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Abstract
We revisit the problem of learning in two-player
zero-sum Markov games, focusing on developing
an algorithm that is uncoupled, convergent, and
rational, with non-asymptotic convergence rates
to Nash equilibrium. We start from the case of
stateless matrix game with bandit feedback as a
warm-up, showing an O(t− 1

8 ) last-iterate conver-
gence rate. To the best of our knowledge, this is
the first result that obtains finite last-iterate conver-
gence rate given access to only bandit feedback.
We extend our result to the case of irreducible
Markov games, providing a last-iterate conver-
gence rate of O(t−

1
9+ε ) for any ε > 0. Finally,

we study Markov games without any assumptions
on the dynamics, and show a path convergence
rate, a new notion of convergence we define, of
O(t− 1

10 ). Our algorithm removes the synchro-
nization and prior knowledge requirement of (Wei
et al., 2021a), which pursued the same goals as
us for irreducible Markov games. Our algorithm
is related to (Chen et al., 2021; Cen et al., 2021)
and also builds on the entropy regularization tech-
nique. However, we remove their requirement of
communications on the entropy values, making
our algorithm entirely uncoupled.

1. Introduction
In multi-agent learning, a central question is how to de-
sign algorithms so that agents can independently learn (i.e.,
with little coordination overhead) how to interact with each
other. Additionally, it is desirable to maximally reuse exist-
ing single-agent learning algorithms, so that the multi-agent
system can be built in a modular way. Motivated by this
question, decentralized multi-agent learning emerges with
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the goal to design decentralized systems, in which no cen-
tral controller governs the policies of the agents, and each
agent learns based on only their local information – just like
in a single-agent algorithm. In recent years, we have wit-
nessed significant success of this new decentralized learning
paradigm. For example, self-play, where each agent inde-
pendently deploys the same single-agent algorithm to play
against each other without further direct supervision, plays
a crucial role in the training of AlphaGo (Silver et al., 2017)
and AI for Stratego (Perolat et al., 2022). Despite the recent
success, many important questions remain open in decentral-
ized multi-agent learning. Indeed, unless the decentralized
algorithm is carefully designed, self-play often falls short
of attaining certain sought-after global characteristics, such
as convergence to the global optimum or stability as seen in,
for example, (Mertikopoulos et al., 2018; Bailey & Piliouras,
2018).

In this work, we revisit the problem of learning in two-player
zero-sum Markov games, which has received extensive at-
tention recently. Our goal is to design a decentralized algo-
rithm that resembles standard single-agent reinforcement
learning (RL) algorithms, but with an additional crucial as-
surance, that is, guaranteed convergence when both players
deploy the algorithm. The simultaneous pursuit of indepen-
dence and convergence has been advocated widely (Bowling
& Veloso, 2001; Arslan & Yüksel, 2016; Wei et al., 2021a;
Sayin et al., 2021), while the results are still not entirely
satisfactory. In particular, all of these results rely on assump-
tions on the dynamics of the Markov game. Our paper takes
the first step to remove such assumptions.

More specifically, our goal is to design algorithms that simul-
taneously satisfy the following three properties (the defini-
tions are adapted from (Bowling & Veloso, 2001; Daskalakis
et al., 2011)):

• Uncoupled: Each player i’s action is generated by a
standalone procedure Pi which, in every round, only
receives the current state and player i’s own reward
as feedback (in particular, it has no knowledge about
the actions or policies used by the opponent). There is
no communication or shared randomness between the
players.

• Convergent: The policy pair of the two players con-
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verges to a Nash equilibrium.

• Rational: If Pi competes with an opponent who uses
a policy sequence that converges to a stationary one,
thenPi converges to the best response of this stationary
policy.

The uncoupledness and rationality property capture the inde-
pendence of the algorithm, while the convergence property
provides a desirable global guarantee. Interestingly, as ar-
gued in (Wei et al., 2021a), if an algorithm is uncoupled
and convergent, then it is also rational, so we only need to
ensure that the algorithm is uncoupled and convergent. Re-
garding the notion of convergence, the standard definition
above only allows last-iterate convergence. Considering
the difficulty of achieving such convergence, in the related
work review (Section 2) and in the design of our algorithm
for general Markov games (Section 6), we also consider
weaker notions of convergence, including the best-iterate
convergence, which only requires that the Cesaro mean of
the duality gap is convergent, and the path convergence,
which only requires the convergence of the Cesaro mean
of the duality gap assuming minimax/maximin policies are
followed in future steps. The precise definitions of these
convergence notions are given at the end of Section 3.

1.1. Our Contributions

The main results in this work are as follows (see also Table 1
for comparisons with prior works):

• As a warm-up, for the special case of matrix games
with bandit feedback, we develop an uncoupled algo-
rithm with a last-iterate convergence rate ofO(t− 1

8 ) un-
der self-play (Section 4). To the best of our knowledge,
this is the first algorithm with provable last-iterate con-
vergence rate in the setting.

• Generalizing the ideas from matrix games, we further
develop an uncoupled algorithm for irreducible Markov
games with a last-iterate convergence rate ofO(t−

1
9+ε )

for any ε > 0 under self-play (Section 5).

• Finally, for general Markov games without additional
assumptions, we develop an uncoupled algorithm with
a path convergence rate of O(t− 1

10 ) under self-play
(Section 6).

Our algorithms leverage recent advances on using entropy
to regularize the policy updates (Cen et al., 2021; Chen
et al., 2021) and the Nash-V-styled value updates (Bai et al.,
2020). On the one hand, compared to (Cen et al., 2021;
Chen et al., 2021), our algorithm has the following advan-
tages: 1) it does not require the two players to exchange
their entropy information, which allows our algorithm to

be fully uncoupled; 2) it does not require the players to
have synchronized policy updates, 3) it naturally extends
to general Markov games without any assumptions on the
dynamics (e.g., irreducibility). On the other hand, our al-
gorithm inherits appealing properties of Nash-V (Bai et al.,
2020), but additionally guarantees path convergence during
execution.

2. Related Work
The study of two-player zero-sum Markov games origi-
nated from (Shapley, 1953), with many other works further
developing algorithms and establishing convergence prop-
erties (Hoffman & Karp, 1966; Pollatschek & Avi-Itzhak,
1969; Van Der Wal, 1978; Filar & Tolwinski, 1991). How-
ever, these works primarily focused on solving the game
with full knowledge of its parameters (i.e., payoff func-
tion and transition kernel). The problem of learning in
zero-sum games was first formalized by (Littman, 1994).
Designing a provably uncoupled, rational, and convergent
algorithm is challenging, with many attempts (Szepesvári
& Littman, 1999; Bowling & Veloso, 2001; Hu & Wellman,
2003; Conitzer & Sandholm, 2007; Arslan & Yüksel, 2016;
Sayin et al., 2020) falling short in one aspect or another, of-
ten lacking either uncoupledness or convergence. Moreover,
these works only establish asymptotic convergence without
providing a concrete convergence rate.

2.1. Non-asymptotic convergence guarantees

Recently, a large body of works on learning two-player zero-
sum Markov games use regret minimization techniques to
establish non-asymptotic guarantees. They focus on fast
computation under full information of payoff and transitions
(Cen et al., 2021; 2023; Zhang et al., 2022; Song et al., 2023;
Yang & Ma, 2023), though many of their algorithms are
decentralized and can be viewed as the first step towards the
learning setting.

With rationality and uncoupledness satisfied, (Daskalakis
et al., 2020) established one-sided policy convergence for
players using independent policy gradient with asymmet-
ric learning rates. Such an asymmetric update rule is also
adopted by (Zhao et al., 2022; Alacaoglu et al., 2022) to
establish one-sided policy convergence guarantees. When
using a symmetric update rule, (Sayin et al., 2021) devel-
oped a decentralized-Q learning algorithm. However, the
convergence is only shown for the V -function maintained
by the players instead of the policies being used, so the
policies may still cycle and are not provably convergent in
our definition.

To our knowledge, (Wei et al., 2021a) first provided an
uncoupled, rational, and convergent algorithm with non-
asymptotic convergence guarantee, albeit only for irre-
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Table 1. (Sample-based) Learning algorithms for finding NE in two-player zero-sum games. Our results are shaded. A halfcheck “✓–” in
the convergent column means that the policy convergence is proven only for one player (typically this is a result of asymmetric updates).
(L) and (B) stand for last-iterate convergence and best-iterate convergence, respectively. (P) stands for path convergence, a weaker
convergence notion we introduce (see Section 3, 6.1).
*: While (Wei et al., 2021a) also proposes an uncoupled and convergent algorithm for irreducible Markov games, their algorithm requires
synchronized updates and some prior knowledge of the game, while ours does not. See Section 2.1 for a more detailed discussion.

Setting Algorithm Uncoupled? Converegent?
EXP3 vs. EXP3 ✓ ✗Matrix Game Algorithm 1 ✓ ✓(L)
(Daskalakis et al., 2020) ✓ ✓–(B)
(Zhao et al., 2022; Alacaoglu et al., 2022) ✓ ✓–(L)
(Sayin et al., 2021) ✓ ✗
(Chen et al., 2021) ✗ ✓(L)
(Wei et al., 2021a) ✓∗ ✓(L)

Markov game +
Assumptions

Algorithm 2 ✓ ✓(L)
(Wei et al., 2017; Jafarnia-Jahromi et al., 2021; Huang et al., 2022)
(Jin et al., 2022; Xiong et al., 2022) ✗ ✓–(B)

(Bai & Jin, 2020; Xie et al., 2020)
(Liu et al., 2021; Chen et al., 2022) ✗ ✓(B)

(Bai et al., 2020; Jin et al., 2021) ✓ ✗
Markov Game

Algorithm 3 ✓ ✓(P)

ducible Markov game. They achieved this via optimistic
gradient descent/ascent. Despite satisfying all our criteria,
their algorithm still has unnatural coordination between the
players and a requirement on some prior knowledge of the
game such as the maximum revisiting time of the Markov
game. Our algorithm removes all these extra requirements.
A follow-up work by (Chen et al., 2021) improved the rate
of (Wei et al., 2021a) using entropy regularization; however,
this requires their players to inform the opponent about the
entropy of their own policy, making the algorithm coupled
again. We show that such an exchange of information is
unnecessary under entropy regularization.

2.2. Further handling exploration

The algorithms introduced above all require full information
or some assumption on the dynamics of the Markov game.
To handle exploration, some works design coupled learning
algorithms which guarantee that the player’s long-term pay-
off is at least the minimax value (Brafman & Tennenholtz,
2002; Wei et al., 2017; Xie et al., 2020; Huang et al., 2022;
Jin et al., 2022; Jafarnia-Jahromi et al., 2021; Xiong et al.,
2022). Interestingly, as shown in (Wei et al., 2017; Huang
et al., 2022; Jin et al., 2022; Xiong et al., 2022), if the player
is paired with an optimistic best-response opponent (instead
of using the same algorithm), the first player’s strategy can
converge to the minimax policy. (Xie et al., 2020; Bai &
Jin, 2020; Liu et al., 2021; Chen et al., 2022) developed
another coupled learning framework to handle exploration,
but with symmetric updates on both players. In each round,
the players need to jointly solve a general-sum equilibrium

problem due to the different exploration bonus added by
each player. Hence, the execution of these algorithms is
more similar to the Nash-Q algorithm by (Hu & Wellman,
2003).

So far, exploration has been handled through coupled ap-
proaches that are also not rational. To our knowledge, the
first uncoupled and rational algorithm that handles explo-
ration is the Nash-V algorithm by (Bai et al., 2020). Nash-V
can output a nearly-minimax policy through weighted av-
eraging (Jin et al., 2021); however, it is not provably con-
vergent during execution. A major remaining open problem
is whether one can design a natural algorithm that is prov-
ably rational, uncoupled, and convergent with exploration
capability. Our work provides the first progress towards this
goal.

2.3. Other works on last-iterate convergence

Uncoupled Learning dynamics in normal-form games with
provable last-iterate convergence rate receives extensive at-
tention recently. Most of the works assume that the players
receive gradient feedback, and convergence results under
bandit feedback remain sparse. Linear convergence is shown
for strongly monotone games or bilinear games under gradi-
ent feedback (Tseng, 1995; Liang & Stokes, 2019; Mokhtari
et al., 2020; Wei et al., 2021b) and sublinear rates are proven
for strongly monotone games with bandit feedback (Bravo
et al., 2018; Hsieh et al., 2019; Lin et al., 2021; Tatarenko
& Kamgarpour, 2022; Drusvyatskiy et al., 2022; Huang &
Hu, 2023). Convergence rate to strict Nash equilibrium is
analyzed by (Giannou et al., 2021). For monotone games
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that includes two-player zero-sum games as a special case,
the last-iterate convergence rate of no-regret learning under
gradient feedback has been shown recently (Golowich et al.,
2020; Cai et al., 2022; Gorbunov et al., 2022; Cai & Zheng,
2023). With bandit feedback, (Muthukumar et al., 2020)
showed an impossibility result that certain algorithms with
optimal O(

√
T ) regret do not converge in last-iterate. To

the best of our knowledge, there is no natural uncoupled
learning dynamics with provable last-iterate convergence
rate in two-player zero-sum games with bandit feedback.

3. Preliminaries
Basic Notations Throughout the paper, we assume for
simplicity that the action set for the two players are the
same, denoted by A with cardinality A = |A|.1 We usually
call player 1 the x-player and player 2 the y-player. The set
of mixed strategies over an action setA is denoted as ∆A :=
{x :

∑
a∈A xa = 1; 0 ≤ xa ≤ 1,∀a ∈ A}. To simplify

notation, we denote by z = (x, y) the concatenated strategy
of the players. We use ϕ as the entropy function such that
ϕ(x) = −

∑
a∈A xa lnxa, and KL as the Kullback–Leibler

(KL) divergence such that KL(x, x′) =
∑

a∈A xa ln
xa

x′
a

.
The all-one vector is denoted by 1 = (1, 1, · · · , 1) .

Matrix Games In a two-player zero-sum matrix game
with a loss matrix G ∈ [0, 1]A×A, when the x-player
chooses action a and the y-player chooses action b, the
x-player suffers loss Ga,b and the y-player suffers loss
−Ga.b. A pair of mixed strategy (x⋆, y⋆) is a Nash equilib-
rium for G if for any strategy profile (x, y) ∈ ∆A ×∆A,
it holds that (x⋆)⊤Gy ≤ (x⋆)⊤Gy⋆ ≤ x⊤Gy⋆. Simi-
larly, (x⋆, y⋆) is a Nash equilibrium for a two-player zero-
sum game with a general convex-concave loss function
f(x, y) : ∆A × ∆A → R if for all (x, y) ∈ ∆A × ∆A,
f(x⋆, y) ≤ f(x⋆, y⋆) ≤ f(x, y⋆). The celebrated mini-
max theorem (v. Neumann, 1928) guarantees the existence
of Nash equilibria in two-player zero-sum games. For
a pair of strategy (x, y), we use duality gap defined as
GAP(G, x, y) ≜ maxy′ x⊤Gy′ −minx′ x′⊤Gy to measure
its proximity to Nash equilibria.

Markov Games A generalization of matrix games, which
models dynamically changing environment, is Markov
games. We consider infinite-horizon discounted two-
player zero-sum Markov games, denoted by a tuple
(S,A, (Gs)s∈S , (P

s)s∈S , γ) where (1) S is a finite state
space; (2) A is a finite action space for both players; (3)
Player 1 suffers loss Gs

a,b ∈ [0, 1] (respectively player 2
suffers loss −Gs

a,b) when player 1 chooses action a and

1We make this assumption only to simplify notations; our
proofs can be easily extended to the case where the action sets of
the two players are different.

player 2 chooses action b at state s; (4) P is the transition
function such that P s

a,b(s
′) is the probability of transiting to

state s′ when player 1 plays a and player 2 plays b at state
s; (5) γ ∈ [ 12 , 1) is a discount factor.

A stationary policy for player 1 is a mapping S → ∆A that
specifies player 1’s strategy xs ∈ ∆A at each state s ∈ S.
We denote x = (xs)s∈S . Similar notations apply to player
2. We denote zs = (xs, ys) as the concatenated strategy for
the players and z = (x, y). The value function V s

x,y denotes
the expected loss of player 1 (or the expected payoff of
player 2) given a pair of stationary policy (x, y) and initial
state s: V s

x,y = E[
∑∞

t=1 γ
t−1Gst

at,bt
|s1 = s, at ∼ xst , bt ∼

yst , st+1 ∼ P st
at,bt

(·),∀t ≥ 1].

The minimax game value on state s is defined as V s
⋆ =

minx maxy V
s
x,y = maxy minx V

s
x,y. We call a pair of

policy (x⋆, y⋆) a Nash equilibrium if it attains minimax
game value of a state s (such policy pair necessarily at-
tains the minimax game value over all states). The duality
gap of (x, y) is maxs (maxy′ V s

x,y′ −minx′ V s
x′,y). The Q-

function on state s under policy pair (x, y) is defined via
Qs

x,y(a, b) = Gs
a,b + γ · Es′∼P s

a,b(·)[V
s′

x,y], which can be
rewritten as a matrix Qs

x,y such that V s
x,y = xsQs

x,yy
s. We

denote Qs
⋆ = Qs

x⋆,y⋆
the Q-function under a Nash equilib-

rium (x⋆, y⋆). It is known that Qs
⋆ is unique for any s even

when multiple equilibria exist.

