
Published as a conference paper at ICLR 2022

LEARNABILITY LOCK: AUTHORIZED LEARNABIL-
ITY CONTROL THROUGH ADVERSARIAL INVERTIBLE
TRANSFORMATIONS

Weiqi Peng
Yale University
weiqi.peng@yale.edu

Jinghui Chen
Pennsylvania State University
jzc5917@psu.edu

ABSTRACT

Owing much to the revolution of information technology, the recent progress of
deep learning benefits incredibly from the vastly enhanced access to data avail-
able in various digital formats. However, in certain scenarios, people may not
want their data being used for training commercial models and thus studied how
to attack the learnability of deep learning models. Previous works on learnability
attack only consider the goal of preventing unauthorized exploitation on the spe-
cific dataset but not the process of restoring the learnability for authorized cases.
To tackle this issue, this paper introduces and investigates a new concept called
“learnability lock” for controlling the model’s learnability on a specific dataset
with a special key. In particular, we propose adversarial invertible transforma-
tion, that can be viewed as a mapping from image to image, to slightly modify
data samples so that they become “unlearnable” by machine learning models with
negligible loss of visual features. Meanwhile, one can unlock the learnability of
the dataset and train models normally using the corresponding key. The proposed
learnability lock leverages class-wise perturbation that applies a universal trans-
formation function on data samples of the same label. This ensures that the learn-
ability can be easily restored with a simple inverse transformation while remain-
ing difficult to be detected or reverse-engineered. We empirically demonstrate the
success and practicability of our method on visual classification tasks.

1 INTRODUCTION

Recent progress in deep learning empowers the application of artificial intelligence in various do-
mains such as computer vision (He et al., 2016), speech recognition (Hinton et al., 2012), natural
language processing (Devlin et al., 2018) and etc. While the massive amounts of publicly available
data lead to the successful AI systems in practice, one major concern is that some of them may be
illegally exploited without authorization. In fact, many commercial models nowadays are trained
with unconsciously collected personal data from the Internet, which raises people’s awareness on
the unauthorized data exploitation for commercial or even illegal purposes.

For people who share their data online (e.g., upload selfie photos to social networks), there is not
much they can do to prevent their data from being illegally collected for commercial use (e.g. train-
ing commercial machine learning models). To address such concern, recent works propose Learn-
ability Attack (Fowl et al., 2021a; Huang et al., 2021; Fowl et al., 2021b), which adds invisible per-
turbations to the original data to make it “unlearnable” such that the model trained on the perturbed
dataset has awfully low prediction accuracy. Specifically, these methods generate either sample-wise
or class-wise adversarial perturbations to prevent machine learning models from learning meaning-
ful information from the data. This task is similar to traditional data poisoning attack, except that
there is an additional requirement that the perturbation noise should be invisible and hard-to-notice
by human eyes. And when the model trained on the perturbed dataset is bad enough, it won’t even
be considered as a realistic inference model by the unauthorized user for any purposes.

However, the previous works on learnability attack only consider the goal of making the perturbed
dataset “unlearnable” to unauthorized users, while in certain scenarios, we also want the authorized

1

Published as a conference paper at ICLR 2022

users to access and retrieve the clean data from the unlearnable counterparts. For example, photog-
raphers or artists may want to add unlearnable noise to their work before sharing it online to protect
it from being illegally collected to train commercial models. Yet they also want authorized users
(e.g., people who paid for the copyrights) to obtain access to their original work. In this regard, the
existing methods (Fowl et al., 2021a; Huang et al., 2021; Fowl et al., 2021b) have the following ma-
jor drawbacks: (1) sample-wise perturbation does not allow authorized clients to recover to original
data for regular use, i.e., restore the learnability; (2) class-wise perturbation can be easily detected or
reverse engineered since it applies the same perturbation for all data in one class; (3) the unlearnable
performances are significantly worse for adversarial training based learning algorithms, making the
perturbed data, to a certain extent, “learnable” again.

To tackle these issues, we introduce the novel concept of Learnability Lock, a learnability control
technique to perturb the original data with adversarial invertible transformations. To meet our goal,
a DNN model trained on the perturbed dataset should have a reasonably bad performance for various
training schedules such that none of the trained models can be effectively deployed for an AI system.
The perturbation noises should also be both invisible and diverse against visual inspections. In
addition, the authorized users should be able to use the correct key to retrieve the original data and
restore their learnability.

