
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Poisoning Federated Recommender Systems with Fake Users
Anonymous Author(s)

ABSTRACT
Federated recommendation is a prominent use case within feder-
ated learning, yet it remains susceptible to various attacks, from
user to server-side vulnerabilities. Poisoning attacks are particu-
larly notable among user-side attacks, as participants upload mali-
cious model updates to deceive the global model, often intending
to promote or demote specific targeted items. This study investi-
gates strategies for executing promotion attacks in federated rec-
ommender systems.

Current poisoning attacks on federated recommender systems of-
ten rely on additional information, such as the local training data of
genuine users or item popularity. However, such information is chal-
lenging for the potential attacker to obtain. Thus, there is a need to
develop an attack that requires no extra information apart from item
embeddings obtained from the server. In this paper, we introduce a
novel fake user based poisoning attack named PoisonFRS to pro-
mote the attacker-chosen targeted item in federated recommender
systems without requiring knowledge about user-item rating data,
user attributes, or the aggregation rule used by the server. Exten-
sive experiments on multiple real-world datasets demonstrate that
PoisonFRS can effectively promote the attacker-chosen targeted
item to a large portion of genuine users and outperform current
benchmarks that rely on additional information about the system.
We further observe that the model updates from both genuine and
fake users are indistinguishable within the latent space.

ACM Reference Format:
Anonymous Author(s). 2023. Poisoning Federated Recommender Systems
with Fake Users. In Proceedings of ACM Conference (Conference’17). ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Federated learning (FL) [18, 24] is gaining more and more atten-
tion in recent applications because it does not require any user’s
personal data on the server side. A prevailing application of FL is
federated recommender systems (FedRecs) [2, 21, 22, 25, 33, 36, 41],
where each participant holds its local interaction information and
feature vector. In each global round, the server sends item embed-
dings to each user, and each user trains its local model using item
embeddings and its user embedding. After that, the user sends the
model update of item embeddings to the server. Therefore, the
server can only access item embeddings, which is not sensitive for
users.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

However, recent studies have found that malicious users can alter
the global model’s behavior in FedRecs by uploading well-crafted
model updates to poison the global model. Such manipulations
can be divided into targeted poisoning attacks [29, 45, 48] and
untargeted poisoning attacks [3, 8]. In targeted poisoning attacks,
malicious users tend to promote or demote the targeted item, while
in untargeted attacks, malicious users tend to downgrade the global
model’s overall performance. Since targeted attacks can bring direct
interests to the attacker, e.g., promoting its own films in a film
recommender system, it poses a great threat to the FedRecs. In this
paper, we only focus on this type of poisoning attack.

Several targeted poisoning attacks have been proposed to manip-
ulate the FedRecs [29, 45, 48]. However, existing attacks typically
necessitate knowledge about the targeted FedRecs system, such
as genuine users’ local training data or the popularity distribution
of items, which, in practice, is difficult for the attacker to acquire.
For instance, PipAttack [48] leverages the popularity of each item
to train a popularity estimator and then generates model updates
so that the targeted item has a high popularity. FedRecAttack [29]
needs to know genuine users’ training data so that the attacker can
estimate genuine user features in order to implement the attack. In
the PSMU attack [45], malicious users generate some synthetic local
training data that must closely mimic the distribution of genuine
users’ training data.

This paper proposes a novel poisoning attack called PoisonFRS
to manipulate the FedRecs using fake users. In our proposed Poi-
sonFRS attack, the attacker has no knowledge about genuine users
(local training data and model updates) and the aggregation rule
used by the server, and each fake user has no local training data.
This is possible in some platforms, like Amazon Personalize [1].
In other scenarios, the interaction information of genuine users is
visible, but the attacker often needs to crawl over the entire website,
which is consumptive, and this abnormal behavior will be easily
detected. As for local training data, since most fake users are newly
registered and tailored for the attack, they cannot have local train-
ing data consistent with genuine users. Therefore, our attack poses
significant practicability in real-world applications.

In our proposed PoisonFRS attack, the attacker carefully crafts
the model updates for fake users such that the poisoned global
model will promote the attacker-chosen targeted item to a large
fraction of genuine users. Specifically, the attacker in our attack
needs to use item features received from the server to estimate 𝑘
itemswith high popularity. After that, it constructs a targetedmodel
based on the features of the selected items. At the end of each global
round, each fake user sends a model update that drags the global
model towards the target model. Such an attack only requires item
embeddings available in the federated recommendation protocol.
The attacker does not need to train malicious model updates using
the embedding of fake users anymore and thus requires no training
data.

We conducted extensive experiments on four real-world datasets.
In our experiments, we compared our proposed PoisonFRS attack

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

with eight baseline attacks, which included five attacks in a central-
ized setting and three attacks designed for FedRecs. Additionally, we
tested PoisonFRS on seven aggregation rules, namely FedAvg [24],
coordinate-wise median [43], coordinate-wise trimmed-mean [43],
Clip [17], Krum [4], FLAME [26], and HiCS [45]. Our results indi-
cate that PoisonFRS is effective across all these aggregation rules,
and significantly outperforms existing attacks. For instance, on the
Yelp dataset, our PoisonFRS can promote the targeted item to over
70% genuine users while introducing only 0.05% fake users. We also
investigated whether PoisonFRS could be detected by the server.
We conducted a t-SNE [35] analysis of the targeted item model
update and found that the model update of genuine users and fake
users are indistinguishable in the latent space.

Our key contributions can be summarized as follows:

• We introduce a novel poisoning attack on FedRecs that uses
fake users, requiring no prior knowledge of genuine user
information or access to local training data.

• We systematically evaluate the performance of our pro-
posed attack under various settings, and we find that Poi-
sonFRS significantly outperforms baseline attacks.

• Extensive experiments demonstrate that our proposed Poi-
sonFRS could promote the targeted item to a large fraction
of genuine users with a small proportion of fake users, and
our attack cannot be detected by the server.

2 RELATEDWORK
2.1 Federated Recommender Systems
Recommender system is a technique used to provide personalized
recommendations to users. Previous research on recommender
systems mainly focuses on a centralized setting [11, 14, 19, 27, 30,
31, 39], where each user’s feature and interaction data is collected
at the central server. Such a setting poses a privacy threat to users
because the server may leak sensitive data. To address this issue,
federated recommender systems (FedRecs) have been proposed [2,
21, 22, 25, 33]. The basic framework of FedRecs is federated learning
(FL). This learning scheme prevents the server from accessing users’
local training data and thus ensures privacy.

Each user in FedRecs possesses its local training data, and the
server allows users to train a global model (i.e., item embeddings)
without disclosing their raw user-item rating data during the train-
ing phase. Specifically, FedRecs performs the following three steps
in each global round (as shown in Figure 1):

Step I. The server sends the current item embeddings to each
user or a subset of users.

Step II. Each user trains its local model using its training data
and the received item embeddings. To be specific, in the 𝑙-th global
training round, suppose the number of interacted items is 𝑟 and let
R = {(𝑝1, 𝑛1), (𝑝2, 𝑛2), · · · , (𝑝𝑟 , 𝑛𝑟)} denote the positive-negative
sample pairs. The item embeddings received is denoted as V =

{v𝑙1, v
𝑙
2, · · · , v

𝑙
𝑚}. The local training objective for each user is de-

fined by 𝐿 = −∑𝑟
𝑖=1 ln𝜎 (𝑦𝑝𝑖 − 𝑦𝑛𝑖) [28], where 𝑦𝑝𝑖 and 𝑦𝑛𝑖 respec-

tively represent to which extent the user likes or hates the item 𝑖 . So,
the item embedding update is calculated as g𝑙 = −[∇V𝐿, where [is
the learning rate. After that, each user uploads its item embedding
update to the server.