Uncoupled Learning with Bandit Feedback We assume
the following uncoupled interaction protocol: at each round
t = 1, . . . , T , the players both observe the current state st,
and then, with the policy xt and yt in mind, they indepen-
dently choose actions at ∼ xst

t and bt ∼ ystt , respectively.
Both of them then observe σt ∈ [0, 1] with E[σt] = Gst

at,bt
,

and proceed to the next state st+1 ∼ P st
at,bt

(·). Importantly,
they do not observe each other’s action.

Notions of Convergence For Markov games with
the irreducible assumption (Assumption 1), given play-
ers’ history of play (st, xt, yt)t∈[T ], the best-iterate
convergence rate is measured by the average du-
ality gap 1

T

∑T
t=1 maxs,x,y (V

s
xt,y − V s

x,yt
), while the

stronger last-iterate convergence rate is measured by
maxs,x,y (V

s
xT ,y − V s

x,yT
), i.e., the duality gap of (xT , yT ).

For general Markov games, we propose the path conver-
gence rate, which is measured by the average duality gap at
the visited states with respect to the optimal Q-function:
1
T

∑T
t=1 maxx,y (x

s⊤t
t Qst

⋆ yst − xs⊤t Qst
⋆ ystt ). We remark

that the path convergence guarantee is weaker than the coun-
terpart of the other two notions of convergence in general
Markov games, but still provides meaningful implications
(see detailed discussion in Section 6.1 and Appendix G).
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4. Matrix Games
In this section, we consider two-player zero-sum matrix
games. We propose Algorithm 1 for decentralized learning
of Nash equilibria. We only present the algorithm for the
x-player as the algorithm for the y-player is symmetric.

The algorithm is similar to the EXP3-IX algorithm by (Neu,
2015) that achieves a high-probability regret bound for ad-
versarial multi-armed bandits, but with several modifica-
tions. First (and most importantly), in addition to the stan-
dard loss estimators used in (Neu, 2015), we add another
negative term ϵt lnxt,a to the loss estimator of action a (see
Line 1). This is equivalent to the entropy regularization ap-
proach in, e.g., (Cen et al., 2021; Chen et al., 2021), since the
gradient of the negative entropy −ϕ(xt) is (lnxt,a +1)a∈A
and the constant 1 takes no effect in Line 1. Like (Cen et al.,
2021; Chen et al., 2021), the entropy regularization drives
last-iterate convergence; however, while their results require
full-information feedback, our result holds in the bandit
feedback setting. The second difference is that instead of
choosing the players’ strategies in the full probability sim-
plex ∆A, our algorithm chooses from Ωt, a subset of ∆A
where every coordinate is lower bounded by 1

At2 . The third
is the choices of the learning rate ηt, clipping factor βt,
and the amount of regularization ϵt. The main result of
this section is the following last-iterate convergence rate of
Algorithm 1.
Theorem 4.1 (Last-Iterate Convergence Rate). Algo-
rithm 1 guarantees with probability at least 1 − O(δ),
for any t ≥ 1, maxx,y∈∆A

(x⊤
t Gy − x⊤Gyt) =

O
(√

A ln3/2(At/δ)t−
1
8

)
.

We postpone a sketch of the proof, as well as the full proof
for the Theorem 4.1, to Appendix C. Algorithm 1 also
guarantees O(t− 1

8 ) regret even when the other player is
adversarial. If we only target at an expected bound instead
of a high-probability bound, the last-iterate convergence rate
can be improved to O(

√
A ln3/2(At)t−

1
6 ). The details are

provided in Appendix D.

5. Irreducible Markov Games
We now extend our results on matrix games to two-player
zero-sum Markov games. Similarly to many previous works,
our first result makes the assumption that the Markov game
is irreducible with bounded travel time between any pair of
states. The assumption is formally stated below:
Assumption 1 (Irreducible Game). We assume that under
any pair of stationary policies of the two players, and any
pair of states s, s′, the expected time to reach s′ from s is
upper bounded by L.

We propose Algorithm 2 for uncoupled learning in irre-
ducible two-player zero-sum games, which is closely related

to the Nash-V algorithm by (Bai et al., 2020), but with addi-
tional entropy regularization. It can also be seen as players
using Algorithm 1 on each state s to update the policies
(xs

t , y
s
t ) whenever state s is visited, but with σt + γV

st+1

t

as the observed loss to construct loss estimators. Impor-
tantly, V s

1 , V
s
2 , . . . is a slowly changing sequence of value

estimations that ensures stable policy updates (Bai et al.,
2020; Wei et al., 2021a; Sayin et al., 2021). Note that
in Algorithm 2, the updates of V s

t only use players’ local
information (Line 2). This is in contrast to previous algo-
rithms using entropy regularization (Chen et al., 2021; Cen
et al., 2023) where communications on the entropy value
(ϕ(xst

t ), ϕ(ystt )) are required, making their algorithms cou-
pled. On the other hand, the uncoupled algorithm of (Wei
et al., 2021a) requires the players to interact with each other
using the current policy (xt, yt) for Ω(L/ε) rounds, get an
ε-approximate accurate gradient, and then simultaneously
update the policy pair on all states. We do not require
such unnatural synchronization between the players or prior
knowledge on L.

The main result is the following theorem on the last-iterate
convergence rate of Algorithm 2. We postpone a sketch of
the proof, as well as the full proof for the Theorem 5.1, to
Appendix E.

Theorem 5.1 (Last-Iterate Convergence Rate). For any
ε, δ > 0, Algorithm 2 with kα = 9

9+ε , kϵ = 1
9+ε , kβ =

3
9+ε , and kη = 5

9+ε guarantees, with probability at least
1 − O(δ), for any time t ≥ 1, maxs,x,y (V

s
xt,y − V s

x,yt
) ≤

O
(

AL2+1/ε ln4+1/ε(SAt/δ) ln1/ε(t/(1−γ))
(1−γ)2+1/ε · t−

1
9+ε

)
.

6. General Markov Games
In this section, we consider general two-player zero-sum
Markov games without Assumption 1. We propose Al-
gorithm 3 (details in Appendix A), an uncoupled learning
algorithm that handles exploration and has path convergence
rate. Compared to Algorithm 2, the update of value func-
tion in Algorithm 3 uses a bonus term bnsτ based on the
optimism principle to handle exploration.

Theorem 6.1 below implies that we can achieve
1
t

∑t
τ=1 maxx,y (x

s⊤τ
τ Qsτ

⋆ ysτ − xs⊤τ Qsτ
⋆ ysττ ) = O(t− 1

10 )
path convergence rate if we use the doubling trick to tune
down u at a rate of t−

1
10 .

Theorem 6.1. For any u ∈
[
0, 1

1−γ

]
and T ≥ 1, there

exists a proper choice of parameters ϵ, β, η such that Algo-
rithm 3 guarantees with probability at least 1−O(δ),

T∑
t=1

1

[
max
x,y

(
x
s⊤t
t Qst

⋆ yst − xs⊤t Qst
⋆ ystt

)
> u

]
≤ O

(
S2A3 ln20(SAT/δ)

u9(1− γ)16

)
.

(1)
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Algorithm 1 Matrix Game with Bandit Feedback
1: Define: ηt = t−kη , βt = t−kβ , ϵt = t−kϵ where kη = 5

8 , kβ = 3
8 , kϵ = 1

8 .
Ωt =

{
x ∈ ∆A : xa ≥ 1

At2 , ∀a ∈ A
}

.
2: Initialization:: x1 = 1

A1.
3: for t = 1, 2, . . . do
4: Sample at ∼ xt, and receive σt ∈ [0, 1] with E [σt] = Gat,bt .
5: Compute gt where gt,a = 1[at=a]σt

xt,a+βt
+ ϵt lnxt,a,∀a ∈ A.

6: Update xt+1 ← argminx∈Ωt+1

{
x⊤gt +

1
ηt

KL(x, xt)
}

.
7: end for

Algorithm 2 Irreducible Markov Game
1: Define: ηt = (1 − γ)t−kη , βt = t−kβ , ϵt = 1

1−γ t
−kϵ , αt = t−kα with kα, kϵ, kβ , kη ∈ (0, 1), Ωt ={

x ∈ ∆A : xa ≥ 1
At2 , ∀a ∈ A

}
.

2: Initialization: xs
1 ← 1

A1, ns
1 ← 0, V s

1 ← 1
2(1−γ) , ∀s.

3: for t = 1, 2, . . . , do
4: τ = nst

t+1 ← nst
t + 1 (the number of visits to state st up to time t).

5: Draw at ∼ xst
t , observe σt ∈ [0, 1] with E [σt] = Gst

at,bt
, and observe st+1 ∼ P st

at,bt
(·).

6: Compute gt where gt,a =
1[at=a](σt+γV

st+1
t )

x
st
t,a+βτ

+ ϵτ lnx
st
t,a, ∀a ∈ A.

7: Update xst
t+1 ← argminx∈Ωτ+1

{
x⊤gt +

1
ητ

KL(x, xst
t )
}

.

8: Update V st
t+1 ← (1− ατ )V

st
t + ατ

(
σt + γV

st+1

t

)
.

9: For all s ̸= st, xs
t+1 ← xs

t , ns
t+1 ← ns

t , V s
t+1 ← V s

t .
10: end for

We postpone a sketch of the proof, as well as the full proof
for the Theorem 6.1, to Appendix F.

6.1. Path Convergence

Path convergence has multiple meaningful game-theoretic
implications. By definition, It implies that frequent visits to
a state bring players’ policies closer to equilibrium, leading
to both players using near-equilibrium policies for all but
o(T ) number of steps over time.

Path convergence also implies that both players have no
regret compared to the game value V s

⋆ , which has been
considered and motivated in previous works such as (Braf-
man & Tennenholtz, 2002; Tian et al., 2020). To see this,
we apply the results to the episodic setting, where in ev-
ery step, with probability 1− γ, the state is redrawn from
s ∼ ρ for some initial distribution ρ. If the learning dynam-

ics enjoys path convergence, then E[
∑T

t=1 x
s⊤t
t Gstystt ] =

(1 − γ)Es∼ρ[V
s
⋆ ]T ± o(T ). Hence the one-step average

reward is (1− γ)Es∼ρ[V
s
⋆ ] and both players have no regret

compared to the game value. A more important implication
of path convergence is that it guarantees stability of play-
ers’ policies, while cycling behaviour is inevitable for any
FTRL-type algorithms even in zero-sum matrix games (Mer-
tikopoulos et al., 2018; Bailey & Piliouras, 2018). We defer
the proof and more discussion of path convergence to Ap-

pendix G.

Finally, we remark that our algorithm is built upon Nash
V-learning (Bai et al., 2020), so it inherits properties of
Nash V-learning, e.g., one can still output near-equilibrium
policies through policy averaging (Jin et al., 2021), or having
no regret compared to the game value when competing with
an arbitrary opponent (Tian et al., 2020). We demonstrate
extra benefits brought by entropy regularization regarding
the stability of the dynamics.

7. Conclusion and Discussion
In this paper, we develop algorithms that are uncoupled,
rational, and convergent for learning in zero-sum Markov
games with bandit feedback. In particular, we provide the
first non-asymptotic last-iterate rates for decentralized learn-
ing dynamics for matrix games and Markov games with
the irreducibility assumption. We also propose the notion
of path convergence and design uncoupled algorithm with
path-convergence rate. We believe our results establish a
crucial step towards understanding the practical success of
self-play in mulit-agent reinforcement learning. Interesting
future directions include designing algorithms with faster
convergence rates, establishing matching lower bounds, and
extending our results beyond zero-sum Markov games.
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A. Algorithm for General Markov Games

Algorithm 3 General Markov Game
1: Input: η ≤ β ≤ ϵ and T .
2: Define: Ω =

{
x ∈ ∆A : xa ≥ 1

AT , ∀a ∈ A
}

, ατ = H+1
H+τ , where H = ln(T )

1−γ .
bnsτ = κA ln2(SAT/δ)(β + η−1ατ )/(1− γ)2 for a sufficiently large absolute constant κ > 0

3: Initialization: V s
1, n

s
1 ← 0, xs

1 ← 1
A1, ∀s.

4: for t = 1, 2, . . . , do
5: τ = nst

t+1 ← nst
t + 1.

6: Sample at ∼ xst
t , observe σt ∈ [0, 1] with E [σt] = Gst

at,bt
, and observe st+1 ∼ P st

at,bt
(·).

7: Compute gt where gt,a =
1[at=a](σt+γV

st+1
t )

x
st
t,a+β

+ ϵ lnxst
t,a,∀a ∈ A.

8: Update xst
t+1 ← argminx∈Ω

{
x⊤gt +

1
ηKL(x, xst

t )
}

.

9: Update ∼V
st
t+1 ← (1− ατ )∼V

st
t + ατ

(
σt + γV

st+1

t − bnsτ
)

and V st
t+1 ← max

{
∼V

st
t+1, 0

}
.

10: For all s ̸= st, xs
t+1 ← xs

t , V s
t+1 ← V s

t , ∼V
s
t+1 ← ∼V

s
t , ns

t+1 ← ns
t .

11: end for

B. Auxiliary Lemmas
B.1. Sequence Properties

Lemma B.1. Let 0 < h < 1, 0 ≤ k ≤ 2, and let t ≥
(

24
1−h ln 12

1−h

) 1
1−h

. Then

t∑
i=1

i−k
t∏

j=i+1

(1− j−h)

 ≤ 9 ln(t)t−k+h.

Proof. Define

s ≜
⌈
(k + 1)th ln t

⌉
We first show that s ≤ t

2 . Suppose not, then we have

(k + 1)th ln t >
t

2
− 1 ≥ t

4
(because t ≥ 12 > 4)

and thus t1−h < 4(k + 1) ln t ≤ 12 ln t. However, by the condition for t and Lemma B.3, it holds that t1−h ≥ 12 ln t,
which leads to contradiction.

Then the sum can be decomposed as

t−s∑
i=1

i−k
t∏

j=i+1

(1− j−h) +

t∑
i=t−s+1

i−k
t∏

j=i+1

(1− j−h)

≤ t× (1− t−h)s + s (t− s+ 1)
−k

≤ t× (e−t−h

)s + s×
(
t

2

)−k

≤ t× e−(k+1) ln t + s× 2k × t−k

≤ t−k +
(
(k + 1)th ln t+ 1

)
× 2k × t−k

≤ 9 ln(t)t−k+h.

10
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Lemma B.2. Let 0 < h < 1, 0 ≤ k ≤ 2, and let t ≥
(

24
1−h ln 12

1−h

) 1
1−h

. Then

max
1≤i≤t

i−k
t∏

j=i+1

(1− j−h)

 ≤ 4t−k.

Proof.

max
t
2≤i≤t

i−k
t∏

j=i+1

(1− j−h)

 ≤ ( t

2

)−k

≤ 22t−k = 4t−k

max
1≤i≤ t

2

i−k
t∏

j=i+1

(1− j−h)

 ≤ (1− t−h
) t

2 ≤
(
exp

(
−t−h

)) t
2 = exp

(
−1

2
t1−h

)
(a)

≤ exp

(
−1

2
× 12 ln t

)
=

1

t6
≤ t−k.

where in (a) we use Lemma B.3. Combining the two inequalities finishes the proof.

Lemma B.3. Let 0 < h < 1 and t ≥
(

24
1−h ln 12

1−h

) 1
1−h

. Then t1−h ≥ 12 ln t.

Proof. By the condition, we have

t1−h ≥ 2× 12

1− h
ln

12

1− h
.

Applying Lemma B.4, we get

t1−h ≥ 12

1− h
ln(t1−h) = 12 ln t.

Lemma B.4 (Lemma A.1 of (Shalev-Shwartz & Ben-David, 2014)). Let a > 0. Then x ≥ 2a ln(a)⇒ x ≥ a ln(x).

Lemma B.5 (Freedman’s Inequality). Let F0 ⊂ F1 ⊂ · · · ⊂ Fn be a filtration, and X1, . . . , Xn be real random variables
such that Xi is Fi-measurable, E[Xi|Fi−1] = 0, |Xi| ≤ b, and

∑n
i=1 E[X2

i |Fi−1] ≤ V for some fixed b > 0 and V > 0.
Then with probability at least 1− δ,

n∑
i=1

Xi ≤ 2
√

V log(1/δ) + b log(1/δ).

B.2. Properties Related to EXP3-IX

In Lemma B.6 and Lemma B.7, we assume that F0 ⊂ F1 ⊂ F2 ⊂ · · · is a filtration, and assume that xi, ℓi are Fi−1-
measurable, where xi ∈ ∆A, ℓi ∈ [0, 1]A. Besides, ai ∈ [A] and σi are Fi-measurable with E[ai = a|Fi−1] = xi,a and
E[σi|Fi−1] = ℓi. Define ℓ̂i,a =

σi,a1[ai=a]
xi,a+βi

where βi is non-increasing.