In particular, we creatively adopt a class-wise invertible functional perturbation where one trans-
formation is applied to each class as a mapping from images to images. In this sense, the key for
the learnability control process is defined as the parameters of the transformation function. For
an authorized user, the inverse transformation function can be easily computed with the given key,
and thus retrieving the original clean dataset. We focus our method on class-wise noise rather than
sample-wise noise because we want the key, i.e., parameters of the transformation function, to be
lightweight and easily transferable. Note that different from traditional additive noises (Fowl et al.,
2021a; Huang et al., 2021; Fowl et al., 2021b), even the same transformation function would pro-
duce different perturbations on varying samples. Therefore, it is still difficult for an attacker to
reverse-engineer the perturbation patterns as a counter-measure.

We summarize our contributions as follows:

• We introduce a novel concept Learnability Lock, that can be applied to the scenario of learn-
ability control, where only the authorized clients can access the key in order to train their
models on the retrieved clean dataset while unauthorized clients cannot learn meaningful
information from the released data that appears normal visually.

• We creatively apply invertible functional perturbation for crafting unlearnable examples,
and propose two efficient functional perturbation algorithms. The functional perturbation
is more suited to crafting class-wise noises while allowing different noise patterns across
samples to avoid being detected or reverse engineered.

• We empirically demonstrate that our pipeline works on common image datasets and is more
robust to defensive techniques such as adversarial training than prior additive perturbation
methods (Fowl et al., 2021a; Huang et al., 2021; Fowl et al., 2021b).

2 RELATED WORK

Adversarial Attack One closely related topic is adversarial attack (Goodfellow et al., 2015; Paper-
not et al., 2017). Earlier studies have shown that deep neural networks can be deceived by small
adversarially designed perturbations (Szegedy et al., 2013; Madry et al., 2017). Later on, various at-
tacks (Carlini & Wagner, 2017; Chen et al., 2017; Ilyas et al., 2018; Athalye et al., 2018; Chen et al.,
2020; Moon et al., 2019; Croce & Hein, 2020; Tashiro et al., 2020; Andriushchenko et al., 2020;
Chen & Gu, 2020) were also proposed for different settings or stronger performances. Laidlaw &
Feizi (2019) proposes a functional adversarial attack that applies a unique color mapping function
for crafting functional perturbation patterns. It is proved in Laidlaw & Feizi (2019) that even a
simple linear transformation can introduce more complex features than additive noises. On the de-
fensive side, adversarial training has been shown as the most efficient technique for learning robust
features minimally affected by the adversarial noises (Madry et al., 2018; Zhang et al., 2019a).

Data Poisoning Different from adversarial evasion attacks which directly evade a model’s predic-
tions, data poisoning focuses on manipulating samples at training time. Under this setting, the

2

Published as a conference paper at ICLR 2022

attacker injects bad data samples into the training pipeline so that whatever pattern the model learns
becomes useless. Previous works have shown that DNNs (Muñoz-González et al., 2017) as well
as traditional machine learning algorithms, such as SVM (Biggio et al., 2012), are vulnerable to
poisoning attacks (Shafahi et al., 2018; Koh et al., 2018). Recent progress involves using gradient
matching and meta-learning inspired methods to solve the noise crafting problem (Geiping et al.,
2020; Huang et al., 2020). One special type of data poisoning is backdoor attacks, which aim to
inject falsely labeled training samples with a stealthy trigger pattern (Gu et al., 2017; Qiao et al.,
2019). During the inference process, inputs with the same trigger pattern shall cause the model to
predict incorrect labels. While poisoning methods can potentially be used to prevent malicious data
exploitation, the practicability is limited as the poisoned samples appear distinguishable to clean
samples (Yang et al., 2017).

Learnability Attack Learnability attack methods emerge recently in the ML community with a
similar purpose as data poisoning attacks (to reduce model’s prediction accuracy) but with an extra
requirement to preserve the visual features of the original data. Huang et al. (2021) firstly present a
form of error-minimizing noise, effective both sample-wise and class-wise, that forces a deep learn-
ing model to learn useless features and thus behave badly on clean samples. Specifically, the noise
crafting process involves solving a bi-level objective through projected gradient descent (Madry
et al., 2018). Fowl et al. (2021b) resolves a similar problem using gradient matching technique. In
another work, they note that adversarial attacks can also be used for data poisoning (Fowl et al.,
2021a). In comparison, our method concerns a novel target as “learnability control”, where autho-
rized user is granted access to retrieve the clean data and train their model on it.