Item embedding

User
embedding

Local training

Server

Item embedding

Item Embedding

Item embedding
update

1

2

3

Figure 1: Illustration of three steps in FedRecs.

Algorithm 1 Training Process of FedRecs.
Input: Number of global rounds𝑇 , number of items𝑚, aggregation

rule Agg, number of users interacted with 𝑖-th item 𝑛𝑖 .
Output: Updated model for the interacted items.
1: for 𝑙 = 1, 2, . . . ,𝑇 do
2: The server send item embedding v𝑙1, v

𝑙
2, · · · , v

𝑙
𝑚 to users.

3: Each user trains its local model according to Algorithm 2.
4: for 𝑖 = 1, 2, . . . ,𝑚 do
5: The server receives model updates on 𝑖-th item

g𝑙
𝑖,1, g

𝑙
𝑖,2, · · · , g

𝑙
𝑖,𝑛𝑖

6: g𝑙
𝑖
← Agg(g𝑙

𝑖,1, g
𝑙
𝑖,2, · · · , g

𝑙
𝑖,𝑛𝑖
)

7: v𝑙+1
𝑖
← v𝑙

𝑖
+ g𝑙

𝑖
8: end for
9: end for

Algorithm 2 Local training for genuine users in FedRecs.
Input: Number of global rounds 𝑇 , number of items𝑚, learning

rate [, number of interacted items 𝑟 , positive-negative sample
pairs R = {(𝑝1, 𝑛1), (𝑝2, 𝑛2), · · · , (𝑝𝑟 , 𝑛𝑟)}.

Output: Model updates for the interacted items
1: for 𝑙 = 1, 2, . . . ,𝑇 do
2: Each user downloads item embeddings from the server.
3: V← {v𝑙1, v

𝑙
2, · · · , v

𝑙
𝑚}

4: 𝐿 ← −∑𝑟
𝑖=1 ln𝜎 (𝑦𝑝𝑖 − 𝑦𝑛𝑖)

5: V′ ← V − [∇V𝐿
6: g𝑙 ← V′ − V
7: Each user uploads nonzero entries in g𝑙 to the server.
8: end for

Step III.The server then aggregates the received item embedding
update and further updates the item embeddings.

Then, the three steps are repeated until some convergence cri-
teria are met. The complete algorithm that illustrates the whole
process is given in Algorithm 1.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Poisoning Federated Recommender Systems with Fake Users Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

2.2 Poisoning Attacks to FedRecs
Numerous poisoning attacks [6, 9, 10, 12, 15, 16, 20, 23, 37, 47] have
been proposed to manipulate recommender systems, yet the ma-
jority of these existing attacks are based on the centralized setting.
Several recent studies [29, 45, 48] have demonstrated that malicious
users can influence recommendation preferences in FedRecs by
uploading malicious model updates to poison the system. This will
make certain items promoted or demoted. However, some of them
require additional information related to genuine users’ training
data or genuine users’ training data or the distribution of items.
For instance, FedRecAttack [29] requires the attacker to know gen-
uine users’ user-item rating data, and PipAttack [48] requires the
attacker to know the popularities of all items. PSMU [45] requires
the injected malicious users to create some synthetic local train-
ing data that resembles the distribution of genuine users’ training
data to achieve good attack performance. In our experiments, we
demonstrate the PSMU method’s limited effectiveness due to the
real-world dataset’s inherent sparsity. Furthermore, in PSMU, the
attacker trains features of malicious users in each global round,
resulting in a considerable slowdown of the attack process. Table 1
summarizes the difference between our proposed PoisonFRS attack
and existing attacks.

Table 1: Knowledge required by different attacks.⃝ indicates
optional.

Genuine users’
training data

Malicious users’
training data

Item
popularity

FedRecAttack [29] ✓ ✗ ✗

PipAttack [48] ⃝ ✗ ✓

PSMU [45] ✗ ✓(Generated) ✗

PoisonFRS ✗ ✗ ✗

2.3 Byzantine-robust Aggregation Rules
To counteract attacks on FL, various Byzantine-robust aggrega-
tion rules have been proposed. These rules filter or trim malicious
model updates to ensure that the aggregated model update remains
relatively innocuous. Median [43] and Trimmed-mean [43] repre-
sent two typical Byzantine-robust aggregation rules. In Median,
the aggregated model update is the coordinate-wise median of all
model updates. In Trimmed-mean, the aggregated model update
is the trimmed mean of the collected model updates. These two
aggregation rules filter malicious model updates in each dimen-
sion. Alternatively, an approach involves clipping malicious model
updates rather than entirely excluding them.

The aforementioned aggregation rules typically cannot com-
pletely reject malicious model updates. In Median and Trim, some
dimensions of malicious model updates are inevitably included or
averaged, as the aggregator cannot guarantee the exclusion of mali-
cious updates on every dimension. In the case of clipping, malicious
model updates are scaled rather than discarded. Consequently, var-
ious detect-then-drop mechanisms have been proposed. Krum [4]
selects the model update closest to its neighbors for aggregation.
FLAME [26] utilizes HDBSCAN [5] to implement a clustering al-
gorithm and subsequently employs intricate processing on the
selected cluster, such as clipping or adding noise.

3 THREAT MODEL
3.1 Attacker’s Goal
The attacker aims to manipulate FedRecs with fake users and con-
sequently make targeted items recommended to as many genuine
users as possible. To elaborate, let 𝑡 denote the targeted item, 𝑈𝑡
denote the set of users who have not interacted with the targeted
item 𝑡 yet. 𝑉 𝑟𝑒𝑐

𝑢 represents the set of items recommended to user 𝑢,
which is the set of items that has the top-𝐾 predicted scores among
non-interacted items of user 𝑢. The attacker’s ultimate goal is to
maximize the target hit ratio, which is defined by the following:

𝐻𝑅@𝐾 =
1
|𝑈𝑡 |

∑︁
𝑢∈𝑈𝑡

I
[
𝑡 ∈ 𝑉 𝑟𝑒𝑐

𝑢

]
, (1)

where I is the indicator function, I
[
𝑡 ∈ 𝑉 𝑟𝑒𝑐

𝑢

]
is 1 if targeted item 𝑡

appears in 𝑉 𝑟𝑒𝑐
𝑢 , otherwise 0.

3.2 Attacker’s Knowledge
In our attack model, the attacker has no knowledge about the local
training data of genuine users, item distribution, and the aggrega-
tion rule used by the server. The attacker only has access to the
item embedding sent by the server.

3.3 Attacker’s Capabilities
The current predominant methods for attacking FL-related systems
can be categorized into two groups: comprising genuine users and
injecting fake users into the systems. However, comprising genuine
users is costly, demanding significant effort from the attacker. For
example, the attacker may need to employ sophisticated techniques
to gain control over these genuine users and continually avoid
detection. Alternatively, the attacker might need to incentivize the
comprised users, essentially paying them to collaborate with the
attacker.

However, injecting fake users into FL systems appears to be a
more viable approach. Firstly, the attacker no longer needs to em-
ploy a series of attack methods to manipulate genuine users, as they
can utilize their own devices to carry out the attack, with a single
device capable of impersonating multiple fake users. Moreover, the
attacker is intimately familiar with the device, significantly enhanc-
ing efficiency. Given these considerations, we conduct the attack
by injecting fake users into FedRecs. Moreover, these injected fake
users lack local training data and are not required to create syn-
thetic data throughout the training procedure. These fake users
could send carefully crafted item embedding update to the server.

4 OUR ATTACK
4.1 Motivation
We have identified that the reason existing attacks necessitate ac-
cess to local training data is their reliance on the training of local
item features to generate a malicious model update. This training
procedure invariably involves a loss function that incorporates
user features, thereby mandating access to local training data. To
mitigate the need for fake users to have local data, an alternative
approach is to abstain from training the global model altogether.
Instead, fake users can pre-construct a target model, and during

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

each global round, these fake users compute model updates directly
aimed at aligning the global model with the target model.

