
Published as a conference paper at ICLR 2025

POGEMA: A BENCHMARK PLATFORM FOR
COOPERATIVE MULTI-AGENT PATHFINDING

Alexey SkrynnikB1,2,3, Anton AndreychukB1, Anatolii Borzilov2,3,
Alexander Chernyavskiy3, Konstantin Yakovlev2,1, and Aleksandr Panov1,3

1AIRI, Moscow, Russia; 2FRC CSC RAS, Moscow, Russia; 3MIPT, Dolgoprudny, Russia

ABSTRACT

Multi-agent reinforcement learning (MARL) has recently excelled in solving chal-
lenging cooperative and competitive multi-agent problems in various environments,
typically involving a small number of agents and full observability. Moreover, a
range of crucial robotics-related tasks, such as multi-robot pathfinding, which have
traditionally been approached with classical non-learnable methods (e.g., heuristic
search), are now being suggested for solution using learning-based or hybrid meth-
ods. However, in this domain, it remains difficult, if not impossible, to conduct a
fair comparison between classical, learning-based, and hybrid approaches due to
the lack of a unified framework that supports both learning and evaluation. To ad-
dress this, we introduce POGEMA, a comprehensive set of tools that includes a fast
environment for learning, a problem instance generator, a collection of predefined
problem instances, a visualization toolkit, and a benchmarking tool for automated
evaluation. We also introduce and define an evaluation protocol that specifies a
range of domain-related metrics, computed based on primary evaluation indicators
(such as success rate and path length), enabling a fair multi-fold comparison. The
results of this comparison, which involves a variety of state-of-the-art MARL,
search-based, and hybrid methods, are presented.

(a) task

0
0

0
0

0 0 0
0 0

0
0 0 0

0
0 0 0

0 0
0

0 1

0
00

Target

0
0

0
0

1 0 0
0 0

1
0 0 0

0
0 0 0

0 0
0

0 0

0
00

Agen
ts

1
0

0
0

0 0 1
1 0

0
0 1 1

1
1 1 1

0 0
1

1 0

0

01

Obstacles

(b) observation

20
40

60
80

100

Cooperation

CoordinationOut-of-Distribution

Pathfinding

Performance Scalability

LaCAM
SCRIMP

DCC
IQL

VDN
QMIX

QPLEX
MAMBA

(c) results

Figure 1: (a) Example of the multi-agent pathfinding problem considered in POGEMA: each agent
must reach its goal, denoted by a flag of the same color. (b) Observation tensor of the red agent.
(c) Evaluation results of MARL, hybrid, and search-based solvers on POGEMA benchmark.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) has gained increasing attention recently, with significant
progress achieved in the field (Canese et al., 2021; Nguyen et al., 2020; Wong et al., 2023). MARL
methods have demonstrated the ability to generate well-performing agents’ policies in strategic
games (Arulkumaran et al., 2019; Ye et al., 2020), sports simulators (Song et al., 2023; Zang et al.,
2024), multi-component robot control (Wang et al., 2024), city traffic control (Kolat et al., 2023),
and autonomous driving (Zhou et al., 2020). Several approaches currently exist for formulating

Corresponding authors: Bskrynnikalexey@gmail.com, Bandreychuk@airi.net

1

Published as a conference paper at ICLR 2025

and solving MARL problems, depending on the information available to agents and the type of
communication allowed in the environment (Zhang et al., 2021). With the growing interest in robotic
applications, decentralized cooperative learning that minimizes communication between agents has
recently attracted particular attention (Singh et al., 2022; Zhang et al., 2020).

A prominent example of an important and practically-inspired problem that can benefit from this type
of learning is the so-called multi-agent pathfinding (MAPF) (Stern et al., 2019). In this problem a
group of (homogeneous) agents is confined to a graph of locations and at each time step an agent
can either wait at the current vertex or move to an adjacent one. Each agent is assigned a goal and
the task is to make the agents reach their goals as fast as possible (i.e. using fewer actions) in a safe
way, i.e. avoiding the inter-agent collisions as well as collisions with the static obstacles. Numerous
practically important applications mimic the discrete nature of MAPF and actively exploit MAPF
solutions in real world. A major example is automated warehouses (Dekhne et al., 2019) where
robots move synchronously utilizing atomic moves. Furthermore, many works, e.g., (Hönig et al.,
2016; Ma et al., 2019; Okumura et al., 2022), describe how MAPF solutions can be transferred to
real robots that are subject to kinodynamic constraints, inaccurate execution, and other physically
inspired complications. Thus, the MAPF problem serves as a highly useful abstraction that distills
the core challenge of any multi-agent navigation problem: coordinating actions between agents to
minimize the risk of collisions while optimizing a given cost objective.

Conventional MAPF solvers rely on such algorithmic techniques as systematic (heuristic) search:
A*+ID+OD (Standley, 2010), CBS (Sharon et al., 2015), M* (Wagner & Choset, 2011), ICTS (Sharon
et al., 2013); or reduce the MAPF problem to the other established computational problem like boolean
satisfiability (Surynek et al., 2016) or integer linear programming; or leverage dedicated rule-based
techniques (de Wilde et al., 2013). Meanwhile, learning-based MAPF solvers have recently been
receiving increased attention, such as (Sartoretti et al., 2019; Ma et al., 2021; Damani et al., 2021;
Skrynnik et al., 2024a), to name a few. A key advantage of such solvers is their decentralized nature,
allowing each agent to act independently, which can significantly reduce costs compared to classical
MAPF solvers requiring centralized control.

From a learning perspective, MAPF is a highly specific problem that differs significantly from
well-known MARL problems such as the StarCraft Multi-agent Challenge (SMAC) (Ellis et al., 2024)
or Google Research Football (Kurach et al., 2020). In MAPF, generalization to different types of
maps and numbers of agents is essential, as real-world MAPF solvers must handle varying map
topologies and agent populations. Furthermore, the number of agents in MAPF is often very large –
not just dozens (as in SMAC) but hundreds or even thousands of agents are moving simultaneously in
the environment. Unsurprisingly, the vast majority of state-of-the-art learnable MAPF solvers, such
as (Skrynnik et al., 2023; 2024a;b; Ma et al., 2021; Wang et al., 2023; Sartoretti et al., 2019; Wang
et al., 2020a; Liu et al., 2020; Damani et al., 2021), are the hybrid solvers that rely on both traditional
search-based techniques and learnable components.

These solvers are developed using different frameworks, environments and datasets and are evaluated
accordingly, i.e. in the absence of the unifying evaluation framework, consisting of the evaluation
tool, protocol (that defines common performance indicators) and the dataset of the problem instances.
Moreover, currently most of the pure MARL methods, i.e. the ones that do not involve search-based
modules, such as QMIX (Rashid et al., 2020), MAMBA (Egorov & Shpilman, 2022), MAPPO (Yu
et al., 2022) etc., are mostly not included in comparison. This exclusion is likely due to the lack of a
unified benchmark that is compatible with or integrated with existing MARL learning frameworks.

To close the mentioned gaps we introduce POGEMA, a comprehensive set of tools that includes:

• a fast and flexible environment supporting different multi-robot pathfinding problems,
coupled with a generator of diverse problem instances to facilitate multi-task learning and
generalization testing,

• a visualization toolkit enabling the creation of high-quality vector-based plots and animations
for enhanced analysis and presentation,

• a benchmarking tool for automated, parallel evaluation of learning-based, planning-based,
and hybrid approaches, streamlining comparison across methodologies,

• a standardized evaluation protocol offering domain-specific metrics derived from primary
performance indicators, ensuring robust and fair comparisons between methods.

2

Published as a conference paper at ICLR 2025

2 RELATED WORK

Currently, a huge variety of MARL environments exists that are inspired by various practical ap-
plications and encompass a broad spectrum of nuances in problem formulations. Notably, they
include a diverse array of computer games (Samvelyan et al., 2019b; Ellis et al., 2024; Rutherford
et al., 2023; Carroll et al., 2019; Suarez et al., 2024; Johnson et al., 2016; Bonnet et al., 2023; Baker
et al., 2020; Kurach et al., 2020). Additionally, they address complex social dilemmas (Agapiou
et al., 2022) including public goods games, resource allocation problems (Papoudakis et al., 2021),
and multi-agent coordination challenges. Some are practically inspired, showcasing tasks such as
competitive object tracking (Pan et al., 2022), infrastructure management and planning (Leroy et al.,
2024), and automated scheduling of trains (Mohanty et al., 2020). Beyond these, the environments
simulate intricate, interactive systems such as traffic management and autonomous vehicle coordina-
tion (Vinitsky et al., 2022), multi-agent control tasks (Rutherford et al., 2023; Peng et al., 2021), and
warehouse management (Gupta et al., 2017). Each scenario is designed to challenge and analyze the
collaborative and competitive dynamics that emerge among agents in varied and complex contexts.
We summarize the most wide-spread MARL environments in Table 1. A detailed description of each
column is presented below.

Environment R
ep

os
ito

ry

N
av

ig
at

io
n

Pa
rt

ia
lly

ob
se

rv
ab

le

Py
th

on
ba

se
d

H
ar

dw
ar

e-
ag

no
st

ic
se

tu
p

Pe
rf

or
m

an
ce

>1
0K

St
ep

s/
s

Pr
oc

ed
ur

al
ge

ne
ra

tio
n

R
eq

ui
re

s
ge

ne
ra

liz
at

io
n

E
va

lu
at

io
n

pr
ot

oc
ol

s

Te
st

s
&

C
I

Py
Pi

L
is

te
d

Sc
al

ab
ili

ty
>1

00
0

A
ge

nt
s

In
du

ce
d

be
ha

vi
or

Flatland (Mohanty et al., 2020) link ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ Coop
Gigastep (Lechner et al., 2024) link ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓ Mixed
GoBigger (Zhang et al., 2023) link ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ Mixed/Coop
Google Research Football (Kurach
et al., 2020)

link ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ Mixed

Griddly (Bamford, 2021) link ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓ Mixed
Hide-and-Seek (Baker et al., 2020) link ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ Comp
IMP-MARL (Leroy et al., 2024) link ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✓ Coop
Jumanji (XLA) (Bonnet et al., 2023) link ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✗ Mixed
LBF (Papoudakis et al., 2021) link ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ Coop
MAMuJoCo (Peng et al., 2021) link ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ Coop
Magent (Zheng et al., 2018) link ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ Mixed
MATE (Pan et al., 2022) link ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ Coop
MeltingPot (Agapiou et al., 2022) link ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗ Mixed/Coop
MALMO (Johnson et al., 2016) link ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗ Mixed
MPE (Lowe et al., 2017) link ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ Mixed
MPE (XLA) (Rutherford et al., 2023) link ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✗ Mixed
Multi-agent Brax (XLA) (Rutherford
et al., 2023)

link ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✗ Coop

Multi-Car Racing (Schwarting et al.,
2021)

link ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ Comp

Neural MMO (Suarez et al., 2024) link ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ Comp
Nocturne (Vinitsky et al., 2022) link ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ Mixed
Overcooked (Carroll et al., 2019) link ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ Coop
Overcooked (XLA) (Rutherford et al.,
2023)

link ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓ Coop

RWARE (Papoudakis et al., 2021) link ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✗ Coop
SISL (Gupta et al., 2017) link ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✗ Coop
SMAC (Samvelyan et al., 2019b) link ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ Mixed/Coop
SMAC v2 (Ellis et al., 2024) link ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ Mixed/Coop
SMAX (XLA) (Rutherford et al., 2023) link ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓ Mixed/Coop
POGEMA (ours) link ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Mixed

Table 1: Comparison of different multi-agent reinforcement learning environments.

Navigation Navigation tasks arise in almost all multi-agent environments (e.g. unit navigation in
SMAC or robotic warehouse management in RWARE), however only a handful of environments
specifically focus on challenging navigation problems: Flatland, Nocturne, RWARE, and POGEMA.

3

https://github.com/flatland-association/flatland-rl
https://github.com/Farama-Foundation/MAgent2
https://github.com/opendilab/GoBigger?tab=readme-ov-file
https://github.com/google-research/football
https://github.com/Bam4d/Griddly
https://github.com/openai/multi-agent-emergence-environments
https://github.com/moratodpg/imp_marl/tree/main
https://github.com/instadeepai/jumanji
https://github.com/uoe-agents/lb-foraging
https://github.com/schroederdewitt/multiagent_mujoco
https://github.com/Farama-Foundation/MAgent2
https://github.com/XuehaiPan/mate
https://github.com/google-deepmind/meltingpot
https://github.com/microsoft/malmo
https://github.com/openai/multiagent-particle-envs
https://github.com/FLAIROx/JaxMARL/tree/main/jaxmarl/environments/mpe
https://github.com/FLAIROx/JaxMARL/tree/main/jaxmarl/environments/mabrax
https://github.com/igilitschenski/multi_car_racing
https://github.com/PufferAI/PufferLib
https://github.com/facebookresearch/nocturne
https://github.com/HumanCompatibleAI/overcooked_ai?tab=readme-ov-file
https://github.com/FLAIROx/JaxMARL/tree/main/jaxmarl/environments/overcooked
https://github.com/semitable/robotic-warehouse
https://pettingzoo.farama.org/environments/sisl/
https://github.com/oxwhirl/smac
https://github.com/oxwhirl/smacv2
https://github.com/FLAIROx/JaxMARL/tree/main/jaxmarl/environments/smax
https://github.com/CognitiveAISystems/pogema

Published as a conference paper at ICLR 2025

Partially observable Partial observability is an intrinsic feature of a generic multi-agent problem,
meaning that an individual agent does not have access to the full state of the environment but rather
is able to observe it only locally (e.g. an agent is able to determine the locations of the other
agents and/or static obstacles only in its vicinity). Most of the considered environments are partially
observable, with the exception of Overcooked.

