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Abstract
We present Langevin Predictive Coding (LPC), a
novel algorithm for deep generative model learn-
ing that builds upon the predictive coding frame-
work of computational neuroscience. By injecting
Gaussian noise into the predictive coding infer-
ence procedure and incorporating an encoder net-
work initialization, we reframe the approach as an
amortized Langevin sampling method for optimiz-
ing a tight variational lower bound. To increase
robustness to sampling step size, we present a
lightweight preconditioning technique inspired
by Riemannian Langevin methods and adaptive
SGD. We compare LPC against VAEs by train-
ing generative models on benchmark datasets; our
experiments demonstrate superior sample quality
and faster convergence for LPC in a fraction of
SGD training iterations, while matching or ex-
ceeding VAE performance across key metrics like
FID, diversity and coverage.

1. Introduction
In recent decades the Bayesian brain hypothesis has emerged
as a compelling general framework for understanding per-
ception and learning in the brain (Pouget et al., 2013; Clark,
2013; Kanai et al., 2015). Under this framework, the brain
is posited as encoding a probabilistic generative model en-
gaged in a joint scheme of inference over the hidden causes
of its observations and learning over its model parameters.
One of the most popular instantiations of this view is predic-
tive coding (PC), a computational scheme which employs
hierarchical latent Gaussian generative models with com-
plex, non-linear conditional parameterizations. In recent
years, PC has garnered substantial attention for its potential
to elucidate cortical function (Rao & Ballard, 1999; Friston,
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2018; Mumford, 1992; Hosoya et al., 2005; Hohwy et al.,
2008; Bastos et al., 2012; Shipp, 2016; Feldman & Friston,
2010; Fountas et al., 2022). Despite their predictive appeal
in the cognitive sciences, and a growing literature focused
on their export to the general field of supervised machine
learning (see Table 1 in Salvatori et al. (2023)), the practical
applicability and performance of PC - and adjacent algo-
rithms such as neural generative coding (Ororbia & Kifer,
2022) - in training unsupervised deep generative models, on
complex datasets, has yet to be fully realized (Zahid et al.,
2023b); with few, if any, instances - as far as the authors
are aware - of algorithms that are both competitive or better
than their ML counterparts, while also remaining computa-
tionally desirable (Zahid et al., 2023a) on current in-silico
frameworks.

Concurrent to these developments in the cognitive sciences,
a separate revolution has been occurring in the statistical
literature driven by the use of gradient-based Monte Carlo
sampling methods such as Hamiltonian Monte Carlo (HMC)
(Roberts & Tweedie, 1996; Neal, 2011; Hoffman & Gel-
man, 2011; Girolami & Calderhead, 2011; Ma et al., 2019).
These methods facilitate the sampling of intractable distribu-
tions through the intelligent construction of Markov chains
with proposals informed by gradient information from the
log density being sampled. Notably, one of the simplest
algorithms within this class is the overdamped Langevin
algorithm (Rossky et al., 1978; Roberts & Tweedie, 1996;
Roberts & Rosenthal, 1998), which admits an interpretation
as both a limiting case of HMC, and as a discretisation of a
Langevin diffusion (Neal, 2011).

This paper introduces several advancements aimed at extend-
ing the PC framework using techniques from gradient-based
Markov Chain Monte Carlo (MCMC) for use in training
deep generative models:

• We show that by injecting appropriately scaled Gaus-
sian noise, the standard PC inference procedure may be
interpreted as an (unadjusted) overdamped Langevin
sampling.

• Utilizing these Langevin samples, we compute gra-
dients with respect to a tight evidence lower bound
(ELBO), which model parameters may be optimised
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against.

• To improve chain mixing time, we train approximate
inference networks for amortized warm-starts and eval-
uate three distinct objectives for their optimization.

• We investigate and validate a light-weight diagonal pre-
conditioning strategy for increasing robustness to the
Langevin step size, inspired by adaptive optimization
techniques.

1.1. Inference as Langevin Dynamics

The standard PC recipe for inference and learning under a
generative model, for static observations, may be described
succinctly as follows (Rao & Ballard, 1999; Bogacz, 2017;
Millidge et al., 2020):

1. Define a (possibly hierarchical) graphical model over
latent (z ∈ Rd) and observed (x ∈ Rn) states with
parameters θθθ: log p(x, z;θθθ)

2. For each observation x(i) ∼ D, where D is the data-
generating distribution.
Inference: Iteratively enact a gradient ascent on
log p(x(i), z|θ) with respect to latent states (z)

z(t) = z(t−1) + γ∇z log p(x
(i), z(t−1);θθθ) (1)

Until you obtain an MAP estimate:
zMAP=maxz log p(x

(i), z;θθθ)=maxz log p(x
(i)|z;θθθ)