3 METHOD

3.1 PROBLEM DEFINITION

We focus on the scenario where the data for releasing is intentionally poisoned by the data holder to
lock its learnability. In particular, a model trained on the learnability locked dataset by unauthorized
users should have awfully low performances on the standard test cases. On the other hand, autho-
rized clients with the correct keys can unlock the learnability of the dataset and train useful models.
In designing a secure learnability control approach for our needs, we assume the data holder has
full access to the clean data, but cannot interfere with the training procedure after the dataset is
released. We also assume that the dataset to be released is fully labeled. Let’s denote the original
clean dataset with n samples as Dc = {(xi, yi)}ni=1. Our goal is to develop a method that succeeds
in the following tasks:

A. Given Dc, craft the learnability-locked dataset Dp = {(x′
i, yi)}ni=1 with a special key ψ.

B. Given Dp and the corresponding key ψ, recover the clean dataset as Dc̃ , which restores
the learnability of Dc.

Owner

+, .

Released

+,&' .

Training on DNN

Normal

Degraded
Accuracy

+, .

(a)
Illegal

(b)
Authorized

Private
Dataset

-.

Controlled
Dataset
-/

Private
Dataset

-.

Controlled
Dataset

Unlocked
Dataset
-.0-/

Figure 1: Authorized learnability control pipeline, with gψ being a perturbation function where ψ
serves as the key for the learnability lock. (a) demonstrates the case of an illegal exploitation attempt
where the unauthorized client trains a model on the learnability-locked dataset; In (b) an authorized
user can unlock the protected dataset with the inverse transformations and train a normal model.

Now we design a novel method that introduces functional perturbations to generate learnability
locked data samples. For simplicity, let’s consider the common supervised image classification

3

Published as a conference paper at ICLR 2022

task with the goal of training a K-class classifier fθ : X → Y with a labeled dataset. With a
little abuse of notations, we define a set of K perturbation functions {g(1), ..., g(K)} for each class
y ∈ {1, ...,K}. Each perturbation function g(y) : X → X maps the original data x to a new one x′,
through an invertible transformation while the changes remain unnoticeable, i.e., x′(y) = g(y)(x)
and ∥x′ − x∥∞ ≤ ϵ. Let’s use ψ to denote the parameters of the transformation function, which
also served as the key for unlocking the learnability of the dataset. To solve for the most effective
transformation function for locking the learnability, we formulate the problem as a min-min bi-level
optimization problem for each class y:

argmin
θ

E(x,y)∼Dc

[
min
ψ
L
(
fθ(g

(y)
ψ (x)), y

)]
s.t. ∥g(y)ψ (x)− x∥∞ ≤ ϵ, (3.1)

where θ, the model for noise generation, is trained from scratch and ψ, the parameters of the per-
turbation function, is also initialized as identical mapping.

Intuitively, the inner minimization will generate a perturbation such that the perturbed data is well fit
the current model. Thus in the outer minimization task, the model is tricked into believing that the
current parameters are perfect and there is little left to be learned. Therefore, such perturbations can
make the model fail in learning useful features from data. Finally, training on such perturbed dataset
will lead to a model that heavily relies on the perturbation noise. And when testing the model on
clean samples, it cannot judge based on the noise pattern and thus makes wrong predictions. (3.1)
can be solved via an alternating strategy: first solving the inner minimization problem to obtain the
best ψ that minimizes the training loss, then solving the outer minimization for better θ. Ideally, if
(3.1) can be well optimized, the perturbations generated by g

(y)
ψ (·) should fulfill task A of crafting

unlearnable samples.

Compared with Huang et al. (2021), the main difference is that we define the inner optimization as
solving the transformation function parameters ψ instead of a set of fixed perturbation vectors. This
brings us unique challenges in designing the form of the perturbation functions g(y)ψ (·). Specifically,
to fulfill task B, the perturbation function g is required to be invertible (i.e. g−1 exists), which means
it maps every input to a unique output and vice versa. Moreover, the magnitude of perturbation
should be bounded so that it will not affect normal use, i.e., ∥g(y)ψ (x) − x∥∞ ≤ ϵ. This constraint
may seem easy for generating adversarial examples but not quite obvious for building invertible
transformations. Finally, it requires a careful balance between the transformation’s parameter size
and its expressive power: it should be complicated enough to provide various perturbations for
solving (3.1) and also be relatively lightweight for efficiently transferring to the authorized clients.

In the following section, we present two plausible perturbation functions that could satisfy the afore-
mentioned properties. One is based on linear transformation and the other one is convolution-based
nonlinear transformation.