Environment Setup Python based means the environment is implemented in Python, unlike many
other multi-agent environments that include bindings for other languages or external dependencies,
which can complicate usage. Pure Python implementations ensure ease of modification and cus-
tomization, allowing researchers to easily adapt and extend the environments. Hardware-agnostic
setup means the environment doesn’t require any specific type of hardware for training or inference,
offering flexibility across different systems.

Performance >10K Steps/s Training and evaluating multi-agent reinforcement learning agents
often requires making billions of steps (transitions) in the environment. Thus, it is crucial that each
transition is computed efficiently. In general, performing more than 10K steps per second is a good
indicator of the environment’s efficiency. While XLA versions can provide high performance by
vectorizing the environment on GPU, they require modern hardware setups, which can be a barrier
for some researchers. In contrast, fast environments like POGEMA or RWARE can achieve high
performance without such stringent hardware requirements, making them more accessible and easier
to integrate into a variety of research projects.

Procedural generation To improve the ability of RL agents to solve problem instances that are
not the same that were used for training (the so-called ability to generalize) procedural generation of
the problem instances is commonly used. I.e. the environment does not rely on a predefined set of
training instances but rather procedurally generates them to prevent overfitting. As highlighted in
the Procgen paper (Cobbe et al., 2020), this approach ensures that agents develop robust strategies
capable of adapting to novel and diverse situations. Moreover, in multi-agent settings, agents must be
able to handle and adapt to a variety of unforeseen agent behaviors and strategies, ensuring robustness
and flexibility in dynamic environments (Agapiou et al., 2022).

Evaluation protocols means that the environment features a comprehensive evaluation API, in-
cluding computation of distinct performance indicators and visualization tools. These capabilities
allow precise performance measurement and deeper insights into RL agents’ behavior, going beyond
just reward curves, which can often hide agents exploiting the reward system rather than genuinely
solving the tasks.

Tests and CI means the environment is set up for development with continuous integration and
is covered with tests, which are essential for collaborative open-source development. PyPI listed
indicates that the environment library is listed on PyPI1, making it easy to install and integrate
into projects with a simple pip install command. Scalability to >1000 Agents refers to the
environment’s ability to handle over 1000 simultaneously acting agents, ensuring robust performance
and flexibility for large-scale multi-agent simulations.

Induced behavior Multi-agent behavior can be influenced by modifying the reward func-
tion (Shoham & Leyton-Brown, 2008). Competitive (Comp) behavior arises when a joint strategy
benefits one player but disadvantages others. In a two-player game, this corresponds to a Pareto-
efficient outcome. Minimax games, where agents’ rewards sum to zero, are classic examples of
competitive games. Cooperative (Coop) behavior (Du et al., 2023; Shoham & Leyton-Brown, 2008)
occurs when agents share a unified reward function or pursue the same goal, rewarded only by its
completion. Social dilemmas are a key example of cooperation. Mixed behavior (Littman, 1994)
doesn’t limit the agents’ objectives or interactions, blending cooperative and competitive behaviors.
A well-known example is the iterated prisoner’s dilemma.

As we aim to create a lightweight and easy-to-configure multi-agent environment for reinforcement
learning and pathfinding tasks, we consider the following factors essential. First and foremost, our en-
vironment is fully compatible with the native Python API: we target pure Python builds independent of

1https://pypi.org

4

https://pypi.org

Published as a conference paper at ICLR 2025

hardware-specific software with a minimal number of external dependencies. Moreover, we underline
the importance of constant extension and flexibility of the environment. Thus, we prioritize testing
and continuous integration as cornerstones of the environment, as well as trouble-free modification of
the transition dynamics. Secondly, we highlight that our environment targets generalization and may
utilize procedural generation. Last but not least, we target high computational throughput (i.e., the
number of environment steps per second) and robustness to an extremely large number of agents (i.e.,
the environment remains efficient under high loads). The detailed overview of the mentioned related
papers is provided in Appendix F.

Despite the diversity of available environments, most research papers tend to utilize only a selected
few. Among these, the most popular are the StarCraft Multi-agent Challenge (SMAC), Multi-agent
MuJoCo (MAMuJoCo), and Google Research Football (GRF), with SMAC being the most prevalent
in top conference papers. The popularity of these environments is likely due to their effective
contextualization of algorithms. For instance, to demonstrate the advantages of a method, it is crucial
to test it within a well-known environment.

The evaluation protocols in these environments typically feature learning curves that highlight
the performance of each algorithm under specific scenarios. For SMAC, these scenarios involve
games against predefined bots with specific units on both sides. In MAMuJoCo, the standard tasks
involve agents controlling different sets of joints, while in GRF, the scenarios are games against
predefined policies from Football Academy scenarios. Proper evaluation of MARL approaches is a
serious concern. For SMAC, it’s highlighted in the paper (Gorsane et al., 2022), which proposes a
unified evaluation protocol for this benchmark. This protocol includes default evaluation parameters,
performance metrics, uncertainty quantification, and a results reporting scheme.

The variability of results across different studies underscores the importance of a well-defined
evaluation protocol, which should be developed alongside the presentation of the environment. In our
study, we provide not only the environment but also the evaluation protocol, popular MARL baselines,
and modern learnable MAPF approaches to better position our benchmark within the context.

3 POGEMA

POGEMA, which comes from Partially-Observable Grid Environment for Multiple Agents, is an
umbrella name for a collection of versatile and flexible tools aimed at developing, debugging and
evaluating different methods and policies tailored to solve several types of multi-agent pathfinding
tasks. The source code is available at: POGEMA Benchmark2, POGEMA Toolbox3 and POGEMA
Environment4.

3.1 POGEMA ENVIRONMENT

POGEMA 5 environment is a core of POGEMA suite. It implements the basic mechanics of agents’
interaction with the world. The environemnt is open-sourced under MIT license. POGEMA provides
integration with existing RL frameworks: PettingZoo (Terry et al., 2021), PyMARL (Samvelyan
et al., 2019a), and Gymnasium (Towers et al., 2023).

Basic mechanics The workspace where the agents navigate is represented as a grid composed of
blocked and free cells. Only the free cells are available for navigation. At each timestep each agent
individually and independently (in accordance with a policy) picks an action and then these actions
are performed simultaneously. POGEMA implements collision shielding mechanism, i.e. if an agent
picks an action that leads to an obstacle (or out-of-the-map) than it stays put, the same applies for
two or more agents that wish to occupy the same cell. POGEMA also has an option when one of
the agents deciding to move to the common cell does it, while the others stay where they were. The
episode ends when the predefined timestep, episode length, is reached. The episode can also end
before this timestep if certain conditions are met, i.e. all agents reach their goal locations if MAPF
problem (see below) is considered.

2https://github.com/Cognitive-AI-Systems/pogema-benchmark
3https://github.com/Cognitive-AI-Systems/pogema-toolbox
4https://github.com/Cognitive-AI-Systems/pogema
5https://pypi.org/project/pogema

5

https://github.com/Cognitive-AI-Systems/pogema-benchmark
https://github.com/Cognitive-AI-Systems/pogema-toolbox
https://github.com/Cognitive-AI-Systems/pogema
https://pypi.org/project/pogema/

Published as a conference paper at ICLR 2025

Problem settings POGEMA supports two generic types of multi-agent navigation problems. In
the first variant, dubbed MAPF (from Multi-agent Pathfinding), each agent is provided with the
unique goal location and has to reach it avoiding collisions with the other agents and static obstacles.
For MAPF problem setting POGEMA supports both stay-at-target behavior (when the episode
successfully ends only if all the agents are at their targets) and disappear-at-target (when the agent is
removed from the environment after it first reaches its goal). The second variant is a lifelong version
of multi-agent pathfinding and is dubbed accordingly – LMAPF. Here each agent upon reaching a
goal is immediately assigned another one (not known to the agent beforehand). Thus, the agents are
constantly moving through in the environment until episode ends.

Observation At each timestep each agent in POGEMA receives an individual ego-centric observa-
tion represented as a tensor – see Figure 1. The latter is composed of the following (2R+1)×(2R+1)
binary matrices, where R is the observation radius set by the user:

1. Static Obstacles – 0 means the free cell, 1 – static obstacle

2. Other Agents – 0 means no agent in the cell, 1 – the other agent occupies the cell

3. Targets – projection of the (current) goal location of the agent to the boundary of its field-of-
view

The suggested observation, which is, indeed, minimalist and simplistic, can be modified by the user
using wrapper mechanisms. For example, it is not uncommon in the MAPF literature to augment the
observation with additional matrices encoding the agent’s path-to-goal (constructed by some global
pathfinding routine) (Skrynnik et al., 2024a) or other variants of global guidance (Ma et al., 2021).

Reward POGEMA features the most intuitive and basic reward structure for learning. I.e. an agent
is rewarded with +1 if it reaches the goal and receives 0 otherwise. For MARL policies that leverage
centralized training a shared reward is supported, i.e. rt = goals/agents where goals is the number
of goals reached by the agents at timestep t and agents is the number of agents. Indeed, the user can
specify its own reward using wrappers.

Performance indicators The following performance indicators are considered basic and are tracked
in each episode. For MAPF they are: Sum-of-costs (SoC) and makespan. The former is the sum of
time steps (across all agents) consumed by the agents to reach their respective goals, the latter is the
maximum over those times. The lower those indicators are the more effectively the agents are solving
MAPF tasks. For LMAPF the primary tracked indicator is the throughput which is the ratio of the
number of the accomplished goals (by all agents) to the episode length. The higher – the better.

3.2 POGEMA TOOLBOX

The POGEMA Toolbox is a comprehensive framework designed to facilitate the testing of learning-
based approaches within the POGEMA environment. This toolbox offers a unified interface that
enables the seamless execution of any learnable MAPF algorithm in POGEMA. Firstly, the toolbox
provides robust management tools for custom maps, allowing users to register and utilize these
maps effectively within POGEMA. Secondly, it enables the concurrent execution of multiple testing
instances across various algorithms in a distributed manner, leveraging Dask6 for scalable processing.
The results from these instances are then aggregated for analysis. Lastly, the toolbox includes
visualization capabilities, offering a convenient method to graphically represent the aggregated results
through detailed plots. This functionality enhances the interpretability of outcomes, facilitating a
deeper understanding of algorithm performance.

POGEMA Toolbox offers a dedicated tool for map generation, allowing the creation of three dis-
tinct types of maps: random, mazes and warehouse maps. All generators facilitates map creation
using adjustable parameters such as width, height, and obstacle density. The maze generator was
implemented based on the generator provided in (Damani et al., 2021).

6https://github.com/dask/dask

6

https://github.com/dask/dask

Published as a conference paper at ICLR 2025

3.3 BASELINES

POGEMA integrates a variety of MARL, hybrid and planning-based algorithms with the environment.
These algorithms, recently presented, demonstrate state-of-the-art performance in their respective
fields. Table 2 highlights the differences between these approaches. Some, such as LaCAM and
RHCR, are centralized search-based planners. Other approaches, such as SCRIMP and DCC, while
decentralized, still require communication between agents to resolve potential collisions. Learnable
modern approaches for LifeLong MAPF that do not utilize communication include Follower (Skrynnik
et al., 2024a), MATS-LP (Skrynnik et al., 2024b), and Switchers (Skrynnik et al., 2023). All these
approaches utilize independent PPO (Schulman et al., 2017) as the training method.

Algorithm D
ec

en
tr

al
iz

ed

Pa
rt

ia
l

O
bs

er
va

bi
lit

y

Fu
lly

In
te

gr
at

ed
in

to
PO

G
E

M
A

Su
pp

or
ts

M
A

PF

Su
pp

or
ts

L
if

eL
on

g
M

A
PF

N
o

G
lo

ba
l

O
bs

ta
cl

es
M

ap

N
o

C
om

m
un

ic
at

io
n

Pa
ra

m
et

er
Sh

ar
in

g

D
ec

en
tr

al
iz

ed
L

ea
rn

in
g

M
od

el
-B

as
ed

N
o

Im
ita

tio
n

L
ea

rn
in

g

MAMBA (Egorov & Shpilman, 2022) ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✓
QPLEX (Wang et al., 2020b) ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓
IQL (Tan, 1993) ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓
VDN (Sunehag et al., 2018) ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓
QMIX (Rashid et al., 2020) ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓
Follower (Skrynnik et al., 2024a) ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✓
MATS-LP (Skrynnik et al., 2024b) ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓
Switcher (Skrynnik et al., 2023) ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓
SCRIMP (Wang et al., 2023) ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗
DCC (Ma et al., 2021) ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗
LaCAM (Okumura, 2024; 2023) ✗ ✗ ✗ ✓ ✗ ✗ - - - - -
RHCR (Li et al., 2021b) ✗ ✗ ✗ ✗ ✓ ✗ - - - - -

Table 2: This table provides an overview of various baseline approaches supported by POGEMA and
their features in the context of decentralized multi-agent pathfinding.