Learning: Update model parameters θ using stochas-
tic gradient descent with respect to the log joint evalu-
ated at the MAP (averaged over multiple observations
if using mini-batches):

θθθ(i) = θθθ(i−1) + α∇θθθ log p(x
(i), zMAP;θθθ

(i−1)) (2)

One simple and relevant framing of this process is that of a
variational ELBO maximising scheme under the assumption
of a Dirac delta (point-mass) approximate posterior (Friston,
2003; 2005; Friston & Kiebel, 2009; Zahid et al., 2023b).
In practice, the restrictiveness of this Dirac delta posterior
significantly impairs the quality of the resultant model due
to the expected divergence between the true model posterior
and the Dirac delta function situated at the MAP estimate.
Indeed, previous attempts at reducing the severity of this
assumption, by adopting quadratic approximations to the
posterior at the MAP, Zahid et al. (2023b), succeeded in
improving model quality to a degree, but suffered from
high computational cost while still performing significantly
worse than their variational auto-encoder counterparts.

Our contribution begins with the observation that by inject-
ing appropriately scaled Gaussian noise into Equation 1, one

obtains an unadjusted Langevin algorithm (ULA). Specif-
ically, the ULA may be considered the discretisation of a
continuous-time Langevin diffusion (Rossky et al., 1978;
Roberts & Tweedie, 1996), characterised by the following
stochastic differential equation,

Figure 1. Projection of high-dimensional latent state trajectories
under standard PC inference (right), and Langevin PC sampling
(left), using normalised PCA trajectories. Latent state dynamics
under Langevin PC result in a principled exploration of the poste-
rior. More example trajectories, and further details on how these
were computed may be found in Appendix A.2. Contour lines and
hue correspond to values of the negative log joint probability (blue
high, red low), marker brightness corresponds to time-step (earlier
is lighter).

dZt = −∇zt
U(Zt)dt+

√
2dWt (3)

where Wt is a d-dimensional Brownian motion and ad-
mits a unique invariant density equal to e−U(z)∫

Rd e−U(z)dz
under

mild conditions. Setting the potential energy (U(z)) to
− log p(x(i), z;θθθ), for an observation x(i) gives us:

dZt = ∇zt
log p(x(i),Zt;θθθ)dt+

√
2dWt (4)

for which the corresponding Euler–Maruyama discretisation
scheme is:

z(t) = z(t−1) + γ∇z log p(x
(i), z(t−1);θθθ) +

√
2γη (5)

with η ∼ N (000, I). This is simply equal to a standard PC
inference iteration (Equation 1) with the addition of some
scaled Gaussian noise. With the inclusion of this Gaussian
noise, the resultant iterates z(t) would thus be interpretable
as samples of the true model posterior, as t → ∞, up to a
bias induced by discretisation (Besage, J. E, 1994; Roberts
& Tweedie, 1996).

Next, we note that by treating the (biased) samples from
our Langevin chain as samples from an approximate poste-
rior instead, we may compute gradients of a Monte Carlo
estimate for the evidence lower-bound with respect to our
model parameters θθθ:

∇θθθLELBO = ∇θθθ

[
Ep̃(z|x)[log p(x, z;θθθ)− log p̃(z|x)]

]
(6)
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Where the approximate posterior p̃(z|x) corresponds to the
empirical distribution of our Langevin chain. Because we
are only interested in gradients with respect to our parame-
ters θθθ, the intractable entropy term of our sample distribution
may be ignored

= ∇θθθ

[
Ep̃(z|x)[log p(x, z;θθθ)]

]
−∇θθθ

[
Ep̃(z|x)[log p̃(z|x)]

]︸ ︷︷ ︸
=0

(7)

≈ ∇θθθ
1

T

∑
t

log p(x, z(t);θθθ) (8)

Crucially, optimisation of this ELBO simply requires
computing the gradient of our negative potential energy
log p(x, z;θθθ), with respect to θθθ rather than z, and is (com-
putationally) identical to the learning step in Equation 2.
From the perspective of neurobiological plausibility, this
result is a pleasant surprise, as there already exists a substan-
tial literature on how the dynamics described by Equation 1
and 2 may be implemented neuronally (Friston, 2003; 2005;
Shipp, 2016; Bastos et al., 2012). Thus, the Langevin PC
algorithm demands no additional neurobiological machinery
other than the injection of Gaussian noise into our standard
PC iterates. We briefly discuss the possible implications of
this in Section 4.

From the perspective of an in-silico implementation, these
gradients may be collected iteratively as the Markov chain
is constructed, resulting in constant memory requirements
independent of the chain length T , while reusing portions
of the same backward pass used to compute our Langevin
drift: ∇z log p(x, z;θθθ).