3.1.1 LINEAR FUNCTIONAL PERTURBATION

We start by considering a linear transformation function where g
(y)
ψ (·) consists of simple element-

wise linear mappings over input data xi ∈ Rd drawn from Dc. We define the linear weights W =
{w(1), ...,w(K)}, with each w(y) ∈ Rd, and biases B = {b(1), ...,b(K)}, with each b(y) ∈ Rd.
We denote the overall parameters ψ = {W,B}. For each (xi, yi) ∈ Dc , we leverage an invertible
transformation as:

x′
i = g

(yi)
ψ (xi) = w(yi) ⊙ xi + b(yi), (3.2)

where ⊙ denotes element-wise multiplication. Note that the above transformation is class-wise,
where weights w and b are universal for each class label. Furthermore, for each index j ∈ [d] we
restrict [w(y)]j ∈ [1 − ϵ/2, 1 + ϵ/2], and [b(y)]j ∈ [−ϵ/2, ϵ/2]. This ensures that the perturbation
on each sample shall be bounded by:

∥x′
i − xi∥∞ = max

j∈[d]

∣∣[w(y)]j [xi]j + [b(y)]j − [xi]j
∣∣ ≤ ϵ

2
max
j∈[d]
|[xi]j |+

ϵ

2
≤ ϵ,

where the last inequality is due to 0 ≤ [xi]j ≤ 1 in the image classification task. Therefore, the
linear function implicitly enforces the perturbation to satisfy the ϵ limit in L∞ distance. The whole
crafting process is summarized in Algorithm 1.

4

Published as a conference paper at ICLR 2022

Algorithm 1 Learnability Locking (Linear)

1: Inputs: Clean dataset Dc = {(xi, yi)}ni=1, crafting model f with parameters θ, all w0 = 1
and b0 = 0, perturbation bound ϵ, outer optimization step I , inner optimization step J , error
rate λ, loss function L

2: while error rate < λ do
3: Dp ← empty dataset
4: for (xi, yi) in Dc do
5: x′

i = w(yi) ⊙ xi + b(yi)

6: Add (x′
i, yi) to Dp

7: end for
8: repeat I steps: ▷ outer optimization over θ
9: (x′

k, yk)← Sample a new batch from Dp

10: Optimize θ over L(fθ(w(yk)
t ⊙ x′

k + b
(yk)
t), yk) by SGD

11: repeat J steps: ▷ inner optimization over ψ
12: for (x′

i, yi) in Dp do
13: Optimize W and B by (3.3) and (3.4)
14: W←Clip(W, 1− ϵ/2, 1 + ϵ/2), and B← Clip(B, −ϵ/2, +ϵ/2)
15: end for
16: error rate← Evaluate fθ over Dp

17: end while
18: Output Poisoned dataset Dp , key ψ = (W,B)

Algorithm 2 Learnability Unlocking (Linear)

1: Inputs: Poisoned dataset Dp = {(x′
i, yi)}ni=1, CNN parameters θ, W and B, perturbation

bound ϵ
2: Dc̃ ← empty list
3: for each x′

i, yi in Dp do
4: xi = (xi − b(yi))⊙ 1

w(yi)

5: Append (xi, yi) to Dc̃

6: end for
7: Output Recovered dataset Dc̃ .

Optimization We solve (3.1) by adopting projected gradient descent (Madry et al., 2018) to itera-
tively update the two parameter sets W and B. Specifically, we first optimize over θ for I batches
on the perturbed data via stochastic gradient descent. Thenψ, namely W and B, is updated through
optimizing the inner minimization for J steps. In particular, W and B are iteratively updated by:

w
(yi)
t+1 = w

(yi)
t − η1∇wL(fθ(w(yi)

t ⊙ x′
i + b

(yi)
t), yi), (3.3)

b
(yi)
t+1 = b

(yi)
t − η2∇bL(fθ(w(yi)

t ⊙ x′
i + b

(yi)
t), yi), (3.4)

at step t + 1 with learning rates η1 and η2. In practice, the iterations on J will traverse one pass
(epoch) through the whole dataset. This typically allows W and B to better capture the strong
(false) correlation between the perturbations and the model. After each update, each entry of W
is clipped into to the range [1 − ϵ/2, 1 + ϵ/2], and each entry of B is constrained to [−ϵ/2, ϵ/2].
Moreover, Dp is updated at each iteration according to (3.2). The iteration stops when fθ obtains a
low training error, controlled by λ, on the perturbed dataset.