The following modern MARL algorithms are included as baselines: MAMBA (Egorov & Shpil-
man, 2022), QPLEX (Wang et al., 2020b), IQL (Tan, 1993), VDN (Sunehag et al., 2018), and
QMIX (Rashid et al., 2020). For environment preprocessing, we used the scheme provided in the
Follower approach, enhancing it with the anonymous targets of other agents’ local observations for
MAPF scenarios. We utilized the official implementation of MAMBA, as provided by its authors7,
and employed PyMARL2 framework8 for establishing MARL baselines. We used the default param-
eters for MAMBA, since Dreamer (which serves as the foundation for MAMBA) is known to work
effectively across domains with nearly the same hyperparameters. For the other MARL approaches,
we performed a hyperparameter sweep over the learning rate, batch size, replay buffer size, and
GRU hidden state size, using the best parameters based on the performance scores from the training
scenarios on the Random and Mazes maps.

4 EVALUATION PROTOCOL

4.1 DATASET

We include the maps of the following types in our evaluation dataset (with the intuition that different
maps topologies are necessary for proper assessment):

• Mazes – maps that encounter prolonged corridors with 1-cell width that require high level
of cooperation between the agents. These maps are procedurally generated.

• Random – one of the most commonly used type of maps, as they are easy to generate and
allow to avoid overfitting to some special structure of the map. POGEMA contains an
integrated random maps generator, that allows to control the density of the obstacles.

7https://github.com/jbr-ai-labs/mamba
8https://github.com/hijkzzz/pymarl2

7

https://github.com/jbr-ai-labs/mamba
https://github.com/hijkzzz/pymarl2

Published as a conference paper at ICLR 2025

• Warehouse – this type of maps are usually used in the papers related to LifeLong MAPF.
While there is no narrow passages, high density of the agents might significantly reduce the
overall throughput, especially when agents are badly distributed along the map.

• Cities – a set of city maps from MovingAI – the existing benchmark widely used in
heuristic-search community Sturtevant (2012). The contained maps have a varying structure
and 256 × 256 size. It can be used to show how the approach deals with single-agent
pathfinding and also deals with the maps that have out-of-distribution structure.

• Cities-tiles – a modified Cities set of maps. Due to the large size of the original
maps, it’s hard to get high density of the agents on them. To get more crowded maps, we
slice the original maps on 16 pieces with 64× 64 size.

• Puzzles – a set of small hand-crafted maps that contains some difficult patterns that
mandate the cooperation between that agents.

(a) Mazes (b) Random (c) Warehouse

Figure 2: Examples of map generators presented in POGEMA.

Start and goal locations are generated via random generators. They are generated with fixed seeds,
thus can be reproduced. It is guaranteed that each agent has its own goal location and the path to it
from its start location exists. Examples of the maps are presented in Figure 2.

4.2 METRICS

The existing works related to solving MAPF problems evaluates the performance by two major criteria
– success rate and the primary performance indicators mentioned above: sum-of-costs, makespan,
throughput. These are directly obtainable from POGEMA. While these metrics allow to evaluate the
algorithms at some particular instance, it might be difficult to get a high-level conclusion about the
performance. Thus, we want to introduce high-level metrics that cover multiple different aspects:

Performance – how well the algorithm works compared to other approaches. To compute this
metric we run the approaches on a set of maps similar to the ones, used during training, and compare
the obtained results with the best ones.

PerformanceMAPF =

{
SoCbest/SoC

0 if not solved
(1)

PerformanceLMAPF = throughput/throughputbest (2)

Out-of-Distribution – how well the algorithm works on out-of-distribution maps. This metric
is computed in the same way as Performance, with the only difference that the approaches are
evaluated on a set of maps, that were not used during training phase and have different structure of
obstacles. For this purpose we utilize maps from Cities-tiles set of maps.

Out_of_DistributionMAPF =

{
SoCbest/SoC

0 if not solved
(3)

Out_of_DistributionnLMAPF = throughput/throughputbest (4)

Cooperation – how well the algorithm is able to resolve complex situations. To evaluate this
metric we run the algorithm on Puzzles set of maps.

8

Published as a conference paper at ICLR 2025

CooperationMAPF =

{
SoCbest/SoC

0 if not solved
(5)

CooperationLMAPF = throughput/throughputbest (6)

Scalability – how well the algorithm scales to large number of agents. To evaluate how well
the algorithm scales to large number of agents, we run it on a large warehouse map with increasing
number of agents and compute the ratio between runtimes with various number of agents.

Scalability =
runtime(agents1)/runtime(agents2)

|agents1|/|agents2|
(7)

Coordination – how well the algorithm avoids collisions between agents and obstacles. Majority
of learning-based approaches are decentralized, so there may be cases where multiple agents attempt
to occupy the same cell or traverse the same edge simultaneously. There also might be the case when
an agent tries to move to the blocked cell. The fewer collisions that occur during the episode, the
better. To compute this metric, we use the results obtained on the Mazes and Random sets of maps.

Coordination = 1− occured_collisions
|agents| × episode_length

(8)

Pathfinding – how well the algorithm works in case of presence of a single agent on a large map.
This metric is tailored to determine the ability of the approach to effectively lead agents to their goal
locations. For this purpose we run the approaches on large maps from Cities benchmark sets. The
closer the costs of the found paths to the optimal ones – the higher the score.

Pathfinding =

{
path_cost/path_costoptimal

0 if path not found
(9)

First three metrics, i.e. Performance, Out-of-Distribution, and Cooperation, have
the same formula but differ in the set of maps used to compute them, while the remaining three metrics,
i.e. Scalability, Coordination, and Pathfinding, are tailored to specific aspects.

4.3 EXPERIMENTAL RESULTS

We have evaluated all the supported baselines (12 in total) on both MAPF and LMAPF setups on
all 6 datasets. The results of this evaluation are presented in Figure 3. The details about number of
maps, number of agents, seeds, etc. are given in the supplementary material (as well as details on
how our results can be reproduced). In both setups, i.e., MAPF and LMAPF, the best results in terms
of cooperation, out-of-distribution, and performance metrics were obtained by centralized planners,
i.e. LaCAM and RHCR respectively.

20
40

60
80

100

Cooperation

CoordinationOut-of-Distribution

Pathfinding

Performance Scalability

LaCAM
SCRIMP

DCC
IQL

VDN
QMIX

QPLEX
MAMBA

20
40

60
80

100

Cooperation

CoordinationOut-of-Distribution

Pathfinding

Performance Scalability

RHCR
Follower

MATS-LP
IQL

VDN
QMIX

QPLEX
MAMBA

ASwitcher
LSwitcher

Figure 3: Evaluation of baselines available in POGEMA on (a) MAPF (b) LMAPF instances.

9

Published as a conference paper at ICLR 2025

For MAPF tasks, LaCAM notably outperforms all other approaches. Specialized learnable MAPF
approaches, such as DCC and SCRIMP, perform better than any of the MARL approaches. When
comparing these two specialized approaches, SCRIMP outperforms DCC across such metrics as Per-
formance, Cooperation, and Out-of-Distribution. Surprisingly, SCRIMP underperforms on pathfind-
ing tasks, revealing a weakness in single-agent scenarios that don’t require communication, which
may represent an out-of-distribution case for this algorithm. It is also worth noting that SCRIMP
incorporates an integrated tie-breaking mechanism that ensures collision-free actions. MARL algo-
rithms such as QPLEX, VDN, and QMIX perform significantly worse than other approaches, showing
a substantial gap in the results. This can be attributed to the absence of additional techniques used
in hybrid approaches. This may suggest that the MARL community lacks large-scale approaches
and benchmarks for these tasks. Among MARL approaches, MAMBA achieves the best results in
performance, cooperation, and pathfinding metrics, which can be attributed to its communication
mechanism. However, its performance remains much worse than that of specialized methods, and it
fails to solve any instances in the out-of-distribution dataset.

For LMAPF tasks, the centralized approach, RHCR, is superior in all cases except for the scalability
metric. Among the non-centralized approaches, the best results, depending on the metric, are shown
by either MATS-LP or Follower. The only metric in which these approaches differ significantly
is the cooperation metric, where MATS-LP performs better than Follower. However, MATS-LP
requires considerably more test-time computation, as it runs MCTS for each agent at every step
(see Appendix I for more details). Additionally, there are two hybrid approaches – ASwitcher and
LSwitcher – that differ in how they alternate between planning-based and learning-based components.
One reason for their mediocre performance is the lack of global information, i.e., they assume that
agents have no prior knowledge of the map, requiring each agent to reconstruct it based on the local
observations. Differently from the MAPF scenarios, MARL approaches can compete with hybrid
methods on LMAPF instances. This behavior is partly explained by the use of Follower’s observation
model, which is specifically designed to solve LMAPF. Among MARL approaches, QPLEX delivers
the best results, in contrast to MAPF tasks it even outperforming MAMBA.

5 CONCLUSION, LIMITATIONS AND FUTURE WORK

This paper presents POGEMA – a powerful suite of tools tailored for creating, assessing, and
comparing methods and policies for multi-agent pathfinding. POGEMA encompasses a fast learning
environment and a comprehensive evaluation toolbox suitable for pure MARL, hybrid, and search-
based solvers. It includes a wide array of methods as baselines. The evaluation protocol described,
along with a rich set of metrics, assists in assessing the generalization and scalability of all approaches.
Visualization tools enable qualitative examination of algorithm performance. Integration with the
well-known MARL API and map sets facilitates the benchmark’s expansion. Existing limitations
are two-fold. First, a conceptual limitation is that communication between agents is not currently
disentangled in POGEMA environment. Second, technical limitations include the lack of JAX support
and integration with the other GPU parallelization tools.

Future work could explore large-scale training setups for MARL methods, capable of handling large
agent populations and scenarios, particularly within the CTDE (Centralized Training, Decentralized
Execution) paradigm. Second, advancing communication learning suited to large-scale settings, where
local interactions are crucial, is another promising direction. Third, addressing memory limitations by
developing efficient approaches for long-horizon tasks without relying on global guidance is also vital.
Furthermore, leveraging POGEMA’s procedural map generation and expert data from centralized
solvers could enhance imitation learning and aid in training decentralized foundation models for
MAPF. Finally, studying heterogeneous policy coordination may enable effective collaboration among
diverse agents and advance concurrent training of different algorithms in shared environments.

6 ACKNOWLEDGMENTS

We thank the researchers using POGEMA in their studies, as well as the repository users who
contributed issues, questions, and feedback to improve the platform. Our thanks also go to the
anonymous reviewers for their valuable comments and suggestions, which enhanced the quality of
this work.

10

Published as a conference paper at ICLR 2025

REFERENCES

John P Agapiou, Alexander Sasha Vezhnevets, Edgar A Duéñez-Guzmán, Jayd Matyas, Yiran Mao,
Peter Sunehag, Raphael Köster, Udari Madhushani, Kavya Kopparapu, Ramona Comanescu, et al.
Melting pot 2.0. arXiv preprint arXiv:2211.13746, 2022.

Kai Arulkumaran, Antoine Cully, and Julian Togelius. Alphastar: An evolutionary computation
perspective. In Proceedings of the genetic and evolutionary computation conference companion,
pp. 314–315, 2019.

Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob McGrew, and Igor
Mordatch. Emergent tool use from multi-agent autocurricula. In International Conference on Learn-
ing Representations, 2020. URL https://openreview.net/forum?id=SkxpxJBKwS.

Christopher Bamford. Griddly: A platform for ai research in games. Software Impacts, 8:100066,
2021.

Clément Bonnet, Daniel Luo, Donal John Byrne, Shikha Surana, Paul Duckworth, Vincent Coyette,
Laurence Illing Midgley, Sasha Abramowitz, Elshadai Tegegn, Tristan Kalloniatis, et al. Jumanji:
a diverse suite of scalable reinforcement learning environments in jax. In The Twelfth International
Conference on Learning Representations, 2023.

Lorenzo Canese, Gian Carlo Cardarilli, Luca Di Nunzio, Rocco Fazzolari, Daniele Giardino, Marco
Re, and Sergio Spanò. Multi-agent reinforcement learning: A review of challenges and applications.
Applied Sciences, 11(11):4948, 2021.

Micah Carroll, Rohin Shah, Mark K Ho, Tom Griffiths, Sanjit Seshia, Pieter Abbeel, and Anca
Dragan. On the utility of learning about humans for human-ai coordination. Advances in neural
information processing systems, 32, 2019.

Filippos Christianos, Lukas Schäfer, and Stefano Albrecht. Shared experience actor-critic for
multi-agent reinforcement learning. Advances in neural information processing systems, 33:
10707–10717, 2020.

Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation
to benchmark reinforcement learning. In International conference on machine learning, pp.
2048–2056. PMLR, 2020.

Mehul Damani, Zhiyao Luo, Emerson Wenzel, and Guillaume Sartoretti. Primal _2: Pathfinding
via reinforcement and imitation multi-agent learning – lifelong. IEEE Robotics and Automation
Letters, 6(2):2666–2673, 2021.

Boris de Wilde, Adriaan W ter Mors, and Cees Witteveen. Push and rotate: cooperative multi-agent
path planning. In Proceedings of the 12th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2013), pp. 87–94, 2013.