Lemma B.6 (Lemma 20 of (Bai et al., 2020)). Let c1, c2, . . . , ct be fixed positive numbers. Then with probability at least
1− δ,

t∑
i=1

ci

〈
xi, ℓi − ℓ̂i

〉
= O

A

t∑
i=1

βici +

√√√√ln(A/δ)

t∑
i=1

c2i

 .
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Lemma B.7 (Adapted from Lemma 18 of (Bai et al., 2020)). Let c1, c2, . . . , ct be fixed positive numbers. Then for any
sequence x⋆

1, . . . , x
⋆
t ∈ ∆A such that x⋆

i is Fi−1-measurable, with probability at least 1− δ,

t∑
i=1

ci

〈
x⋆
i , ℓ̂i − ℓi

〉
= O

(
max
i≤t

ci ln(1/δ)

βt

)
.

Proof. Lemma 18 of (Bai et al., 2020) states that for any sequence of coefficients w1, w2, · · · , wt such that wi ∈ [0, 2βi]
A

is Fi−1-measurable, we have with probability 1− δ,

t∑
i=1

ci

〈
wi, ℓ̂i − ℓi

〉
≤ max

i≤t
ci log(1/δ).

Since x⋆
i ∈ ∆A and βi is decreasing, we know 2βt · x⋆

i ∈ [0, 2βi]. Thus we can apply Lemma 18 of (Bai et al., 2020) and
get with probability 1− δ,

t∑
i=1

ci

〈
x⋆
i , ℓ̂i − ℓi

〉
=

t∑
i=1

ci
2βt

〈
2βt · x⋆

i , ℓ̂i − ℓi

〉
≤ max

i≤t

ci
βt

log(1/δ).

Lemma B.8 (Lemma 21 of (Bai et al., 2020)). Let c1, c2, . . . , ct be fixed positive numbers. Then with probability at least
1− δ, for all x⋆ ∈ ∆A,

t∑
i=1

ci

〈
x⋆, ℓ̂i − ℓi

〉
= O

(
max
i≤t

ci ln(A/δ)

βt

)
.

Lemma B.9. Let (x1, y1) and (x2, y2) be equilibria of f1(·, ·) in the domain Z1 and f2(·, ·) in the domain Z2 respectively.
Suppose that Z1 ⊆ Z2, and that sup(x,y)∈Z1

|f1(x, y)− f2(x, y)| ≤ ϵ. Then for any (x, y) ∈ Z2,

f2(x1, y)− f2(x, y1) ≤ 2ϵ+ 2d sup
(x̃,ỹ)∈Z2

∥∇f2(x̃, ỹ)∥∞

where d = maxz∈Z2 minz′∈Z1 ∥z − z′∥1

Proof. Since (x1, y1) is an equilibrium of f1, we have for any (x′, y′) ∈ Z1,

f1(x1, y
′)− f1(x

′, y1) ≤ 0,

which implies

f2(x1, y
′)− f2(x

′, y1) ≤ 2ϵ.

For any (x, y) ∈ Z2, we can find (x′, y′) ∈ Z1 such that ∥(x, y)− (x′, y′)∥1 ≤ d. Therefore, for any (x, y) ∈ Z2,

f2(x1, y)− f2(x, y1)

≤ f2(x1, y
′)− f2(x

′, y1) + ∥x− x′∥1∥∇xf2(x, y)∥∞ + ∥y − y′∥1∥∇yf2(x, y)∥∞
≤ 2ϵ+ 2d sup

(x̃,ỹ)∈Z2

∥∇f2(x̃, ỹ)∥∞.

B.3. Markov Games

Lemma B.10 ((Wei et al., 2021a)). For any policy pair x, y, the duality gap on a two player zero-sum game can be related
to duality gap on individual states:

max
s,x′,y′

(
V s
x,y′ − V s

x′,y

)
≤ 2

1− γ
max
s,x′,y′

(xsQs
⋆y

′s − x′sQs
⋆y

s).

12
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B.4. Online Mirror Descent

Lemma B.11 (Theorem 2, (Luo, 2022)). Let x′ = argminx′∈Ω

{
x′⊤g + 1

ηKL(x′, x)
}

for some convex set Ω ⊆ ∆A, and

g ∈ RA
≥0. Then

(x− u)⊤g ≤ KL(u, x)− KL(u, x′)

η
+ η

∑
a∈[A]

xa(ga)
2

for any u ∈ Ω.

C. Last-Iterate Convergence Rate of Algorithm 1
C.1. Analysis Overview

We define a regularized zero-sum game with loss function ft(x, y) = x⊤Gy − ϵtϕ(x) + ϵtϕ(y) over domain Ωt × Ωt,
and denote by z⋆t = (x⋆

t , y
⋆
t ) its unique Nash equilibrium since ft is strongly convex-strongly concave. The regularized

game is a slight perturbation of the original matrix game G over a smaller domain Ωt × Ωt, and we prove that z⋆t is an
O(ϵt)-approximate Nash equilibrium of the original matrix game G (Lemma B.9). Therefore, it suffices to bound KL(z⋆t , zt)
since the duality gap of zt is at most O(

√
KL(z⋆t , zt) + ϵt).

Step 1: Single-Step Analysis We start with a single-step analysis of Algorithm 1, which shows:

KL(z⋆t+1, zt+1) ≤ (1− ηtϵt)KL(z⋆t , zt) + 20η2tA ln2 (At) + 2η2tAλt︸ ︷︷ ︸
instability penalty

+ ηtξt + ηtζt︸ ︷︷ ︸
estimation error

+vt,

where we define vt = KL(z⋆t+1, zt+1)− KL(z⋆t , zt+1) (see Appendix C for definitions of λt, ξt, ζt) The instability penalty
comes from some local-norm of the gradient estimator gt. The estimation error comes from the bias between the gradient
estimator gt and the real gradient Gyt. We pay the last term vt since the Nash equilibrium z∗t of the regularized game ft is
changing over time.

Step 2: Strategy Convergence to NE of the Regularized Game Expanding the above recursion and using the fact that
1− η1ϵ1 = 0. we get

KL(z⋆t+1, zt+1) ≤ O
( t∑

i=1

wi
tη

2
i︸ ︷︷ ︸

term1

+2A

t∑
i=1

wi
tη

2
i λi︸ ︷︷ ︸

term2

+

t∑
i=1

wi
tηiξi︸ ︷︷ ︸

term3

+

t∑
i=1

wi
tηiζi︸ ︷︷ ︸

term4

+

t∑
i=1

wi
tvi︸ ︷︷ ︸

term5

)
, (2)

where wi
t ≜

∏t
j=i+1(1 − ηjϵj). To upper bound term1-term4, we apply careful sequence analysis (Appendix B.1) and

properties of the EXP3-IX algorithm with changing step size (Appendix B.2). The analysis of term5 uses Lemma C.1,
which states vt = KL(z⋆t+1, zt+1) − KL(z⋆t , zt+1) ≤ O(ln(At)∥z⋆t+1 − z⋆t ∥1) = O( ln

2(At)
t ) and is slightly involved

as Ωt and ϵt are both changing. With these steps, we conclude that with probability at least 1 − O(δ), KL(z⋆t , zt) =

O
(
A ln3(At/δ)t−

1
4

)
.

C.2. Proof of Theorem 4.1

Proof of Theorem 4.1. The proof is divided into three parts. In Part I, we establish a descent inequality for KL(z⋆t , zt).
In Part II, we give an upper bound KL(z⋆t , zt) by recursively applying the descent inequality. Finally in Part III, we show
last-iterate convergence rate on the duality gap of zt = (xt, yt). In the proof, we assume without loss of generality that
t ≥ t0 = ( 24

1−kη−kϵ
ln( 12

1−kη−kϵ
))

1
1−kη−kϵ = (96 ln(48))4 since the theorem holds trivially for constant t.

Part I.

ft(xt, yt)− ft(x
⋆
t , yt)

13
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= (xt − x⋆
t )

⊤Gyt + ϵt

(∑
a

xt,a lnxt,a −
∑
a

x⋆
t,a lnx

⋆
t,a

)

= (xt − x⋆
t )

⊤Gyt + ϵt

(∑
a

(xt,a − x⋆
t,a) lnxt,a

)
− ϵt

∑
a

x⋆
t,a

(
lnx⋆

t,a − lnxt,a

)
︸ ︷︷ ︸

=KL(x⋆
t ,xt)

= (xt − x⋆
t )

⊤gt − ϵtKL(x⋆
t , xt) +

∑
a

xt,a

(
(Gyt)a −

1[at = a]σt

xt,a + βt

)
︸ ︷︷ ︸

≜ ξ
t

+
∑
a

x⋆
t,a

(
1[at = a]σt

xt,a + βt
− (Gyt)a

)
︸ ︷︷ ︸

≜ ζ
t

(by the definition of gt)

≤ KL(x⋆
t , xt)− KL(x⋆

t , xt+1)

ηt
+ ηt

∑
a

xt,a(gt,a)
2 − ϵtKL(x⋆

t , xt) + ξ
t
+ ζ

t
(by Lemma B.11)

≤ (1− ηtϵt)KL(x⋆
t , xt)− KL(x⋆

t , xt+1)

ηt
+ 2ηt

∑
a

(
1[at = a]

xt,a + βt
+ xt,aϵ

2
t ln

2(xt,a)

)
+ ξ

t
+ ζ

t

≤ (1− ηtϵt)KL(x⋆
t , xt)− KL(x⋆

t , xt+1)

ηt

+ 2ηtA×
1

A

∑
a

(
1[at = a]

xt,a + βt
− 1

)
︸ ︷︷ ︸

≜λt

+2ηtA+ 2ηtϵ
2
t ln

2
(
At2
)
+ ξ

t
+ ζ

t

≤ (1− ηtϵt)KL(x⋆
t , xt)− KL(x⋆

t , xt+1)

ηt
+ 10ηtA ln2 (At) + 2ηtAλt + ξ

t
+ ζ

t
. (3)

Rearranging the above inequality, we get

KL(x⋆
t+1, xt+1)

≤ (1− ηtϵt)KL(x⋆
t , xt) + ηt(ft(x

⋆
t , yt)− ft(xt, yt)) + 10η2tA ln2 (At) + 2η2tAλt + ηtξt + ηtζt + vt,

where vt ≜ KL(x⋆
t+1, xt+1) − KL(x⋆

t , xt+1). Similarly, since the algorithm for the y-player is symmetric, we have the
following:

KL(y⋆t+1, yt+1)

≤ (1− ηtϵt)KL(y⋆t , yt) + ηt(ft(xt, yt)− ft(xt, y
⋆
t )) + 10η2tA ln2 (At) + 2η2tAλt + ηtξt + ηtζt + vt

where

λt ≜
1

A

∑
b

(
1[bt = b]

yt,b + βt
− 1

)
ξt ≜

∑
b

yt,b

((
−(G⊤xt)b + 1

)
− 1[bt = b](−σt + 1)

yt,b + βt

)
ζt ≜

∑
b

y⋆t,b

(
1[bt = b](−σt + 1)

yt,b + βt
−
(
−(G⊤xt)b + 1

))
vt ≜ KL(y⋆t+1, yt+1)− KL(y⋆t , yt+1).

Adding the two inequalities above up and using the fact that ft(x⋆
t , yt)− ft(xt, y

⋆
t ) ≤ 0, we get

KL(z⋆t+1, zt+1) ≤ (1− ηtϵt)KL(z⋆t , zt) + 20η2tA ln2 (At) + 2η2tAλt + ηtξt + ηtζt + vt, (4)

where □ ≜ □+□ for □ = λt, ξt, ζt, vt.

14
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Part II. Expanding the recursion in Eq. (4), and using the fact that 1− η1ϵ1 = 0, we get

KL(z⋆t+1, zt+1) ≤ 20A ln2(At)

t∑
i=1

wi
tη

2
i︸ ︷︷ ︸

term1

+2A

t∑
i=1

wi
tη

2
i λi︸ ︷︷ ︸

term2

+

t∑
i=1

wi
tηiξi︸ ︷︷ ︸

term3

+

t∑
i=1

wi
tηiζi︸ ︷︷ ︸

term4

+

t∑
i=1

wi
tvi︸ ︷︷ ︸

term5

where wi
t ≜

∏t
j=i+1(1− ηjϵj). We can bound each term as follows.

By Lemma B.1 and the fact that that t ≥ t0, we have

term1 ≤ O
(
A ln2(At) ln(t)t−2kη+(kη+kϵ)

)
= O

(
A ln3(At)t−kη+kϵ

)
= O

(
A ln3(At)t−

1
2

)
.

Using Lemma B.7 with x⋆ = 1
A1, ℓi = 1 for all i, and ci = wi

tη
2
i , we have with probability 1− δ

t2 ,

term2 = O
(
A ln(At/δ)maxi≤t ci

βt

)
(a)
= O

(
A ln(At/δ)tkβ × t−2kη

)
= O

(
A ln(At/δ)t−

1
2

)
where in (a) we use Lemma B.2 with the fact that t ≥ t0.
Using Lemma B.6 with ci = wi

tηi, we have with probability at least 1− δ
t2 ,

term3 ≤ O

A

t∑
i=1

βici +

√√√√ln(At/δ)

t∑
i=1

c2i


= O

A

t∑
i=1

i−kβ−kη

t∏
j=i+1

(
1− j−kη−kϵ

)+

√√√√√ln(At/δ)

t∑
i=1

i−2kη

t∏
j=i+1

(1− j−kη−kϵ)




= O
(
A ln(t)t−kβ+kϵ + t−

1
2kη+

1
2kϵ log(At/δ)

)
(by Lemma B.1 and t ≥ t0)

= O
(
A log(At/δ)t−

1
4

)
.

Using Lemma B.7 with ci = wi
tηi, we get with probability at least 1− δ

t2 ,

term4 = O
(
ln(At/δ)maxi≤t ci

βt

)
(a)

≤ O
(
ln(At/δ)t−kη+kβ

)
= O

(
ln(At/δ)t−

1
4

)
where (a) is by Lemma B.2 and t ≥ t0.
By Lemma C.1 and Lemma B.1,

term5 = O

(
ln2(At)

t∑
i=1

wi
tt

−1

)
= O

(
ln3(At)t−1+kη+kϵ

)
= O

(
ln3(At)t−

1
4

)
.

Combining all terms above, we get that with probability at least 1− 3δ
t2 ,

KL(z⋆t+1, zt+1) = O
(
A ln3(At/δ)t−

1
4

)
. (5)

Using an union bound over t, we see that Eq. (5) holds for all t ≥ t0 with probability at least 1−O(δ).

Part III. Using Lemma B.9 with ft(x, y) and x⊤Gy with domains Ωt × Ωt and ∆A × ∆A, we get that for any
(x, y) ∈ ∆A ×∆A,

x⋆⊤
t Gy − x⊤Gy⋆t ≤ O

(
ϵt ln(A) +

1

t

)
= O

(
ln(A)t−kϵ

)
= O

(
ln(A)t−

1
8

)
.
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Further using Eq. (5), we get that with probability at least 1− 3δ, for any t and any (x, y) ∈ ∆A ×∆A,

x⊤
t Gy − x⊤Gyt ≤ O

(
ln(A)t−

1
8 + ∥zt − z⋆t ∥1

)
(a)
= O

(
ln(A)t−

1
8 +

√
KL(z⋆t , zt)

)
= O

(√
A ln3/2(At/δ)t−

1
8

)
where (a) is by Pinsker’s inequality. This completes the proof of Theorem 4.1.

Lemma C.1. |vt| = O
(
ln2(At)t−1

)
.

Proof.

|vt| =
∣∣KL(z⋆t+1, zt+1)− KL(z⋆t , zt+1)

∣∣
≤ O

(
ln(At)∥z⋆t+1 − z⋆t ∥1

)
(by Lemma C.2)

= O
(
ln2(At)t−1

)
. (by Lemma C.3)

Lemma C.2. Let x, x1, x2 ∈ Ωt. Then

|KL(x1, x)− KL(x2, x)| ≤ O (ln(At)∥x1 − x2∥1) .

Proof.

KL(x1, x)− KL(x2, x)

=
∑
a

(
x1,a ln

x1,a

xa
− x2,a ln

x2,a

xa

)
=
∑
a

(x1,a − x2,a) ln
x1,a

xa
+
∑
a

x2,a

(
ln

x1,a

xa
− ln

x2,a

xa

)
≤ O (ln(At)∥x1 − x2∥1)− KL(x2, x1)

≤ O (ln(At)∥x1 − x2∥1) .

Similarly, KL(x2, x)− KL(x1, x) ≤ O (ln(At)∥x1 − x2∥1).

Lemma C.3. ∥z⋆t − z⋆t+1∥1 = O
(

ln(At)
t

)
.

Proof. Notice that the feasible sets for the two time steps are different. Let (x′
t+1, y

′
t+1) be such that x′

t+1 = pt+1

A 1+ (1−
pt+1)x

⋆
t+1 and y′t+1 = pt+1

A 1+(1− pt+1) y
⋆
t+1 where pt+1 = min{1, 2t−3}. Since (x∗

t+1, y
∗
t+1) ∈ Ωt+1×Ωt+1, we have

that for any a, x′
t+1,a ≥

pt+1

A + (1− pt+1)
1

A(t+1)2 ≥
1

At2 . Hence, (x′
t+1, y

′
t+1) ∈ Ωt × Ωt.