To unlock the dataset, we simply do an inverse of the linear transformation given the corresponding
W and B from Algorithm 1. Contrary to the locking process, we first apply an inverse shifting and
then apply an inverse scaling operation. Detailed process is presented in Algorithm 2. We note that
the whole learnability control process based on a linear transformation is nearly lossless in terms of
information1.

1In practical image classification tasks, the perturbed images are further clipped into [0, 1] range and thus
may slight lose a bit information during the unlocking process. Yet the difference is neglectable. See more
details in Appendix B.4.

5

Published as a conference paper at ICLR 2022

3.1.2 CONVOLUTIONAL FUNCTIONAL PERTURBATION

Next, we present another way of applying convolutional function to craft adversarial perturbations.
To begin with, we quickly review the idea of invertible ResNet (i-ResNet) (Behrmann et al., 2019).

i-ResNet Residual networks consist of residual transformations such as y = x+ hψ(x). Behrmann
et al. (2019) note that this transformation is invertible as long as the Lipschitz-constant of hψ(·)
satisfies Lip(hψ) ≤ 1. Behrmann et al. (2019) proposed the invertible residual network that uses
spectral normalization to limit the Lipschitz-constant of hψ(·) and obtain invertible ResNet. In
particular, the inverse operation can be done by performing an fix-point iteration starting from x0 =
y, and then iteratively compute xt+1 = xt − hψ(xt). We refer the reader to the original paper for
more detailed illustrations.

The invertible residual block is a perfect match for our purposes: we need an invertible and
parameter-efficient transformation for data encryption/decryption, while the invertible residual block
only requires a few convolutional layers (shared convolution filters). Specifically, let’s denote the
class-y’s invertible residual transformation function2 as g(y). For each xi with label yi ∈ {1, ...,K},
we design the following the transformation function:

x′
i = g(yi)(xi) = xi + ϵ · tanh(h(yi)

ψ (xi)), (3.5)

where each h
(y)
ψ is composed of multiple spectrally normalized convolution layers with same-sized

output, and ReLU activations, in order to make the transformation invertible. The output of h(y)
ψ (·)

can be viewed as the perturbation noise added to the original image. To limit the L∞ norm of
the perturbation to satisfy the ϵ constraint, we add an extra tanh function outside h

(y)
ψ (·) and then

multiplied by ϵ. Note that this does not change the invertible nature of the whole transformation, as
the tanh function is also 1-Lipschitz.

The crafting process is similar to the linear transformation case, as summarized in Algorithm 3 in
appendix. Specifically, we adopt stochastic gradient descent for updating θ and ψ alternatively.
To unlock a perturbed data sample in this setting, we start from xi = x′

i and perform fixed point
iterations by updating xi = xi− ϵ · tanh(h(yi)

ψ (xi)), as shown in Algorithm 4 in the appendix. Note
that although this iterative unlocking process cannot exactly recover the original dataset, as shown
in Appendix B.4, the actual reconstruction loss is minimal.

4 EXPERIMENTS

In this section, we empirically verify the effectiveness of our methods for learnability control. Fol-
lowing Huang et al. (2021), we then examine the strength and robustness of the generated pertur-
bations in multiple settings and against potential counter-measures. Tasks are evaluated on three
publicly available datasets: CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and IMAGENET
(Deng et al., 2009). Specifically, for IMAGENET experiments, we picked a subset of 10 classes,
each with 700 training and 300 testing samples, denoted by IMAGENET-10. Detailed experimental
setups can be found at Appendix B.1.

4.1 LEARNABILITY CONTROL

Our main experiments aim to answer the following two key questions related to the learnability
control task: (1) are the proposed transformations effective for controlling (locking and unlocking)
the learnability of the dataset? (2) is this learnability control strategy universal (agnostic to network
structures or datasets)? We test the strength of our methods on standard image classification tasks for
CIFAR-10, CIFAR-100, and IMAGENET-10 datasets on four state-of-art CNN models: ResNet-18,
ResNet-50 (He et al., 2016), VGG-11 (Simonyan & Zisserman, 2014), and DenseNet-121 (Huang
et al., 2017). We train each model on CIFAR-10 for 60 epochs, CIFAR-100 for 100 epochs, and
IMAGENET-10 for 60 epochs.

As shown in Table 1, both of the proposed adversarial transformations (linear or convolutional) can
reliably lock and restore the dataset learnability. Specifically, compared to clean models trained on

2The transformation is designed to keep the input dimension unchanged.

