICATION

We compare our method with some of the best models in the current literature. Two layers
MLP (our model without graph filters), GCN (Kipf & Welling, 2017), SGC (Wu et al., 2019),
and APPNP (Klicpera et al., 2019) are used as a baseline. Geom-GCN-(I,P,S) (Pei et al., 2020),
JKNet+DE (Xu et al., 2018; Rong et al., 2019), and GCNII (Chen et al., 2020a) are currently among
the best models. We implement the Chebyshev polynomial filter as in (Defferrard et al., 2016) and
set λmax = 1.5. The Literature section of Table 2 and 3 shows the best results found in the literature
where these models are set at the recommended hyper-parameters and recommended variants for
each dataset. In our experiment, we fix the graph-related hyper-parameters of each model and report
the classification results. Our model contains 16 layers of stacked filters (Ã) and has 64 hidden
dimensions. Learning rate is set at 0.01, weight decay is 5e × 10−4, and dropout rate for linear
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layers is 0.7. From an intuition that the filter should discover the required frequency pattern before
the linear layers, we set the learning rate of linear layers to be one-fourth of the main learning rate.
This experimental setup shows that SGF can adapt to the label frequency without setting specific
hyper-parameters. In Table 2, SGF performs comparably with the current state-of-the-art. On the
other hand, in Table 3, SGF is not only better than others in our experiments but also surpassing the
best results in the literature. Note that we also the exact same SGF model across all experiments.

Table 2: Vertex classification accuracy for low-frequency datasets

METHODS
DATASETS

Cora Citeseer Pubmed Photo Computer
Our experiments (Average over 10 runs of stratified 0.6/0.2/0.2 splits)

MLP 75.01 ± 1.33 73.24 ± 1.28 83.56 ± 0.44 85.05 ± 1.62 80.42 ± 0.73
SGC (k = 2) 87.15 ± 1.57 75.00 ± 0.93 87.97 ± 0.35 93.67 ± 0.68 90.87 ± 0.43
APPNP (α = 0.2) 88.07 ± 1.32 76.71 ± 0.88 88.21 ± 0.37 94.70 ± 0.50 91.16 ± 0.44
GCNII (0.5, 0.5) 86.21 ± 1.40 76.86 ± 1.29 89.77 ± 0.52 92.57 ± 0.61 88.71 ± 0.55
SGF-Cheby (λmax = 2.0) 88.42 ± 1.60 76.85 ± 1.01 87.74 ± 0.37 91.26 ± 1.76 89.71 ± 0.55
SGF-Cheby (λmax = 1.5) 30.05 ± 0.60 21.11 ± 0.03 41.72 ± 2.99 26.79 ± 1.82 36.99 ± 0.03
SGF 88.97 ± 1.21 77.58 ± 1.11 90.12 ± 0.40 95.58 ± 0.55 92.15 ± 0.41
Literature (Best result among their variants)

GCN 85.77 73.68 88.13 (not avail.) (not avail.)
GAT 86.37 74.32 87.62 (not avail.) (not avail.)
Geom-GCN 85.27 77.99 90.05 (not avail.) (not avail.)
APPNP 87.87 76.53 89.40 (not avail.) (not avail.)
JKNet+DE 87.46 75.96 89.45 (not avail.) (not avail.)
GCNII 88.49 77.13 90.30 (not avail.) (not avail.)

Table 3: Vertex classification accuracy for midrange and high frequency datasets

METHODS
DATASETS

Wisconsin Cornell Texas Chameleon Bipartite
Our experiments (Average over 10 runs of stratified 0.6/0.2/0.2 splits)

MLP 83.72 ± 3.40 80.13 ± 4.59 80.30 ± 5.55 45.63 ± 1.88 48.34 ± 1.67
SGC (k = 2) 56.27 ± 6.79 53.37 ± 5.41 51.49 ± 6.75 26.51 ± 2.44 48.07 ± 1.47
APPNP (α = 0.2) 71.02 ± 5.98 74.55 ± 4.49 66.95 ± 6.02 54.58 ± 1.67 50.89 ± 1.08
GCNII (0.5, 0.5) 71.57 ± 5.13 74.47 ± 5.42 73.78 ± 6.72 55.81 ± 1.55 49.70 ± 1.75
SGF-Cheby (λmax = 2.0) 76.28 ± 4.23 69.32 ± 5.67 77.59 ± 4.36 70.16 ± 2.08 100.0 ± 0.00
SGF-Cheby (λmax = 1.5) 52.34 ± 6.11 59.25 ± 3.14 62.22 ± 5.43 28.71 ± 3.19 100.0 ± 0.00
SGF 87.06 ± 4.66 82.45 ± 6.19 80.56 ± 5.63 58.77 ± 1.90 100.0 ± 0.00
Literature (Best results among their variants)