The primary challenge now lies in constructing this target model.
To accomplish this, the attacker must discern which item feature
garners the most popularity without knowledge of user features.
Indeed, if the attacker can identify an item feature that scores
positively with the majority of users, enhancing that feature can
further promote the item. We establish the targeted item feature by
aggregating popular item features. The remaining challenge is: how
can one roughly identify popular items without access to users’
feature vectors? Our approach is grounded in the assumption that
most items are inherently unpopular, causing the average of all
item features to be unpopular as well. Consequently, popular items
must exhibit significant dissimilarity from the average item feature.
Drawing inspiration from this insight, we select 𝑘 items whose
features exhibit the smallest inner product with the average item
feature.

In each global training round, our proposed PoisonFRS attack
contains the following four steps.

• Select 𝑘 item embeddings that have the highest estimated
popularity.

• Construct a target model with its targeted item embedding
derived as the product of the averages of the 𝑘 item embed-
dings chosen above.

• Select filler items.
• Send the crafted model updates to the server in order to

steer the global model toward the target model.

4.2 Description
This section presents the detailed design of our PoisonFRS attack.

4.2.1 Estimating𝑘 Popular Items. The initial task involves selecting
𝑘 items with the highest estimated popularity. Assuming that each
user receives the global model at the 𝑙th global round, denoted as
v𝑙1, v

𝑙
2, . . . , v

𝑙
𝑚 , where𝑚 represents the total number of items. The

procedure for estimating popularity consists of the following steps:
Firstly, compute the average of item features for that particular
global round as vavg = 1

𝑚

∑𝑚
𝑖=1 v

𝑠
𝑖
, where𝑚 is the number of items.

Then, the fake user computes the inner product between each item
feature and vavg, and we select the 𝑘 items that have the lowest
result as the estimated most popular 𝑘 items.

4.2.2 Constructing the targeted item embedding. In the former step,
the attacker has already selected 𝑘 items that are estimated as
popular. These items are not certainly the 𝑘 most popular items,
but their popularity is estimated to be very high. The feature of the
targeted item should be close to those 𝑘 items. Therefore, we can
minimize their mean ℓ2 distance:

min
v𝑡

1
𝑘

∑︁
𝑖∈Ipop

∥v𝑡 − v𝑠𝑖 ∥
2
2, (2)

where v𝑡 is the feature of the targeted item, and v𝑠
𝑖
are features of

selected 𝑘 items at the 𝑠-th global round, where 𝑖 = 1, 2, · · ·𝑘 . The
solution of the above optimization problem is v𝑡 = 1

𝑘

∑
𝑖∈Ipop v

𝑠
𝑖
.

However, in this way, the hit ratio of the targeted item is not
much better than that of the selected 𝑘 items. To further improve
the predicted score of the targeted item, we can multiply v𝑡 by a

factor _ > 1. This is equivalent to multiplying the predicted score
by _ > 1. We finally formulate the targeted item embedding in the
target model as the following:

v′𝑡 = _v𝑡 =
_

𝑘

∑︁
𝑖∈Ipop

v𝑠𝑖 . (3)

The model update of each fake user of the targeted item 𝑡 at
round 𝑙 can be now computed as 𝑔𝑙𝑡 = v′𝑡 − v𝑙𝑡 , where v𝑙𝑡 is the item
embedding of the targeted item 𝑡 in the 𝑙-th global model.

4.2.3 Select filler items. In real-world recommender systems, gen-
uine users typically evaluate a subset of items. In our proposed
attack, to mimic the rating behavior of these genuine users and
avoid future detection, each fake user rates not only the targeted
item but also certain chosen items, which we call filler items. In our
experiments, we also find that the hit ratio of the targeted item will
drop gradually if each fake user interacts with only the targeted
item. This is because the target model v′𝑡 is fixed and fake users do
not operate items other than the targeted item. As a result, genuine
users will increase the ratings of their positive samples to make
them rank higher than the targeted item. Consequently, the target
hit ratio will decrease. To mitigate this decline, each fake user can
employ filler items, ensuring the target hit ratio decreases at an
even slower rate and therefore maintaining a high target hit ratio.
For those filler items, we hope their predicted scores won’t change
too much so the targeted item can maintain a high ranking. Our
approach is: to record the initial item features of filler items right
before the first attacking round, and in each following global round,
the target features of filler items are set to their recorded features.

We can further define this process. Let’s say each fake user has
the option to select 𝑓 items as filler items, distinct from the targeted
item. These are chosen based on their deviation from the original
embeddings when the fake user initiates an attack. Consider that
fake users begin their attack in the 𝑠-th global round. At the start
of that round, they record the item embeddings, represented as:

V𝑠 = {v𝑠1, v
𝑠
2, . . . , v

𝑠
𝑚}.

In the 𝑙-th global round, each fake user calculates the deviation as:

𝑑𝑖 = ∥v𝑠𝑖 − v
𝑙
𝑖 ∥2, 𝑖 = 1, 2, · · · ,𝑚

The fake users then rank the 𝑑𝑖 values in descending order and
choose the 𝑓 filler items with the largest 𝑑𝑖 . These selected items
must exclude the targeted item 𝑡 . If the targeted item is included, it
is removed. Denote the set of filler items as F . The model update
for filler item 𝑖 ∈ F is then given by:

g𝑙𝑖 = v𝑙𝑖 − v
𝑠
𝑖 .

Note that the filler items of each fake user may vary in different
global rounds. Therefore, the total number of filler items in all global
rounds may be larger than the number of filler items chosen in
each single round. These fake users may be detected if they interact
with too many items in total. We conduct an experiment where
we record filler items chosen in each global round by the first fake
user to implement the attack. We set the proportion of fake users to
be 0.05%, where the Yelp dataset and Median [43] aggregation rule
are considered. After calculating the union of filler items chosen
in each attack round, we find that fake users only choose 83 items

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Poisoning Federated Recommender Systems with Fake Users Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

50 100 150 200 250 300
Number of Updated Items

0

500

1000

1500

2000
Nu

m
be

r o
f G

en
ui

ne
 U

se
rs

Figure 2: Distribution of the number of updated items for
genuine users.

in total. A primary reason for this limited variety is the repeat
selection of certain items, especially popular ones, as filler items
in numerous attack rounds. For genuine users, the number of item
model updates (including items of negative samples) ranges from
28 to 2046, with the mean ` = 76 and the standard deviation 𝜎 = 95.
Figure 2 shows the distribution of the number of updated items for
genuine users. According to Figure 2, we can ensure that, within
our experimental parameters, fake users remain undetectable based
on the volume of their overall filler item interactions.

4.2.4 Sendingmaliciousmodel updates. From the above procedures,
each fake user has computed the model update of the targeted item
in the 𝑙-th global round g𝑙𝑡 as well as model updates of filler items
g𝑙
𝑖
in which 𝑖 ∈ F , where F is the set of filler items. At the end

of the global round, each fake user sends g𝑙𝑡 and each g𝑙
𝑖
(𝑖 ∈ F)

computed above to the server.
Complete algorithm: Algorithm 3 summarizes the complete algo-
rithm of our proposed PoisonFRS attack. Note that in our PoisonFRS
attack, the fake users start to attack the recommender systems from
the global training round 𝑠 , i.e., these fake users do not join the train-
ing process until the 𝑠-th training round. Lines 3-8 of Algorithm 3 is
the process of estimating 𝑘 popular items. The Ipop = {𝑖1, 𝑖2, . . . , 𝑖𝑘 }
in Line 8 is computed to record the indices of the selected items.
In lines 9-10, the attacker computes the targeted item embedding
of the target model. In lines 11-16, the attacker records all items’
embedding of the first attack round and selects filler items. In lines
17-19, the attacker computes the model update and uploads it to
the server.