Because (x⋆
t+1, y

⋆
t+1) is the equilibrium of ft+1 in Ωt+1 × Ωt+1, we have that for any (x, y) ∈ Ωt+1 × Ωt+1,

ft+1(x, y
⋆
t+1)− ft+1(x

⋆
t+1, y)

= ft+1(x, y
⋆
t+1)− ft+1(x

⋆
t+1, y

⋆
t+1) + ft+1(x

⋆
t+1, y

⋆
t+1)− ft+1(x

⋆
t+1, y)

≥ ϵt+1KL(x, x⋆
t+1) + ϵt+1KL(y, y⋆t+1)

≥ 1

2
ϵt+1

(
∥x− x⋆

t+1∥21 + ∥y − y⋆t+1∥21
)

(Pinsker’s inequality)

≥ 1

4
ϵt+1∥z − z⋆t+1∥21.

where the first inequality is due to the following calculation:

ϵt+1KL(x, x⋆
t+1) = ft+1(x, y

⋆
t+1)− ft+1(x

⋆
t+1, y

⋆
t+1)−∇xft+1(x

⋆
t+1, y

⋆
t+1)

⊤(x− x⋆
t+1)
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≤ ft+1(x, y
⋆
t+1)− ft+1(x

⋆
t+1, y

⋆
t+1)

where we use ∇xft+1(x
⋆
t+1, y

⋆
t+1)

⊤(x − x⋆
t+1) ≥ 0 since x⋆

t+1 is the minimizer of ft+1(·, y⋆t+1) in Ωt+1. Specially, we
have

ft+1(x
⋆
t , y

⋆
t+1)− ft+1(x

⋆
t+1, y

⋆
t ) ≥

1

4
ϵt+1∥z⋆t − z⋆t+1∥21. (6)

Similarly, because (x⋆
t , y

⋆
t ) is the equilibrium of ft in Ωt × Ωt, we have

ft(x
′
t+1, y

⋆
t )− ft(x

⋆
t , y

′
t+1) ≥

1

4
ϵt∥z′t+1 − z⋆t ∥21,

which implies

ft(x
⋆
t+1, y

⋆
t )− ft(x

⋆
t , y

⋆
t+1)

= ft(x
′
t+1, y

⋆
t )− ft(x

⋆
t , y

′
t+1) + ft(x

⋆
t+1, y

⋆
t )− ft(x

′
t+1, y

⋆
t ) + ft(x

⋆
t , y

′
t+1)− ft(x

⋆
t , y

⋆
t+1)

≥ 1

4
ϵt∥z′t+1 − z⋆t ∥21 − sup

x∈Ωt+1

∥∇xft(x, y
⋆
t )∥∞∥x′

t+1 − x⋆
t+1∥1 − sup

y∈Ωt+1

∥∇yft(x
⋆
t , y)∥∞∥y′t+1 − y⋆t+1∥1

≥ 1

8
ϵt∥z⋆t+1 − z⋆t ∥21 −

1

4
ϵt∥z′t+1 − z⋆t+1∥21 −O

(
ln(At)× 1

t3

)
≥ 1

8
ϵt∥z⋆t+1 − z⋆t ∥21 −O

(
ln(At)

t3

)
. (7)

In the first inequality, we use the fact that ft(x, y) is convex in x and concave in y and Hölder’s inequality. In the second
inequality, we use the triangle inequality, ∥∇xft(x, y)∥∞ ≤ maxa{(Gy)a + ln(xa)} ≤ O(ln(At)), and ∥∇yft(x, y)∥∞ ≤
maxb{(G⊤x)b + ln(yb)} ≤ O(ln(At)). In the second and third inequality, we use ∥z′t+1 − z⋆t+1∥1 = O( 1

t3 ) by the
definition of z′t+1.

Combining Eq. (6) and Eq. (7), we get

3

8
ϵt+1∥z⋆t − z⋆t+1∥21

≤ ft+1(x
⋆
t , y

⋆
t+1)− ft(x

⋆
t , y

⋆
t+1)− ft+1(x

⋆
t+1, y

⋆
t ) + ft(x

⋆
t+1, y

⋆
t ) +O

(
ln(At)

t3

)
= (ft+1 − ft)(x

⋆
t , y

⋆
t+1)− (ft+1 − ft)(x

⋆
t+1, y

⋆
t ) +O

(
ln(At)

t3

)
≤ sup

x,y∈Ωt+1×Ωt+1

∥∇ft+1(x, y)−∇ft(x, y)∥∞∥(x⋆
t , y

⋆
t+1)− (x⋆

t+1, y
⋆
t )∥1 +O

(
ln(At)

t3

)
= sup

x,y∈Ωt+1×Ωt+1

∥∇ft+1(x, y)−∇ft(x, y)∥∞∥z⋆t − z⋆t+1∥1 +O
(
ln(At)

t3

)
Solving the inequality, we get

∥z⋆t − z⋆t+1∥1 ≤ O

(
1

ϵt+1
sup

x,y∈Ωt+1×Ωt+1

∥∇ft+1(x, y)−∇ft(x, y)∥∞ +
ln1/2(At)
√
ϵt+1t3/2

)
(8)

≤ O

(
(ϵt − ϵt+1) ln(At)

ϵt+1
+

ln1/2(At)
√
ϵt+1t3/2

)

= O

(
t−kϵ−1 ln(At)

t−kϵ
+

ln1/2(At)
√
ϵt+1t3/2

)

= O
(
ln(At)

t

)
.
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D. Improved Last-Iterate Convergence under Expectation
In this section, we analyze Algorithm 4, which is almost identical to Algorithm 1 but does not involve the parameter βt. The
choices of stepsize ηt and amount of regularization ϵt are also tuned differently to obtain the best convergence rate.

Algorithm 4 Matrix Game with Bandit Feedback
1: Define: ηt = t−kη , ϵt = t−kϵ where kη = 1

2 , kϵ = 1
6 .

Ωt =
{
x ∈ ∆A : xa ≥ 1

At2 , ∀a ∈ A
}

.
2: Initialization:: x1 = 1

A1.
3: for t = 1, 2, . . . do
4: Sample at ∼ xt, and receive σt ∈ [0, 1] with E [σt] = Gat,bt .
5: Compute gt where gt,a = 1[at=a]σt

xt,a
+ ϵt lnxt,a,∀a ∈ A.

6: Update xt+1 ← argminx∈Ωt+1

{
x⊤gt +

1
ηt

KL(x, xt)
}

.
7: end for

Theorem D.1. Algorithm 4 guarantees E
[
maxx,y∈∆A

(x⊤
t Gy − x⊤Gyt)

]
= O

(√
A ln3/2(At)t−

1
6

)
for any t.

Proof. With the same analysis as in Part I of the proof of Theorem 4.1, we have

ft(xt, yt)− ft(x
⋆
t , yt)

≤ (1− ηtϵt)KL(x⋆
t , xt)− KL(x⋆

t , xt+1)

ηt
+ 10ηtA ln2 (At) + 2ηtAλt + ξ

t
+ ζ

t
.

where

ξ
t
≜
∑
a

xt,a

(
(Gyt)a −

1[at = a]σt

xt,a

)
, ζt ≜

∑
a

x⋆
t,a

(
1[at = a]σt

xt,a
− (Gyt)a

)
,

λt ≜
1

A

∑
a

(
1[at = a]

xt,a
− 1

)
.

Unlike in Theorem 4.1, here these three terms all have zero mean. Thus, following the same arguments that obtain Eq. (4)
and taking expectations, we get

Et[KL(z⋆t+1, zt+1)] ≤ (1− ηtϵt)KL(z⋆t , zt) + 20η2tA ln2 (At) + Et[vt]

≤ (1− ηtϵt)KL(z⋆t , zt) +O
(
η2tA ln2 (At) +

ln2(At)

t

)
(by Lemma C.1)

where vt = KL(z⋆t+1, zt+1)−KL(z⋆t , zt+1) and Et[·] is the expectation conditioned on history up to round t. Then following
the same arguments as in Part II of the proof of Theorem 4.1, we get

E[KL(z⋆t+1, zt+1)] ≤ O

(
A ln2(At)

t∑
i=1

wi
tη

2
i + ln2(At)

t∑
i=1

wi
tt

−1

)
(define wi

t ≜
∏t

j=i+1(1− ηjϵj))

≤ O
(
A ln3(At)t−kη+kϵ + ln3(At)t−1+kη+kϵ

)
= O

(
A ln3(At)t−

1
3

)
.

Finally, following the arguments in Part III, we get

E
[
max
x,y

(
x⊤
t Gy − x⊤Gyt

)]
≤ O

(
ln(A)t−kϵ +

√
E [KL(z⋆t , zt)]

)
= O

(√
A ln3/2(At)t−

1
6

)
.
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E. Last-Iterate Convergence Rate of Algorithm 2
E.1. On the Assumption of Irreducible Markov Game

Proposition E.1. If Assumption 1 holds, then for any L′ = 2L log2(S/δ) consecutive steps, under any (non-stationary)
policies of the two players, with probability at least 1− δ, every state is visited at least once.

Proof. We first show that for any pair of states s′, s′′, under any non-stationary policy pair, the expected time to reach s′′

from s′ is upper bounded by L. For a particular pair of states (s′, s′′), consider the following modified MDP: let the reward
be r(s, a) = 1[s ̸= s′′], and the transition be the same as the original MDP on all s ̸= s′′, while P (s′′|s′′, a) = 1 (i.e.,
making s′′ an absorbing state). Also, let s′ be the initial state. By construction, the expected total reward of this MDP is the
travelling time from s′ to s′′. By Theorem 7.1.9 of (Puterman, 2014), there exists a stationary optimal policy in this MDP.
The optimal expected total value is then upper bounded by L by Assumption 1. Therefore, for any (possibly sub-optimal)
non-stationary policies, the travelling time from s′ to s′′ must also be upper bounded by L.

Divide L′ steps into log2(S/δ) intervals each of length 2L, and consider a particualr s. Conditioned on s not visited
in all intervals 1, 2, . . . , i − 1, the probability of still not visiting s in interval i is smaller than 1

2 (because for any s′,
Pr[Ts′→s > 2L] ≤ E[Ts′→s]

2L ≤ L
2L = 1

2 , where Ts′→s denotes the travelling time from s′ to s). Therefore, the probability
of not visiting s in all log2(S/δ) intervals is upper bounded by 2− log2(S/δ) = δ

S . Using a union bound, we conclude that
with probability at least 1− δ, every state is visited at least once within L′ steps.

Corollary E.2. If Assumption 1 holds, then with probability 1− δ, for any t ≥ 1, players visit every state at least once in
every 6L ln(St/δ) consecutive iterations before time t.

Proof. First, we fix time t ≥ 1 and define t′ = 3L ln(St3/δ). Let us consider the following time intervals:
[1, t′], [t′, 2t′], . . . , [t− t′, t]. Using Proposition E.1, we known for each interval, with probability at least 1− δ

t3 , players
visit every state s. Using a union bound over all intervals, we have with probability at least 1− δ

t2 , in every interval, players
visit every state s. Since every 2t′ consecutive iterations must contain an interval of length L′, we have with probability at
least 1− δ

t2 , players visit every state s in every 2t′ consecutive iterations until time t. Applying union bound over all t ≥ 1
completes the proof.

According to Corollary E.2, in the remaining of this section , we assume that for any t ≥ 1, players visit every state at least
once in every 6L ln(St/δ) iterations until time t.

E.2. Analysis Overview

We introduce some notations for simplicity. We denote by Es′∼P s [V s′

t ] the A × A matrix such that (Es′∼P s [V s′

t ])a,b =

Es′∼P s
a,b

[V s′

t ]. Let tτ (s) be the τ -th time the players visit state s, and define x̂s
τ = xs

tτ (s)
and ŷsτ = ystτ (s). Then, define

the regularized game for each state s via the loss function fs
τ (x, y) = x⊤(Gs + γEs′∼P s [V s′

tτ (s)
])y − ϵτϕ(x) + ϵτϕ(y).

Furthermore, let ẑsτ⋆ = (x̂s
τ⋆, ŷ

s
τ⋆) be the equilibrium of fs

τ (x, y) over Ωτ × Ωτ . In the following analysis, we fix some
t ≥ 1.

Step 1: Policy Convergence to NE of Regularized Game Using similar techniques to Step 1 and Step 2 in the analysis
of Algorithm 1, we can upper bound KL(ẑsτ+1⋆, ẑ

s
τ+1) like Eq. (2) with similar subsequent analysis for term1-term4. The

analysis for term5 where vsi = KL(ẑsi+1⋆, ẑ
s
i+1)− KL(ẑsi⋆, ẑ

s
i+1) is more challenging compared to the matrix game case

since here V s
ti(s)

is changing between two visits to state s. To handle this term, we leverage the following facts for any s′:
(1) the irreducibility assumption ensures that ti+1(s) − ti(s) ≤ O(L ln(St/δ)) thus the number of updates of the value
function at state s′ is bounded; (2) until time ti(s) ≥ i, state s′ has been visited at least Ω( i

L ln(St/δ) ) times thus each change
of the value function between ti(s) and ti+1(s) is at most O(( i

L ln(St/δ) )
−kα). With these arguments, we can bound term5

by O
(
ln4(SAt/δ)Lτ−kα+kη+2kϵ

)
. Overall, we have the following policy convergence of NE of the regularized game

(Lemma E.4): KL(ẑsτ⋆, ẑ
s
τ ) ≤ O

(
A ln4(SAt/δ)Lτ−k♯

)
, where k♯ = min{kβ − kϵ, kη − kβ , kα − kη − 2kϵ}.

Step 2: Value Convergence Unlike matrix games, policy convergence to NE of the regularized game is not enough
for convergence in duality gap. We also need to bound |V s

t − V s
⋆ | since the regularized game is defined using V s

t , the
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value function maintained by the algorithm, instead of the minimax game value V s
⋆ . We use the following weighted

regret quantities as a proxy: Regsτ ≜maxx,y
(∑τ

i=1 α
i
τ (f

s
i (x̂

s
i , ŷ

s
i )− fs

i (x
s, ŷsi )) ,

∑τ
i=1 α

i
τ (f

s
i (x̂

s
i , y

s
i )− fs

i (x̂
s
i , ŷ

s
i ))
)
,

where αi
τ = αi

∏τ
j=i+1(1 − αj). We can upper bound the weighted regret Regs

τ using a similar analysis as in Step
1 (Lemma E.6). We then show a contraction for |V s

tτ (s)
− V s

⋆ | with the weighted regret quantities: |V s
tτ (s)

− V s
⋆ | ≤

γ
∑τ

i=1 α
i
τ maxs′ |V s′

ti(s)
−V s′

⋆ |+ Õ(ϵτ +Regsτ ). This leads to the following convergence of V s
t (Lemma E.7):|V s

t −V s
⋆ | ≤

Õ(t−k∗), where k∗ = min {kη, kβ , kα − kβ , kϵ}.

Obtaining Last-Iterate Convergence Rate Fix any t and let τ be the number of visits to s before time t. So far we have
shown (1) policy convergence of KL(ẑsτ⋆, ẑ

s
τ ) in the regularized game; (2) and value convergence of |V s

t − V s
⋆ |. Using the

fact that the regularized game is at most O(ϵτ + |V s
t − V s

⋆ |) away from the minimax game martrix Q⋆ and appropriate
choices of parameters proves Theorem 5.1.

E.3. Part I. Basic Iteration Properties

Lemma E.3. For any xs ∈ Ωτ+1,

fs
τ (x̂

s
τ , ŷ

s
τ )− fs

τ (x
s, ŷsτ )

≤
(1− ητ ϵτ )KL(xs, x̂s

τ )− KL(xs, x̂s
τ+1)

ητ
+

10ητA ln2(Aτ)

(1− γ)2
+

2ητA

(1− γ)2
λs
τ + ξs

τ
+ ζs

τ
(xs).

(see the proof for the definitions of λs
τ , ξ

s

τ
, ζs

τ
(·))

Proof. Consider a fixed s and a fixed τ , and let t = tτ (s) be the time when the players visit s at the τ -th time.

fs
τ (x̂

s
τ , ŷ

s
τ )− fs

τ (x
s, ŷsτ )

= (x̂s
τ − xs)⊤

(
Gs + γEs′∼P s

[
V s′

t

])
ŷsτ − ϵτϕ(x̂

s
τ ) + ϵτϕ(x

s)

= (x̂s
τ − xs)⊤

[(
Gs + γEs′∼P s

[
V s′

t

])
ŷsτ + ϵτ ln x̂

s
τ

]
− ϵτKL(xs, x̂s

τ )

= (x̂s
τ − xs)⊤gt − ϵτKL(xs, x̂s

τ ) + (x̂s
τ )

⊤

((
Gs + γEs′∼P s

[
V s′

t

])
ŷsτ −

1[âsτ = a]
(
σt + γV

st+1

t

)
x̂s
τ,a + βτ

)
︸ ︷︷ ︸

ξs
τ

+ (xs)⊤

(
1[âsτ = a]

(
σt + γV

st+1

t

)
x̂s
τ,a + βτ

−
(
Gs + γEs′∼P s

[
V s′

t

])
ŷsτ

)
︸ ︷︷ ︸

ζs
τ
(xs)

≤
(1− ητ ϵτ )KL(xs, x̂s

τ )− KL(xs, x̂s
τ+1)

ητ

+
10ητA ln2(Aτ)

(1− γ)2
+

2ητA

(1− γ)2
× 1

|A|
∑
a

(
1[âsτ = a]

x̂s
τ,a + βτ

− 1

)
︸ ︷︷ ︸

λs
τ

+ξs
τ
+ ζs

τ
(xs),

where we omit some calculation steps due to the similarity to Eq. (3).