1.2. Amortised Warm-Starts

It is well-known that MCMC sampling methods, while pow-
erful in theory, are notoriously sensitive to their choice of
hyperparameters in practice (Steve Brooks, Andrew Gel-
man, Galin Jones, Xiao-Li Meng, 2011). One such choice is
the state of initialisation for a Markov chain. A poor initiali-
sation, far from the typical set of the invariant density will
result in an inefficient chain with poor mixing time. This
is of particular importance if we require the construction of
this Markov chain within each SGD training iteration. Tra-
ditional strategies to ameliorate this issue generally appeal
to burn-in, i.e the discarding of a series of initial samples
(Andrew Gelman et al., 2015), or by initialising at the MAP
found via numerical optimisation (Salvatier et al., 2015).
Such strategies are costly, particularly for our Langevin
dynamics, as they require expensive and wasted network
evaluations.

We resolve this issue by training an amortised warm-up
model (equivalently, an approximate inference model) con-
ditional on observations. This allows us to provide a warm-
start to our Langevin chain that is ideally within the typi-

cal set. In the context of the computational neuroscience
origins of predictive coding, this formulations appeal com-
pellingly to a dichotomy frequently identified in computa-
tional neuroscience. Namely, between fast but approximate
feed-forward perception, vs slower but precise recurrent
processing. The joint occurence of which, within the visual
cortex in particular, has long been noted for it’s importance
in object recognition (Lamme & Roelfsema, 2000; Mohsen-
zadeh et al., 2018; Kar et al., 2019).

Architecturally this network may be chosen to resemble stan-
dard encoders, in encoder-decoder frameworks such as the
VAE (Kingma & Welling, 2014), however the availability of
(biased) samples from the model posterior obtained through
Langevin dynamics afford us greater flexibility in how we
train it. Here we propose and validate three objectives for
training our amortised warm-start model: the forward KL,
reverse KL, and Jeffrey’s divergence.

1.2.1. FORWARD KL

Given Langevin samples from the model posterior, the most
obvious objective for optimising our approximate inference
network is the expected forward Kullback–Leibler diver-
gence between the model posterior and our approximate
posterior, with expectation approximated with mini-batches
of observations. Specifically, the forward KL divergence
can be separated into an intractable but encoder-independent
entropy term, and a cross entropy term for which we may
obtain a Monte Carlo estimate using our Langevin samples:

DKL(p̃(z|x)|q(z|x,ϕϕϕ)) = E(p̃(z|x)

[
log

p̃(z|x)
q(z|x,ϕϕϕ)

]
(9)

where we are exclusively interested in obtaining gradients
with respect to ϕϕϕ, and as such:

∇ϕϕϕDKL(p̃(z|x)|q(z|x,ϕϕϕ)) = −∇ϕϕϕEp̃(z|x) [log q(z|x,ϕϕϕ)]
+∇ϕϕϕEp̃(z|x) [log p̃(z|x)]︸ ︷︷ ︸

0

(10)

= −∇ϕϕϕEp̃(z|x) [log q(z|x,ϕϕϕ)] (11)

which is simply the cross-entropy between our empirical
Langevin posterior distribution and our approximate infer-
ence model. We will denote the Monte Carlo estimate for
this approximate inference objective for a mini-batch of
observations and a single batch of their associated posterior
samples, as LAF

(x, z).

1.2.2. REVERSE KL

While the forward KL is readily available given our access to
samples from the posterior, its well-known moment match-
ing behaviour may result in an initialisation at the average
of multiple modes and as such a low posterior probability,
particularly given the Gaussian approximate posterior we
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will be adopting Bishop (2006). In such circumstances, the
mode matching behaviour of the reverse KL may be more
appropriate. Computing the reverse KL divergence directly
is difficult given our inability to directly evaluate the true log
posterior probability. We can circumvent this by appealing
to the standard ELBO, evaluated using the reparameteri-
sation trick of Kingma & Welling (2014), which admits a
decomposition consisting of an encoder-independent model
evidence term, and the reverse KL we wish to obtain gradi-
ents from,

LAR
= DKL(q(z|x,ϕϕϕ)|p(z|x)) (12)

= Eq(z|x,ϕϕϕ)

[
log

q(z|x,ϕϕϕ)
p(z|x)

]
(13)

where we are once again exclusively interested in obtaining
gradients with respect to ϕϕϕ, and as such,

∇ϕϕϕDKL(q(z|x,ϕϕϕ)|p(z|x))
= ∇ϕϕϕ [DKL(q(z|x,ϕϕϕ)|p(z|x))− log p(x)] (14)

= ∇ϕϕϕ

[
−Eq(z|x,ϕϕϕ)[log p(x|z)]
+ DKL(q(z;ϕϕϕ)|p(z))] (15)

= ∇ϕϕϕLELBO (16)

1.2.3. JEFFREY’S DIVERGENCE

By averaging gradients from the forward and reverse KL
divergences we may also optimise with respect to (half)
the Jeffrey’s divergence, also known as the symmetrised
KL (Jeffreys, 1946), which can be shown to upper bound 4
times the Jensen-Shannon divergence (Lin, 1991).