5 EXPERIMENTS
5.1 Experimental Setup
5.1.1 Datasets. In our experiments, we use four real-world datasets
to evaluate the effectiveness of our proposed PoisonFRS attack.
These datasets are Steam-200K (Steam) [7], Yelp [42], MovieLens-
10M (ML-10M) [13] and MovieLens-20M (ML-20M) [13]. These
datasets come from multiple domains and their sizes vary from
small to large. For example, Steam is a dataset about user interac-
tions on Steam, which has 3,753 users and 5,134 items with 114,713
interactions, while ML-20M is a large dataset from GroupLens with
about 20,000,263 ratings of 138,493 users on 26,740 movies. In each
dataset, we split the last item that each user interacts with into the
test set. Table 2 shows the detailed statistics of four datasets.

5.1.2 Compared attacks. We compare our proposed PoisonFRS
with five traditional poisoning attacks (Random [12], Popular [12],

Algorithm 3 Our PoisonFRS Attack.
Input: Number of global rounds 𝑇 , number of items 𝑚, attack

starting round 𝑠 , number of filler items 𝑓 , number of popular
items 𝑘 , scaling factor _.

Output: Targeted item model update 𝑔𝑙𝑡 and filler item model up-
dates g𝑙

𝑖
1: for 𝑙 = 1, 2, . . . ,𝑇 do
2: if 𝑙 = 𝑠 then
3: vavg ← 1

𝑚

∑𝑚
𝑖=1 v

𝑠
𝑖

4: for 𝑖 = 1, 2, . . . ,𝑚 do
5: Compute inner product 𝑝𝑖 ← ⟨v𝑠𝑖 , vavg⟩
6: end for
7: Sort as 𝑝𝑖1 ≤ 𝑝𝑖2 ≤ · · · ≤ 𝑝𝑖𝑚
8: Ipop ← {𝑖1, 𝑖2, · · · , 𝑖𝑘 }
9: v𝑡 ← 1

𝑘

∑
𝑖∈Ipop v

𝑠
𝑖

10: v′𝑡 ← _
𝑘

∑
𝑖∈Ipop v

𝑠
𝑖

11: V𝑠 ← {v𝑠1, v
𝑠
2, . . . , v

𝑠
𝑚}

12: end if
13: if 𝑙 ≥ 𝑠 then
14: 𝑔𝑙𝑡 ← v′𝑡 − v𝑙𝑡
15: 𝑑𝑖 ← ∥v𝑠𝑖 − v

𝑙
𝑖
∥2 for all 𝑖

16: Select 𝑓 filler items with largest 𝑑𝑖 , denoted the index
set of filler items as F

17: g𝑙𝑡 ← v𝑙𝑡 − v𝑡
18: g𝑙

𝑖
← v𝑙

𝑖
− v𝑠

𝑖
for each 𝑖 ∈ F

19: Upload g𝑙𝑡 and g𝑙
𝑖
to the server

20: end if
21: end for

Table 2: Statistics of datasets.

Dataset # Users # Items # Ratings

Steam 3,753 5,134 114,713
Yelp 14,575 25,602 569,947

ML-10M 69,878 10,673 10,000,054
ML-20M 138,493 26,740 20,000,263

Bandwagon [16], RAPU-G [47], RAPU-R [47]) and three state-of-
the-art poisoning attacks on FedRecs (FedRecAttack [29], PipAt-
tack [48], PSMU [45]).
Random [12]: This is a simple attack performed on recommender
systems. The attacker chooses the targeted item and other random
items as filler items. Initially designed for centralized recommender
systems, it can be transferred to FedRecs: the attacker constructs
fake users according to the above method, and those fake users do
regular training.
Popular [12]: Like Random attack, Popular attack is initially de-
signed for centralized recommender systems. The difference be-
tween Popular and Random attacks is that in Popular attack, the
attacker chooses the most popular items as filler items.
Bandwagon [16]: The difference between Bandwagon attack and
Popular attack is that the attacker does not set all filler as popular
items in Bandwagon attack. Instead, it only puts a proportion of
filler items (in our experiments, 10%) to be popular items, while
other filler items are randomly chosen from the remaining unse-
lected items.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

RAPU-G [47]: In RAPU-G attack, the attacker uses a probabilis-
tic generative model [44] to identify unperturbed user and item
interaction data, which is then utilized to create fake user-item
interactions.

RAPU-R [47]: In RAPU-R attack, the attacker takes a different
approach by reversing the learning process of the model and incor-
porating heuristic rules specific to the context. This attack is also
initially designed for centralized recommender systems.

FedRecAttack [29]: FedRecAttack is a targeted poisoning attack
designed for FedRecs. It requires the attacker to have partial inter-
action data. With those data, the attacker can estimate genuine user
features. In this way, the attacker can optimize its loss function
about the popularity of the targeted item.

PipAttack [48]: This is an attack tailored to FedRecs. In PipAt-
tack, the attacker requires knowledge about the popularity of each
item. With such knowledge, it can construct a popularity estimator
to predict the popularity given an item feature. Therefore, it can
generate model updates that drive the item toward high popularity.

PSMU [45]: In PSMU attack, the attacker randomly generates local
training data for each fake user at each attacking round. After that,
each user trains the local model using its local training data and gets
a user feature. PSMU assumes that if the targeted item is popular
with fake users, it is also popular with other users. Therefore, the
attacker optimizes a loss function to enlarge the popularity of the
targeted item among fake users.

We note that there are some prevailing attacks on centralized
recommender systems [9, 20, 20, 32, 34, 37, 38, 40, 46, 49], but they
are concentrated on explicit feedback and cannot be adapted to our
implicit feedback setting. Therefore, we do not adopt these attacks
as baselines.

5.1.3 Aggregation rules. In our experiments, we consider the fol-
lowing aggregation rules.

FedAvg [24]: In FedAvg, upon the server receives local model
updates from all users, it computes the average of these received
model updates.

Coordinate-wise median (Median) [43]:Median serves as an ag-
gregation rule that operates on an individual dimension basis. After
gathering model updates from all users, the server computes the
median value for each dimension. This approach inherently miti-
gates the potential impact of outlier updates, ensuring the resilience
of the global model against extreme values that might represent
malicious alterations.

Coordinate-wise trimmed mean (Trimmed-mean) [43]: Trim-
med-mean is also a coordinate-wise aggregation rule. For each
dimension, the server first removes the largest 𝛽 and the smallest 𝛽
values in all collected model updates, then computes the average
of the remaining elements as the corresponding parameter in the
global model update, where 𝛽 is the trimmed parameter.

Krum [4]: Suppose there are 𝑛 users, with𝑚 being malicious/fake.
Under the Krum aggregation rule, each user 𝑖 selects 𝑛−𝑚−2 users
whose model updates are closest. Then Krum calculates the user’s
score as the average ℓ2 distance from 𝒈𝑡

𝑖
to its closest neighbors’

vectors 𝒈𝑡
𝑗
. Clients closer to their nearest 𝑛 − 𝑚 − 2 neighbors

receive lower scores. Assuming the benign user is very close to its
neighbors, we assign 𝒈𝑡 as 𝒈𝑡

𝑖∗, where 𝒈
𝑡
𝑖∗ has the smallest score.