E.4. Part II. Policy Convergence to the Nash of Regularized Game

Lemma E.4. With probability at least 1−O(δ), for all s ∈ S, t ≥ 1 and τ ≥ 1 such that tτ (s) ≤ t, we have

KL(ẑsτ⋆, ẑ
s
τ ) ≤ O

(
A ln5(SAt/δ)L2τ−k♯

)
,

where k♯ = min{kβ − kϵ, kη − kβ , kα − kη − 2kϵ}.
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Proof. In this proof, we abbreviate ζs
i
(x̂s

i⋆) as ζs
i
. By Lemma E.3, for all i ≤ τ we have

KL(x̂s
i⋆, x̂

s
i+1) ≤ (1− ηiϵi)KL(x̂s

i⋆, x̂
s
i ) + ηi (f

s
i (x̂

s
i⋆, ŷ

s
i )− fs

i (x̂
s
i , ŷ

s
i ))

+
10η2iA ln2(Aτ)

(1− γ)2
+

2η2iA

(1− γ)2
λs
i + ηiξ

s

i
+ ηiζ

s

i
.

Similarly, for all i ≤ τ , we have

KL(ŷsi⋆, ŷ
s
i+1) ≤ (1− ηiϵi)KL(ŷsi⋆, ŷ

s
i ) + ηi (f

s
i (x̂

s
i , ŷ

s
i )− fs

i (x̂
s
i , ŷ

s
i⋆))

+
10η2iA ln2(Aτ)

(1− γ)2
+

2η2iA

(1− γ)2
λ
s

i + ηiξ
s

i + ηiζ
s

i .

Adding the two inequalities up, and using fs
i (x̂

s
i⋆, ŷ

s
i )− fs

i (x̂
s
i , ŷ

s
i⋆) ≤ 0 because (x̂s

i⋆, ŷ
s
i⋆) is the equilibrium of fs

i , we get
for i ≤ τ

KL(ẑsi+1⋆, ẑ
s
i+1) ≤ (1− ηiϵi)KL(ẑsi⋆, ẑ

s
i ) +

20η2iA ln2(Aτ)

(1− γ)2
+

2η2iA

(1− γ)2
λs
i + ηiξ

s
i + ηiζ

s
i + vsi , (9)

where vsi = KL(ẑsi+1⋆, ẑ
s
i+1)− KL(ẑsi⋆, ẑ

s
i+1) and □s = □s +□

s
for □ = ξi, ζi.

Expanding Eq. (9), we get

KL(ẑsτ+1⋆, ẑ
s
τ+1) ≤

20A ln2(Aτ)

(1− γ)2

τ∑
i=1

wi
τη

2
i︸ ︷︷ ︸

term1

+
2A

(1− γ)2

τ∑
i=1

wi
τη

2
i λ

s
i︸ ︷︷ ︸

term2

+

τ∑
i=1

wi
τηiξ

s
i︸ ︷︷ ︸

term3

+

t∑
i=1

wi
τηiζ

s
i︸ ︷︷ ︸

term4

+

τ∑
i=1

wi
τv

s
i︸ ︷︷ ︸

term5

.

These five terms correspond to those in Eq. (4), and can be handled in the same way. For term1 to term4, we follow exactly
the same arguments there, and bound their sum as with probability at least 1−O

(
δ

Sτ2

)
,

4∑
j=1

termj = O
(
A ln3(SAτ/δ)

(
τ−kη+kϵ + τ−2kη+kβ + τ−kβ+kϵ + τ−

1
2kη+

1
2kϵ + τ−kη+kβ

))
.

To bound term5, by Lemma C.2 and Lemma E.5, we have

|vsτ | = O (ln(Aτ)) · ∥ẑsτ⋆ − ẑsτ+1⋆∥1 = O
(
ln4(SAt/δ)L2 · τ−kα+kϵ

)
.

Therefore, by Lemma B.1,

term5 =

τ∑
i=1

wi
τv

s
i = O

(
ln5(SAt/δ)L2 · τ−kα+kη+2kϵ

)
.

Combining all the terms with union bound over s ∈ S and τ ≥ 1 finishes the proof.

Lemma E.5. For any sand τ ≥ 0 such that tτ (s) ≤ t, ∥ẑsτ⋆ − ẑsτ+1⋆∥1 = O
(
ln3(SAt/δ)L2 · τ−kα+kϵ

)
.

Proof. The bound holds trivially when τ ≤ 2L. Below we focus on the case with τ > 2L. By exactly the same arguments
as in the proof of Lemma C.3, we have an inequality similar to Eq. (8):

∥zsτ⋆ − zsτ+1⋆∥1

= O

(
1

ϵτ+1
sup
xs,ys

∥∇fs
τ (x

s, ys)−∇fs
τ+1(x

s, ys)∥∞ +
ln1/2(Aτ)
√
ϵτ+1τ3/2

)

≤ O

(
1

ϵτ+1
sup
s′

∣∣∣V s′

tτ (s)
− V s′

tτ+1(s)

∣∣∣+ (ϵτ − ϵτ+1) ln(Aτ)

ϵτ+1
+

ln1/2(Aτ)
√
ϵτ+1τ3/2

)
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≤ O
(

1

ϵτ+1
sup
s′

∣∣∣V s′

tτ (s)
− V s′

tτ+1(s)

∣∣∣+ ln(Aτ)

τ

)
. (10)

Since tτ (s) ≤ t and we assume that every state is visited at least once in 6L log(St/δ) steps (Corollary E.2), we have that
for any state s′, ns′

tτ (s)
≥ tτ (s)

6L log(St/δ) − 1. Thus, whenever V s′

t updates between tτ (s) and tτ+1(s), the change is upper

bounded by 1
1−γ (

tτ (s)
6L log(St/δ) − 1)−kα . Besides, between tτ (s) and tτ+1(s), V s′

t can change at most 6L log(St/δ) times.
Therefore,∣∣∣V s′

tτ (s)
− V s′

tτ+1(s)

∣∣∣
≤ 1

1− γ
× 6L log(St/δ)×

(
tτ (s)

6L log(St/δ)
− 1

)−kα

≤ 1

1− γ
× 6L log(St/δ)×

(
τ

6L log(St/δ)
− 1

)−kα

= O
(
L2 ln2(St/δ)τ−kα

1− γ

)
, (11)

where the last inequality holds since kα < 1. Combining Eq. (10) and Eq. (11) with the fact that ϵτ = 1
1−γ τ

−kϵ finishes the
proof.

E.5. Part III. Value Convergence

For positive integers τ ≥ i, we define αi
τ = αi

∏τ
j=i+1(1− αj).

Lemma E.6 (weighted regret bound). With probability 1−O(δ), for any s, any visitation count τ ≥ τ0, and any xs ∈ Ωτ+1,

τ∑
i=1

αi
τ (f

s
i (x̂

s
i , ŷ

s
i )− fs

i (x
s, ŷsi )) ≤ O

(
A ln3(SAτ/δ)τ−k′

1− γ

)
.

where k′ = min {kη, kβ , kα − kβ}.

Proof. We will be considering a weighted sum of the instantaneous regret bound established in Lemma E.3. However,
notice that for fs

i , Lemma E.3 only provides a regret bound with comparators in Ωi+1. Therefore, for a fixed xs ∈ Ωτ+1,
we define the following auxiliary comparators for all i = 1, . . . , τ :

x̃s
i =

pi
A
1+ (1− pi)x

s

where pi ≜ (τ+1)2−(i+1)2

(i+1)2[(τ+1)2−1] . Since xs ∈ Ωτ+1, we have that for any a, x̃s
i,a ≥

pi

A + 1−pi

A(τ+1)2 = 1
A(i+1)2 , and thus

x̃s
i ∈ Ωi+1.

Applying Lemma E.3 and considering the weighted sum of the bounds, we get
τ∑

i=1

αi
τ (f

s
i (x̂

s
i , ŷ

s
i )− fs

i (x̃
s
i , ŷ

s
i ))

≤
τ∑

i=1

αi
τ

(
(1− ηiϵi)KL(x̃s

i , x̂
s
i )− KL(x̃s

i , x̂
s
i+1)

ηi
+

10ηiA ln2(Aτ)

(1− γ)2
+

2ηiA

(1− γ)2
λs
i + ξs

i
+ ζs

i
(x̃s

i )

)

≤
τ∑

i=2

(
αi
τ (1− ηiϵi)

ηi
KL(x̃s

i , x̂
s
i )−

αi−1
τ

ηi−1
KL(x̃s

i−1, x̂
s
i )

)
︸ ︷︷ ︸

term0

(notice that (1− η1ϵ1) = 0)

+
10A ln2(Aτ)

(1− γ)2

τ∑
i=1

αi
τηi︸ ︷︷ ︸

term1

+
2A

(1− γ)2

τ∑
i=1

αi
τηiλ

s
i︸ ︷︷ ︸

term2

+

τ∑
i=1

αi
τξ

s

i︸ ︷︷ ︸
term3

+

τ∑
i=1

αi
τζ

s

i
(x̃s

i )︸ ︷︷ ︸
term4

.

term0 =

τ∑
i=2

KL(x̃s
i , x̂

s
i )

(
αi
τ (1− ηiϵi)

ηi
− αi−1

τ

ηi−1

)
+

τ∑
i=2

αi−1
τ

ηi−1

(
KL(x̃s

i−1, x̂
s
i )− KL(x̃s

i , x̂
s
i )
)
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(a)

≤ 0 +O

(
ln(Aτ)

τ∑
i=2

αi−1
τ

ηi−1
∥x̃s

i−1 − x̃s
i∥1

)

= O

(
ln(Aτ)

τ∑
i=2

αi−1
τ

ηi−1
|pi−1 − pi|

)

≤ O

(
ln(Aτ)

τ∑
i=2

αi−1
τ

ηi−1

1

(i− 1)2

)

= O
(
ln(Aτ)

1− γ
τkη−2

)
(by Lemma B.1)

where (a) is by Lemma C.2 and the following calculation:

αi
τ (1− ηiϵi)

ηi
× ηi−1

αi−1
τ

=
ηi−1

ηi
× αi

αi−1
× 1− ηiϵi

1− αi
=

(
i− 1

i

)−kη+kα

× 1− i−kη−kϵ

1− i−kα
≤ 1× 1 = 1.

We proceed to bound other terms as follows: with probability at least 1−O
(

δ
Sτ2

)
term1 = O

(
A ln3(Aτ)

1− γ
τ−kη

)
, (Lemma B.1)

term2 = O
(
A ln(SAτ/δ)

1− γ
×max

i≤τ

αi
τηi
βτ

)
(Lemma B.7)

= O
(
A ln(SAτ/δ)τ−kα−kη+kβ

1− γ

)
, (Lemma B.2)

term3 = O

 A

1− γ

τ∑
i=1

βiα
i
τ +

1

1− γ

√√√√ln(SAτ/δ)

τ∑
i=1

(αi
τ )

2

 (Lemma B.6)

= O

A ln(Aτ)τ−kβ

1− γ
+

1

1− γ

√√√√ln(SAτ/δ)

τ∑
i=1

αi
ταi

 (Lemma B.1)

= O

A ln(SAτ/δ)
(
τ−kβ + τ−

kα
2

)
1− γ

 , (Lemma B.1)

term4 =

τ∑
i=1

αi
τpiζ

s

i

(
1

A
1

)
+

τ∑
i=1

αi
τ (1− pi)ζ

s

i
(xs) (by the linearity of ζs

i
(·))

= O
(
ln(SAτ/δ)

1− γ
max
i≤τ

αi
τ

βτ

)
(Lemma B.7)

= O
(
ln(SAτ/δ)τ−kα+kβ

1− γ

)
. (Lemma B.2)

Combining all terms, we get

τ∑
i=1

αi
τ (f

s
i (x̂

s
i , ŷ

s
i )− fs

i (x̃
s
i , ŷ

s
i )) = O

(
A ln3(SAτ/δ)

(
τ−kη + τ−kβ + τ−kα+kβ

)
1− γ

)
. (12)

Finally,

τ∑
i=1

αi
τ (f

s
i (x̃

s
i , ŷ

s
i )− fs

i (x
s, ŷsi )) = O

(
ln(Aτ)

1− γ

τ∑
i=1

αi
τ∥x̃s

i − xs∥1

)

= O

(
ln(Aτ)

1− γ

τ∑
i=1

αi
τpi

)
= O

(
ln(Aτ)

τ2(1− γ)

)
. (13)
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Adding up Eq. (12) and Eq. (13) and applying union bound over all s ∈ S and τ finish the proof.

Lemma E.7. With probability at least 1−O(δ), for any state s ∈ S and time t ≥ 1, we have

|V s
t − V s

⋆ | ≤ O

(
A ln(SAt/δ)

(1− γ)2

(
L ln(St/δ)

1− γ
ln

t

1− γ

) k∗
1−kα

(
L ln(St/δ)

t

)k∗
)
,

where k∗ = min {kη, kβ , kα − kβ , kϵ}.

Proof. Fix an s and a visitation count τ . Let ti be the time index when the players visit s for the i-th time. Then with
probability at least 1− δ

Sτ2 ,

V s
tτ =

τ∑
i=1

αi
τ

(
σti + γV

sti+1

ti

)
≤

τ∑
i=1

αi
τ x̂

s⊤
i

(
Gs + γEs′∼P s

[
V s′

ti

])
ŷsi +

τ∑
i=1

αi
τ

[
σti + γV

sti+1

ti − x̂s⊤
i

(
Gs + γEs′∼P s

[
V s′

ti

])
ŷsi

]

=

τ∑
i=1

αi
τ (f

s
i (x̂

s
i , ŷ

s
i ) + ϵiϕ(x̂

s
i )− ϵiϕ(ŷ

s
i )) +O

 1

1− γ

√√√√ln(Sτ/δ)

τ∑
i=1

(αi
τ )

2

 (Azuma’s inequality)

≤
τ∑

i=1

αi
τf

s
i (x̂

s
i , ŷ

s
i ) +O

(
ϵτ ln(A) +

ln(SAτ/δ)τ−
kα
2

1− γ

)

≤ min
x

τ∑
i=1

αi
τf

s
i (x

s, ŷsi ) +O

(
ϵτ ln(A) +

A ln3(SAτ/δ)τ−k′

1− γ

)
(k′ is defined in Lemma E.6 with k′ ≤ 1

2 (kβ + kα − kβ) =
kα

2 )

≤ min
xs

τ∑
i=1

αi
τ (x

s)
⊤
(
Gs + γEs′∼P s

[
V s′

ti

])
ŷsi +O

(
A ln3(SAτ/δ)τ−k∗

1− γ

)

≤ min
xs

τ∑
i=1

αi
τ (x

s)
⊤
(
Gs + γEs′∼P s

[
V s′

⋆

])
ŷsi + γ

τ∑
i=1

αi
τ max

s′

∣∣∣V s′

ti − V s′

⋆

∣∣∣+O(A ln3(SAτ/δ)τ−k∗

1− γ

)

≤ min
xs

max
ys

(xs)⊤
(
Gs + γEs′∼P s

[
V s′

⋆

])
ys + γ

τ∑
i=1

αi
τ max

s′

∣∣∣V s′

ti − V s′

⋆

∣∣∣+O(A ln3(SAτ/δ)τ−k∗

1− γ

)

≤ V s
⋆ + γ

τ∑
i=1

αi
τ max

s′

∣∣∣V s′

ti − V s′

⋆

∣∣∣+O(A ln3(SAτ/δ)τ−k∗

1− γ

)
.

Similar inequality can be also obtained through the perspective of the other player: with probability at least 1− δ
Sτ2

V s
tτ ≥ V s

⋆ − γ

τ∑
i=1

αi
τ max

s′

∣∣∣V s′

ti − V s′

⋆

∣∣∣−O(A ln3(SAτ/δ)τ−k∗

1− γ

)
,

which, combined with the previous inequality and union bound over s ∈ S and τ ≥ 1, gives the following relation: with
probability at least 1−O(δ), for any s ∈ S and τ ≥ 1,

∣∣V s
tτ − V s

⋆

∣∣ ≤ γ

τ∑
i=1

αi
τ max

s′

∣∣∣V s′

ti − V s′

⋆

∣∣∣+O(A ln3(SAτ/δ)τ−k∗

1− γ

)
. (14)

Before continuing, we first some auxiliary quantities. For a fixed t, define

u(t) =

⌈(
16× 6L ln(St/δ)

1− γ
ln

t

1− γ

) 1
1−kα

⌉
;
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for fixed (τ, t) we further define

v(τ, t) =

⌊
τ − 3τkα ln

t

1− γ

⌋
.

Now we continue to prove a bound for |V s
t − V s

⋆ |. Suppose that Eq. (14) can be written as

∣∣V s
tτ − V s

⋆

∣∣ ≤ γ

τ∑
i=1

αi
τ max

s′

∣∣∣V s′

ti − V s′

⋆

∣∣∣+ C1A ln3(SAτ/δ)τ−k∗

1− γ
(15)

for a universal constant C1 ≥ 1. Below we use induction to show that for all t,

|V s
t − V s

⋆ | ≤ Φ(t) ≜
8C1A ln3(SAt/δ)

(1− γ)2

(
6L ln(St/δ)(u(t) + 1)

t

)k∗

. (16)

This is trivial for t = 1.