Ashutosh Dekhne, Greg Hastings, John Murnane, and Florian Neuhaus. Automation in logistics: Big
opportunity, bigger uncertainty. McKinsey Q, 24, 2019.

Yali Du, Joel Z Leibo, Usman Islam, Richard Willis, and Peter Sunehag. A review of cooperation in
multi-agent learning. arXiv preprint arXiv:2312.05162, 2023.

Vladimir Egorov and Alexei Shpilman. Scalable multi-agent model-based reinforcement learning. In
Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems,
pp. 381–390, 2022.

Benjamin Ellis, Jonathan Cook, Skander Moalla, Mikayel Samvelyan, Mingfei Sun, Anuj Mahajan,
Jakob Foerster, and Shimon Whiteson. Smacv2: An improved benchmark for cooperative multi-
agent reinforcement learning. Advances in Neural Information Processing Systems, 36, 2024.

Rihab Gorsane, Omayma Mahjoub, Ruan John de Kock, Roland Dubb, Siddarth Singh, and Arnu
Pretorius. Towards a standardised performance evaluation protocol for cooperative marl. Advances
in Neural Information Processing Systems, 35:5510–5521, 2022.

11

https://openreview.net/forum?id=SkxpxJBKwS

Published as a conference paper at ICLR 2025

Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. Cooperative multi-agent control using
deep reinforcement learning. Autonomous Agents and Multiagent Systems, pp. 66–83, 2017.

Wolfgang Hönig, TK Satish Kumar, Liron Cohen, Hang Ma, Hong Xu, Nora Ayanian, and Sven
Koenig. Multi-agent path finding with kinematic constraints. In Proceedings of The 26th In-
ternational Conference on Automated Planning and Scheduling (ICAPS 2016), pp. 477–485,
2016.

Matthew Johnson, Katja Hofmann, Tim Hutton, and David Bignell. The malmo platform for artificial
intelligence experimentation. In Proceedings of the Twenty-Fifth International Joint Conference
on Artificial Intelligence, pp. 4246–4247, 2016.

Máté Kolat, Bálint Kővári, Tamás Bécsi, and Szilárd Aradi. Multi-agent reinforcement learning for
traffic signal control: A cooperative approach. Sustainability, 15(4):3479, 2023.

Karol Kurach, Anton Raichuk, Piotr Stańczyk, Michał Zając, Olivier Bachem, Lasse Espeholt, Carlos
Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, et al. Google research football:
A novel reinforcement learning environment. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pp. 4501–4510, 2020.

Florian Laurent, Manuel Schneider, Christian Scheller, Jeremy Watson, Jiaoyang Li, Zhe Chen,
Yi Zheng, Shao-Hung Chan, Konstantin Makhnev, Oleg Svidchenko, et al. Flatland competition
2020: Mapf and marl for efficient train coordination on a grid world. In NeurIPS 2020 Competition
and Demonstration Track, pp. 275–301. PMLR, 2021.

Mathias Lechner, Tim Seyde, Tsun-Hsuan Johnson Wang, Wei Xiao, Ramin Hasani, Joshua Rountree,
Daniela Rus, et al. Gigastep-one billion steps per second multi-agent reinforcement learning.
Advances in Neural Information Processing Systems, 36, 2024.

Pascal Leroy, Pablo G Morato, Jonathan Pisane, Athanasios Kolios, and Damien Ernst. Imp-marl: a
suite of environments for large-scale infrastructure management planning via marl. Advances in
Neural Information Processing Systems, 36, 2024.

Jiaoyang Li, Zhe Chen, Yi Zheng, Shao-Hung Chan, Daniel Harabor, Peter J Stuckey, Hang Ma,
and Sven Koenig. Scalable rail planning and replanning: Winning the 2020 flatland challenge. In
Proceedings of the international conference on automated planning and scheduling, volume 31,
pp. 477–485, 2021a.

Jiaoyang Li, Andrew Tinka, Scott Kiesel, Joseph W. Durham, T. K. Satish Kumar, and Sven Koenig.
Lifelong multi-agent path finding in large-scale warehouses. Proceedings of the AAAI Conference
on Artificial Intelligence, 35(13):11272–11281, May 2021b. doi: 10.1609/aaai.v35i13.17344. URL
https://ojs.aaai.org/index.php/AAAI/article/view/17344.

Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In
Machine learning proceedings 1994, pp. 157–163. Elsevier, 1994.

Zuxin Liu, Baiming Chen, Hongyi Zhou, Guru Koushik, Martial Hebert, and Ding Zhao. Mapper:
Multi-agent path planning with evolutionary reinforcement learning in mixed dynamic environ-
ments. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2020), pp. 11748–11754, 2020.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. Advances in neural information
processing systems, 30, 2017.

H. Ma, W. Hönig, T. K. S. Kumar, N. Ayanian, and S. Koenig. Lifelong path planning with kinematic
constraints for multi-agent pickup and delivery. In Proceedings of the 33rd AAAI Conference on
Artificial Intelligence (AAAI 2019), pp. 7651–7658, 2019.

Ziyuan Ma, Yudong Luo, and Jia Pan. Learning selective communication for multi-agent path finding.
IEEE Robotics and Automation Letters, 7(2):1455–1462, 2021.

12

https://ojs.aaai.org/index.php/AAAI/article/view/17344

Published as a conference paper at ICLR 2025

Sharada Mohanty, Erik Nygren, Florian Laurent, Manuel Schneider, Christian Scheller, Nilabha
Bhattacharya, Jeremy Watson, Adrian Egli, Christian Eichenberger, Christian Baumberger, et al.
Flatland-rl: Multi-agent reinforcement learning on trains. arXiv preprint arXiv:2012.05893, 2020.

Thanh Thi Nguyen, Ngoc Duy Nguyen, and Saeid Nahavandi. Deep reinforcement learning for
multiagent systems: A review of challenges, solutions, and applications. IEEE transactions on
cybernetics, 50(9):3826–3839, 2020.

Keisuke Okumura. Lacam: Search-based algorithm for quick multi-agent pathfinding. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 37, pp. 11655–11662, 2023.

Keisuke Okumura. Engineering lacam*: Towards real-time, large-scale, and near-optimal multi-agent
pathfinding. In Proceedings of the 23rd International Conference on Autonomous Agents and
Multiagent Systems, pp. 1501–1509, 2024.

Keisuke Okumura, Manao Machida, Xavier Défago, and Yasumasa Tamura. Priority inheritance with
backtracking for iterative multi-agent path finding. Artificial Intelligence, 310:103752, 2022.

Xuehai Pan, Mickel Liu, Fangwei Zhong, Yaodong Yang, Song-Chun Zhu, and Yizhou Wang. Mate:
Benchmarking multi-agent reinforcement learning in distributed target coverage control. Advances
in Neural Information Processing Systems, 35:27862–27879, 2022.

Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano V Albrecht. Benchmarking
multi-agent deep reinforcement learning algorithms in cooperative tasks. In Thirty-fifth Conference
on Neural Information Processing Systems Datasets and Benchmarks Track (Round 1), 2021. URL
https://openreview.net/forum?id=cIrPX-Sn5n.

Bei Peng, Tabish Rashid, Christian Schroeder de Witt, Pierre-Alexandre Kamienny, Philip Torr,
Wendelin Böhmer, and Shimon Whiteson. Facmac: Factored multi-agent centralised policy
gradients. Advances in Neural Information Processing Systems, 34:12208–12221, 2021.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
learning. Journal of Machine Learning Research, 21(178):1–51, 2020.

Alexander Rutherford, Benjamin Ellis, Matteo Gallici, Jonathan Cook, Andrei Lupu, Gardar Ing-
varsson, Timon Willi, Akbir Khan, Christian Schroeder de Witt, Alexandra Souly, et al. Jaxmarl:
Multi-agent rl environments in jax. arXiv preprint arXiv:2311.10090, 2023.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas Nardelli,
Tim G. J. Rudner, Chia-Man Hung, Philiph H. S. Torr, Jakob Foerster, and Shimon Whiteson. The
StarCraft Multi-Agent Challenge. CoRR, abs/1902.04043, 2019a.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas Nardelli,
Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson. The
starcraft multi-agent challenge. In Proceedings of the 18th International Conference on Autonomous
Agents and MultiAgent Systems, pp. 2186–2188, 2019b.

Guillaume Sartoretti, Justin Kerr, Yunfei Shi, Glenn Wagner, TK Satish Kumar, Sven Koenig, and
Howie Choset. Primal: Pathfinding via reinforcement and imitation multi-agent learning. IEEE
Robotics and Automation Letters, 4(3):2378–2385, 2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Wilko Schwarting, Tim Seyde, Igor Gilitschenski, Lucas Liebenwein, Ryan Sander, Sertac Karaman,
and Daniela Rus. Deep latent competition: Learning to race using visual control policies in latent
space. In Conference on Robot Learning, pp. 1855–1870. PMLR, 2021.

G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant. Conflict-based search for optimal multiagent
path finding. Artificial Intelligence Journal, 218:40–66, 2015.

Guni Sharon, Roni Stern, Meir Goldenberg, and Ariel Felner. The increasing cost tree search for
optimal multi-agent pathfinding. Artificial intelligence, 195:470–495, 2013.

13

https://openreview.net/forum?id=cIrPX-Sn5n

Published as a conference paper at ICLR 2025

Yoav Shoham and Kevin Leyton-Brown. Multiagent systems: Algorithmic, game-theoretic, and
logical foundations. Cambridge University Press, 2008.

Bharat Singh, Rajesh Kumar, and Vinay Pratap Singh. Reinforcement learning in robotic applications:
a comprehensive survey. Artificial Intelligence Review, 55(2):945–990, 2022.

Alexey Skrynnik, Anton Andreychuk, Konstantin Yakovlev, and Aleksandr I Panov. When to switch:
planning and learning for partially observable multi-agent pathfinding. IEEE Transactions on
Neural Networks and Learning Systems, 2023.

Alexey Skrynnik, Anton Andreychuk, Maria Nesterova, Konstantin Yakovlev, and Aleksandr Panov.
Learn to follow: Decentralized lifelong multi-agent pathfinding via planning and learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 17541–17549,
2024a.

Alexey Skrynnik, Anton Andreychuk, Konstantin Yakovlev, and Aleksandr Panov. Decentralized
monte carlo tree search for partially observable multi-agent pathfinding. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 38, pp. 17531–17540, 2024b.

Yan Song, He Jiang, Haifeng Zhang, Zheng Tian, Weinan Zhang, and Jun Wang. Boosting studies of
multi-agent reinforcement learning on google research football environment: the past, present, and
future. arXiv preprint arXiv:2309.12951, 2023.

T. S. Standley. Finding optimal solutions to cooperative pathfinding problems. In Proceedings of The
24th AAAI Conference on Artificial Intelligence (AAAI 2010), pp. 173–178, 2010.

Roni Stern, Nathan R Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne T Walker, Jiaoyang Li,
Dor Atzmon, Liron Cohen, TK Satish Kumar, et al. Multi-agent pathfinding: Definitions, variants,
and benchmarks. In Proceedings of the 12th Annual Symposium on Combinatorial Search (SoCS
2019), pp. 151–158, 2019.

Nathan R Sturtevant. Benchmarks for grid-based pathfinding. IEEE Transactions on Computational
Intelligence and AI in Games, 4(2):144–148, 2012.

Joseph Suarez, David Bloomin, Kyoung Whan Choe, Hao Xiang Li, Ryan Sullivan, Nishaanth Kanna,
Daniel Scott, Rose Shuman, Herbie Bradley, Louis Castricato, et al. Neural mmo 2.0: A massively
multi-task addition to massively multi-agent learning. Advances in Neural Information Processing
Systems, 36, 2024.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
networks for cooperative multi-agent learning based on team reward. In Proceedings of the 17th
International Conference on Autonomous Agents and MultiAgent Systems, pp. 2085–2087, 2018.

Pavel Surynek, Ariel Felner, Roni Stern, and Eli Boyarski. Efficient sat approach to multi-agent path
finding under the sum of costs objective. In Proceedings of the 22nd European Conference on
Artificial Intelligence (ECAI 2016), pp. 810–818. IOS Press, 2016.

Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In Proceedings
of the tenth international conference on machine learning, pp. 330–337, 1993.

Jordan Terry, Benjamin Black, Nathaniel Grammel, Mario Jayakumar, Ananth Hari, Ryan Sullivan,
Luis S Santos, Clemens Dieffendahl, Caroline Horsch, Rodrigo Perez-Vicente, et al. Pettingzoo:
Gym for multi-agent reinforcement learning. Advances in Neural Information Processing Systems,
34:15032–15043, 2021.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012. doi: 10.1109/IROS.2012.6386109.

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, Andrea
Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymnasium,
March 2023. URL https://zenodo.org/record/8127025.

14

https://zenodo.org/record/8127025

Published as a conference paper at ICLR 2025

Eugene Vinitsky, Nathan Lichtlé, Xiaomeng Yang, Brandon Amos, and Jakob Foerster. Nocturne:
a scalable driving benchmark for bringing multi-agent learning one step closer to the real world.
Advances in Neural Information Processing Systems, 35:3962–3974, 2022.