∇ϕϕϕLAJ
=

1

2
∇ϕϕϕ [DKL(p(z|x)|q(z|x,ϕϕϕ))

+ DKL(q(z|x,ϕϕϕ)|p(z|x))] (17)

1.3. Adaptive Preconditioning

There now exists a sizeable literature approaching gradient-
based sampling from the perspective of optimisation in the
space of probability measures (Jordan et al., 1998; Wibisono,
2018). This framing has led to the development of analogues
to well-known methods from the classical optimisation liter-
ature, such as Nesterov’s acceleration (Ma et al., 2019). Sim-
ilar analogues to preconditioning have also emerged in the
literature, with Girolami & Calderhead (2011), demonstrat-
ing that an appropriately chosen, possibly position-specific,
preconditioning matrix may be used to exploit the natural
Riemannian geometry over the induced distributions, im-
proving mixing time and sampling efficiency. A number
of works have subsequently capitalized on this technique
with a variety of Riemannian metrics, primarily within the
context of stochastic gradient Langevin dynamics (SGLD) -
a technique that applies Langevin dynamics to noisy mini-
batch gradients over deep neural network parameters to

obtain posterior samples (Welling & Teh, 2011; Ahn et al.,
2012; Patterson & Teh, 2013; Li et al., 2015).

Here we adopt the adaptive second-moment computation
of the Adam (Kingma & Ba, 2017) optimizer as our pre-
conditioning matrix, computed with iterates over the log un-
normalised probability log p(x, zt). The resultant algorithm
may be considered analogous to the use of the diagonal
RMSProp preconditioner for SGLD by Li et al. (2015), with
key differences being in the use of a debiasing step, the use
of non-stochastic gradients, and the inclusion of the gradi-
ent over the log prior in our second-moment calculations.
We note that the Itô SDE associated with an overdamped
Langevin diffusion with position-dependent metric tensor
G(Xt), may be written as (Girolami & Calderhead, 2011;
Ma et al., 2015; Roberts & Stramer, 2002; Xifara et al.,
2014):

dZt = G(Xt)∇z log p(x, z;θθθ)dt+ Γ(Zt)dt (18)

+
√

2G(Zt)dWt (19)

where the term Γ(Zt) accounts for changes in local curva-
ture of the manifold, and is defined as:1

Γi(Zt) =
∑
j

Gij(Zt)

∂Zj
(20)

The resultant discretization given by the Euler-Murayama
scheme follows analogously to that in Equation 5. We follow
identically to (Ahn et al., 2012) and (Li et al., 2015) and
choose to ignore the Γi(Xt) term in our final discretized
algorithm; valid under the assumption that our manifold
changes slowly. Our final preconditioned algorithm with
amortised warm-starts is described in Algorithm 1.

2. Related Works
Functionally similar algorithms to the one we propose here,
have been independently developed from different theoret-
ical perspectives (Hoffman, 2017; Taniguchi et al., 2022).
Most notably, Hoffman (2017) proposed evolving latent
states, also initialized by an inference network, using mul-
tiple iterations of Metropolis-adjusted Hamiltonian Monte
Carlo (HMC) dynamics, with the final state being used to
update the parameters of a generative model.

Taniguchi et al. (2022) proposed the application of
Metropolis-adjusted Langevin dynamics directly to the pa-

1We note that this term appears slightly differently to that found
in (Roberts & Stramer, 2002) and (Girolami & Calderhead, 2011),
as the original formulation was shown by (Xifara et al., 2014) to
correspond to the density function with respect to a non-Lebesgue
measure (after correcting a transcription error). The term as used
in this paper is of the form suggested by (Xifara et al., 2014) which
has the required invariant density with respect to the Lebesgue
measure.
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rameters of an amortisation network rather than datapoint-
wise latent states, leveraging these iterates to also jointly
learn a generative model or decoder network. Most recently,
Dong & Wu (2023), presented directionally similar work
to LPC by adopting Langevin sampling to train the general
class of hierarchical exponential models. This generalisa-
tion induces a further complexity in requiring a method
for approximating the generally intractable gradient of the
log-partition function, for which they adopt interneurons
undergoing their own fast timescale dynamics. Importantly,
Dong & Wu (2023) do not present a method for initialisa-
tion of latents such as the amortised warm-start networks
we present here, a likely reason for their choice to invoke
multiple orders of magnitude greater number of Langevin
sampling steps (30k vs 300), ostensibly requiring a signifi-
cantly greater computational cost.