GCN 45.88 52.70 52.16 28.18 (not avail.)
GAT 49.41 54.32 58.38 42.93 (not avail.)
Geom-GCN 64.12 60.81 67.57 60.90 (not avail.)
APPNP 69.02 73.51 65.41 54.30 (not avail.)
JKNet+DE 50.59 61.08 57.30 62.08 (not avail.)
GCNII 81.57 76.49 77.84 62.48 (not avail.)

Results in Table 3 also suggest that the ability to adapt of the state of the art model GCNII is sensitive
to its parameters α and θ. In our experiment, we fix the θ parameter to 0.5 for all datasets, while in their
manuscript the recommended values are around 1.5 depending on the dataset. With the recommended
hyper-parameters, GCNII can achieve the average accuracy of 81.57% on Wisconsin data. However,
its performance dropped around 3 ∼ 10% with different θ values. This comparison highlights our
model’s ability to adapt to a wider range of datasets without any graph-related hyper-parameters.

The Chebyshev polynomial basis performs comparably to the staking implementation as we discussed
in the previous sections. The value λmax = 1.5 is choosen because the typical maximum eigenvalue
of real-world networks are often at this value. However, in practice, one should set λmax = 2 as
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discussed by Kipf & Welling (2017). Our experiments here intent to highlight the potential numerical
instability problem due to the arbitarily large leading coefficient of the Chebyshev polynomial basis.
Since for vertex classification any polynomial basis is equivalent, numerical stable ones like our
implementation of SGF is certainly more preferable in practice.

6.3 FILTER VISUALIZATION

Another advantage of our model is the ability to visualize the filter function using an inversion of
Proposition 2. The first row of Figure 2 shows the filtering functions at initialization and after training
when input is the normalized augmented adjacency matrix. The second row shows the results when
the input is the normalized Laplacian matrix. These two cases can be interpreted as starting with a
low-pass filter (Ã) or starting with a high-pass filter (L). Figure 2 clearly shows that our method can
learn the suitable filtering shapes from data regardless of the initialization. We expect the visualization
here can be used as an effective exploratory tool and baseline method for future graph data.

6.4 ADAPTIVITY TO STRUCTURAL NOISE

Recently, Fox & Rajamanickam (2019) raised a problem regarding structural robustness of a graph
neural network for graph classification. Zügner et al. (2018) posed a similar problem related to
adversarial attack on graphs by perturbations of vertex feature or graph structure for the vertex
classification setting (Dai et al., 2018; Bojchevski & Günnemann, 2019; Zügner & Günnemann,
2019). Here, we evaluate the robustness of the models against the structural noise, where we perturb
a fraction of edges while preserving the degree sequence4. This structural noise collapses the relation
between the features and the graph structure; hence, it makes the dataset to have the midrange
frequency. This experimental setting shows that adaptive models like ours and GCNII are more robust
to structural noise. In the worst-case scenario (90% edges are swapped), the adaptive models are
at least as good as an MLP on vertex features. Figure 3 shows vertex classification results at each
amount of edge perturbation: from 10% to 90%. APPNP with α = 0.2 and SGC with k = 2 have
similar behavior under structural noise since these models give more weights to filtered features. On
the other hand, APPNP with α = 0.8 is much more robust to structural noise as it depends more on
the vertex features. This result suggests that adaptive models like ours and GCNII can be a good
baseline for future graph adversarial attack studies (SGF’s advantage here is being much simpler).