Glenn Wagner and Howie Choset. M*: A complete multirobot path planning algorithm with
performance bounds. In Proceedings of The 2011 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2011), pp. 3260–3267, 2011.

Binyu Wang, Zhe Liu, Qingbiao Li, and Amanda Prorok. Mobile robot path planning in dynamic
environments through globally guided reinforcement learning. IEEE Robotics and Automation
Letters, 5(4):6932–6939, 2020a.

Haoyu Wang, Xiaoyu Tan, Xihe Qiu, and Chao Qu. Subequivariant reinforcement learning framework
for coordinated motion control. arXiv preprint arXiv:2403.15100, 2024.

Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling
multi-agent q-learning. In International Conference on Learning Representations, 2020b.

Yutong Wang, Bairan Xiang, Shinan Huang, and Guillaume Sartoretti. Scrimp: Scalable commu-
nication for reinforcement-and imitation-learning-based multi-agent pathfinding. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 9301–9308. IEEE, 2023.

Annie Wong, Thomas Bäck, Anna V Kononova, and Aske Plaat. Deep multiagent reinforcement
learning: Challenges and directions. Artificial Intelligence Review, 56(6):5023–5056, 2023.

Deheng Ye, Zhao Liu, Mingfei Sun, Bei Shi, Peilin Zhao, Hao Wu, Hongsheng Yu, Shaojie Yang,
Xipeng Wu, Qingwei Guo, et al. Mastering complex control in moba games with deep reinforce-
ment learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp.
6672–6679, 2020.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of ppo in cooperative multi-agent games. Advances in Neural Information
Processing Systems, 35:24611–24624, 2022.

Yifan Zang, Jinmin He, Kai Li, Haobo Fu, Qiang Fu, Junliang Xing, and Jian Cheng. Automatic
grouping for efficient cooperative multi-agent reinforcement learning. Advances in Neural Infor-
mation Processing Systems, 36, 2024.

Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning: A selective
overview of theories and algorithms. Handbook of reinforcement learning and control, pp. 321–384,
2021.

Lin Zhang, Yufeng Sun, Andrew Barth, and Ou Ma. Decentralized control of multi-robot system
in cooperative object transportation using deep reinforcement learning. IEEE Access, 8:184109–
184119, 2020.

Ming Zhang, Shenghan Zhang, Zhenjie Yang, Lekai Chen, Jinliang Zheng, Chao Yang, Chuming Li,
Hang Zhou, Yazhe Niu, and Yu Liu. Gobigger: A scalable platform for cooperative-competitive
multi-agent interactive simulation. In The Eleventh International Conference on Learning Repre-
sentations, 2023. URL https://openreview.net/forum?id=NnOZT_CR26Z.

Lianmin Zheng, Jiacheng Yang, Han Cai, Ming Zhou, Weinan Zhang, Jun Wang, and Yong Yu.
Magent: A many-agent reinforcement learning platform for artificial collective intelligence. In
Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.

Ming Zhou, Jun Luo, Julian Villella, Yaodong Yang, David Rusu, Jiayu Miao, Weinan Zhang,
Montgomery Alban, Iman Fadakar, Zheng Chen, Aurora Chongxi Huang, Ying Wen, Kimia
Hassanzadeh, Daniel Graves, Dong Chen, Zhengbang Zhu, Nhat Nguyen, Mohamed Elsayed,
Kun Shao, Sanjeevan Ahilan, Baokuan Zhang, Jiannan Wu, Zhengang Fu, Kasra Rezaee, Peyman
Yadmellat, Mohsen Rohani, Nicolas Perez Nieves, Yihan Ni, Seyedershad Banijamali, Alexan-
der Cowen Rivers, Zheng Tian, Daniel Palenicek, Haitham bou Ammar, Hongbo Zhang, Wulong
Liu, Jianye Hao, and Jun Wang. Smarts: Scalable multi-agent reinforcement learning training
school for autonomous driving, 2020.

15

https://openreview.net/forum?id=NnOZT_CR26Z

Published as a conference paper at ICLR 2025

APPENDIX CONTENTS

Appendix Sections Contents
Appendix A Evaluation Setup Details

Appendix B Results for MAPF Benchmark

Appendix C Results for LifeLong MAPF Benchmark

Appendix D Code examples for POGEMA

Appendix E POGEMA Toolbox

Appendix F Extended Related Work

Appendix G Examples of Used Maps

Appendix H MARL Training Setup

Appendix I Resources and Statistics

Appendix J Community Engagement and Framework Enhancements

Appendix J Ingestion of MovingAI Maps

Appendix L POGEMA Speed Performance Evaluation

A EVALUATION SETUP DETAILS

POGEMA benchmark contains 6 different sets of maps and all baseline approaches were evaluated
on them either on MAPF or on LMAPF instances. Regardless the type of instances, number of maps,
seeds and agents were the same. Table 3 contains all information about these numbers. In total, this
corresponds to 3,376 episodes for each scenario type. Note that there is no MaxSteps (LMAPF)
value for Cities set of maps. This set of maps was used only for pathfinding meta-metric, thus all
approaches were evaluated only on MAPF instances with a single agent.

We used implementation LaCAM-v39, RHCR10. For learning-based approaches beyond MARL, we
used their official implementations and the provided weights for Follower11, MATS-LP12, Switcher13,
SCRIMP14, and DCC15.

Agents Maps MapSize Seeds MaxSteps MaxSteps
(MAPF) (LMAPF)

Random [8, 16, 24, 32, 48, 64] 128 17×17 - 21×21 1 128 256
Mazes [8, 16, 24, 32, 48, 64] 128 17×17 - 21×21 1 128 256

Warehouse [32, 64, 96, 128, 160, 192] 1 33×46 128 128 256
Puzzles [2, 3, 4] 16 5×5 10 128 256
Cities [1] 8 256×256 10 2048 -

Cities-tiles [64, 128, 192, 256] 128 64×64 1 256 256

Table 3: Details about the instances on different sets of maps.

B RESULTS FOR MAPF BENCHMARK

In this section, we present the extended results of the MAPF benchmark analysis, highlighting the
performance, out-of-distribution handling, scalability, cooperation, coordination, and pathfinding

9https://github.com/Kei18/lacam3
10https://github.com/Jiaoyang-Li/RHCR
11https://github.com/AIRI-Institute/learn-to-follow
12https://github.com/CognitiveAISystems/mats-lp
13https://github.com/AIRI-Institute/when-to-switch
14https://github.com/marmotlab/SCRIMP
15https://github.com/ZiyuanMa/DCC

16

https://github.com/Kei18/lacam3
https://github.com/Jiaoyang-Li/RHCR
https://github.com/AIRI-Institute/learn-to-follow
https://github.com/CognitiveAISystems/mats-lp
https://github.com/AIRI-Institute/when-to-switch
https://github.com/marmotlab/SCRIMP
https://github.com/ZiyuanMa/DCC

Published as a conference paper at ICLR 2025

capabilities of various approaches. The experiments were conducted on different map types and sizes,
employing metrics such as SoC, CSR, and makespan to evaluate effectiveness. Detailed visual and
tabular data illustrate how centralized and learnable approaches perform under various conditions.

Please note that the previous arXiv version contains different SCRIMP results due to a technical
error, which we discovered while refactoring the code for the camera-ready version.

B.1 PERFORMANCE

The performance metrics were calculated using Mazes and Random maps of size close to 20× 20.
The primary metrics here are SoC and CSR. The results of all the MAPF approaches over different
numbers of agents are presented in Figure 4. The superior performance is shown by the centralized
approach, LaCAM. Next best-performing approach is SCRIMP that is substantially outperforms
another specialized solver – DCC. Among the MARL methods, better results are shown by MAMBA
for both metrics. However, it narrowly lags behind the specialized approaches, DCC and SCRIMP.

8 16 32 64
Number of Agents

0.0

0.2

0.4

0.6

0.8

1.0

CS
R

Random / Mazes

DCC
IQL
LaCAM
MAMBA
QMIX
QPLEX
SCRIMP
VDN

8 16 24 32 48 64
Number of Agents

0

2000

4000

6000

8000

So
C

Random / Mazes
DCC
IQL
LaCAM
MAMBA
QMIX
QPLEX
SCRIMP
VDN

Figure 4: Performance of MAPF approaches on Random and Mazes maps, based on CSR (higher is
better) and SoC (lower is better) metrics. The shaded area indicates 95% confidence intervals.

B.2 OUT-OF-DISTRIBUTION

Out-of-Distribution metric was calculated on Cities-tiles dataset, that consists of pieces of
cities maps with 64× 64 size. Due to much larger size compared to Mazes and Random maps, the
amount of agents was also significantly increased. The results are presented in Figure 5. Here again
centralized search-based planner, i.e. LaCAM, demonstrates the best results both in terms of CSR and
SoC. Among hybrid methods, SCRIMP demonstrates better performance in terms of CSR, however,
average SoC of its solutions is almost the same as solutions found by DCC. MARL approaches are
unable to solve any instance even with 64 agents.

B.3 SCALABILITY

32 64 96 128 160 192
Number of Agents

0

2

8

32

128

Ru
nt

im
e

(s
ec

on
ds

)

Warehouse
DCC
IQL
LaCAM
MAMBA
QMIX
QPLEX
SCRIMP
VDN

Figure 6: Runtime in seconds for each
algorithm. The plot is log-scaled.

The results of how well the algorithm scales with a large
number of agents are shown in Figure 6. The experi-
ments were conducted on a warehouse map. The plot
is log-scaled. The best scalability is achieved with the cen-
tralized LaCAM approach, which is a high-performance
approach. DCC demonstrates the worst results in terms of
runtime; however, regarding the Scalability metric, DCC’s
results are identical to SCRIMP’s. Despite an initially
high runtime, the scalability of MAMBA is better than
other approaches; however, this could be attributed to the
high cost of GPU computation, which is due to the large
number of parameters in the neural network and is the
limiting factor of this approach.

17

Published as a conference paper at ICLR 2025

64 128 192 256
Number of Agents

0.0

0.2

0.4

0.6

0.8

1.0

CS
R

Out-of-Distribution

DCC
IQL
LaCAM
MAMBA
QMIX
QPLEX
SCRIMP
VDN

64 128 192 256
Number of Agents

0

10000

20000

30000

40000

50000

60000

So
C

Out-of-Distribution
DCC
IQL
LaCAM
MAMBA
QMIX
QPLEX
SCRIMP
VDN

Figure 5: Performance of MAPF approaches on Cities-tiles maps. These results were utilized
to compute Out-of-Distribution metric. The shaded area indicates 95% confidence intervals.

B.4 COOPERATION
Algorithm CSR SoC

DCC 0.74±0.04 93.50±10.47
IQL 0.47±0.04 250.03±19.09
LaCAM 1.00 20.84±1.65
MAMBA 0.40±0.05 173.60±14.04
QMIX 0.35±0.04 253.28±16.04
QPLEX 0.51±0.05 234.79±19.15
SCRIMP 0.85±0.03 77.86±11.09
VDN 0.45±0.05 242.42±17.92

Table 4: Comparison of algorithms’ cooperation
on Puzzles set. ± shows confidence inter-
vals 95%. Here, tan boxes highlight the best
approach, and teal boxes highlight the best ap-
proach with a learnable part.

How well the algorithm is able to resolve complex
situations on the Puzzles set is reflected in the
results presented in Table 4. The only approach
out of the evaluated ones that is able to solve all the
instances in this set is LaCAM. Out of the rest ap-
proaches, as well as on other sets of instances, the
best results is demonstrated by SCRIMP, which
outperforms DCC both in terms of CSR and SoC.
Among MARL approaches, better cooperation is
demonstrated by QMIX, outperforming QPLEX,
VDN, IQL, and even MAMBA.

B.5 PATHFINDING

Algorithm Makespan

DCC 189.56 ± 26.29
IQL 1096.86±196.97
LaCAM 179.82 ± 20.97
MAMBA 416.45±139.34
QMIX 1055.75±193.03
QPLEX 795.09±187.72
SCRIMP 755.98±183.31
VDN 1114.21±211.93

Table 5: Comparison of makespan (the
lower is better) used for pathfinding
metric. tan boxes highlight the best
approach, and teal boxes highlight the
best approach with a learnable part.

To compute Pathfinding metric we run the approaches on the
instances with a single agent. For this purpose we utilized
large Cities maps with 256 × 256 size, the results are
presented in Table 5. While this task seems easy, most of
the hybrid and MARL approaches are not able to effectively
solve them. Only LaCAM is able to find optimal paths in
all the cases, as it utilizes precomputed costs to the goal
location as a heuristic. Most of the evaluated hybrid and
MARL approaches are also contain a sort of global guidance
in one the channels of their observations. However, large
maps with out-of-distribution structure, the absence of com-
munication and other agents in local observations are able
to lead to inconsistent behavior of the models that are not
able to effectively choose the actions that lead the agent to
its goal. Please note, SoC and makespan metrics in this case
are equal, as there is only one agent in every instance.