Our work contributes to this growing literature by introduc-
ing an approach grounded in computational neuroscience,
specifically through the lens of PC, for export as a gen-
eral technique for learning hierarchical generative models.
Moreover, to the best of our knowledge, our work is the first
to propose and empirically evaluate the use of the Forward
KL and Jeffrey’s divergence as optimization objectives for
a warm-start or inference network, as well as the adaptive
preconditioning described herein for improving step size ro-
bustness in the unadjusted Langevin algorithm, particularly
in the context of learning generative models.

For clarity, we also note here key differences between LPC
and recent state-of-the-art algorithms, such as diffusion
(Sohl-Dickstein et al., 2015), or score-based generative
models (Song & Ermon, 2019), which both incorporate
Langevin dynamics albeit for significantly different pur-
poses, and with significantly different underlying generative
models. Specifically, diffusion, or score-matching, meth-
ods use annealed Langevin dynamics for sampling over
observation space during inference, with training involving
a single backward pass over a neural network (generally)
from, and to, observation space. Langevin PC in compar-
ison uses non-annealed sampling over lower dimensional
latents during training itself, with the generative model it-
self closely resembling that of a standard VAE. Therefore,
unlike diffusion/score-matching models we do not have the
Langevin time dependency at inference or sampling time -
with Langevin PC retaining the ancestral sampling-like na-
ture of standard VAE models. While interpretations of diffu-
sion models as a type of hierarchical VAEs (with parameter
sharing over layers) exist (Luo, 2022), a fair comparison
would require comparing a parameter-matched stochasti-
cally hierarchical LPC model against the equivalent diffu-
sion model, which we discuss alongside other interesting
direction for future work in Section 4.1.

3. Results
For all experiments considered here, we adopt generative
and warm-start models that are largely coincident with the
encoder, and decoder respectively from the VAE architec-
ture of Higgins et al. (2016), with minor modifications,
adopted from more recent VAE models (Child, 2021; Vah-
dat & Kautz, 2021), such as SiLU activation functions and
softplus parameterised variances. Complete details of model
architecture and hyperparameters can be found in Appendix
A.1

Algorithm 1 Preconditioned Langevin PC with Amortized
Warm-Starts trained with Jeffrey’s Divergence. For the ver-
sion corresponding to warm-starts with just the reverse KL,
remove the forward KL accumulation and the coefficient of
1
2 from the reverse KL gradients.
Require: D: Data-generating distribution
Require: p(x, z;θθθ): Generative model (θθθ)
Require: q(z|x,ϕϕϕ): Approximate inference model (ϕϕϕ)
Require: β: Preconditioning decay rate
Require: γ, α, T : Langevin step size, parameter learning rate,

and number of sampling steps
for x ∼ D do

gθθθ, gϕϕϕ,m
(0) ← 000

z(0) ∼ q(z|x,ϕϕϕ)
gϕϕϕ += 1

2
∇ϕϕϕLAR ▷ Reverse KL gradients

for t ∈ {1, 2, . . . , T} do
gz ← ∇z log p(x,z

(t−1);θθθ) ▷ Drift
m(t) ← β ·m(t−1) + (1− β) · (gT

z gz)

m̂(t) ←
√

m(t)/(1− βt) ▷ Bias correction
z(t) ← γ · gz ⊘ m̂(t) + η, η ∼ N (000, diag(2γ · m̂))

gθθθ += ∇θθθ log p(x,z
(t−1);θθθ)

gϕϕϕ += 1
2T
∇ϕϕϕLAF ▷ Forward KL gradients

end for
θθθ += α · gθθθ ▷ Generative model update
ϕϕϕ += α · gϕϕϕ ▷ Warm start model update

end for

3.1. Approximate Inference Objectives

We begin by investigating the performance of our three
approximate inference objectives, the forward KL, reverse
KL and Jeffrey’s divergence on the quality of our samples
when trained with CIFAR-10 (Krizhevsky, 2009), SVHN
(Netzer et al., 2011) and CelebA (64x64) (Liu et al., 2015).
As a baseline, we also test with no amortized warm-starts,
instead using samples from our prior, for which we adopt an
isotropic Gaussian with variance 1, to initialise our Langevin
chain. For all tests, we also adopt this prior initialisation for
the first 50 batches of training to ameliorate the effects of
any poor initialisation in our warm-start models.

To quantify sample quality we compute the the standard
Fréchet distance with Inceptionv3 representations (FID)
(Heusel et al., 2017) using 50,000 samples. We observe
a largely consistent relationship for the forward KL, with
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the objective exhibiting both poor performance in terms
of sample quality and training instabilities resulting from
an increasingly poor initialisation as training progresses.
We validate this by recording changes in log probability
and the L2 normed gradient of the log probability for ran-
dom samples during their sampling trajectories for the three
objectives. We observe significantly qualitatively differ-
ent behaviours for the forward KL initialisations, observ-
ing drift-dominant conditions with dynamics dominated by
maxima-seeking behaviour suggesting poor initialisation far
from the mode. Example recordings of the change in log
probability ∆ log p(x, z) may be found in Figure 3. Further
examples, and the equivalent normed gradient plots can be
found in Appendix A.3.