6

Published as a conference paper at ICLR 2022

Dc, models trained on perturbed dataset Dp have significantly worse validation accuracy. This effect
is equally powerful across network structures with different model depths. On the other hand, the
learnability is ideally recovered through the authorization process as the model trained on recovered
dataset Dc̃ achieves comparable performance as the corresponding clean models. This is also true on
IMAGENET-10 dataset, suggesting that the information loss through the learnability control process
is negligible for training commercial models. We can also observe that the linear transformation
function seems more powerful than the convolutional one in terms of the validation accuracy on the
learnability locked dataset Dp. However, the convolutional lock is advantageous in that the structure
of hψ can be flexibly adjusted to control the number of parameters in the key3, while the linear one
has the key size strictly proportional to the data dimension. Also note that while we use ResNet-18
model for fθ in the learnability locking process, other model architectures could also be effective
for our task, which is further discussed in Appendix C.4.

Table 1: Test accuracy for models trained on clean dataset (Dc), perturbed dataset(Dp), and recov-
ered clean dataset (Dc̃). The first row summarizes result for linear perturbation function; the second
row lists the result for convolutional perturbation function.

Transform Network CIFAR-10 CIFAR-100 IMAGENET-10
Dc Dp Dc̃ Dc Dp Dc̃ Dc Dp Dc̃

Linear

ResNet-18 91.60 12.38 90.66 68.46 8.58 67.16 81.57 9.97 81.90
ResNet-50 94.28 15.62 95.59 70.12 6.98 69.09 84.20 10.30 83.53
VGG-11 90.76 15.07 91.37 67.25 6.62 67.49 81.07 11.80 81.33

DenseNet-121 94.36 14.75 93.33 70.81 7.48 71.32 83.17 8.53 83.37

Conv

ResNet-18 91.02 16.60 91.95 69.27 8.92 68.93 82.83 12.20 81.70
ResNet-50 95.68 19.39 94.79 69.58 8.70 67.29 84.93 10.37 84.63
VGG-11 91.07 19.61 90.88 67.32 7.45 67.98 81.30 13.20 81.90

DenseNet-121 93.22 20.23 93.48 71.14 5.62 71.54 84.37 12.47 84.43

Control over Single Class: In practice, the data controller may not has access to the entire dataset,
rather, the access may be restricted to single or several classes of the whole dataset. We test our
learnability control process with only one single class being manipulated. Specifically, we choose to
perturb the class “bird” in the CIFAR-10 dataset and observe the corresponding learnability perfor-
mance. In Figure 2, we show the heatmap of the prediction confusion matrices on our single-class
controlled CIFAR10 dataset via both linear and convolutional transformations. It can be observed
that our proposed method reliably fools the network into misclassifying “bird” as other class labels.
This demonstrates the effectiveness of our proposed method even with single class data being per-
turbed. On the other hand, the model trained on the unlocked “bird”-class data can achieve 93% and
91% test accuracies respectively for linear and convolutional perturbation functions. This confirms
that our learnability lock can be flexibly adapted to different protection tasks. Due to the space
limit, we refer the readers to Section B.2 in the appendix for experiments with learnability control
on multiple classes.

Effect of Perturbation Limit ϵ: We also test the effectiveness of our learnability control with
different ϵ limitations. We conduct two sets of experiments on the CIFAR10 dataset using linear
transformation with ϵ = 8 and ϵ = 16 respectively. As shown in Figure 3, the learning curves
demonstrate that larger perturbation provides apparently better protection to the data learnability.
While it is true that larger ϵ gives better learnability control on the dataset, we point out that the too
large noise will make the perturbation visible to human eyes.

4.2 ROBUSTNESS ANALYSIS

In this section, we evaluate the robustness of the functional perturbations against proactive mitigation
strategies. It is worth noting that there is no existing strategy specifically targeted to compromise
the learnability control process. So we consider two types of general defenses that may affect the
effectiveness of our learnability lock: 1) data augmentations or filtering strategies that preprocess the

3In many cases, the CNN structure with shared convolutional filters requires much fewer parameters. The
detailed structure used for our convolutional transformation can be found in the Appendix.

7

Published as a conference paper at ICLR 2022

plane car bird cat
deer dog frog

horseship
truck

Predicted Labels

plane

car

bird

cat

deer

dog

frog

horse

ship

truck

C
or

re
ct

 L
ab

el
s

0

100

200

300

400

500

600

700

800

(a) Linear

plane car bird cat
deer dog frog

horseship
truck

Predicted Labels

plane

car

bird

cat

deer

dog

frog

horse

ship

truck

C
or

re
ct

 L
ab

el
s

0

200

400

600

800

(b) Conv

Figure 2: Heatmap of the classification confusion
matrix for learnability control on the single class
“bird” of CIFAR-10 for (a) linear transformation,
and (b) convolutional transformation.