B.6 COORDINATION

The coordination metric is based on the number of collisions that occur during an episode. These
collisions can occur either between agents, when two or more agents try to occupy the same cell
or traverse the same edge simultaneously, or with static obstacles, when an agent tries to occupy a
blocked cell. All such collisions are prevented by POGEMA during the action execution process,
as all colliding actions are replaced with waiting actions instead. Figure 7 shows the average total

18

Published as a conference paper at ICLR 2025

8 16 24 32 48 64
Number of Agents

0

1000

2000

3000

4000

5000

Co
llis

io
ns

Mazes
DCC
IQL
MAMBA
QMIX
QPLEX
VDN

8 16 24 32 48 64
Number of Agents

0

1000

2000

3000

4000

5000

Co
llis

io
ns

Random
DCC
IQL
MAMBA
QMIX
QPLEX
VDN

Figure 7: Total number of collisions occurred during solving MAPF instances with corresponding
number of agents of Mazes and Random sets of maps.

number of collisions that occurred while solving instances with the corresponding number of agents
on the Mazes and Random map sets.

The highest number of collisions occurred with the MAMBA approach, while the fewest were
with DCC. The low number of collisions made by DCC compared to other approaches can be
attributed to the presence of a communication mechanism that helps avoid collisions. The results
of two evaluated approaches, LaCAM and SCRIMP, were omitted and are not presented in Figure
7. LaCAM is a centralized planner, so its solutions are collision-free by design. SCRIMP has an
integrated environment with communication and tie-breaking mechanisms that resolve all collisions.

C RESULTS FOR LIFELONG MAPF BENCHMARK

In this section, we present the extended results of the LifeLong MAPF benchmark analysis, highlight-
ing performance, out-of-distribution handling, scalability, cooperation, coordination, and pathfinding.

C.1 PERFORMANCE

Performance metric in LMAPF case is based on the ratio of throughput compared to the best obtained
one. In contrast to SoC, throughput should be as high as possible. There is also no CSR metric, as
there is no need for agents to be at their goal locations simultaneously. As well as in MAPF case,
the best results are obtained by centralized search-based approach – RHCR. The best results among
decentralized methods demonstrate Follower and MATS-LP, following them, comparable results are
shown by QPLEX, QMIX, ASwitcher which significantly outperforms MAMBA on both Mazes
and Random maps. The results are presented in Figure 8.

8 16 24 32 48 64
Number of Agents

0.5

1.0

1.5

2.0

2.5

Av
er

ag
e

Th
ro

ug
hp

ut

Mazes
ASwitcher
Follower
IQL
LSwitcher
MAMBA
MATS-LP
QMIX
QPLEX
RHCR
VDN

8 16 24 32 48 64
Number of Agents

1

2

3

4

Av
er

ag
e

Th
ro

ug
hp

ut

Random
ASwitcher
Follower
IQL
LSwitcher
MAMBA
MATS-LP
QMIX
QPLEX
RHCR
VDN

Figure 8: Performance results for LifeLong scenarios on the Mazes and Random maps.

19

Published as a conference paper at ICLR 2025

C.2 OUT-OF-DISTRIBUTION

The evaluation on out-of-distribution set of maps confirms the results obtained on Random and
Mazes maps. The best results demonstrates RHCR. Next best results are obtained by Follower
and MATS-LP, which are much closer to RHCR in this experiment. While MATS-LP outperforms
Follower on the instances with 64, 128 and 192 agents, Follower is still better on the instances with
256 agents. Such relation is probably explained by the presence of dynamic edge-costs in Follower
that allows to better distribute agents along the map and reduce coordination between them.

Algorithm 64 Agents 128 Agents 192 Agents 256 Agents

ASwitcher 1.26±0.08 2.30±0.13 3.14±0.17 3.80±0.20
Follower 1.50±0.08 2.82±0.13 3.95±0.19 4.81±0.22
IQL 1.10±0.06 1.94±0.11 2.32±0.15 2.37±0.15
LSwitcher 1.23±0.07 2.23±0.12 3.06±0.17 3.67±0.20
MAMBA 1.02±0.05 1.42±0.08 2.05±0.12 2.46±0.17
MATS-LP 1.57±0.12 2.98±0.20 4.04±0.33 4.69±0.39
QMIX 1.36±0.07 2.54±0.12 3.46±0.16 4.03±0.20
QPLEX 1.47±0.08 2.67±0.12 3.61±0.18 4.22±0.22
RHCR 1.57±0.08 3.00±0.14 4.22±0.23 5.13±0.34
VDN 1.12±0.06 2.26±0.10 2.81±0.14 2.85±0.16

Table 6: Evaluation on Out-of-Distribution maps. tan boxes highlight the best approach according to
the average throughput metric, and teal boxes highlight the best approach with a learnable component.

C.3 SCALABILITY

32 64 96 128 160 192
Number of Agents

1

4

16

64

256

1024

4096

Ru
nt

im
e

(s
ec

on
ds

)

Warehouse
ASwitcher
Follower
IQL
LSwitcher
MAMBA
MATS-LP
QMIX
QPLEX
RHCR
VDN

Figure 9: Runtime in seconds for each algorithm.
Note that the plot is log-scaled.

Figure 9 contains log-scaled plot of average time
spent by each of the algorithms to process an
instance on Warehouse map with the corre-
sponding amount of agents. Most of the ap-
proaches scales almost linearly, except RHCR.
This centralized search-based method lacks of
exponential grow, as it needs to find a collision-
free solution for at least next few steps, rather
than just to make a decision about next action for
each of the agents. The worst runtime demon-
strate MATS-LP, as it runs MCTS and simulates
the behavior of the other observable agents. It’s
still scales better than RHCR as it builds trees
for each of the agents independently.

C.4 COOPERATION Algorithm Average Throughput

ASwitcher 0.164±0.015
Follower 0.319±0.020
IQL 0.125±0.013
LSwitcher 0.206±0.013
MAMBA 0.133±0.014
MATS-LP 0.394±0.021
QMIX 0.228±0.018
QPLEX 0.217±0.019
RHCR 0.538±0.021
VDN 0.144±0.015

Table 7: Average throughput on Puzzles
maps that were used to compute Cooperation
metric.

As well as for MAPF setting, cooperation met-
ric is computed based on the results obtained
on Puzzles dataset. Table 7 contains average
throughput obtained by each of the evaluated ap-
proaches. Here again the best results are obtained by
RHCR algorithm. In contrast to Random, Mazes
and Warehouse sets of maps, where MATS-LP
and Follower demonstrate close results, the ability
to simulate the behavior of other agents, provided
by MCTS in MATS-LP, allows to significantly out-
perform Follower on small Puzzles maps. The
rest approaches demonstrate much worse results, es-
pecially IQL, MAMBA, VDN that have almost 5
times worse average throughput than RHCR.

20

Published as a conference paper at ICLR 2025

C.5 PATHFINDING

Algorithm Makespan

ASwitcher 340.56 ± 79.41
Follower 181.00 ± 20.95
IQL 900.73±188.60
LSwitcher 472.64±119.23
MAMBA 416.45±136.01
MATS-LP 179.93 ± 22.45
QMIX 461.90±147.16
QPLEX 181.10 ± 20.95
RHCR 179.82 ± 20.21
VDN 1609.50±172.46

Table 8: Pathfinding results.

Pathfinding metric is tailored to indicate how well the algo-
rithm is able to guide an agent to its goal location. As a result,
there is actually no need to run the algorithms on LifeLong
instances. Instead, they were run on the same set of instances
that were utilized for MAPF approaches.

The results of this evaluation are presented in Table 8. Again,
the best results were obtained by search-based approach –
RHCR. Its implementation was slightly modified to work on
MAPF instances, when there is no new goal after reaching
the current one. Either optimal or close to optimal paths
are able to find MATS-LP, Follower and QPLEX. Followers
misses optimal paths due to the integrated technique that
changes the edge-costs. MATS-LP adds noise to the root of
the search tree that might result in choosing of wrong actions.
For approaches in the Switcher family, it is nearly impossible to find optimal paths, as they lack
information about the global map and rely solely on local observations. Surprisingly, ASwitcher
outperforms MAMBA, QMIX, IQL, and VDN, which are provided with a global map.

C.6 COORDINATION

Figure 10 illustrates the average total number of collisions that occurred during the solving of LMAPF
instances. The absolute values are higher than those obtained during the solving of MAPF instances.
This behavior is explained by the extended episode length in LMAPF instances, which is twice as
long. Moreover, in MAPF scenarios, the episode can end when all agents reach their goal locations,
whereas in LMAPF scenarios, all agents continue to act until the episode length limit is reached.

All MARL approaches show poor results, with MAMBA being the worst among them. The fewest
collisions are made by the Switcher approaches, i.e., ASwitcher and LSwitcher. A comparable
number of collisions is demonstrated by MATS-LP and Follower on the Random set of maps. The
difference in the behavior of these two approaches on the Random and Mazes map sets is likely
due to the more complex structure of obstacles on the Mazes maps, where their heuristic guidance
more often leads to collisions. It’s also worth noting that MATS-LP has no collisions with static
obstacles, as it employs a masking mechanism that prevents selecting an action that leads an agent
into a blocked cell. Such a mechanism could be implemented in other approaches to prevent this
type of collision and potentially improve their performance. The results of the RHCR approach are
omitted, as it is a centralized planner and its solutions are guaranteed to be collision-free.

8 16 24 32 48 64
Number of Agents

0

1000

2000

3000

4000

5000

Co
llis

io
ns

Mazes
ASwitcher
Follower
IQL
LSwitcher
MAMBA
MATS-LP
QMIX
QPLEX
VDN

8 16 24 32 48 64
Number of Agents

0

2000

4000

6000

8000

10000

Co
llis

io
ns

Random
ASwitcher
Follower
IQL
LSwitcher
MAMBA
MATS-LP
QMIX
QPLEX
VDN

Figure 10: Total number of collisions occurred during solving LMAPF instances with corresponding
number of agents of Mazes and Random sets of maps.

21

Published as a conference paper at ICLR 2025

D CODE EXAMPLES FOR POGEMA

POGEMA is an environment that provides a simple scheme for creating MAPF scenarios, specifying
the parameters of GridConfig. The main parameters are: on_target (the behavior of an agent
on the target, e.g., restart for LifeLong MAPF and nothing for classical MAPF), seed – to preserve
the same generation of the map; agent; and their targets for scenario, size – used for cases without
custom maps to specify the size of the map, density – the density of obstacles, num_agents –
the number of agents, obs_radius – observation radius, collision_system – controls how
conflicts are handled in the environment (we used a soft collision system for all of our experiments).
The example of creation such instance is presented in Figure 11.

from pogema import pogema_v0, GridConfig, AnimationMonitor

grid = """
.....#.....
.....#.....
...........
.....#.....
.....#.....
#.####.....
.....###.##
.....#.....
.....#.....
...........
.....#.....
"""

Define new configuration with 6 randomly placed agents
grid_config = GridConfig(map=grid, num_agents=6)

Create custom Pogema environment with AnimationMonitor
env = AnimationMonitor(pogema_v0(grid_config=grid_config))
env.reset()

Saving SVG animation
env.save_animation('four-rooms.svg')

Figure 11: Setting up a POGEMA instance with a custom map and generating an animation.

Visualization of the agents is a crucial tool for debugging algorithms, visually comparing them,
and presenting the results. Many existing MARL environments lack such tools, or have limited
visualization functionality, e.g., requiring running the simulator to provide replays, or offering
visualizations only in one format (such as videos). In the POGEMA environment, there are three
types of visualization formats. The first one is console rendering, which can be used with the default
render methods of the environment; this approach is useful for local or server-side debugging.
The preferred second option is SVG animations. An example of generating such a visualization is
presented in the listing above. This approach allows displaying the results using any modern web
browser. It provides the ability to highlight high-quality static images (e.g., as the images provided
in the paper) or to display results on a website (e. g., animations of the POGEMA repository on
GitHub). This format ensures high-quality vector graphics. The third option is to render the results to
video format, which is useful for presentations and videos.

22

Published as a conference paper at ICLR 2025

E POGEMA TOOLBOX

The POGEMA Toolbox provides three types of functionality.

The first one is registries to handle custom maps and algorithms. To create a custom map, the user first
needs to define it using ASCII symbols or by uploading it from a file, and then register it using the
toolbox (see Figure 13). The same approach is used to register and create algorithms (see Figure 12).
In that listing, the registration of a simple algorithm is presented, which must include two methods:
act and reset_states. This approach can also accommodate a set of hyperparameters which
the Toolbox handles.

from pogema import BatchAStarAgent

Registring A* algorithm
ToolboxRegistry.register_algorithm('A*', BatchAStarAgent)

Creating algorithm
algo = ToolboxRegistry.create_algorithm("A*")

Figure 12: Example of registering the A* algorithm as an approach in the POGEMA Toolbox.

from pogema_toolbox.registry import ToolboxRegistry

Creating custom map
custom_map = """
.......#.
...#...#.
.#.###.#.
"""

Registring custom map
ToolboxRegistry.register_maps({"custom_map": custom_map})

Figure 13: Example of registering a custom map to the POGEMA Toolbox.

Second, it provides a unified way of conducting distributed testing using Dask 16 and defined
configurations. An example of such a configuration is provided in Figure 14. The configuration is
split into three main sections; the first one details the parameters of the POGEMA environment used
for testing. It also includes iteration over the number of agents, seeds, and names of the map (which
were registered beforehand). The unified grid_search tag allows for the examination of any
existing parameter of the environment. The second part of the configurations is a list of algorithms to
be tested. Each algorithm has its alias (which will be shown in the results) and name, which specifies
the family of methods. It also includes a list of hyperparameters common to different approaches,
e.g., the number of processes, parallel backend, etc., and the specific parameters of the algorithm.