Figure 2. FID when using amortised warm-starts trained with our
three approximate inference objectives, and baseline with no warm-
start model, using initialisation with the prior. ∗ Values for the
forward KL objective are reported for 1 epoch due to the instability
of this objective resulting in exploding gradients.

In comparison we observe clear improvements in sample
quality and FID when using amortised warm-starts trained
with Jeffrey’s divergence or the reverse KL over the baseline
encoder-only models. Due to the improved performance
of the Jeffrey’s divergence objective in terms of the FID,
and qualitatively more diverse sample quality, we adopt this
objective for all subsequent experiments. FID values for the
three objectives can be found in Figure 2, note that due to
exploding gradients for the forward KL objective at later

epochs, the FID values in for the forward KL correspond to
performance at 1 epoch.

3.2. Preconditioning Induced Robustness

We assess the impact of preconditioning on increasing step
sizes by testing models with and without preconditioning
as we vary the Langevin step size from 0.001 to 0.5. We
observe a substantial protective effect on the degradation
of sample quality as step size increases in terms of the FID
(Figure 4) of the resultant models, with the strength of this
protective effect generally correlating with the strength of
the preconditioning parameter β.

We also find that while preconditioned models exhibit better
sample quality over their non-preconditioned counterparts,
over the majority of step sizes tested, this trend begins to
reverse at the very lowest Langevin step-sizes (1e-3), where
non-preconditioned models reach parity or even improved
performance. This relationship appears to mirror that of
adaptive optimizers for SGD as used in practice, where
adaptive optimizers exhibit greater robustness to a wide
range of learning rates, but risk being outperformed by stan-
dard SGD optimization with a carefully finetuned learning
rate.

3.3. Samples and Metrics

We trained identical generative models using the standard
VAE objective, alongside the LPC methodologies described
herein. VAE models were hyperparameter tuned on learn-
ing rates with the best performing model with respect to
FID being chosen for comparison. LPC models were analo-
gously tuned on inference learning rate and preconditioning
strength. Remaining hyperparameters were kept constant be-
tween runs such as optimizer, batch size and prior variance,
to ensure a fair and like-for-like comparison. Full experi-
mental details may be found in Appendix A.1, alongside the
optimal hyperparameters selected for each dataset.

LPC and VAE models were trained for 15 and 50 epochs
respectively. To evaluate sample quality we computed FID
(using 50,000 samples), as well as density and coverage
(Naeem et al., 2020) - a more robust alternative to precision
and recall metrics - also using Inceptionv3 embeddings.

LPC models demonstrated comparative or better perfor-
mance to their VAE counterparts. In particular, LPC models
out-performed VAE models trained for more than 3 times as
many SGD iterations (50 epochs vs 15), on SVHN and CI-
FAR10, in terms of FID, as well as on CelebA and CIFAR10
with respect to density and coverage. Samples from LPC
models were also markedly less blurry - or more sharp - in
comparison to VAE counterparts, an issue known to plague
VAE models. (See Figure 5, for some non-cherry picked
examples).
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Figure 3. Changes in log probability (∆log p(x,z)) during Langevin sampling show forward KL initialisation results in long periods of
drift-dominant conditions far from the mode.

Table 1. Comparative evaluation of FID, Density, and Coverage
for LPC and VAE models across different datasets.

Dataset FID (↓) Density (↑) Coverage (↑)

LPC (15 Epochs)

CelebA 97.49 0.54 0.13
SVHN 39.64 0.33 0.42

CIFAR10 113.29 0.63 0.13

VAE (15 Epochs)

CelebA 90.63 0.10 0.08
SVHN 53.88 0.60 0.39

CIFAR10 183.21 0.06 0.03

VAE (50 Epochs)

CelebA 82.09 0.16 0.12
SVHN 44.76 0.65 0.48

CIFAR10 145.87 0.14 0.06

4. Discussion
We have presented an algorithm for training generic deep
generative models that builds upon the PC framework of
computational neuroscience and consists of three primary
components: an unadjusted overdamped Langevin sampling,
an amortised warm-start model, and an optional light-weight
diagonal preconditioning. We have evaluated three different
objectives for training our amortised warm-start model: the
forward KL, reverse KL and the Jeffrey’s divergence, and
found consistent improvements when using the reverse KL
and Jeffrey’s divergence over baselines with no warm-starts
(Figure 2). We have also evaluated our proposed form of
adaptive preconditioning and observed an increased robust-
ness to increaing Langevin step size (Figure 4). Finally,
we have evaluated the resultant Langevin PC algorithm by
training like-for-like models with the standard VAE method-
ology or the proposed Langevin PC algorithm. We have
observed comparative or improved performance in a num-
ber of key metrics including sample quality, diversity and
coverage (Table 1), while observing training convergence in
a fraction of the number of SGD training iterations (Figure