Epochs Epochs

Te
st

 A
cc

ur
ac

y

Te
st

 A
cc

ur
ac

y

(a) Linear

Epochs Epochs

Te
st

 A
cc

ur
ac

y

Te
st

 A
cc

ur
ac

y

(b) Conv

Figure 3: Test accuracy against training epochs
for model training on the perturbed dataset Dp

using different ϵ for (a) linear transformation, and
(b) convolutional transformation.

input data which may mitigate the effect of our perturbations; 2) adversarial training based defensive
techniques that target to learn the robust features in the input which still exist in the perturbed data.

4.2.1 DATA AUGMENTATION AND FILTERING TECHNIQUES

It is possible that data augmentation can be used to mitigate the effect of small adversarial pertur-
bations. In addition to standard augmentation methods such as rotation, shifting, and flipping, we
test our method against several more advanced ones, including Mixup (Zhang et al., 2018), Cutmix
(Yun et al., 2019), and Cutout (Cubuk et al., 2018). We also evaluate our method on some basic
filtering techniques such as random L∞ noises and Gaussian smoothing restricting the perturbation
strength ϵ = 8. Experimental results in Table 2 indicate that none of these techniques defeat our
learnability control method as the model trained on the augmented samples still behaves poorly.
Standard augmentations such as rotation, shifting and flipping can only recover an extra 1% of the
validation accuracy. Mixup (Zhang et al., 2018) achieved the best learnability recovery result of
43.88% for linear lock and 36.97% for convolutional lock, yet it is still far from satisfactory for
practical use cases. Note that although convolutional based perturbations achieve worse learnabil-
ity locking performance compared with linear perturbations, they are actually more robust to such
data augmentation or filtering techniques. It is also worth noting that in our experiment, we assume
that the data provider doesn’t know the potential augmentations used for generating the learnability
locked dataset. We believe our method can be further improved by crafting the learnability lock on
an augmented dataset so that the lock can generalize better to various augmentations.

Table 2: Summary of applying data augmentation and
filtering techniques on the learnability locked dataset.

Defenses Acc (Linear) Acc (Conv)
None 14.79 17.61

Random Noise 19.83 17.32
Gaussian Blurring 15.59 21.28

rotate & flip & crop 15.25 18.81
Cutmix 20.72 18.60
Cutout 26.28 23.04
Mixup 43.88 36.97

Table 3: Summary on the effectiveness
of applying adversarial training on several
learnability attack methods and our pro-
posed learnability lock.

Method ↓ Val Acc
Unlearnable Examples 85.89

Gradient Alignment 83.56
Adversarial Poisoning 86.09

Learnability Lock (linear) 65.53
Learnability Lock (conv) 71.78

4.2.2 ADVERSARIAL TRAINING

Adversarial training (Madry et al., 2018) can also be viewed as a strong data augmentation technique
against data perturbations. It is originally designed to help the model learn robust features to defend
against the adversarial examples, which are generated by solving a min-max problem. Note that this
min-max optimization is the exact counterpart of the min-min formulation in Huang et al. (2021).
Huang et al. (2021) reported that adversarially trained models can still effectively learn the useful
information from the dataset perturbed by the error-minimizing noise (gaining around 85% valida-
tion accuracy). We test our methods by adversarially training a ResNet-50 model on the perturbed

8

Published as a conference paper at ICLR 2022

CIFAR-10 dataset created from functional perturbations. We compare the result with three existing
learnability attack methods including unlearnable examples (Huang et al., 2021), gradient alignment
(Fowl et al., 2021b), and adversarial poisoning (Fowl et al., 2021a). The attack used for adversarial
training is the traditional PGD approach with 10 iteration steps, and the maximum L∞ perturbation
is limited to 8/255.

Experimental results in Table 3 indicate that the learnability lock outperforms existing methods
based on additive noises in terms of adversarially trained models. We suspect this is because simple
transformations, such as scaling and shifting, are able to generate much more complicated perturba-
tion patterns than pure additive noises (Laidlaw & Feizi, 2019). A similar finding is noted by Zhang
et al. (2019b) that simple transformations can move images out of the manifold of the data samples
and thus expose the adversarially trained models under threats of “blind spots”. While adversarial
training proves to be much more effective than other data augmentations techniques, it also fails to
recover the validation accuracy back to a natural level and is, on the other hand, extremely computa-
tionally expensive. In Appendix B.3, we further discuss a hypothetical case where attacker realizes
the transformation function used for learnability control and thus perform an adaptive adversarial
training, which is shown to be even less effective than standard adversarial training.