Suppose that Eq. (16) holds for all time 1, . . . , t− 1 and for all s. Now we consider time t and a fixed state s. We denote
L′ = 6L ln(St/δ). Let τ = ns

t+1 and let 1 ≤ t1 < t2 < · · · < tτ ≤ t be the time indices when the players visit state s. If
t ≤ L′(u(t) + 1), then Eq. (16) is trivial. If t ≥ L′(u(t) + 1), we have τ ≥ t

L′ − 1 ≥ u(t). Therefore,

|V s
t − V s

⋆ |
= |V s

tτ − V s
⋆ | (tτ is the last time up to time t when V s

t is updated)

≤ γ

τ∑
i=1

αi
τ max

s′

∣∣∣V s′

ti − V s′

⋆

∣∣∣+ C1A ln3(SAτ/δ)τ−k∗

1− γ
(by Eq. (15))

≤ γ

v(τ,t)∑
i=1

αi
τ max

s′

∣∣∣V s′

ti − V s′

⋆

∣∣∣+ γ

τ∑
i=v(τ,t)+1

αi
τ max

s′

∣∣∣V s′

ti − V s′

⋆

∣∣∣+ C1A ln3(SAτ/δ)τ−k∗

1− γ

(a)

≤ γτ × (1− γ)3

t3
× 1

1− γ
+ γ

τ∑
i=v(τ,t)+1

αi
τΦ(ti) +

C1A ln3(SAτ/δ)τ−k∗

1− γ

≤ γ

τ∑
i=v(τ,t)+1

αi
τΦ(ti) +

2C1A ln3(SAτ/δ)τ−k∗

1− γ
(induction hypothesis)

≤ γ

τ∑
i=v(τ,t)+1

αi
τΦ(t)×

(
t

ti

)k∗

+
2C1A ln3(SAτ/δ)τ−k∗

1− γ

(by the definition of Φ and that u(·) is an increasing function)
(b)

≤ γ

(
1 +

1− γ

2

) τ∑
i=v(τ,t)+1

αi
τΦ(t) +

2C1A ln3(SAτ/δ)τ−k∗

1− γ

≤ γ

(
1 +

1− γ

2

)
Φ(t) +

2C1A ln3(SAt/δ)
(

t
2L′

)−k∗

1− γ
(t ≥ τ ≥ t

L′ − 1 ≥ t
2L′ since t ≥ L′(u(t) + 1) ≥ 2L′)

≤ γ

(
1 +

1− γ

2

)
Φ(t) +

1− γ

2
Φ(t)

= Φ(t).

In (a) we use the following property: if τ ≥ u(t) and i ≤ v(τ, t), then

αi
τ = i−kα

τ∏
j=i+1

(
1− j−kα

)
≤
(
1− τ−kα

)τ−i

≤
(
1− τ−kα

)3τkα ln t
1−γ ≤ exp

(
−τ−kα · 3τkα ln

t

1− γ

)
=

(1− γ)3

t3
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In (b) we use the following calculation:

t

ti
≤ tτ+1

ti
= 1 +

tτ+1 − ti
ti

≤ 1 +
L′(τ + 1− i)

i

≤ 1 + L′
(

τ + 1

v(τ, t)
− 1

)
≤ 1 + L′

(
τ + 1

τ − 4τkα ln t
1−γ

− 1

)

= 1 + L′

(
1 + 1

τ

1− 4τkα−1 ln t
1−γ

− 1

)

≤ 1 + L′

(
1 + 1−γ

16L′

1− 1−γ
4L′

− 1

)

≤ 1 + L′
(
1− γ

2L′

)
= 1 +

1− γ

2

where the first inequality is due to the fact that at time t, state s has only been visited for τ times; the second inequality is
because for any k > j, we have tj ≥ j and tk − tj ≤ L′(k − j); the third inequality is by i ≥ v(τ, t); the fourth inequality
is by the definition of v(τ, t); the fifth inequality is because 4τkα−1 ln t

1−γ ≤
1−γ
4L′ since τ ≥ u(t), and 1

τ < 1
u(t) ≤

1−γ
16L′

since u(t) ≥ 16L′

1−γ ; the last inequality is because 1+ 1
16a

1− 1
4a
≤ 1 + 1

2a for a ∈ [0, 1].

E.6. Part IV. Combining

In this subsection, we combine previous lemmas to show last-iterate convergence rate of Algorithm 2 and prove Theorem 5.1.

Lemma E.8. With probability at least 1−O(δ), for any time t ≥ 1,

max
s,x,y

(
V s
xt,y − V s

x,yt

)
≤ O

(
AL2+1/ε ln4+1/ε(SAt/δ) ln1/ε(t/(1− γ))

(1− γ)2+1/ε
t−

1
9+ε

)
.

Proof. Using Lemma B.10, we can bound the duality gap of the whole game by the duality gap on an individual state:

max
s,x,y

(
V s
xt,y − V s

x,yt

)
≤ 2

1− γ
max
s,x,y

(xs
tQ

s
⋆y

s − xsQs
⋆y

s
t )

=
2

1− γ
max
s,x,y

(
xs
t

(
Gs + γEs′∼P s

[
V s′

⋆

])
ys − xs

(
Gs + γEs′∼P s

[
V s′

⋆

])
yst

)
≤ 2

1− γ
max
s,x,y

(
xs
t

(
Gs + γEs′∼P s

[
V s′

t

])
ys − xs

(
Gs + γEs′∼P s

[
V s′

t

])
yst

)
+

4γ

1− γ
max

s
|V s

t − V s
⋆ |

With probability at least 1−O(δ), for any s, xs, ys, and t ≥ 1, denote τ the number of visitation to state s until time t, then

xs
t

(
Gs + γEs′∼P s

[
V s′

t

])
ys − xs

(
Gs + γEs′∼P s

[
V s′

t

])
yst

= x̂s
τ

(
Gs + γEs′∼P s

[
V s′

t

])
ys − xs

(
Gs + γEs′∼P s

[
V s′

t

])
ŷsτ

≤ x̂s
τ

(
Gs + γEs′∼P s

[
V s′

tτ (s)

])
ys − xs

(
Gs + γEs′∼P s

[
V s′

tτ (s)

])
ŷsτ + 2max

s′
|V s′

t − V s′

tτ (s)
|

≤ x̂s
τ⋆

(
Gs + γEs′∼P s

[
V s′

tτ (s)

])
ys − xs

(
Gs + γEs′∼P s

[
V s′

tτ (s)

])
ŷsτ⋆ + 2max

s′
|V s′

t − V s′

tτ (s)
|+O(∥ẑsτ − ẑsτ⋆∥1)
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≤ 2ϵτ ln(A) +O
(
1

τ

)
+ 2max

s′
|V s′

t − V s′

tτ (s)
|+O(

√
KL(ẑsτ , ẑsτ⋆)) (Lemma B.9)

≤ O
(
ln(A)

1− γ
τ−kϵ

)
+O

(
L ln(St/δ)τ−kα

1− γ

)
+O

(√
A ln5(SAt/δ)L2τ−

k♯
2

)
. (Lemma E.4)

Combing the above two inequality with Lemma E.4 and Lemma E.7 and the choice of parameters kα = 9
9+ε , kε = 1

9+ε ,
kβ = 3

9+ε , and kη = 5
9+ε , we have k♯ = min{kβ−kϵ, kη−kβ , kα−kη−2kϵ} = 2

9+ε , k∗ = min {kη, kβ , kα − kβ , kϵ} =
1

9+ε , and

max
s,x,y

(
V s
xt,y − V s

x,yt

)
≤ 2

1− γ
max
s,x,y

(
xs
t

(
Gs + γEs′∼P s

[
V s′

t

])
ys − xs

(
Gs + γEs′∼P s

[
V s′

t

])
yst

)
+

4γ

1− γ
max

s
|V s

t − V s
⋆ |

≤ O

(√
A ln5/2(SAt/δ)

(1− γ)2
Lτ−min{kϵ,

k♯
2 ,kα}

)
+O

(
A ln3(SAt/δ)

(1− γ)3

(
L ln(St/δ)

1− γ
ln

t

1− γ

) k∗
1−kα

(
L ln(St/δ)

t

)k∗
)

= O

(
AL2+1/ε ln4+1/ε(SAt/δ) ln1/ε(t/(1− γ))

(1− γ)3+1/ε
· t−

1
9+ε

)
. ( t

L ≤ τ ≤ t)

F. Convergent Analysis of Algorithm 3
F.1. Analysis Overview of Theorem 6.1

For general Markov games, it no longer holds that every state s is visited often, and thus the analysis is much more challenging.
We first define two regularized games based on V s

t and the corresponding quantity V
s

t for the y-player. Define tτ (s),
x̂s
τ , ŷsτ the same way as in the previous section. Then define fs

τ
(x, y) ≜ x⊤(Gs + γEs′∼P s [V s′

tτ (s)])y − ϵϕ(x) + ϵϕ(y),

f
s

τ (x, y) ≜ x⊤(Gs + γEs′∼P s [V
s′

tτ (s)])y − ϵϕ(x) + ϵϕ(y) and denote Jt = maxx,y(x
s⊤t
t (Gst + γEs′∼P st [V

s′

t ]y
st −

x
s⊤t
t (Gs + γEs′∼P st [V

s′

t ])y
st
t ). We first bound the “path duality gap” as follows

max
x,y

(
x
s⊤t
t Qst

⋆ ys − xs⊤t Qst
⋆ yst

)
≤ Jt +O

(
max
s′

(
V s′

⋆ − V
s′

t , V
s′

t − V s′

⋆

))
. (17)

Value Convergence: Bounding V s
t − V s

⋆ and V s
⋆ − V

s

t This step is similar to Step 2 in the analysis of Algorithm 2.
We first show an upper bound of the weighted regret (Lemma F.3):

∑τ
i=1 α

i
τ (f

s

i
(x̂s

i , ŷ
s
i )− fs

i
(xs, ŷsi )) ≤ 1

2bnsτ , where
αi
τ = αi

∏τ
j=i+1(1 − αj). Note that the value function V s

t is updated using σt + γV st+1
t − bnsτ . Thus when relating

|V s
t − V s

⋆ | to the regret, the regret term and the bonus term cancel out and we get V s
t ≤ V s

⋆ +O( ϵ ln(AT )
1−γ ) (Lemma F.7).

The analysis for V s
⋆ − V

s

t is symmetric. By proper choice of ϵ, both terms are bounded by 1
8u. Combining the above with

Eq. (17), we can upper bound the left-hand side of the desired inequality Eq. (1) by
∑T

t=1 1
[
Jt ≥ 3

4u
]
, which is further

upper bounded in Eq. (29) by

∑
s

nT+1(s)∑
τ=1

1

[
max

y
f
s

τ (x̂
s
τ , y

s)− f
s

τ (ẑ
s
τ ) ≥

u

8

]
+
∑
s

nT+1(s)∑
τ=1

1
[
fs

τ
(ẑsτ )−min

x
fs

τ
(xs, ŷsτ ) ≥

u

8

]
+

T∑
t=1

1
[
x
s⊤t
t

(
γEs′∼P st

[
V

s′

t − V s′

t

])
ystt ≥

u

4

]
. (18)

Policy Convergence to NE of Regularized Games To bound the first two terms, we show convergence of the policy
(x̂s

τ , ŷ
s
τ ) to Nash equilibria of both games fs

τ
and f

s

τ . To this end, fix any p ∈ [0, 1], we define fs
τ = pfs

τ
+ (1− p)f

s

τ and
let ẑsτ⋆ = (x̂s

τ⋆, ŷ
s
τ⋆) be the equilibrium of fs

τ (x, y). The analysis is similar to previous algorithms where we first conduct
single-step analysis (Lemma F.2) and then carefully bound the weighted recursive terms. We show in Lemma F.8 that for
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any 0 < ϵ′ ≤ 1:
∑

s

∑nT+1(s)
τ=1 1 [KL(ẑsτ⋆, ẑ

s
τ ) ≥ ϵ′] ≤ O(S

2A ln5(SAT/δ)
ηϵ2ϵ′(1−γ)3 ). This proves policy convergence: the number

of iterations where the policy is far away from Nash equilibria of the regularized games is bounded, which can then be
translated to upper bounds on the first two terms.

Value Convergence: Bounding |V s

t−V
s
t | It remains to bound the last term in Eq. (18). Define ct = 1[xst

t (Es′∼P st [V
s′

t −
V s′

t ])y
st
t ≥ ϵ̃] where ϵ̃ = u

4 . Then we only need to bound C ≜
∑T

t=1 ct. We use the weighted sum PT ≜∑T
t=1 ctx

st
t (Es′∼P st [V

s′

t −V
s′

t ])y
st
t as a proxy. On the one hand, PT ≥ Cϵ̃. On the other hand, in Lemma F.5, by recursively

tracking the update of the value function and carefully choosing η and β, we upper bound PT by ≤ Cϵ̃
2 +O(AS ln4(AST/δ)

η(1−γ)3 ).

Combining the upper and lower bound of PT gives C ≤ O(AS ln4(AST/δ)
ηu(1−γ)3 ) (Corollary F.6). Plugging appropriate choices of

ϵ, η, and β in the above bounds proves Theorem 6.1 (see Appendix F).

F.2. Part I. Basic Iteration Properties

Definition F.1. Let tτ (s) be the τ -th time the players visit state s. Define x̂s
τ = xs

tτ (s)
, ŷsτ = ystτ (s), â

s
τ = atτ (s), b̂

s
τ = btτ (s),.

Furthermore, define

fs

τ
(x, y) ≜ x⊤

(
Gs + γEs′∼P s

[
V s′

tτ (s)

])
y − ϵϕ(x) + ϵϕ(y),

f
s

τ (x, y) ≜ x⊤
(
Gs + γEs′∼P s

[
V

s′

tτ (s)

])
y − ϵϕ(x) + ϵϕ(y).

Lemma F.2. For any xs ∈ Ω,

fs

τ
(x̂s

τ , ŷ
s
τ )− fs

τ
(xs, ŷsτ )

≤
(1− ηϵ)KL(xs, x̂s

τ )− KL(xs, x̂s
τ+1)

η
+

10ηA ln2(AT )

(1− γ)2
+

2ηA

(1− γ)2
λs
τ + ξs

τ
+ ζs

τ
(xs).

where

λs
τ =

1

A

∑
a

(
1[âsτ = a]

x̂s
τ,a + β

− 1

)
,

ξs
τ
= (x̂s

τ )
⊤

((
Gs + γEs′∼P s

[
V s′

t

])
ŷsτ −

1[âsτ = a]
(
σt + γV

st+1

t

)
x̂s
τ,a + β

)
,

ζs
τ
(xs) = (xs)⊤

(
1[âsτ = a]

(
σt + γV

st+1

t

)
x̂s
τ,a + β

−
(
Gs + γEs′∼P s

[
V s′

t

])
ŷsτ

)
.

Proof. The proof is exactly the same as that of Lemma E.3.

F.3. Part II. Value Convergence

Lemma F.3 (weighted regret bound). There exists a large enough universal constant κ (used in the definition of bnsτ ) such
that with probability 1−O(δ), for any state s, visitation count τ , and any xs ∈ Ω,

τ∑
i=1

αi
τ

(
fs

i
(x̂s

i , ŷ
s
i )− fs

i
(xs, ŷsi )

)
≤ 1

2
bnsτ .

Proof. Fix state s and visitation count τ ≤ T . Applying Lemma F.2 and considering the weighted sum of the bounds, we
get

τ∑
i=1

αi
τ

(
fs

i
(x̂s

i , ŷ
s
i )− fs

i
(xs, ŷsi )

)
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≤
τ∑

i=1

αi
τ

(
(1− ηϵ)KL(xs, x̂s

i )− KL(xs, x̂s
i+1)

η
+

10ηA ln2(AT )

(1− γ)2
+

2ηA

(1− γ)2
λs
i + ξs

i
+ ζs

i
(xs)

)

≤ α1
τ (1− ηϵ)

η
KL(xs, x̂s

1) +

τ∑
i=2

(
αi
τ (1− ηϵ)

η
KL(xs, x̂s

i )−
αi−1
τ

η
KL(xs, x̂s

i )

)
︸ ︷︷ ︸

term0

+
10ηA ln2(AT )

(1− γ)2

τ∑
i=1

αi
τ︸ ︷︷ ︸

term1

+
2ηA

(1− γ)2

τ∑
i=1

αi
τλ

s
i︸ ︷︷ ︸

term2

+

τ∑
i=1

αi
τξ

s

i︸ ︷︷ ︸
term3

+

τ∑
i=1

αi
τζ

s

i
(xs)︸ ︷︷ ︸

term4

.

Since αi−1
τ = αi−1(1−αi)

αi
αi
τ ≥ (1− αi)α

i
τ ,

term0 ≤
α1
τ

η
KL(xs, x̂s

1) +

τ∑
i=2

KL(xs, x̂s
i )

(
αi
τ (1− ηϵ)

η
− αi

τ (1− αi)

η

)

≤ ln(AT )

(
α1
τ

η
+

τ∑
i=2

αi
ταi

η

)
= O

(
ln(AT )ατ

η

)
.