Figure 4. FID for Langevin PC models with and without preconditioning across different step-sizes. Numbers in brackets correspond to
the preconditioning decay rate (β). Models trained with preconditioned Langevin dynamics experience significantly less degradation
in sample quality at higher step-sizes. With stronger preconditioning generally correlating to the greatest robustness against inference
learning rate.
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Epoch 5

Epoch 15

VAE Preconditioned

Langevin PC

Epoch 5

Epoch 15

Langevin PC

(A) (B)

Figure 5. (A) Samples from identical generative models trained as VAEs (left), with LPC (middle), and with preconditioned LPC (right)
on CelebA 64x64 (top), and SVHN (bottom). Epoch 50 samples for VAE models can be found in Appendix A.3. (B) Sample FID curves
of VAE and LPC models throughout training. LPC models generally converge in significantly fewer epochs than their equivalent VAE
trained models, with certain models converging in as few as 3 epochs. † Note: FID values reported in this graph are calculated online
during training using significantly fewer samples than the post-training values reported in Table 1, and may thus differ in precise value.

5B).

4.1. Future directions

Langevin predictive coding opens doors in two different
directions. The first is in regards to PC as an instantia-
tion of the Bayesian brain hypothesis and as a candidate
computational theory of cortical dynamics. In this setting,
the introduction of Gaussian noise into the PC framework
may represent more than simply an implementational detail
associated with Langevin sampling but rather a deeper phe-
nomena rooted in the ability of biological learning systems
such as the brain to utilise sources of endogenous noise to
their advantage.

It is well known that neuronal systems, including their dy-
namics and responses, are rife with noise at multiple levels
(Faisal et al., 2008; Shadlen & Newsome, 1998). These
sources of noise arise from, amongst other things, stochas-
tic processes occuring at the sub-cellular level, impacting
neuronal response through, for example, fluctuations in
membrane-potential (Derksen & Verveen, 1966). Yet the
precise role of such randomness, in information processing,
continues to be an open question (McDonnell & Ward, 2011;
Deco et al., 2013). The Langevin PC algorithm suggests
one such role may be in the principled exploration of the
latent space of hypotheses under one’s generative model.

Secondly, from the perspective of Langevin PC as an in-
silico generative modelling algorithm we note a number of

8
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interesting avenues that we have not had the time to explore
here. These include:

• Models with a hierarchy of stochastic variables, such
as those found in most state of the art VAE models
(Child, 2021; Vahdat & Kautz, 2021; Hazami et al.,
2022).

• Automatic convergence criteria for determining when
our Markov chain has converged to a certain level of
error (Roy, 2020).

• Underdamped Langevin dynamics, which incorporate
auxiliary momentum variables into the Langevin sam-
pling to achieve an accelerated rate of convergence
(Cheng et al., 2018; Ma et al., 2019).

• The application of Langevin PC to discrete variables us-
ing recent generalisations of HMC to discrete variables
(Nishimura et al., 2020; Zhang et al., 2012)

• Alternative sophisticated or higher capacity approx-
imate inference models to improve warm-start be-
haviour and mixing time, such as top-down encoder
networks (Child, 2021; Vahdat & Kautz, 2021)

4.2. Limitations

The methods we propose here are not without limitation.
When implemented on current in-silico autograd frame-
works, the need to enact multiple sequential iterations of
Langevin dynamics for each SGD iteration requires addi-
tional computational cost and thus wall-clock time. Relative
to vanilla PC (Rao & Ballard, 1999), they also incur an
additional cost per inference step, arising from the accumu-
lation of gradients on the weights and from the introduction
of the warm-start/encoder network. In practice, this addi-
tional wall-clock time is counteracted, to an extent, by the
increased efficiency of the Langevin PC algorithm in terms
of the number of SGD iterations required to obtain similar
or better performance as their VAE counterparts. When
accounted for, we nonetheless observed end-to-end wall
clock times for training that were approximately x7 and
x11 slower for LPC algorithms using the reverse KL and
Jeffrey’s divergence respectively. (See Appendix A.4 for
per batch timings and relative slow downs).