The third functionality and third part of the configuration concern views. This is a form of presenting
the results of the algorithms. Working with complex testing often requires custom tools for creating
visual materials such as plots and tables. The POGEMA toolbox provides such functionality for
MAPF tasks out-of-the-box. The listing provides two examples of such data visualization: a plot and
a table, which, based on the configuration, provide aggregations of results and present information in
a high-quality form, including confidence intervals. The plots and tables in the paper are prepared
using this functionality.

16https://github.com/dask/dask

23

https://github.com/dask/dask

Published as a conference paper at ICLR 2025

environment: # Configuring Test Environments
name: Environment
on_target: 'restart'
max_episode_steps: 128
observation_type: 'POMAPF'
collision_system: 'soft'
seed:

grid_search: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
num_agents:

grid_search: [8, 16, 24, 32, 48, 64]
map_name:

grid_search: [
validation-mazes-000, validation-mazes-001,
validation-mazes-002, validation-mazes-003,
validation-mazes-004, validation-mazes-005,

]

algorithms: # Specifying algorithms and it's hyperparameters
RHCR_5_10:
name: RHCR
parallel_backend: 'balanced_dask'
num_process: 32
simulation_window: 5
planning_window: 10
time_limit: 10
low_level_planner: 'SIPP'
solver: 'PBS'

results_views: # Defining results visualization
MazesPlot:

type: plot
x: num_agents
y: avg_throughput
width: 4.0
height: 3.1
line_width: 2
use_log_scale_x: True
legend_font_size: 8
font_size: 8
name: Mazes
ticks: [8, 16, 24, 32, 48, 64]

TabularThroughput:
type: tabular
print_results: True

Figure 14: Example of the POGEMA Toolbox configuration for parallel testing of the RHCR
approach and visualization of its results.

F EXTENDED RELATED WORK

StarCraft Multi-Agent Challenge — The StarCraft Multi-Agent Challenge (SMAC) is a highly
used benchmark in the MARL community. Most MARL papers that propose new algorithms provide
evaluations in this environment. The environment offers a large set of possible tasks where a group
of units tries to defeat another group of units controlled by a bot (a predefined programmed policy).
Such tasks are partially observable and often require simple navigation. However, the benchmark has

24

Published as a conference paper at ICLR 2025

several drawbacks, such as the need to use the slow simulator of the StarCraft II engine, deterministic
tasks, and the lack of an evaluation protocol.

Nevertheless, some of these drawbacks have already been addressed. SMAX Rutherford et al.
(2023) provides a hardware-accelerated JAX version of the environment, but it cannot guarantee full
compatibility since the StarCraft II engine is proprietary software. SMAC v2 Ellis et al. (2024) solves
the problem of determinism, highlighting this issue in the original SMAC environments. Moreover,
an evaluation protocol for the SMAC environment is proposed in Gorsane et al. (2022). Despite
these efforts, it’s hard to say that these tasks require the generalization ability of the agent, since the
training and evaluation are conducted on the same scenario.

Multi-agent MuJoCo — In MAMuJoCo, the standard tasks involve agents controlling different sets
of joints (or a single joint) within a simulated robot. This set of environments is a natural adaptation
of the environment presented in the well-known MuJoCo physics engine Todorov et al. (2012). These
tasks don’t require high generalization abilities or navigation. In the newer version, MuJoCo provides
a hardware-accelerated version, forming the basis for Multi-agent BRAX Rutherford et al. (2023),
which enhances performance and efficiency.

Google Research Football — Google Research Football Kurach et al. (2020) is a multi-agent football
simulator that provides a framework for cooperative or competitive multi-agent tasks. Despite the
large number of possible scenarios in the football academy and the requirement for simple navigation,
the tasks are highly specific to the studied domain. Additionally, the number of possible agents is
limited. Moreover, the framework offers low scalability, requiring a heavy engine.

Multi-robot warehouse — The multi-robot warehouse environment RWARE Papoudakis et al.
(2021) simulates a warehouse with robots delivering requested goods. The environment is highly
specific to delivery tasks; however, it doesn’t support procedurally generated scenarios, thus not
requiring generalization abilities or an evaluation protocol. The best-performing solution Christianos
et al. (2020) in this environment is trained on only 4 agents. The benchmark is highly related to
multi-agent pathfinding tasks; however, it doesn’t provide centralized solution integration, which
could serve both as an upper bound for learnable decentralized methods and as a source of expert
demonstrations.

Level-Based Foraging — Multi-agent environment LBF Papoudakis et al. (2021) simulates food
collection by several autonomously navigating agents in a grid world. Each agent is assigned a level.
Food is also randomly scattered, each having a level on its own. The collection of food is successful
only if the sum of the levels of the agents involved in loading is equal to or higher than the level
of the food. The agents are getting rewarded by level of food they collected normalized by their
level and overall food level of the episode. The game requires cooperation but also the agents can
emerge competitive behavior. The environment is very efficiently designed and very simple to set
up; however, it doesn’t support procedurally generated scenarios, thus not requiring generalization
abilities or an evaluation protocol.

Flatland — The Flatland environment Mohanty et al. (2020) is designed to address the specific
problem of fast, conflict-free train scheduling on a fixed railway map. This environment was created
for the Flatland Competition Laurent et al. (2021). The overall task is centralized with full observation;
however, there is an adaptation to partial observability for RL agents. Unfortunately, during several
competitions, despite the presence of stochastic events, centralized solutions Li et al. (2021a) from
operations research field have outperformed RL solutions by a large margin in both quality and speed.
The environment is procedurally generated, which requires high generalization abilities, and the
benchmark provides an evaluation protocol. A significant drawback is the extremely slow speed of
the environment, which highly restricts large-scale learning.

Overcooked — The Overcooked is a benchmark environment for fully cooperative human-AI task
performance, based on the widely popular video game (Carroll et al., 2019). In the game, agents
control chefs tasked to cook some dishes. Due to possible complexity of the cooking process,
involving multistep decision-making, it requires emergence of cooperative behavior between the
agents.

Griddly — This is a grid-based game engine (Bamford, 2021), allowing to make various and diverse
grid-world scenarios. The environment is very performance efficient, being able to make thousands
step per second. Moreover, there is test coverage and continuous integration support, allowing

25

Published as a conference paper at ICLR 2025

open-source development. The engine provides support for different observation setups and maintains
state history, making it useful for search based methods.

Multi-player game simulators — Despite the popularity of multi-player games, it’s a challenging
problem to develop simulators of the games that could be used for research purposes. One of the most
popular adaptations are MineCraft MALMO (Johnson et al., 2016) that allows to utilize MineCraft
as a configurable research platform for multi-agent research and model various agents’ interactions.
In spite of the game’s flexible functionality, it depends on external runtime, so might be very hard
to set up or extremely slow to iterate with. That’s why there are several alternatives that prioritize
fast iteration over the environment complexity, like Neural MMO Suarez et al. (2024) that models
a simple MMO RPG with agents with a shared resource pool. On top of that, there are even faster
implementation, targeting coordination or cooperation, like Hide-and-Seek Baker et al. (2020), which
models competition, or GoBigger Zhang et al. (2023), focusing on competition between cooperating
populations.

Magent ––– Is a well-recognized environment within the community, though less widely used than
SMAC. However, it lacks procedural generation capabilities, essential for testing agent generalization.
The benchmark consists of six static scenarios, with the largest agent population observed in the
Gather scenario, supporting up to 495 agents. The scenarios include Adversarial Pursuit, where red
agents navigate obstacles to tag blue agents without causing damage; Battle, a large-scale team battle
rewarding individual agent performance; Battlefield, similar to Battle but with fewer agents, but with
predefined obstacles on the field; Combined Arms, a team battle featuring ranged and melee units
with differing attack ranges, speeds, and health points; Gather, where agents compete for finite food
resources requiring multiple “attacks” to consume; and Tiger-Deer, in which tigers team up to hunt
deer, earning rewards through successful cooperation.

Gigastep — A GPU-accelerated multi-agent benchmark that supports both collaborative and ad-
versarial tasks, continuous and discrete action spaces, and provides RGB image and feature vector
observations. It features a diverse set of scenarios with heterogeneous agents, asymmetric teams, and
varying objectives (e.g., tagging, waypoint following, hide-and-seek). However, it lacks procedural
generation, which is crucial for testing generalization. Its evaluation protocol is minimal, relying
on comparisons between PPO and hand-designed bots, offering limited insights into algorithmic
diversity.

Multi-agent Driving Simulators — Autonomous driving is one of the important practical applica-
tions of MARL, and Nocturne Vinitsky et al. (2022) is a 2D simulator, written in C++, that focuses
on different scenarios of interactions — e.g. intersections, roundabouts etc. The simulator is based
on trajectories collected in real life, allowing it to model practical scenarios. This environment has
evaluation protocols and supports open-source development with continuous integration and covered
by tests. There are also environments, focusing on particular details of driving, for example, Multi-car
Racing Schwarting et al. (2021) that represents racing from bird’s eye view.

Suits of multi-agent environments — These multi-agent environments are designed to be very simple
benchmarks for specific tasks. Jumanji Bonnet et al. (2023) is a set of environments for different
multi-agent scenarios connected to combinatorial optimization and control, for example, routing or
packing problems. With the purpose for each environment to be focused on the particular task, the
overall suit doesn’t test generalization or enable procedural generation. Multi Particle Environments
(MPE) Lowe et al. (2017) is a communication oriented set of partially observable environments where
particle agents are able to interact with fixed landmarks and each other, communicating with each
other. SISL Gupta et al. (2017) is a set of three dense reward environments was developed to have a
simple benchmark for various cooperative scenarios. For environment suits, testing generalization,
MeltingPot Agapiou et al. (2022) comes into place. This set of the environments contains a diverse
set of cooperative and general-sum partially observable games and maintains two populations of
agents: focal (learning) and visiting (unknown to the environment) to benchmark generalization
abilities of MARL algorithms. The set in based on the own game engine and might be extended quite
easily.

Real-world Engineering in Practice — Real-world engineering tasks can often be addressed by
MARL solutions. IMP-MARL Leroy et al. (2024) provides a platform for evaluating the scalability
of cooperative MARL methods responsible for planning inspections and repairs for specific system
components, with the goal of minimizing maintenance costs. At the same time, agents must cooperate

26

Published as a conference paper at ICLR 2025

to minimize the overall risk of system failure. MATE Pan et al. (2022) addresses target coverage
control challenges in real-world scenarios. It presents an asymmetric cooperative-competitive game
featuring two groups of learning agents, cameras and targets, each with opposing goals.

G EXAMPLES OF USED MAPS

The examples of used maps are presented in Figure 15, showing a diverse list of maps. The map
types used in the POGEMA Benchmark include: Mazes, with prolonged 1-cell width corridors
requiring high-level cooperation; Random, easily generated maps to avoid overfitting with con-
trollable obstacle density; Cities-tiles, smaller modified slices of Cities maps; Puzzles,
small hand-crafted maps with challenging patterns necessitating agent cooperation; Warehouse,
widely used in LifeLong MAPF research, featuring high agent density and throughput challenges;
and Cities, large maps with varying structures for single-agent pathfinding.

(a) Mazes (b) Random (c) Cities-tiles

(d) Puzzles (e) Warehouse (f) Cities

Figure 15: Examples of maps presented in the POGEMA Benchmark. The city map (on which the
pathfinding metric was tested) is shown without grid lines and agents for clarity.

H MARL TRAINING SETUP
Hyperparameter IQL QPLEX QMIX VDN

Batch Size 64 64 32 32
Learning Rate 0.002 0.002 0.001 0.001
RNN Size 128 128 256 256

Table 9: Best hyperparameters found by hyperparameter
sweep, which is different from defaults ones.

For training MARL approaches such as
QMIX, QPLEX, IQL, and VDN, we started
based on the default hyperparameters pro-
vided in the corresponding repositories,
employing the PyMARL2 framework17.
These hyperparameters are mostly tuned
for the SMAC environment, so we tuned
the main ones for our use case. For this hyperparameter sweep, we used grid search over parameters
such as learning rate, batch size, replay buffer size, and neural network parameters like the size of
RNN blocks. We used the default functionality of the Wandb framework18 for this sweep, with the
optimization target being the CSR of the agent on the training maps. The best found hyperparameters

17https://github.com/hijkzzz/pymarl2
18https://github.com/wandb/wandb

27

https://github.com/hijkzzz/pymarl2
https://github.com/wandb/wandb

Published as a conference paper at ICLR 2025

which is different from default ones are presented in Table 9. We used the default hyperparameters
for MAMBA, provided in corresponding repository19.

As input, we apply preprocessing from the Follower approach, which is the current state-of-the-art
for decentralized LifeLong MAPF. We attempted to add a ResNet encoder, as used in the Follower
approach; however, this addition worsened the results, thus we opted for vectorized observation and
default MLP architectures. For centralized methods that work with the state of the environment
(e.g., QMIX or QPLEX), we utilized the MARL integration of POGEMA, which provides agent
positions, targets, and obstacle positions in a format similar to the SMAC environment (providing
their coordinates).