6.5 DYNAMICS OF α’S AND β’S

In addition to Section 6.3, this section studies the dynamic of α and β during training for two
representative datasets: Cora (low-frequency) and Wisconsin (mid-frequency). We the value of α and
β in SGF (Ã) every 20 training epochs and plot the result. Figure 4 shows the values of α and β in
16 layers of SGF in top to bottom then left to right order (reshaped to 4 by 4 blocks). For the Cora
dataset, we see that the over-smoothing effect is quickly migrated as the α’s automatically go to zero
with the exception of the last three layers. Similarly, the weights for skip-connections – β’s – quickly

4https://en.wikipedia.org/wiki/Degree-preserving_randomization
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Figure 3: Vertex classification accuracy for each amount of edge perturbation. Since GCNII has
similar performance as our model in this setting, we only plot the results for SGF.
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Figure 4: Dynamic of α’s and β’s with fixed initialization at 0.5.

go to zero with the exception of few last layers. For the Wisconsin dataset, we can see that there is
almost no filtering because all α’s go to zero quickly and there is only one active skip-connection in
the last layer. This single active skip-connection phenomenon is further confirmed by the experiment
on MLP (Table 3) where MLP performed comparably to graph-based models. These results further
explained the ability to adapt of our model.

Additional Experiments. We provide several other experimental results in Appendix A. Section A.1
discusses the advantages of vertical stacking (SGF) versus a naı̈ve horizontal stacking (learning
θ in equation 3 directly). Section A.2 discusses the difficulty of estimating the frequency range
(Rayleigh quotient) of vertex labels when the training set is small. Section A.3 provide additional
experiments where α’s and β’s are initialized randomly. We show that our model is still adaptive
even with uniform [−1, 1] initialization.

7 CONCLUSION

We show that simply by learning the polynomial coefficients rather the linear layers in the formulation
of GCN can lead to a highly adaptive vertex classification model. Our experiment shows that by
using only one setting, SGF is comparable with all current state-of-the-art methods. Furthermore,
SGF can also adapt to structural noise extremely well, promising a robust model in practice. Since
our objective is to relax the frequency assumption, one could expect our model will perform weakly
when number of training data is limited. Because the estimation of label frequency becomes difficult
with a small number of data (Appendix A.2), designing a learning model that is both adaptive and
data-efficient is an exciting challenge. We believe an unbiased estimation (Proposition 4) with a more
involved filter learning scheme is needed to address this problem in the future.
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A EXTRA EXPERIMENTAL RESULTS

A.1 VERTICAL AND HORIZONTAL STACKING

Horizontal stacking is equivalent to learning θ’s in Equation 3 directly instead of stacking them
vertically. In parallel to our work, Chien et al. (2020) explored the horizontal stacking idea with
the pagerank matrix instead of the Laplacian matrix discussed here. We find that both vertical and
horizontal can learn degree K polynomial, but vertical stacking naturally robust to the high order
terms. Horizontally stacked filter even loses its ability to adapt when learning order 64 polynomials.
Table 4 shows a comparison between vertical stacking (SGF) and horizontal stacking. We also report
the average number of iteration until early stopping and average training time per epoch for the 64
filters case. All hyper-parameters are the same as in Table 2 and 3. Figure 5 gives an example of 4
layers stacking to clarify the difference between horizontal and vertical.

Table 4: Vertex classification accuracy comparison between horizontal and vertical stacking

DATASETS
NUMBER OF STACKED FILTERS

16 32 64 #Iteration Time
SGF (Average over 10 runs of stratified 0.6/0.2/0.2 splits)

Cora 88.97 ± 1.21 88.70 ± 1.29 88.75 ± 1.07 234.5 115.4 ms
Pubmed 90.12 ± 0.40 89.93 ± 0.55 88.34 ± 0.67 357.9 205.1 ms
Wisconsin 87.06 ± 4.66 85.51 ± 4.84 86.17 ± 4.41 502.5 98.6 ms
Cornell 82.45 ± 6.19 80.55 ± 6.58 81.14 ± 4.50 615.7 98.7 ms
SGF-Horizontal (Average over 10 runs of stratified 0.6/0.2/0.2 splits)

Cora 88.34 ± 1.70 88.48 ± 1.41 88.08 ± 1.65 765.9 107.1 ms
Pubmed 87.38 ± 0.38 87.27 ± 0.40 87.10 ± 0.37 603.8 130.6 ms
Wisconsin 84.03 ± 2.39 78.42 ± 6.70 60.19 ± 4.96 1046.5 122.1 ms
Cornell 64.95 ± 6.02 56.84 ± 5.97 56.83 ± 6.08 666.8 81.5 ms

1
X

2 3 4

1 2 3 4

(a) Vertical Filter Stacking

X

0

1 2 3 4

(b) Horizontal Filter Stacking

Figure 5: Block diagram example of order-4 stacked filters. Both of these models can learn order-4
polynomial as the filtering function.