We proceed to bound other terms as follows: wiht probability at least 1− δ
Sτ2

term1 = O
(
A ln2(AT )η

(1− γ)2

)
, (

∑τ
i=1 α

i
τ = 1)

term2 =
2ηA

(1− γ)2

τ∑
i=1

αi
τ

(
1

A

∑
a

(
1[âsi = a]

x̂s
i,a + β

− 1

))

≤ 2A

(1− γ)2
×O

(
ln(ASτ/δ)max

i≤τ

αi
τη

β

)
(by Lemma B.7)

= O
(
A ln(AST/δ)ατ

(1− γ)2
× η

β

)
,

term3 = O

 A

1− γ

τ∑
i=1

βαi
τ +

1

1− γ

√√√√ln(ASτ/δ)

τ∑
i=1

(αi
τ )

2

 (by Lemma B.6)

= O

 Aβ

1− γ
+

1

1− γ

√√√√ln(ASτ/δ)

τ∑
i=1

αi
ταi


= O

(
A ln(AST/δ) (β + ατ )

1− γ

)
,

term4 = O
(
ln(ASτ/δ)

1− γ
max
i≤τ

αi
τ

β

)
= O

(
ln(AST/δ)ατ

(1− γ)β

)
.

Combining all terms and applying a union bound over s ∈ S and τ , we get with probability 1 − O(δ) such that for any
s ∈ S, visitation count τ , and xs ∈ Ω,

τ∑
i=1

αi
τ

(
fs

i
(x̂s

i , ŷ
s
i )− fs

i
(xs, ŷsi )

)
= O

(
A ln2(AST/δ)

(
η + β + (η−1 + β−1)ατ

)
(1− γ)2

)

= O
(
A ln2(SAT/δ)(β + ατ/η)

(1− γ)2

)
. (using η ≤ β)

This implies the conclusion of the lemma.

Lemma F.4. For all t, s, V
s

t ≥ V s
t .
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Proof. We prove it by induction on t. The inequality clearly holds for t = 1 by the initialization. Suppose that the inequality
holds for 1, 2, . . . , t− 1 and for all s. Now consider time t and state s. Let τ = ns

t , and let 1 ≤ t1 < t2 < . . . < tτ < t be
the time indices when the players visit state s. By the update rule,

∼
V s
t − ∼V

s
t =

τ∑
i=1

αi
τ

(
γV

sti+1

ti − γV
sti+1

ti + 2bnsi
)
> 0

where the inequality is by the induction hypothesis. Therefore,

V
s

t − V s
t = min

{∼
V s
t , H

}
−max

{
∼V

s
t , 0

}
> 0.

In the last inequality we also use the fact that ∼V
s
t ≤ H and

∼
V s
t ≥ 0. Note that by the induction hypothesis and the update

rule of V
s

t and V s
t , we have 0 ≤ V s

i < V
s

i ≤ H for all s and 1 ≤ i ≤ t− 1. Thus ∼V
s
t =

∑τ
i=1 α

i
τ (γV

sti+1

ti − bnsi) ≤ H

and similarly
∼
V s
t ≥ 0.

Lemma F.5. Let c = (c1, . . . , cT ) be any non-negative sequence with ci ≤ cmax∀i and
∑T

t=1 ct = C. Then

T∑
t=1

ct

(
V

st+1

t − V
st+1

t

)
≤ O

(
CA ln3(AST/δ)β

(1− γ)3
+

cmaxAS ln4(AST/δ)

η(1− γ)3

)
.

Proof.

Zc ≜
T∑

t=1

ct

(
V

st+1

t − V
st+1

t

)
≤

T∑
t=1

ct

(
V

st+1

t+1 − V
st+1

t+1

)
+O

(
cmax

∑
s

T∑
t=1

(∣∣∣V s

t+1 − V
s

t

∣∣∣+ ∣∣V s
t+1 − V s

t

∣∣))

≤
T∑

t=1

ct−1

(
V

st
t − V st

t

)
+O

(
cmax

∑
s

T∑
i=1

αi

1− γ

)
(shifting the indices and define c0 = 0)

≤
T∑

t=1

ct−1

(∼
V st
t − ∼V

st
t

)
+O

(
cmaxS

1− γ
×H lnT

)
(using αi =

H+1
H+i )

=
∑
s

nT+1(s)∑
τ=1

ctτ (s)−1

(∼
V s
tτ (s)

− ∼V
s
tτ (s)

)
+O

(
cmaxS ln2 T

(1− γ)2

)
(H = lnT

1−γ )

= γ
∑
s

nT+1(s)∑
τ=1

ctτ (s)−1

τ−1∑
i=1

αi
τ−1

(
V

sti(s)+1

ti(s)
− V

sti(s)+1

ti(s)
+ 2bnsi

)
+O

(
cmaxS ln2 T

(1− γ)2

)

≤ γ
∑
s

nT+1(s)−1∑
i=1

nT+1(s)∑
τ=i+1

αi
τ−1ctτ (s)−1


︸ ︷︷ ︸

c′
ti(s)

(
V

sti(s)+1

ti(s)
− V

sti(s)+1

ti(s)

)

+O

∑
s

nT+1(s)∑
τ=2

ctτ (s)−1bnsτ−1 +
cmaxS ln2 T

(1− γ)2


≤ γ

T∑
t=1

c′t

(
V

st+1

t − V
st+1

t

)
+O

∑
s

Cs/cmax∑
τ=1

cmaxbnsτ +
cmaxS ln2 T

(1− γ)2

 (Cs ≜
∑nT+1(s)

τ=1 ctτ (s)−1)

≤ γ

T∑
t=1

c′t

(
V

st+1

t − V
st+1

t

)
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+O

∑
s

Cs/cmax∑
τ=1

cmaxA ln2(AST/δ)(β + ατ/η)

(1− γ)2
+

cmax ln
2 T

(1− γ)2


≤ γ

T∑
t=1

c′t

(
V

st+1

t − V
st+1

t

)
+O

(
CA ln2(AST/δ)β

(1− γ)2
+

cmaxAS ln3(AST/δ)

η(1− γ)2

)
. (19)

Note that c′t is another sequence with

c′i ≤ c′max ≤ cmax sup
i

∞∑
τ=i

αi
τ ≤

(
1 +

1

H

)
cmax

and

T∑
t=1

c′t ≤
T∑

t=1

ct = C

since
∑τ

i=1 α
i
τ = 1 for any τ ≥ 1. Thus, we can unroll the inequality Eq. (19) for H times, which gives

Zc ≤ γH

(
1 +

1

H

)H
cmaxT

1− γ
+H ×O

(
CA ln2(AST/δ)β

(1− γ)2
+

cmaxAS ln3(AST/δ)

η(1− γ)2

)
= O

(
CA ln3(AST/δ)β

(1− γ)3
+

cmaxAS ln4(AST/δ)

η(1− γ)3

)
where in the inequality we use that (1 + 1

H )H ≤ e and γH = (1− (1− γ))H ≤ e−(1−γ)H = 1
T .

Corollary F.6. There exists a universal constant C1 > 0 such that for any ϵ̃ ≥ C1A ln3(AST/δ)β
(1−γ)3 , with probability at least

1−O(δ),

T∑
t=1

1
[
xst⊤
t

(
Es′∼P st

[
V

s′

t − V s′

t

])
ystt ≥ ϵ̃

]
≤ O

(
AS ln4(AST/δ)

ηϵ̃(1− γ)3

)
.

Proof. We apply Lemma F.5 with the following definition of ct:

ct = 1
[
xst
t

(
Es′∼P st

[
V

s′

t − V s′

t

])
ystt ≥ ϵ̃

]
,

which gives

T∑
t=1

ct

(
V

st+1

t − V
st+1

t

)
≤ C2 ×

(
CA ln3(AST/δ)β

(1− γ)3
+

AS ln4(AST/δ)

η(1− γ)3

)
(20)

for some universal constant C2 and C =
∑T

t=1 ct. By Azuma’s inequality, for some universal constant C3 > 0, with
probability 1− δ,

T∑
t=1

ctx
st
t

(
Es′∼P st

[
V

s′

t − V s′

t

])
ystt −

T∑
t=1

ct

(
V

st+1

t − V
st+1

t

)

≤ C3

1− γ

√√√√ln(S/δ)

T∑
t=1

c2t =
C3

1− γ

√
ln(S/δ)C

≤ C3 ×
Cβ

1− γ
+ C3 ×

ln(S/δ)

η(1− γ)
. (by AM-GM and that η ≤ β)

(21)
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Combining Eq. (20) and Eq. (21), we get

T∑
t=1

ctx
st
t

(
Es′∼P st

[
V

s′

t − V s′

t

])
ystt

≤ (C2 + C3)×
(
CA ln3(AST/δ)β

(1− γ)3
+

AS ln4(AST/δ)

η(1− γ)3

)
.

By the definition of ct, the left-hand side above is lower bounded by ϵ̃
∑T

t=1 ct = Cϵ̃. Define C1 = 2(C2 + C3). Then by
the condition on ϵ′, the right-hand side above is above inequality is bounded by

Cϵ̃

2
+

C1

2

(
AS ln4(AST/δ)

η(1− γ)3

)
by the condition on ϵ̃. Combining the upper bound and the lower bound, we get

C ≤ C1 ×
(
AS ln4(AST/δ)

ηϵ̃(1− γ)3

)
.

Lemma F.7. With probability at least 1−O(δ), for any t ≥ 1,

V s
t ≤ V s

⋆ +O
(
ϵ ln(AT )

1− γ

)
, V

s

t ≥ V s
⋆ −O

(
ϵ ln(AT )

1− γ

)
.

Proof. Fix a t and s, let τ = nt(s), and let ti be the time index in which s is visited the i-th time. With probability at least
1− δ

ST , we have

∼V
s
t =

τ∑
i=1

αi
τ

(
σti + γV

sti+1

ti − bnsi
)

≤
τ∑

i=1

αi
τ

(
fs

i
(xs

ti , y
s
ti) + ϵϕ(xs

ti)− ϵϕ(ysti)
)
+

τ∑
i=1

αi
τ

(
σti + γV

sti+1

ti − xs⊤

ti (Gs + Es′∼P st [V s′
ti

])y
s
ti

)
−

τ∑
i=1

αi
τbnsi

≤
τ∑

i=1

αi
τ

(
fs

i
(xs

ti , y
s
ti) + ϵϕ(xs

ti)− ϵϕ(ysti)
)
+

1

1− γ

√√√√2

τ∑
i=1

(αi
τ )

2 log(ST/δ)−
τ∑

i=1

αi
τbnsi

(by Hoeffding’s inequality)

≤
τ∑

i=1

αi
τ

(
fs

i
(xs

ti , y
s
ti) + ϵϕ(xs

ti)− ϵϕ(ysti)
)
+

1

1− γ

√
2ατ log(ST/δ)−

τ∑
i=1

αi
τbnsi (

∑τ
i=1 α

i
τ ≤ 1)

≤
τ∑

i=1

αi
τ

(
fs

i
(xs

ti , y
s
ti) + ϵϕ(xs

ti)− ϵϕ(ysti)
)
− 1

2
bnsτ

(
∑τ

i=1 α
i
τ ≥ 1

2 and bnsτ is decreasing, and
√
ατ ≤ ατ

η + η ≤ ατ

η + β)

≤ min
x∈Ω

τ∑
i=1

αi
τ

(
fs

i
(xs, ysti)

)
+

τ∑
i=1

αi
τ

(
ϵϕ(xs

ti)− ϵϕ(ysti)
)

(by Lemma F.3)

≤ min
x∈Ω

τ∑
i=1

αi
τ (x

s)
⊤
(
Gs + γEs′∼P s

[
V s′

ti

])
ysti +O(ϵ ln(AT )). (xa ≥ 1

AT for any x ∈ Ω.)

Therefore, using a union bound over s and t, we have with probability 1− δ, for all s and t,

V s
t = max{∼V

s
t , 0} ≤ min

x

τ∑
i=1

αi
τ (x

s)
⊤
(
Gs + γEs′∼P s

[
V s′

ti

])
ysti + C4ϵ ln(AT ) (22)
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for some universal constant C4. Next, we use induction to show the first inequality. Suppose that

V s
t′ ≤ V s

⋆ +
C4ϵ ln(AT )

1− γ

for all s and t′ < t. Then by Eq. (22),

V s
t ≤ min

x

τ∑
i=1

αi
τ (x

s)
⊤
(
Gs + γEs′∼P s

[
V s′

⋆ +
C4ϵ ln(AT )

1− γ

])
ysti + C4ϵ ln(AT )

= min
x

τ∑
i=1

αi
τ (x

s)
⊤
(
Gs + γEs′∼P s

[
V s′

⋆

])
ysti +

C4ϵ ln(AT )

1− γ

≤ min
x

τ∑
i=1

max
y

αi
τ (x

s)
⊤
(
Gs + γEs′∼P s

[
V s′

⋆

])
ys +

C4ϵ ln(AT )

1− γ

= min
x

max
y

(xs)
⊤
(
Gs + γEs′∼P s

[
V s′

⋆

])
ys +

C4ϵ ln(AT )

1− γ

= V s
⋆ +

C4ϵ ln(AT )

1− γ
,

which proves the first desired inequality. The other inequality can be proven in the same way.

F.4. Part III. Policy Convergence to the Nash of the Regularized Game

Lemma F.8. Let 0 ≤ p ≤ 1 be arbitrarily chosen, and define

fs
τ (x

s, ys) ≜ pfs

τ
(xs, ys) + (1− p)f

s

τ (x
s, ys)

= xs⊤
(
Gs + Es′∼P s

[
pV s′

tτ (s)
+ (1− p)V

s′

tτ (s)

])
ys − ϵϕ(xs) + ϵϕ(ys).

Furthermore, let ẑsτ⋆ = (x̂s
τ⋆, ŷ

s
τ⋆) be the equilibrium of fs

τ (x, y), and define zst⋆ = ẑsτ⋆ where τ = nt(s). Then with
probability at least 1−O(δ), the following holds for any 0 < ϵ′ ≤ 1:

∑
s

nT+1(s)∑
i=1

1 [KL(ẑsi⋆, ẑ
s
i ) ≥ ϵ′] ≤ O

(
S2A ln5(SAT/δ)

ηϵ2ϵ′(1− γ)3

)
if η and β satisfy the following

β ≤ C5(1− γ)3

A ln3(AST/δ)
ϵϵ′ (23)

η ≤ C6(1− γ)

A ln3(AST/δ)
βϵ′ (24)

with sufficiently small universal constant C5, C6 > 0.

Proof. In this proof, we write ζs
i
(x̂s

i⋆) as ζ
i
. By Lemma F.2, we have

KL(x̂s
i⋆, x̂

s
i+1) ≤ (1− ηϵ)KL(x̂s

i⋆, x̂
s
i ) + η

(
fs

i
(x̂s

i⋆, ŷ
s
i )− fs

i
(x̂s

i , ŷ
s
i )
)

+
10η2A ln2(AT )

(1− γ)2
+

2η2A

(1− γ)2
λs
i + ηξs

i
+ ηζs

i
.

Similarly,

KL(ŷsi⋆, ŷ
s
i+1) ≤ (1− ηϵ)KL(ŷsi⋆, ŷ

s
i ) + η

(
f
s

i (x̂
s
i , ŷ

s
i )− f

s

i (x̂
s
i , ŷ

s
i⋆)
)
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+
10η2A ln2(AT )

(1− γ)2
+

2η2A

(1− γ)2
λ
s

i + ηξ
s

i + ηζ
s

i .

Adding the two inequalities up, we get

KL(ẑsi+1⋆, ẑ
s
i+1)

≤ (1− ηϵ)KL(ẑsi⋆, ẑ
s
i ) +

20η2A ln2(AT )

(1− γ)2
+

2η2A

(1− γ)2
λs
i + ηξsi + ηζsi + vsi

+ η
(
f
s

i (x̂
s
i , ŷ

s
i )− fs

i
(x̂s

i , ŷ
s
i ) + fs

i
(x̂s

i⋆, ŷ
s
i )− f

s

i (x̂
s
i , ŷ

s
i⋆)
)

(25)

where vsi = KL(ẑsi+1⋆, ẑ
s
i+1) − KL(ẑsi⋆, ẑ

s
i+1) and □s = □s + □

s
. By Lemma F.4, we have fs

i
(x, y) ≤ f

s

i (x, y) for all
x, y, and thus fs

i
(x̂s

i⋆, ŷ
s
i )− f

s

i (x̂
s
i , ŷ

s
i⋆) ≤ fs

i (x̂
s
i⋆, ŷ

s
i )− fs

i (x̂
s
i , ŷ

s
i⋆) ≤ 0. Therefore, Eq. (25) further implies

KL(ẑsi+1⋆, ẑ
s
i+1)

≤ (1− ηϵ)KL(ẑsi⋆, ẑ
s
i ) +

20η2A ln2(AT )

(1− γ)2
+

2η2A

(1− γ)2
λs
i + ηξsi + ηζsi + vsi + η∆s

i

≤ (1− ηϵ)KL(ẑsi⋆, ẑ
s
i ) +

20η2A ln2(AT )

(1− γ)2
+

2η2A

(1− γ)2
λs
i + ηξsi + ηζsi + vsi +

1

2
ηϵϵ′ +

[
η∆s

i −
1

2
ηϵϵ′

]
+

where ∆s
i = f

s

i (x̂
s
i , ŷ

s
i )− fs

i
(x̂s

i , ŷ
s
i ) and in the last step we use a ≤ [a− b]+ + b.