Our initial experiments on training this approach with a large number of agents, similar to the
Follower model, showed very low results. We adjusted the training maps to be approximately 16×16,
which proved to be more effective and populated them with 8 agents. All the MARL approaches were
trained using the Mazes map generator. This setup produced better results. We continued training
the approaches until they reached a plateau, which for most algorithms is under 1 million steps.

I RESOURCES AND STATISTICS

To evaluate all the presented approaches integrated with POGEMA we have used two workstations
with equal configuration, that includes 2 NVidia Titan V GPU, AMD Ryzen Threadripper 3970X
CPU and 256 GB RAM. The required computation time is heavily depends on the approach by itself.

Random Mazes Warehouse Cities-tiles Puzzles Cities

DCC 2.11 2.46 11.07 22.70 0.09 0.02
IQL 0.05 0.04 0.13 0.13 0.01 0.01

LaCAM 0.20 0.29 0.24 0.23 0.37 0.01
MAMBA 6.62 6.47 8.36 12.27 2.59 3.40

QMIX 0.04 0.04 0.14 0.13 0.01 0.01
QPLEX 0.05 0.04 0.13 0.13 0.01 0.01

SCRIMP 1.66 2.20 16.54 21.63 0.08 0.21
VDN 0.05 0.04 0.13 0.13 0.01 0.01

Table 10: Total time (in hours) required by each of the algorithms to run all MAPF instances on the
corresponding datasets.

Random Mazes Warehouse Cities-tiles Puzzles Cities

ASwitcher 1.03 0.47 2.95 1.76 0.31 0.04
Follower 0.48 0.23 0.69 0.77 0.26 0.89

IQL 0.08 0.04 0.26 0.24 0.02 0.01
LSwitcher 6.18 2.61 17.30 10.70 0.81 0.21
MAMBA 13.82 6.69 15.81 11.07 7.83 3.40

MATS-LP 77.31 35.34 163.68 129.78 3.80 0.14
QMIX 0.08 0.04 0.26 0.25 0.02 0.01

QPLEX 0.08 0.04 0.26 0.25 0.02 0.01
RHCR 0.57 0.25 17.04 6.28 0.01 0.01

VDN 0.08 0.04 0.25 0.25 0.02 0.01

Table 11: Total time (in hours) required by each of the algorithms to run all LMAPF instances on the
corresponding datasets.

The statistics regarding the spent time on solving MAPF and LMAPF instances are presented in Table
10 and Table 11 respectively. Please note, that all these approaches were run in parallel in multiple
threads utilizing Dask, that significantly reduces the factual spent time.

We used pretrained models for all the hybrid methods, such as Follower, Switcher, MATS-LP,
SCRIMP, and DCC, thus, no resources were spent on their training. RHCR and LaCAM are pure

19https://github.com/jbr-ai-labs/mamba

28

https://github.com/jbr-ai-labs/mamba

Published as a conference paper at ICLR 2025

search-based planners and do not require any training. MARL methods, such as MAMBA, QPLEX,
QMIX, IQL, and VDN, were trained by us. MAMBA was trained for 20 hours on the MAPF instances,
resulting in 200K environment steps, and for 6 days on LifeLong MAPF instances, resulting in 50K
environment steps, which corresponds to the same amount of GPU hours. For MARL approaches,
we trained them for 1 million environment steps, which corresponds to an average of 5 GPU hours
for each algorithm.

J COMMUNITY ENGAGEMENT AND FRAMEWORK ENHANCEMENTS

Our team is committed to maintaining an open and accountable POGEMA framework. We ensure
transparency in our operations and encourage the broader AI community to participate. Our frame-
work includes a fast learning environment, problem instance generator, visualization toolkit, and
automated benchmarking tools, all guided by a clear evaluation protocol. We have also implemented
and evaluated multiple strong baselines that simplify further comparison. We practice rigorous
software testing and conduct regular code reviews.

K INGESTION OF MOVINGAI MAPS

We incorporated an ingestion script to convert MovingAI maps to be compatible with POGEMA. The
ingestion script is straightforward, and an example of its usage is presented in Figure 16. This script
downloads the full archive of, in this case, the street-map series, which will be saved to a YAML file
compatible with POGEMA.

from pogema_toolbox.generators.generator_utils import (
maps_dict_to_yaml)

from pogema_toolbox.moving_ai_ingestion import (
download_moving_ai_maps)

url = 'https://movingai.com/benchmarks/street/street-map.zip'
maps = download_moving_ai_maps(url)
maps_dict_to_yaml('maps.yaml', maps)

Figure 16: Ingestion script to convert MovingAI maps into POGEMA-compatible format

Instead of converting and distributing these maps ourselves, we provide this script to allow users to
convert the maps on their own, ensuring compliance with licensing terms. Additionally, by using this
script, users can always work with the most up-to-date versions of the maps in the MovingAI dataset,
addressing any changes or updates made to the dataset over time.

L POGEMA SPEED PERFORMANCE EVALUATION

The speed of an environment is a critical aspect in reinforcement learning (RL), significantly influ-
encing training performance and usability. Table 1 provides an overview of the speed performance of
various multi-agent environments, demonstrating that POGEMA can process more than 10K steps
per second.

Here we provide more detailed information about POGEMA’s speed performance. POGEMA’s
continuous integration (CI) includes a speed measurement procedure that runs alongside the tests.
Here, we present the results from a recent CI run. We compared POGEMA’s performance on three
CPU setups: the AMD Ryzen Threadripper 3970X 32-Core Processor, a modern high-performance
CPU; an older server-side Intel(R) Xeon(R) CPU @ 2.20GHz, commonly used on the Google Colab
platform, representing an average-performance setup; and the Apple Silicon M1, a laptop setup that
is widely regarded for its power efficiency and solid performance in computational tasks.

For this test, we used default observation parameters commonly employed in learnable multi-agent
pathfinding (MAPF) approaches (e.g., Follower, SCRIMP, DCC). Specifically, we set the observation

29

Published as a conference paper at ICLR 2025

Ryzen Threadripper Intel(R) 2.20GHz Apple Silicon M1

Agents Size MAPF LMAPF MAPF LMAPF MAPF LMAPF

1 32 20 684 21 810 9391 13 358 29 699 44 224
1 64 10 390 9602 6981 6452 19 244 18 996

32 32 96 918 90 631 61 132 61 232 204 637 191 069
32 64 89 984 85 741 61 297 38 326 144 125 175 962
64 32 111 976 105 558 69 121 39 308 189 624 217 482
64 64 102 104 96 709 68 126 49 902 196 808 194 213

Table 12: POGEMA performance in observations per second (OPS) across different CPU types using
a single CPU core. Note that the reported OPS represents the total frames (observations) received by
all agents, not the environment steps.

radius to 5, corresponding to an 11× 11 field. The results for both MAPF and LMAPF scenarios,
using a random policy, are reported in Table 12. In scenarios with more than 32 agents, POGEMA
achieves ≥ 80K steps per second (OPS) on fast CPUs like the Ryzen Threadripper and Apple
Silicon M1, and ≥ 38K OPS on the Intel Xeon setup, which is notably fast for a single-environment,
single-thread configuration. For comparison, EnvPool20 reports 50K frames per second (FPS) for
Atari on a 12-CPU setup.

We further investigate POGEMA’s speed performance using SampleFactory21 as the sampler for
parallel asynchronous execution of the environment. We used an almost default configuration with a
random policy (instead of PPO) and employed two environments per worker (for double buffering
in SampleFactory). The number of sampling workers varied alongside the number of agents in
the environment, and the tests were run on a workstation equipped with a single AMD Ryzen
Threadripper 3970X 32-Core Processor (64 threads). We conducted a sampling procedure for 5
minutes for each setup using Random maps with a size of 32 × 32. The results both MAPF and
Lifelong MAPF scenarios are presented in Figure 17.

1 2 4 8 16 32 64
Number of workers

64
32

1
Nu

m
be

r o
f a

ge
nt

s 89k 178k 353k 691k 1.3M 2.5M 3.1M

72k 142k 282k 556k 1.1M 2.0M 2.5M

5k 11k 21k 42k 82k 154k 179k

a) Observations per second for MAPF

0.5

1.0

1.5

2.0

2.5

3.0
1e6

1 2 4 8 16 32 64
Number of workers

64
32

1
Nu

m
be

r o
f a

ge
nt

s 78k 154k 305k 602k 1.2M 2.2M 2.7M

60k 120k 237k 468k 901k 1.7M 2.1M

4k 8k 17k 33k 64k 120k 145k

b) Observations per second for Lifelong MAPF

0.5

1.0

1.5

2.0

2.5
1e6

Figure 17: Observations per second performance of POGEMA for (a) MAPF and (b) Lifelong MAPF
across different number of workers and agents in the environment, using AMD Ryzen Threadripper
3970X 32-Core Processor (64 threads). We tested Random maps with size 32× 32.

Looking at the single-worker setup, it is notable that the performance from the previous experiment
with a single CPU setup is noticeably higher. This slowdown can be attributed to the overhead
produced by the parallel asynchronous execution of the framework. However, it allows to significantly
improve performance; the results for the best configuration with 64 agents and 64 workers achieved
3.1M OPS for MAPF and 2.7M OPS for Lifelong MAPF. For both setups, only 16 workers are
needed to exceed the significant threshold of 1M OPS. The best performance is observed in the MAPF
scenario, where 916,464,000 samples were generated in 5 minutes. This demonstrates the efficiency
of utilizing a high number of CPU cores for large-scale sampling tasks, which scaled almost linearly
up to 32 workers. This also indicates that performance can be further improved with additional CPU
resources.

20https://github.com/sail-sg/envpool
21https://github.com/alex-petrenko/sample-factory

30

https://github.com/sail-sg/envpool
https://github.com/alex-petrenko/sample-factory

Published as a conference paper at ICLR 2025

To compare, we can refer to the JaxMARL paper, which provides insights into the speed performance
of XLA-accelerated environments. The repository includes several environments, and we will focus
on the SPS of the STORM environment, which offers grid-based tasks. Based on the paper, the speed
of the environment is 2.48k with a single environment, 175k for 100 environments, and 14.6M SPS
for 10,000 environments. These results were obtained using a single NVIDIA A100 GPU.

While, as expected, POGEMA is slower in very large vectorized setups compared to XLA vectorized
environments that use GPU or TPU hardware acceleration, this trade-off has its advantages. It is
challenging to devise an approach that can effectively utilize such a large amount of data. Additionally,
by not relying on GPUs or TPUs for environment simulation, these resources remain fully available for
training neural networks, which often represent the primary bottleneck in large-scale RL experiments.

We further evaluate the scalability of POGEMA with a large population of agents. For this purpose,
we use a random map scenario of size 3072× 3072 and test agent counts starting from 1,000 agents.
The results, presented in Table 13, demonstrate that POGEMA efficiently supports up to 1 million
agents within a single environment.

Agents OPS SPS Reset (seconds)

1,000,000 68700.6 0.0687 173.8
100,000 67104.9 0.6710 139.6

10,000 45894.7 4.589 132.8
1,000 56477.7 56.477 120.6

Table 13: Speed performance of POGEMA with large agent populations using a random policy.

In previous experiments, we relied on a random policy to evaluate the environment’s speed perfor-
mance, as it is a common choice for such tests. However, the speed performance of the environment
may vary when a more advanced approach is used, as it explores a larger portion of the state space
compared to the random policy. To better test the speed performance of POGEMA under real
inference, we used the Follower approach and LifeLong Mazes scenarios, with a size of 128× 128
and up to 2048 agents, as they required creating new goals for agents upon reaching them. The
results are presented in Figure 18. Here, one can see that with an increasing number of agents,
the SPS of POGEMA decreases almost linearly. Additionally, the OPS throughput grows with the
number of agents. This setup also highlights the ability of POGEMA to handle a large population of
agents operating in the same environment. The experiment was conducted on a setup with an AMD
Ryzen Threadripper 3970X 32-core processor, using a single CPU core and a single environment (no
parallelization).

64 128 256 512 1024 2048
Number of Agents

32

64

128

256

PO
GE

M
A

St
ep

s p
er

 S
ec

on
d

Mazes Maps
Follower

64 128 256 512 1024 2048
Number of Agents

24576

32768

40960

PO
GE

M
A

Ob
se

rv
at

io
ns

 p
er

 S
ec

on
d

Mazes Maps
Follower

Figure 18: Steps per second and observations per second throughput of POGEMA with a large agent
population using the Follower approach (without parallelization). Both axes are on a log scale.

31

	Introduction
	Related Work
	POGEMA
	POGEMA Environment
	POGEMA Toolbox
	Baselines

	Evaluation Protocol
	Dataset
	Metrics
	Experimental Results

	Conclusion, Limitations and Future Work
	Acknowledgments
	Evaluation Setup Details
	Results for MAPF Benchmark
	Performance
	Out-of-Distribution
	Scalability
	Cooperation
	Pathfinding
	Coordination

	Results for LifeLong MAPF Benchmark
	Performance
	Out-of-Distribution
	Scalability
	Cooperation
	Pathfinding
	Coordination

	Code Examples for POGEMA
	POGEMA Toolbox
	Extended Related Work
	Examples of Used Maps
	MARL Training Setup
	Resources and Statistics
	Community Engagement and Framework Enhancements
	Ingestion of MovingAI Maps
	POGEMA Speed Performance Evaluation