A.2 RAYLEIGH QUOTIENT ESTIMATION FROM TRAINING DATA

To obtain an accurate classification solution, the frequency of the model’s output must be close to the
frequency of the true labels as follows.
Proposition 3. Let ŷ, y ∈ RN be unit length vectors whose signs of entries indicate predicted labels
and true labels for vertices in graph G. Let L ∈ Rn×n be the symmetric normalized graph Laplacian
of graph G. Suppose the graph frequency gap is at least δ: |r(ŷ) − r(y)| = |ŷ>Lŷ − y>Ly| ≥ δ.
Then we have:

||ŷ − y||22 ≥ δ/4 (8)

This proposition explains that a model designed for a specific frequency range (e.g., GCN, SGC, GAT,
APPNP, etc for low-frequency range) gives a poor performance on the other frequency ranges. This
proposition also leads us a method to seek a model (i.e., a filter) whose output matches the frequency
of the true labels. Because the true label frequency is unknown in practice, we must estimate this
quantity from the training data. Below, we discuss the difficulty of this estimation.
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A naı̈ve strategy of estimating the frequency is to compute Rayleigh quotient on the training set.
However, training features X and training labels yn often have Rayleigh quotient close to 1 (as shown
in Table 1 for r(X)), and Figure 7 (Appendix) shows the results when we compute the Rayleigh
quotient of labels based on training data. This means that a naı̈ve strategy yields undesirable results
and we need some involved process of estimating the frequency.

If we can assume that (1) Training vertices are sampled i.i.d., and (2) we know the number of vertices
in the whole graph (N = |V |), we can obtain an unbiased estimation of the frequency of the true
labels as follows.

Proposition 4. Let p be the proportion of vertices will be used as training data, q be the proportion
of label y, N be the total number of vertices in the graph, Ln be the symmetric normalized Laplacian
of the subgraph induced by the training vertices, and yn be the training labels. Assuming the training
set is obtained by sampling the vertices i.i.d. with probability p, we can estimate the Rayleigh quotient
of true labels by

E(r(yn)) = 4N−1p−2
(
y>n Lnyn − (1− p)y>n diag(Ln)yn

)
(9)

Figure 6 shows an unbiased estimation results using Proposition 4. Unfortunately, at 10% training
ratio, the observed variances are high across datasets; thus, we conclude that estimating the label
frequency is generally difficult, especially for small training data.
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Figure 6: Box plot of estimated Rayleigh quotient (frequency) by training ratio. For each training
ratio, we randomly sample 10 training sets and compute Rayleigh quotients using equation (9).

Thus far, we have shown that estimating label’s frequency given limited training data is difficult even
with an unbiased estimator. The high data efficiency of GCN-like models could be contributed to the
fact that they already assume the labels are low frequency. Without such assumption, we need more
data in order to correctly estimate the frequency patterns.

A.3 RANDOM INITIALIZATION

While the main content of our paper showed the results for α and β initialized at 0.5, our results
generally hold even if we initialize them randomly. Table 5 demonstrates this claim by showing our
model’s performance with α and β initialized randomly. SGF (0.5) is the setting showed in the main
part of our paper. SGF (U[-1,1]) initializes α and β using a uniform distribution in [-1,1].

Both Table 5 and Figure 8 show that our model behaves similar to the fixed initialization at 0.5. It is
worthwhile to mention that Figure 8a and 8b show SGF initialized randomly at the same seed but
converged to two different solutions. The accuracies for these two particular cases are 89.7% for Cora
nd 92.0% for Wisconsin. This result and the filter visualization in Section 6.3 refute the argument
that our model is also biased toward ”low-frequency”.
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Figure 7: Box plot of estimated Rayleigh quotient (frequency) by training ratio. For each training
ratio, we randomly sample 10 training sets and compute Rayleigh quotients using equation (1).