Unrolling the recursion, we get with probability at least 1−O(δ), for all s and τ (we show that the inequality holds for any
fix s and τ with probability 1−O( δ

ST ) and then apply the union bound over s and τ ),

KL(ẑsτ+1⋆, ẑ
s
τ+1)

≤ (1− ηϵ)τKL(ẑs1⋆, ẑ
s
1) +

20η2A ln2(AT )

(1− γ)2

τ∑
i=1

(1− ηϵ)τ−i

︸ ︷︷ ︸
term1

+
2η2A

(1− γ)2

τ∑
i=1

(1− ηϵ)τ−iλs
i︸ ︷︷ ︸

term2

+ η

τ∑
i=1

(1− ηϵ)τ−iξsi︸ ︷︷ ︸
term3

+ η

τ∑
i=1

(1− ηϵ)τ−iζsi︸ ︷︷ ︸
term4

+

τ∑
i=1

(1− ηϵ)τ−ivsi︸ ︷︷ ︸
≜ term5(s,τ)

+
1

2
ηϵϵ′

τ∑
i=1

(1− ηϵ)τ−i + η

τ∑
i=1

(1− ηϵ)τ−i

[
∆s

i −
1

2
ϵϵ′
]
+︸ ︷︷ ︸

≜ term6(s,τ)

(a)

≤ O(e−ηϵτ ln(AT )) + ln3(AST/δ)×O
(

ηA

ϵ(1− γ)2
+

η2A

β(1− γ)2
+

βA

ϵ(1− γ)
+

1

1− γ

√
η

ϵ
+

η

β(1− γ)

)
+ term5(s, τ) +

1

2
ϵ′ + term6(s, τ)

(b)

≤ O
(
e−ηϵτ ln(AT )

)
+

3

4
ϵ′ + term5(s, τ) + term6(s, τ) (26)

where in (a) we use the following calculation:

term1 ≤ O
(
η2A ln2(AT )

(1− γ)2
× 1

ηϵ

)
≤ O

(
ηA ln2(AT )

ϵ(1− γ)2

)
.

term2 ≤ O
(

η2A

(1− γ)2
maxi≤τ (1− ηϵ)τ−i ln(AST/δ)

β

)
= O

(
η2A

(1− γ)2
ln(AST/δ)

β

)
(by Lemma B.8)

term3 ≤ O

 ηA

1− γ

τ∑
i=1

β(1− ηϵ)τ−i + η

√√√√ln(AST/δ)

τ∑
i=1

(1− ηϵ)τ−i

 (by Lemma B.6)
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= O
(

βA

ϵ(1− γ)
+

√
ln(AS/δ)

η

ϵ

)
.

term4 ≤ O
(

η

1− γ
× maxi≤τ (1− ηϵ)τ−i ln(AST/δ)

β

)
= O

(
η ln(AST/δ)

β(1− γ)

)
, (by Lemma B.8)

and in (b) we use the conditions Eq. (23) and Eq. (24).

We continue to bound the sum of term5 and term6 over t. Note that

∑
s

nT+1(s)∑
τ=1

term5(s, τ) ≤
∑
s

nT+1(s)∑
τ=1

τ∑
i=1

(1− ηϵ)τ−ivsi ≤
1

ηϵ

∑
s

nT+1(s)∑
i=1

vsi ≤ O
(
S2 ln3(AT )

ηϵ2(1− γ)2

)
, (27)

where in the last inequality we use the following calculation:

nT+1(s)∑
i=1

|vsi | ≤ O (ln(Aτ))×
nT+1(s)∑

i=1

∥ẑsi⋆ − ẑsi+1⋆∥1 (by Lemma C.2)

= O (ln(AT ))× ln(AT )

ϵ
×

nT+1(s)∑
i=1

sup
s′

(
p
∣∣∣V s′

ti
− V s′

ti+1

∣∣∣+ (1− p)
∣∣∣V s′

ti − V
s′

ti+1

∣∣∣)
(by the same calculation as Eq. (10))

≤ O
(
ln2(AT )

ϵ

)
×
∑
s′

T∑
t=1

(∣∣∣V s′

t − V s′

t+1

∣∣∣+ ∣∣∣V s′

t − V
s′

t+1

∣∣∣)
≤ O

(
ln2(AT )

ϵ
× S lnT

(1− γ)2

)
(|V s

t − V s
t+1| ≤ H+1

H+τ ×
1

1−γ1[st = s] by the update rule)

= O
(
S ln3(AT )

ϵ(1− γ)2

)
,

and that

∑
s

nT+1(s)∑
τ=1

term6(s, τ)

=
∑
s

nT+1(s)∑
τ=1

η

τ∑
i=1

(1− ηϵ)τ−i

[
∆s

i −
1

2
ϵϵ′
]
+

≤
∑
s

nT+1(s)∑
i=1

nT+1(s)∑
τ=i

η(1− ηϵ)τ−i

[
∆s

i −
1

2
ϵϵ′
]
+

≤ 1

ϵ

∑
s

nT+1(s)∑
i=1

[
∆s

i −
1

2
ϵϵ′
]
+

=
1

ϵ

∑
s

nT+1(s)∑
i=1

jmax∑
j=−1

1
[
ϵϵ′2j ≤ ∆s

i ≤ ϵϵ′2j+1
]
ϵϵ′2j+1 (define jmax = log2

(
1

(1−γ)ϵϵ′

)
)

≤ 1

ϵ

jmax∑
j=−1

T∑
t=1

1
[
∆st

i ≥ ϵϵ′2j
]
ϵϵ′2j+1

≤ 1

ϵ

jmax∑
j=−1

O
(
AS ln4(AST/δ)

ηϵϵ′2j(1− γ)3

)
× ϵϵ′2j+1

(by Corollary F.6 with ϵ̃ = ϵϵ′2j and the assumption that ϵϵ′ ≳ A ln3(AST/δ)β
(1−γ)3 )

= O
(
AS ln5(AST/δ)

ηϵ(1− γ)3

)
(without loss of generality, assume log2

(
1

(1−γ)ϵϵ′

)
≲ log T )
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(28)

From Eq. (26), we have

∑
s

nT+1(s)∑
τ=1

1 [KL(ẑsτ⋆, ẑ
s
τ ) ≥ ϵ′]

≤
∑
s

nT+1(s)∑
τ=1

1

[
O(e−ηϵτ ln(AT )) ≥ 1

12
ϵ′
]
+
∑
s

nT+1(s)∑
τ=1

1

[
term5(s, τ) >

1

12
ϵ′
]

+
∑
s

nT+1(s)∑
τ=1

1

[
term6(s, τ) >

1

12
ϵ′
]

≤ S ×O
(
ln(AT )

ηϵϵ′

)
+O

(
S2 ln3(AT )

ηϵ2ϵ′(1− γ)2

)
+O

(
AS ln5(AST/δ)

ηϵϵ′(1− γ)3

)
≤ O

(
S2A ln5(SAT/δ)

ηϵ2ϵ′(1− γ)3

)
where in the second-to-last inequality we use Eq. (27) and Eq. (28). This finishes the proof.

F.5. Part IV. Combining

Theorem F.9. For any u ∈
[
0, 1

1−γ

]
, there exists a proper choice of parameters ϵ, β, η such that

T∑
t=1

1

[
max
x,y

(
x
s⊤t
t Qst

⋆ yst − xs⊤t Qst
⋆ ystt

)
> u

]
≤ O

(
S2A3 ln17(SAT/δ)

u9(1− γ)13

)
.

with probability at least 1−O(δ).

Proof. We will choose ϵ such that u ≥ C7
ϵ ln(AT )

1−γ with a sufficiently large universal constant C7. By Lemma F.7, we have

max
x,y

(
x
s⊤t
t Qst

⋆ yst − xs⊤t Qst
⋆ ystt

)
≤ max

x,y

(
x
s⊤t
t

(
Gst + γEs′∼P st

[
V

s′

t

])
yst − xs⊤t

(
Gs + γEs′∼P st

[
V s′

t

])
ystt

)
+O

(
ϵ ln(AT )

1− γ

)
≤ max

x,y

(
x
s⊤t
t

(
Gst + γEs′∼P st

[
V

s′

t

])
yst − xs⊤t

(
Gs + γEs′∼P st

[
V s′

t

])
ystt

)
+

u

4
.

Therefore, we can upper bound the left-hand side of the desired inequality by

T∑
t=1

1

[
max
x,y

(
x
s⊤t
t

(
Gst + γEs′∼P st

[
V

s′

t

])
yst − xs⊤t

(
Gs + γEs′∼P st

[
V s′

t

])
ystt

)
≥ 3

4
u

]

≤
T∑

t=1

1

[
max

y
x
s⊤t
t

(
Gst + γEs′∼P st

[
V

s′

t

])
yst − x

s⊤t
t

(
Gst + γEs′∼P st

[
V

s′

t

])
ystt ≥

u

4

]

+

T∑
t=1

1
[
x
s⊤t
t

(
Gst + γEs′∼P st

[
V

s′

t

])
ystt − x

s⊤t
t

(
Gst + γEs′∼P st

[
V s′

t

])
ystt ≥

u

4

]
+

T∑
t=1

1
[
x
s⊤t
t

(
Gst + γEs′∼P st

[
V s′

t

])
yst −min

x
xs⊤t

(
Gst + γEs′∼P st

[
V s′

t

])
ystt ≥

u

4

]
. (29)
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For the first term in Eq. (29), we can bound it by

∑
s

nT+1(s)∑
i=1

1

[
max

y
f
s

i (x̂
s
i , y

s)− f
s

i (x̂
s
i , ŷ

s
i ) ≥

u

4
−O (ϵ ln(AT ))

]

≤
∑
s

nT+1(s)∑
i=1

1

[
max

y
f
s

i (x̂
s
i , y

s)− f
s

i (x̂
s
i , ŷ

s
i ) ≥

u

8

]

≤
∑
s

nT+1(s)∑
i=1

1

[
max

y
f
s

i (x̂
s
i⋆, y

s)− f
s

i (x̂
s
i⋆, ŷ

s
i⋆) +O

(
∥ẑsi − ẑsi⋆∥1

ln(AT )

1− γ

)
≥ u

8

]
(because ∥∇fs

i (x, y)∥∞ ≤ O
(

ln(AT )
1−γ

)
— similar to the calculation in Eq. (7))

(here we choose (x̂s
i⋆, ŷ

s
i⋆) to be the equilibrium under f

s

i (x, y))

≤
∑
s

nT+1(s)∑
i=1

1

[
O
(
∥ẑsi − ẑsi⋆∥1

ln(AT )

1− γ

)
≥ u

8

]

≤
∑
s

nT+1(s)∑
i=1

1

[
KL(ẑsi⋆, ẑ

s
i ) ≥ Ω

(
u2(1− γ)2

ln2(AT )

)]
≤ O

(
S2A ln7(SAT/δ)

ηϵ2u2(1− γ)5

)
(by Lemma F.8 with ϵ′ = Θ

(
u2(1−γ)2

ln2(AT )

)
)

The third term in Eq. (29) can be bounded in the same way. The second term in Eq. (29) can be bounded using Corollary F.6
by

O
(
SA ln4(SAT/δ)

ηu(1− γ)3

)
.

Overall, we have

T∑
t=1

1

[
max
x,y

(
x
s⊤t
t Qst

⋆ yst − xs⊤t Qst
⋆ ystt

)
> u

]
≤ O

(
S2A ln7(SAT/δ)

ηϵ2u2(1− γ)5

)
. (30)

Notice that the parameters ϵ, β, η needs to satisfy the conditions specified in this lemma and Lemma F.8, with which we
apply ϵ′ = Θ

(
u2(1−γ)2

ln2(SAT/δ)

)
. The constraints suggest the following parameter choice (under a fixed u):

ϵ = Θ

(
u(1− γ)

ln(SAT/δ)

)
β = Θ

(
(1− γ)3

A ln3(SAT/δ)
ϵϵ′
)

= Θ

(
u3(1− γ)6

A ln6(SAT/δ)

)
η = Θ

(
(1− γ)

A ln3(SAT/δ)
βϵ′
)

= Θ

(
u5(1− γ)9

A2 ln11(SAT/δ)

)
Using these parameters in Eq. (30), we get

T∑
t=1

1

[
max
x,y

(
x
s⊤t
t Qst

⋆ yst − xs⊤t Qst
⋆ ystt

)
> u

]
≤ O

(
S2A3 ln20(SAT/δ)

u9(1− γ)16

)
.
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G. Discussions on Convergence Notions for General Markov Games
In general Markov games, learning the equilibrium policy pair on every state is impossible because some state might
have exponentially small visitation probability under all policies. Therefore, a reasonable definition of convergence is the
convergence of the following quantity to zero:

1

T

T∑
t=1

max
x,y

(
V st
xt,y − V st

x,yt

)
, (31)

which is similar to the best-iterate convergence defined in Section 3, but over the state sequence visited by the players
instead of taking max over s. It is also a strict generalization of the sample complexity bound for single-player MDPs under
the discounted criteria (see e.g., (Lattimore & Hutter, 2014; Wang et al., 2020)).

The path convergence defined in our work is, on the other hand, that the following quantity converges to zero:

1

T

T∑
t=1

max
x,y

(
x
s⊤t
t Qst

⋆ yst − xs⊤t Qst
⋆ ystt

)
. (32)

Since maxy(x
s⊤Qs

⋆y
s) ≤ maxy(x

s⊤Qs
x,yy

s) = maxy V
s
x,y for any x, the convergence of Eq. (31) is stronger than Eq.

(32).

Implications of Path Convergence Although Eq. (32) does not imply the more standard best-iterate guarantee Eq. (31),
it still has meaningful implications. By definition, It implies that frequent visits to a state bring players’ policies closer to
equilibrium, leading to both players using near-equilibrium policies for all but o(T ) number of steps over time.

Path convergence also implies that both players have no regret compared to the game value V s
⋆ , which has been considered

and motivated in previous works such as (Brafman & Tennenholtz, 2002; Tian et al., 2020). To see this more clearly, we
apply the results to the episodic setting, where in every step, with probability 1− γ, the state is redrawn from s ∼ ρ for some
initial distribution ρ (every time the state is redrawn from ρ, we call it a new episode). We can show that if Eq. (32) vanishes,
then every player’s long-term average payoff is at least the game value. First, notice that if Eq. (32) converges to zero, then

T∑
t=1

(V st
⋆ − x

s⊤t
t Qst

⋆ ystt ) ≤ max
y

T∑
t=1

(
x
s⊤t
t Qst

⋆ yst − x
s⊤t
t Qst

⋆ ystt

)
≤

T∑
t=1

(
max

y
x
s⊤t
t Qst

⋆ yst − x
s⊤t
t Qst

⋆ ystt

)
= o(T ). (33)

Now fix an i and let ti be time index at the beginning of episode i. Let Et = 1 indicate the event that episode i has not
ended at time t. Then

E

[
ti+1−1∑
t=ti

(
V st
⋆ − x

s⊤t
t Qst

⋆ ystt

)]

= E

[ ∞∑
t=ti

1[Et = 1]
(
V st
⋆ − x

s⊤t
t Gstystt − γV

st+1
⋆

)]

= E

[ ∞∑
t=ti

1[Et = 1]
(
V st
⋆ − x

s⊤t
t Gstystt − 1[Et+1 = 1]V

st+1
⋆

)]

= E
[
V

sti
⋆

]
− E

[ ∞∑
t=ti

1[Et = 1]x
s⊤t
t Gstystt

]

= Es∼ρ [V
s
⋆ ]− E

[
ti+1−1∑
t=ti

x
s⊤t
t Gstystt

]
.
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Combining this with Eq. (33), we get

E

[
T∑

t=1

x
s⊤t
t Gstystt

]
≥ (#episodes in T steps)Es∼ρ[V

s
⋆ ]− o(T )

≥ (1− γ)Es∼ρ[V
s
⋆ ]T − o(T ).

Hence the one-step average reward is at least (1 − γ)Es∼ρ[V
s
⋆ ]. A symmetric analysis shows that it is also at most

(1− γ)Es∼ρ[V
s
⋆ ]. This shows that both players have no regret compared to the game value. Notice that this is only a loose

implication of the path convergence guarantee because of the loose second inequality in Eq. (33).

Remark on the notion of “last-iterate convergence” in general Markov games While Eq. (31) corresponds to best-
iterate convergence for general Markov games, an even stronger notion one can pursue after is “last-iterate convergence.” As
argued above, it is impossible to require that the policies on all states to converge to equilibrium. To address this issue, we
propose to study this problem under the episodic setting described above, in which the state is reset after every trajectory
whose expected length is 1

1−γ . In this case, last-iterate convergence will be defined as the convergence of the following
quantity to zero when i→∞:

Es∼ρ

[
max
x,y

(
V s
xti

,y − V s
x,yti

)]
where we recall that i is the episode index and (xti , yti) are the policies used by the two players at the beginning of episode
i. While last-iterate convergence seems reasonable and possibly achievable, we are unaware of such results even for the
degenerated case of single-player MDPs — the standard regret bound corresponds to best-iterate convergence, while the
techniques we are aware of to prove last-iterate convergence in MDPs require additional assumptions on the dynamics.
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