Clip [17]: In this method, the ℓ2 norm of the model update of
each user is limited within a bound. Model updates whose ℓ2 norm
surpasses the bound will be scaled to be within the bound. The
clipped parameter is set to 3 in our experiments.
FLAME [26]: In FLAME, the server first computes the cosine simi-
larity between each two model updates and generates a distance
matrix. After that, it leverages HDBSCAN [5] clustering method to
cluster those model updates, setting min_cluster_size = 𝑛/2+1 and
min_samples = 1, thus chooses a cluster whose members are most
likely to be genuine, where 𝑛 is the total number of users. Finally, it
adaptively clips collected model updates and computes the average
of clipped model updates.
HiCS [45]: This approach forms a gradient bank to accumulate col-
lected model updates. In each global round, it accumulates received
model updates in the gradient bank and then chooses the top-𝑧
largest elements in the bank and subtracts them from the bank
(gradient sparsification). Then, the server adaptively clips them
based on their average magnitude. After that, the server computes
the average of these clipped model updates.

5.1.4 Parameter setting. The parameter _ is set to 10 in all datasets.
𝑘 is set to 5. The attacker starts to attack at the 50-th global round.
We set the number of global rounds to 300 to ensure the model
converges. The number of filler items in our proposed PoisonFRS
and all baseline attacks is 59. The learning rates for all datasets are
0.05. In our paper, the most unpopular item (the item with the least
number of rating scores) is chosen as the targeted item.

5.2 Experimental Results
Our attack significantly outperforms all baseline attacks:We
tested the attack effect of our method and baselines on seven ag-
gregation rules. The results of FedAvg and Median aggregation
rules are shown in Table 3, and the results of the other five aggrega-
tion rules are shown in Table 6 in Appendix. “Attack size” denotes
the fraction of fake users. “None” represents the setting without
attack. We can observe from Table 3 and Table 6 that centralized
recommender system-based attacks almost show no attacking ef-
fect, which means attacks tailored to FedRecs are quite needed. For
attacks on FedRecs, FedRecAttack shows the best result among
baselines. This is because such an attack requires the most prior
knowledge – partial of the raw interaction matrix. Then is the
PipAttack because the attacker in PipAttack knows the exact popu-
larity of each item. PSMU shows the worst effect in our experiment
because the datasets are quite sparse, and the attacker cannot get
the local training data consistent with benign users by randomly
choosing rated items. All these baselines, including FedRecAttack,
fail when the proportion of fake users is extremely small, like 0.03%.
However, in our proposed PoisonFRS attack, the hit ratio of the
targeted item significantly surpasses all baselines, and when the
proportion of fake users is really small, our attack still shows a
strong effect.
Our attack can break current defenses: From Table 3 and Table 6,
we conclude that for most baseline attacks, their effect will be
weakened to some extent when facing defensive aggregation rules.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Poisoning Federated Recommender Systems with Fake Users Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

0 25 50 75 1000.2

0.4

0.6

0.8
HR

@
5

(a) HR@5 on different _.

0 50 100 150 200
k

0.5
0.6
0.7
0.8

HR
@

5

(b) HR@5 on different 𝑘 .

0 50 100 150 200 250
s

0.0
0.2
0.4
0.6
0.8

HR
@

5

(c) HR@5 on different 𝑠.

25 75 125 175
f

0.5
0.6
0.7
0.8

HR
@

5

(d) HR@5 on different 𝑓 .
Figure 3: Result of ablation studies on Yelp dataset, where
FedAvg aggregation rule is considered.

However, for our attack, we can see its effect is almost aggregation
rule agnostic. Our attack is strongly effective even under HiCS, the
defense tailored to FedRecs. Therefore, the attacker can achieve its
goal regardless of the server’s aggregation rule.

Table 3: HR@5 for different attacks under FedAvg and Me-
dian aggregation rules.

(a) FedAvg

DatasetAttacksize NoneRand-om
Popu-
lar

Band-
wagon

RAPU-
G

RAPU-
R

FedRec-
Attack

Pip-
AttackPSMUPoison-FRS

Steam

0.03% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98
0.05% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99
0.1% 0.00 0.00 0.00 0.00 0.00 0.00 0.91 0.00 0.00 0.99
0.5% 0.00 0.00 0.03 0.00 0.00 0.00 0.89 0.01 0.00 0.99

Yelp

0.03% 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.72
0.05% 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.73
0.1% 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.00 0.00 0.76
0.5% 0.00 0.00 0.02 0.00 0.00 0.00 0.32 0.12 0.00 0.77

ML-
10M

0.03% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99
0.05% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
0.1% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
0.5% 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 1.00

ML-
20M

0.03% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99
0.05% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99
0.1% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99
0.5% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99

(b) Median

DatasetAttacksize NoneRand-om
Popu-
lar

Band-
wagon

RAPU-
G

RAPU-
R

FedRec-
Attack

Pip-
AttackPSMUPoison-FRS

Steam

0.03% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98
0.05% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98
0.1% 0.00 0.00 0.00 0.00 0.00 0.00 0.89 0.00 0.00 0.99
0.5% 0.00 0.00 0.03 0.00 0.00 0.00 0.89 0.02 0.00 0.99

Yelp

0.03% 0.00 0.00 0.00 0.00 0.00 0.00 0.23 0.00 0.00 0.71
0.05% 0.00 0.00 0.00 0.00 0.00 0.00 0.26 0.00 0.00 0.70
0.1% 0.00 0.00 0.00 0.00 0.00 0.00 0.63 0.00 0.00 0.72
0.5% 0.00 0.00 0.05 0.00 0.01 0.01 0.31 0.14 0.00 0.79

ML-
10M

0.03% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.38
0.05% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99
0.1% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99
0.5% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99

ML-
20M

0.03% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99
0.05% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99
0.1% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99
0.5% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99

Impact of different _: In our method, the parameter _ represents
the amplification factor applied to the targeted item features to
enhance the influence of the target rating scores among genuine
users. Intuitively, a larger _ is often deemed advantageous, and
as _ surpasses a certain threshold, the effectiveness of the attack
saturates. In this part, we investigate the impact of varying _ values,
specifically setting _ to the following values: 1, 2, 3, 5, 10, 20, 50,
and 100. We then assess the resulting target hit ratios of Yelp under
FedAvg when the proportion of fake users is fixed at 0.05%. Fig-
ure 3(a) displays our experimental results. It is evident that when _
is set to 1, the target hit ratio is notably low. This is attributed to
the fact that the predicted score of the targeted item does not stand
out sufficiently. As _ increases, the target hit ratio rises, ultimately
reaching saturation at approximately _ = 10. In practice, where
the attacker may not have prior knowledge of the ideal _ value,
choosing a sufficiently large _ is recommended, as the attack effect
tends to saturate under such conditions.

Impact of different 𝑘 : Our attack has a parameter 𝑘 , which repre-
sents the number of popular items the attacker chooses to construct
the target model. Usually, 𝑘 cannot either be too large or too small:
if 𝑘 is too large, then some unpopular items will be included, and
the constructed target model will not cause a very high hit ratio on
the targeted item; if 𝑘 is too small, then the chosen item features are
insufficient to cover all features that gain popularity in a majority
of users. To explore the precise impact on different 𝑘 , we set 𝑘 to be
1, 3, 5, 10, 50, 100, and 200 and measure the hit ratio of the targeted
item, respectively. Note that when 𝑘 is larger than 5, the optimal
value of _ will increase because the magnitude of the average of 𝑘
item features will be smaller (some elements may counteract), and
in this way, we cannot say the hit ratio decreases because of the
increase of 𝑘 . To address this problem, we set _ = 100 to ensure
that the attack effect saturates in the aspect of _ and is only influ-
enced by the choice of 𝑘 . In this experiment, we still test Yelp under
FedAvg with 0.05% fake users. Figure 3(b) shows our result. From
the figure, we can see that when 𝑘 is set to 1, the hit ratio of the
targeted item is below 0.6. However, when 𝑘 increases to 5, the hit
ratio reaches the peak–about 0.75. After 𝑘 continues to increase,
the target hit ratio decreases instead. Although the attack effect is
relative to the choice of 𝑘 , the attacker need not worry about this
– from Figure 3(b), we can see that the attack result is very high
when 𝑘 is in a wide range of 1 to 200. This means it is enough for
the attacker to just set 𝑘 to a relatively reasonable value, and the
attack effect will be satisfying.