Table 5: Test accuracy when α and β are initialized randomly

METHODS
DATASETS

Cora Citeseer Pubmed Photo Computer
SGF (0.5) 88.97 ± 1.21 77.58 ± 1.11 90.12 ± 0.40 95.58 ± 0.55 92.15 ± 0.41
SGF (U[-1,1]) 88.47 ± 1.40 77.50 ± 1.88 88.23 ± 1.12 92.23 ± 0.53 87.15 ± 3.63

Wisconsin Cornell Texas Chameleon Bipartite

SGF (0.5) 87.06 ± 4.66 82.45 ± 6.19 80.56 ± 5.63 58.77 ± 1.90 100.0 ± 0.00
SGF (U[-1,1]) 88.66 ± 3.40 79.13 ± 1.60 79.67 ± 3.62 57.83 ± 2.47 100.0 ± 0.00

Init. e=20 e=40 e=80 e=120 e=160 e=140 e=180 e=220 e=260e=100 e=300 2.0

0.0
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(a) Cora
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(b) Wisconsin

Figure 8: Dynamic of α’s and β’s with random initialization (seed 0).
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B EXPERIMENTAL DETAILS

B.1 SOURCE CODE

The source code is provided in src.zip. The instruction to install Python environment and running
examples can be found in README.md. All results in this paper are obtained using a single machine
with an RTX Titan GPU (24GB). We also confirm the results on CPU and another machine with a
GeForce 1080Ti GPU (11GB). The provided source code works on both CPU and GPU.

B.2 EVALUATION PROCEDURE

For each dataset and each run, the following training procedure is implemented: Split, use train
and validation vertices to estimate Rayleigh quotient; train the model with train set and choose
the hyper-parameters using validation set, the hyper-parameters are dropout rate, learning rate, and
number of layers; save the model every time best validation accuracy is reached; load the best model
on validation set to evaluate on test set. Search set for each hyper-parameters:

• Dropout rate: {0.4, 0.5, 0.6, 0.7, 0.8}
• Weight decay : {1e− 2, 1e− 3, 5e-4, 1e− 4, 5e− 5}
• Learing rate: {0.001, 0.01, 0.02, 0.1}
• Number of layers: {4, 8, 16, 32, 64}

We use the hyper-parameters in bold text to report the result in the main part of our paper.

B.3 DATA SOURCE

Our datasets are obtained from the pytorch-geometric repository and the node-classification-dataset
repository on GitHub. These datasets are “re-packed” with pickle and stored in src/data. The
original URLs are:

• https://github.com/rusty1s/pytorch geometric

• https://github.com/ryutamatsuno/node-classification-dataset

Citation Networks. Cora (ML), Citeseer, and Pubmed (Sen et al., 2008) are the set of three most
commonly used networks for benchmarking vertex classification models. Vertices in these graphs
represent papers, and each of them has a bag-of-word vector indicating the content of the paper.
Edges are citations between papers. Originally these edges are directed, but they are converted to
undirected edges in the trade-off between information loss and efficiency of methods.

WebKB. WebKB dataset is a collection of university websites collected by CMU5. As we mentioned
in previous sections, this dataset is special because it contains many different types of vertices that
have mixed frequencies. We use the Wisconsin, Cornel, Texas subsets of this dataset.

Wikipedia. The Chameleon dataset belongs to a collection of Wikipedia pages where edges are
references and vertex labels indicate the internet traffic. Originally this dataset was created for the
vertex regression task, but here, we follow Pei et al. (2020) to split the traffic amount into 5 categories.

The synthetic dataset is generated using NetworkX library and labeled by its bipartite parts. The
features are generated randomly with Gaussian N (0, 1).

B.4 OTHER METHODS

Other methods are obtained from their respective repository on GitHub. The following are parameter
settings for the “Our experiment” section of Table 2 and 3. Since each dataset has a different hyper-
parameter values, we follow the author’s recommendation for the hyper-parameter not mentioned here.
We confirm the results with the recommended hyper-parameters and report them in the “Literature”
sections.

5http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb

16

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb


Under review as a conference paper at ICLR 2021

• GCNII: θ = 0.5, α = 0.5.
• SGC: k = 2, lr = 0.01, wd = 5× 10−4, dropout = 0.7.
• APPNP: K = 2, α = 0.2 and 0.8, lr = 0.02, wd = 5× 10−4, dropout = 0.7.
• SGF-Cheby (our implementaion): λmax = {1.5, 2.0}, K = 16 and other hyper-parameters

are the same as SGF.
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