We note that this additional cost is isolated to training,
whereas the cost of sampling LPC models remain equiv-
alent to their VAE counterparts - requiring a single ances-
tral sample, or forward evaluation, through the generative
model to obtain. For models deployed for long-term use,
such inference costs account for the bulk of computational
cost. Therefore, LPC may be a viable candidate to improve
model quality without increasing inference cost when de-
ployed. We also speculate that the form of these dynamics -

precision-weighted prediction errors with additive Gaussian
noise - may render them a good candidate for implementa-
tion on analog hardware, where such dynamics would be
enacted by the intrinsic but noisy fast-timescale physics of
such systems.
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A. Appendix
A.1. Experimental Details

All experiments in this paper adopted the following network architectures for the generative model and approximate
inference models. These models are derived from the encoder/decoder VAE architectures of (Higgins et al., 2016) with
slight modifications such as the use of the SiLU activation function adopted in more recent VAE models such as (Hazami
et al., 2022; Vahdat & Kautz, 2021).

Generative Model (log p(x, z;θθθ) Warm-Start/Encoder Model (log q(z|x, ϕ))

Latent Dim = 40 Obs Dim = (64, 64) or (32, 32) or (28, 28)

Linear(256) If Input = (64,64): Conv(32, 3, 3, 1)
else: Conv(32)

SiLU SiLU

Conv(64, 4, 1, 0) Conv(32)

SiLU SiLU

Conv(64) Conv(64)

SiLU SiLU

Conv(32) If Obs Dim = (28, 28): Conv(64, 3)
else: Conv(64)

SiLU SiLU

If obs dim = (64, 64): Conv(32)
else if obs dim = (28, 28): Conv(32, 3, 1, 0)

else: Conv(32, 3, 1, 1)
Conv(256, 4)

SiLU SiLU

Conv(3) Linear(2*40)
(Softplus(beta=0.3) applied to variance component)

Table 2. Layer argument definitions are Conv(Number of out channels, kernel size, stride, padding), and Linear(Output dimensions) for 2d
convolution and linear layers respectively. Kernel size, stride and padding are 4x4, 2, and 1 respectively if not explicitly stated.

Hyperparameter Value

Optimizer Adam

Learning Rate (α) 1e-3

Batch size 64

Output Likelihood Discretised Gaussian

Max Sampling Steps (T ) 300

Preconditioning Decay Rate (β) 0.99

Table 3. Default hyperparameters used in experiments unless explicitly stated. Note: some of these are varied as part of ablation tests, see
main text for more details.

Optimal learning rates for VAE were found to be 1e-3, 8e-4 and 1e-3 for CIFAR10, CelebA and SVHN respectively.
For LPC, optimal inference learning rates were found to be 1e-1, 1e-1, and 1e-3 with β equal to 0.25, 0.25 and 0 (No
preconditioning), for CIFAR10, CelebA and SVHN respectively.
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A.2. Low-Dimensional Projection of Inference and Sampling Trajectories

The problem of visualising high-dimensional trajectories is a well-known one which generally arises in the context of
visualising the stochastic gradient descent trajectories of high-dimensional weights in neural networks (Gallagher & Downs,
2003; Li et al., 2017; Lipton, 2016).

Here we adapt the method suggested by (Li et al., 2017) to visualise the inference or sampling trajectories of our latent states
z(t). We apply principle component analysis (PCA) to the series of vectors pointing from our final state to our intermediate
states, i.e. [z(1) − z(T ), . . . , z(T−1) − z(T )], and project our trajectories on the first two principle components. We visualise
the projected trajectories on top of the loss landscape of the negative potential (log joint probability) by evaluating our
generative model across a grid of latent states linearly interpolated in the direction of the principle components around the
final state.

Projections of an example batch of sampling trajectories can be seen in Figure 6.

Figure 6. Projection of a 64 sample batched high-dimensional latent state trajectories under Langevin PC sampling. Contour lines and
hue correspond to values of the negative log joint probability (blue high, red low), marker brightness corresponds to time-step (earlier is
lighter).
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A.3. Additional Samples and Figures
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Figure 7. Log probability changes during Langevin sampling for samples from training batch 600 for our three approximate inference
objectives.
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Figure 8. L2 normed log probability during Langevin sampling for samples from training batch 300 (top) and 600 (bottom), for our three
approximate inference objectives.

Figure 9. Epoch 50 samples from VAEs trained on CelebA 64x64 (left), and SVHN (right)
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A.4. Wall Clock Time

Table 4. Batch times and end-to-end slowdowns for LPC algorithms as recorded on a single GPU, equipped with 24GB of GDDR6X
memory, providing approximately 83 teraFLOPS. End-to-end refers to 15 epochs for LPC algorithms, and 50 epochs for VAE algorithms.

Algorithm Per batch time (ms) Per batch slowdown End to end slowdown

VAE 0.022 x1 x1
LPC (Reverse) 0.533 x24 x7
LPC (Jeffreys) 0.798 x36 x11
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