Impact of different 𝑠: In our PoisonFRS, the attacker has the
flexibility to initiate the attack at any global round. In our default
experimental setup, the attacker commences the attack from the
50-th global training round. This section explores the impact of
varying attack initiation times, specifically considering scenarios
where the attack starts after 0, 25, 50, 100, 150, 200, and 250 global
rounds. This experiment aims to assess how the timing of the attack
initiation influences the effectiveness of our proposed attack. Our
dataset for this experiment is Yelp. It is tested under FedAvg with
0.05% fake users.

The results are presented in Figure 3(c). From the results, it
becomes evident that the performance of our attack improves when
the attacker initiates the attack later, such as during the 150-th or

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

200-th round. This improvement can be attributed to the fact that
delaying the attack allows the attacker to gather more information
about the items. Consequently, the attacker can make more precise
estimations of popular items and construct a more effective targeted
item embedding using Eq. (2) and Eq. (3). However, if the attacker
starts the attack too late, there may not be sufficient time to have a
significant impact. Hence, choosing a suitable attack initiation time
is crucial for success.
Impact of different 𝑓 : In our attack, fake users also select some
filler items. To delve deeper into the influence of the number of filler
items, we conducted experiments by setting 𝑓 to various values:
0, 29, 59, 99, 149, and 199. This range corresponds to varying the
overall number of interacted items per fake user, spanning from
1 to 200. We employed the Yelp dataset with a proportion of fake
users set at 0.05%. The results are presented in Figure 3(d). From
Figure 3(d), we can observe that the choice of 𝑓 hardly influences
the attacking effect. However, a suitable 𝑓 can make our attack
more stealthy and prevent fake users from being detected.
Adding noise to the malicious model updates: In our method,
the target model is fixed. Therefore, if two or more fake users
attack at the same global round, they will send the same model
update. It is likely to happen when the proportion of fake users is
high, and as a result, the server may detect it by finding that the
model updates of these fake users are the same. We can address this
issue by adding random Gaussian noise to each malicious model
update. However, it is not clear whether this influences the attacking
effect. To further explore its practicability, we add Gaussian noise
N(0, I) to each item’s malicious model update and test the attacking
effect. We choose Yelp and FedAvg as the aggregation rules to
conduct our experiment. Table 4 shows the target hit ratio under
this setting when the proportion of fake users ranges from 0.03% to
0.5%. Comparing Table 4 with Table 3(a), we can see that the effect is
almost no different from the default setting. This experiment further
demonstrates the robustness of our algorithm, that it is resilient to
a reasonable magnitude of Gaussian noise perturbations.

Table 4: Hit ratio of the targeted item after adding noise to
the malicious model update, where Yelp dataset and FedAvg
aggregation rule are considered.

Attack size 0.03% 0.05% 0.1% 0.5%

HR@5 0.72 0.73 0.76 0.79

Results on different metrics: In the default setting, we employ
HR@5 as our primary evaluation metric for assessing the attack’s
impact. However, we also explore additionalmetrics such asHR@10,
HR@50, and normalized discounted cumulative gain (NDCG) to
ensure a comprehensive assessment of our method’s performance
against various attacks. The results are presented in Table 7 in Ap-
pendix. The table shows that our method consistently outperforms
the baselines across all these metrics. These findings establish the
general superiority of our approach over the baselines across a
diverse set of evaluation metrics.
Results on larger attack size: In the default setting, the propor-
tion of fake users is minimal, and most baseline methods exhibit

100 0 100
Component 1

50

0

50

Co
m

po
ne

nt
 2

Genuine user
Fake user

Figure 4: Genuine and fake users in the latent space.

weak effects under these conditions. To assess the continued supe-
riority of our method over baseline approaches in situations with
a larger proportion of fake users, we vary the attack size to 1%,
3%, and 10%. The results are summarized in Table 5. From Table
5, it is evident that as the attack size increases, the impact of the
baseline methods also becomes more pronounced. However, even in
these scenarios, our method consistently outperforms the baseline
methods, demonstrating superior performance.

Detection results: To ensure that our proposed PoisonFRS attack
remains undetected by the server, we experimented to determine
whether the server can discern the targeted item embedding update
from genuine users and fake users. We employed t-SNE [35] for
dimensionality reduction and visualization. The results depicted in
Figure 4 illustrate that the targeted item embedding updates from
genuine users and fake users are intermingled to such an extent
that our attack becomes exceedingly difficult to detect.

Table 5: HR@5 of larger attack sizes. Yelp dataset and FedAvg
aggregation rule are considered.
Attack
size None Rand-

om
Popu-
lar

Band-
wagon

RAPU-
G

RAPU-
R

FedRec-
Attack

Pip-
Attack PSMU Poison-

FRS

1% 0.00 0.00 0.06 0.00 0.03 0.00 0.59 0.18 0.00 0.75

5% 0.00 0.01 0.18 0.43 0.34 0.07 0.48 0.16 0.00 0.80

10% 0.00 0.01 0.23 0.62 0.44 0.18 0.56 0.24 0.00 0.81

6 CONCLUSION
In this paper, we have identified certain limitations in current at-
tacks targeting FedRecs. These limitations stem from the require-
ment for information from genuine users or access to local training
data, which can pose significant challenges, especially for recently
registered fake users. Furthermore, these attacks have been proven
to be ineffective when the proportion of fake users is extremely
low. Motivated by these observations, we have introduced a novel
poisoning attack aimed at FedRecs, using fake users. In our pro-
posed attack, fake users neither possess local training data nor
have information about the genuine users. Through comprehensive
experiments conducted on four distinct datasets, we have demon-
strated that by injecting a small percentage of fake users, our attack
can successfully promote the targeted item to a vast majority of
genuine users, and when defenses specifically designed for FedRecs
are deployed. As a result of our findings, an interesting future re-
search lies in exploring defense mechanisms that can effectively
withstand the attack we have introduced.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Poisoning Federated Recommender Systems with Fake Users Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] [n.d.]. Amazon Personalize. www.amazonaws.com/personalize.
[2] MuhammadAmmad-ud-din, Elena Ivannikova, SuleimanA. Khan,Were Oyomno,

Qiang Fu, Kuan Eeik Tan, and Adrian Flanagan. 2019. Federated Collaborative
Filtering for Privacy-Preserving Personalized Recommendation System. arXiv
preprint arXiv:1901.09888 (2019).

[3] Moran Baruch, Gilad Baruch, and Yoav Goldberg. 2019. A Little Is Enough:
Circumventing Defenses For Distributed Learning. In NeurIPS.

[4] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer.
2017. Machine learning with adversaries: Byzantine tolerant gradient descent.
In NeurIPS.

[5] Ricardo J. G. B. Campello, Davoud Moulavi, and Joerg Sander. 2013. Density-
Based Clustering Based on Hierarchical Density Estimates. In PAKDD.

[6] Liang Chen, Yangjun Xu, Fenfang Xie, Min Huang, and Zibin Zheng. 2021. Data
poisoning attacks on neighborhood-based recommender systems. In Transactions
on Emerging Telecommunications Technologies.

[7] Germán Cheuque, Jose Antonio Guzman Gomez, and Denis Parra. 2019. Recom-
mender Systems for Online Video Game Platforms: the Case of STEAM. In The
Web Conference.

[8] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. 2020. Local
Model Poisoning Attacks to Byzantine-Robust Federated Learning. In USENIX
Security Symposium.

[9] Minghong Fang, Neil Zhenqiang Gong, and Jia Liu. 2020. Influence function based
data poisoning attacks to top-n recommender systems. In The Web Conference.

[10] Minghong Fang, Guolei Yang, Neil Zhenqiang Gong, and Jia Liu. 2018. Poisoning
Attacks to Graph-Based Recommender Systems. In ACSAC.

[11] Francois Fouss, Alain Pirotte, Jean-michel Renders, and Marco Saerens. 2007.
Random-Walk Computation of Similarities between Nodes of a Graph with Ap-
plication to Collaborative Recommendation. In IEEE Transactions on Knowledge
and Data Engineering.

[12] Ihsan Gunes, Cihan Kaleli, Alper Bilge, and Huseyin Polat. 2013. Shilling attacks
against recommender systems: A comprehensive survey. In Artificial Intelligence
Review.

[13] F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens Datasets:
History and Context. In ACM Trans. Interact. Intell. Syst.

[14] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, YongDong Zhang, and Meng
Wang. 2020. LightGCN: Simplifying and Powering Graph Convolution Network
for Recommendation. In SIGIR.

[15] Hai Huang, Jiaming Mu, Neil Zhenqiang Gong, Qi Li, Bin Liu, and Mingwei Xu.
2021. Data Poisoning Attacks to Deep Learning Based Recommender Systems.
In NDSS.

[16] Saakshi Kapoor. 2017. A REVIEW OF ATTACKS AND ITS DETECTION AT-
TRIBUTES ON COLLABORATIVE RECOMMENDER SYSTEMS. In International
Journal of Advanced Research in Computer Science.

[17] Sai Praneeth Karimireddy, Lie He, and Martin Jaggi. 2021. Learning from history
for byzantine robust optimization. In ICML.

[18] Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtarik,
Ananda Theertha Suresh, and Dave Bacon. 2016. Federated Learning: Strate-
gies for Improving Communication Efficiency. In NeurIPS Workshop on Private
Multi-Party Machine Learning.

[19] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix Factorization
Techniques for Recommender Systems. In Computer.

[20] Bo Li, YiningWang, Aarti Singh, and Yevgeniy Vorobeychik. 2016. Data poisoning
attacks on factorization-based collaborative filtering. In NeurIPS.

[21] Tan Li, Linqi Song, and Christina Fragouli. 2020. Federated recommendation
system via differential privacy. In ISIT.

[22] Guanyu Lin, Feng Liang, Weike Pan, and Zhong Ming. 2021. FedRec: Federated
Recommendation With Explicit Feedback. In IEEE Intelligent Systems.

[23] Tropa Mahmood and Muhammad Abdullah Adnan. 2022. Detecting Fake Co-
Visitation Injection Attack in Graph-Based Recommendation Systems. In NSysS.

[24] H. B. McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera
y Arcas. 2016. Communication-Efficient Learning of Deep Networks from De-
centralized Data. In AISTATS.

[25] Khalil Muhammad, QinqinWang, Diarmuid O’Reilly-Morgan, Elias Tragos, Barry
Smyth, Neil Hurley, James Geraci, and Aonghus Lawlor. 2020. Fedfast: Going

beyond average for faster training of federated recommender systems. In KDD.
[26] Thien Duc Nguyen, Phillip Rieger, Huili Chen, Hossein Yalame, Helen Möllering,

Hossein Fereidooni, SamuelMarchal, MarkusMiettinen, AzaliaMirhoseini, Shaza
Zeitouni, Farinaz Koushanfar, Ahmad-Reza Sadeghi, and Thomas Schneider.
2022. FLAME: Taming Backdoors in Federated Learning. In USENIX Security
Symposium.

[27] Yitong Pang, Lingfei Wu, Qi Shen, Yiming Zhang, Zhihua Wei, Fangli Xu, Ethan
Chang, Bo Long, and Jian Pei. 2022. Heterogeneous Global Graph Neural Net-
works for Personalized Session-based Recommendation. In WSDM.

[28] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-
Thieme. 2009. BPR: Bayesian personalized ranking from implicit feedback. In
UAI.

[29] Dazhong Rong, Shuai Ye, Ruoyan Zhao, Hon Ning Yuen, Jianhai Chen, and
Qinming He. 2022. FedRecAttack: model poisoning attack to federated recom-
mendation. In ICDE.

[30] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-Based
Collaborative Filtering Recommendation Algorithms. In The Web Conference.

[31] Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, and Lexing Xie. 2015.
Autorec: Autoencoders meet collaborative filtering. In The Web Conference.

[32] Junshuai Song, Zhao Li, Zehong Hu, Yucheng Wu, Zhenpeng Li, Jian Li, and
Jun Gao. 2020. Poisonrec: an adaptive data poisoning framework for attacking
black-box recommender systems. In ICDE.

[33] Zehua Sun, Yonghui Xu, Yong Liu, Wei He, Yali Jiang, Fangzhao Wu, and Lizhen
Cui. 2022. A Survey on Federated Recommendation Systems. arXiv preprint
arXiv:2301.00767 (2022).

[34] Jiaxi Tang, Hongyi Wen, and Ke Wang. 2020. Revisiting adversarially learned
injection attacks against recommender systems. In RecSys.

[35] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using
t-SNE. In Journal of machine learning research.

[36] Qinyong Wang, Hongzhi Yin, Tong Chen, Junliang Yu, Alexander Zhou, and
Xiangliang Zhang. 2021. Fast-adapting and privacy-preserving federated recom-
mender system. In The VLDB Journal.

[37] Chenwang Wu, Defu Lian, Yong Ge, Zhihao Zhu, and Enhong Chen. 2023.
Influence-Driven Data Poisoning for Robust Recommender Systems. In IEEE
Transactions on Pattern Analysis and Machine Intelligence.

[38] Chenwang Wu, Defu Lian, Yong Ge, Zhihao Zhu, Enhong Chen, and Senchao
Yuan. 2021. Fight fire with fire: towards robust recommender systems via adver-
sarial poisoning training. In SIGIR.

[39] Yao Wu, Christopher DuBois, Alice X Zheng, and Martin Ester. 2016. Collabora-
tive denoising auto-encoders for top-n recommender systems. In WSDM.

[40] Guolei Yang, Neil Zhenqiang Gong, and Ying Cai. 2017. Fake Co-visitation
Injection Attacks to Recommender Systems. In NDSS.

[41] Liu Yang, Ben Tan, Vincent W Zheng, Kai Chen, and Qiang Yang. 2020. Federated
recommendation systems. In Federated Learning: Privacy and Incentive.

[42] Yelp. 2004. Yelp Dataset. Available at https://www.yelp.com/dataset.
[43] Dong Yin, Yudong Chen, Kannan Ramchandran, and Peter Bartlett. 2018.

Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates. In
ICML.

[44] Kazuyoshi Yoshii, Masataka Goto, Kazunori Komatani, Tetsuya Ogata, and Hi-
roshi G Okuno. 2008. An efficient hybrid music recommender system using an
incrementally trainable probabilistic generative model. In IEEE Transactions on
Audio, Speech, and Language Processing.

[45] Wei Yuan, Quoc Viet Hung Nguyen, Tieke He, Liang Chen, and Hongzhi Yin.
2023. Manipulating Federated Recommender Systems: Poisoning with Synthetic
Users and Its Countermeasures. In SIGIR.

[46] Hengtong Zhang, Yaliang Li, Bolin Ding, and Jing Gao. 2020. Practical data
poisoning attack against next-item recommendation. In The Web Conference.

[47] Hengtong Zhang, Changxin Tian, Yaliang Li, Lu Su, Nan Yang, Wayne Xin Zhao,
and Jing Gao. 2021. Data poisoning attack against recommender system using
incomplete and perturbed data. In KDD.

[48] Shijie Zhang, Hongzhi Yin, Tong Chen, Zi Huang, Quoc Viet Hung Nguyen,
and Lizhen Cui. 2022. Pipattack: Poisoning federated recommender systems for
manipulating item promotion. InWSDM.

[49] Yihe Zhang, Xu Yuan, Jin Li, Jiadong Lou, Li Chen, and Nian-Feng Tzeng. 2021.
Reverse attack: Black-box attacks on collaborative recommendation. In CCS.

9

www.amazonaws.com/personalize
https://www.yelp.com/dataset

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Table 6: HR@5 for different attacks under Trimmed-mean, Clip, Krum, FLAME, and HiCS aggregation rules.
(a) Trimmed-mean

Dataset Attacksize None Rand-om
Popu-
lar

Band-
wagon

RAPU-
G

RAPU-
R

FedRec-
Attack

Pip-
Attack PSMU Poison-

FRS

Steam

0.03% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98
0.05% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99
0.1% 0.00 0.00 0.00 0.00 0.00 0.00 0.87 0.00 0.00 0.99
0.5% 0.00 0.00 0.06 0.00 0.00 0.00 0.88 0.01 0.00 0.99

Yelp

0.03% 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.72
0.05% 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.73
0.1% 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.00 0.00 0.74
0.5% 0.00 0.00 0.00 0.00 0.01 0.00 0.34 0.12 0.00 0.74

ML-
10M

0.03% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98
0.05% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99
0.1% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99
0.5% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

ML-
20M

0.03% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98
0.05% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99
0.1% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99
0.5% 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.99

(b) Clip

Dataset Attacksize None Rand-om
Popu-
lar

Band-
wagon

RAPU-
G

RAPU-
R

FedRec-
Attack

Pip-
Attack PSMU Poison-

FRS

Steam

0.03% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98
0.05% 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.99
0.1% 0.00 0.00 0.00 0.00 0.00 0.00 0.91 0.00 0.00 0.99
0.5% 0.00 0.00 0.01 0.00 0.00 0.00 0.89 0.00 0.00 0.99

Yelp

0.03% 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.69
0.05% 0.00 0.00 0.00 0.00 0.00 0.00 0.18 0.00 0.00 0.72
0.1% 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.02 0.00 0.73
0.5% 0.00 0.00 0.02 0.00 0.00 0.00 0.31 0.03 0.00 0.74

ML-
10M

0.03% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19
0.05% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99
0.1% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99
0.5% 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.99

ML-
20M

0.03% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99
0.05% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99
0.1% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99
0.5% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99

(c) Krum

Dataset Attacksize None Rand-om
Popu-
lar

Band-
wagon

RAPU-
G

RAPU-
R

FedRec-
Attack

Pip-
Attack PSMU Poison-

FRS

Steam

0.03% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98
0.05% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98
0.1% 0.00 0.00 0.00 0.00 0.00 0.00 0.89 0.00 0.00 0.99
0.5% 0.00 0.00 0.06 0.00 0.00 0.00 0.89 0.01 0.00 0.99

Yelp

0.03% 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.71
0.05% 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.68
0.1% 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.75
0.5% 0.00 0.00 0.06 0.00 0.01 0.00 0.38 0.11 0.00 0.76

ML-
10M

0.03% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98
0.05% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
0.1% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
0.5% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

ML-
20M

0.03% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99
0.05% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99
0.1% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99
0.5% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99

(d) FLAME

Dataset Attacksize None Rand-om
Popu-
lar

Band-
wagon

RAPU-
G

RAPU-
R

FedRec-
Attack

Pip-
Attack PSMU Poison-

FRS

Steam

0.03% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98
0.05% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98
0.1% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99
0.5% 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.99

Yelp

0.03% 0.00 0.00 0.00 0.00 0.00 0.00 0.32 0.00 0.00 0.70
0.05% 0.00 0.00 0.00 0.00 0.00 0.00 0.44 0.00 0.00 0.70
0.1% 0.00 0.00 0.00 0.00 0.00 0.00 0.63 0.00 0.00 0.70
0.5% 0.00 0.00 0.04 0.00 0.00 0.00 0.61 0.08 0.00 0.71

ML-
10M

0.03% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40
0.05% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99
0.1% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99
0.5% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99

ML-
20M

0.03% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99
0.05% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99
0.1% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99
0.5% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99

(e) HiCS

Dataset Attacksize None Rand-om
Popu-
lar

Band-
wagon

RAPU-
G

RAPU-
R

FedRec-
Attack

Pip-
Attack PSMU Poison-

FRS

Steam

0.03% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98
0.05% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98
0.1% 0.00 0.00 0.00 0.00 0.00 0.00 0.28 0.00 0.00 0.99
0.5% 0.00 0.00 0.03 0.00 0.00 0.00 0.93 0.01 0.00 0.99

Yelp

0.03% 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.70
0.05% 0.00 0.00 0.00 0.00 0.00 0.00 0.53 0.00 0.00 0.74
0.1% 0.00 0.00 0.00 0.00 0.00 0.00 0.57 0.00 0.00 0.75
0.5% 0.00 0.00 0.02 0.00 0.00 0.00 0.55 0.16 0.00 0.76

ML-
10M

0.03% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.38
0.05% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99
0.1% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99
0.5% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99

ML-
20M

0.03% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99
0.05% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99
0.1% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99
0.5% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Poisoning Federated Recommender Systems with Fake Users Conference’17, July 2017, Washington, DC, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Table 7: Attacking effect evaluated by different metrics on Yelp with FedAvg.

Metric Attack
size NoneRand-om

Popu-
lar

Band-
wagon

RAPU-
G

RAPU-
R

FedRec-
Attack

Pip-
AttackPSMUPoison-FRS

HR@5
1% 0.00 0.00 0.06 0.00 0.03 0.00 0.59 0.18 0.00 0.75
5% 0.00 0.01 0.18 0.43 0.34 0.07 0.48 0.16 0.00 0.80
10% 0.00 0.01 0.23 0.62 0.44 0.18 0.56 0.24 0.00 0.81

HR@10

0.03% 0.00 0.00 0.00 0.00 0.00 0.00 0.21 0.00 0.00 0.73
0.05% 0.00 0.00 0.00 0.00 0.00 0.00 0.23 0.00 0.00 0.73
0.1% 0.00 0.00 0.00 0.00 0.00 0.00 0.26 0.00 0.00 0.76
0.5% 0.00 0.00 0.02 0.00 0.00 0.00 0.32 0.12 0.00 0.77

HR@50

0.03% 0.00 0.00 0.00 0.00 0.00 0.00 0.27 0.00 0.00 0.73
0.05% 0.00 0.00 0.00 0.00 0.00 0.00 0.26 0.00 0.00 0.74
0.1% 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.01 0.00 0.76
0.5% 0.00 0.00 0.04 0.00 0.01 0.01 0.34 0.12 0.00 0.78

NDCG

0.03% 0.00 0.00 0.00 0.00 0.00 0.00 0.18 0.00 0.00 0.72
0.05% 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.74
0.1% 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.00 0.00 0.76
0.5% 0.00 0.00 0.02 0.00 0.00 0.00 0.31 0.11 0.00 0.77

11

	Abstract
	1 Introduction
	2 Related Work
	2.1 Federated Recommender Systems
	2.2 Poisoning Attacks to FedRecs
	2.3 Byzantine-robust Aggregation Rules

	3 Threat Model
	3.1 Attacker's Goal
	3.2 Attacker's Knowledge
	3.3 Attacker's Capabilities

	4 Our Attack
	4.1 Motivation
	4.2 Description

	5 Experiments
	5.1 Experimental Setup
	5.2 Experimental Results

	6 Conclusion
	References