4.3 PRACTICAL GUIDELINES

Table 4: Summary of uniqueness experiment re-
sults with a ResNet-18 trained on CIFAR-10

Keys ↓ Linear (A) Conv (A)
Linear (B) 14.79 11.35
Conv (B) 19.83 17.81

In this section we study some unique properties
of our learnability control framework. Since
our proposed learnability control framework al-
lows us to restore its learnability with the cor-
rect secret key, one may wonder whether this
learnability key is unique and reliable for prac-
tical use. In other words, if we generate two
sets of keys for two clients based on one com-
mon data source, would the two keys mutually
unlock the other “learnability locked” dataset? This is crucial since if it is the case, then as long as
one set of key (transformation function) is exposed to an attacker, we lost the learnability locks for
all the perturbed datasets based on the same source data. In our experiment, we train two learnability
locks for each transformation separately on the CIFAR-10 dataset and generate learnability locked
datasets D1

p and D2
p with corresponding keys ψ1 and ψ2. Then we use ψ1 to unlock D2

p and train a
model on the retrieved dataset. As shown in Table 4, each row represents the transformation method
we used as the key and each column stands for a learnability locked dataset we intend to unlock.
The result suggests that learnability lock is strongly tied with a key that cannot be used to mutually
unlock other locks, which introduces the desired property that prevents any unwanted data usage
caused by partial leakage of secret keys.

We also conduct various ablation studies on the practicality of learnability lock including the effect
of different perturbation percentages in Dp, different model architectures of fθ, the possibility of
using global transformation functions or a mixture of transformation functions, for which we refer
the reader to Appendix C.

5 CONCLUSION

We introduce a novel concept Learnability Lock that leverages adversarial transformations to achieve
learnability control on specific dataset. One significant advantage of our method is that not only we
can attack the learnability of a specific dataset with little visual compromises through an adversarial
transformation, but also can easily restore its learnability with a special key, which is light-weighted
and easy-to-transfer, through the inverse transformations. While we demonstrate the effectiveness
of our method on visual classification tasks, it is possible to adapt our method to other data formats,
which we leave as future work directions.

REFERENCES

Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein. Square at-
tack: a query-efficient black-box adversarial attack via random search. In European Conference

9

Published as a conference paper at ICLR 2022

on Computer Vision, pp. 484–501. Springer, 2020.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples. In ICML, 2018.

Jens Behrmann, Will Grathwohl, Ricky TQ Chen, David Duvenaud, and Jörn-Henrik Jacobsen.
Invertible residual networks. In International Conference on Machine Learning, pp. 573–582.
PMLR, 2019.

Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support vector ma-
chines. arXiv preprint arXiv:1206.6389, 2012.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In SP,
pp. 39–57. IEEE, 2017.

Jinghui Chen and Quanquan Gu. Rays: A ray searching method for hard-label adversarial attack. In
SIGKDD, 2020.

Jinghui Chen, Dongruo Zhou, Jinfeng Yi, and Quanquan Gu. A frank-wolfe framework for efficient
and effective adversarial attacks. In AAAI, 2020.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order opti-
mization based black-box attacks to deep neural networks without training substitute models. In
AISec, pp. 15–26. ACM, 2017.

F. Croce and M. Hein. Minimally distorted adversarial examples with a fast adaptive boundary
attack. In ICML, 2020.

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
Learning augmentation policies from data. arXiv preprint arXiv:1805.09501, 2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Liam Fowl, Micah Goldblum, Ping yeh Chiang, Jonas Geiping, Wojtek Czaja, and Tom Goldstein.
Adversarial examples make strong poisons, 2021a.

Liam Fowl, Ping yeh Chiang, Micah Goldblum, Jonas Geiping, Arpit Bansal, Wojtek Czaja, and
Tom Goldstein. Preventing unauthorized use of proprietary data: Poisoning for secure dataset
release, 2021b.

Jonas Geiping, Liam Fowl, W Ronny Huang, Wojciech Czaja, Gavin Taylor, Michael Moeller, and
Tom Goldstein. Witches’ brew: Industrial scale data poisoning via gradient matching. arXiv
preprint arXiv:2009.02276, 2020.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples, 2015.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in the
machine learning model supply chain. arXiv preprint arXiv:1708.06733, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel-rahman Mohamed, Navdeep Jaitly, An-
drew Senior, Vincent Vanhoucke, Patrick Nguyen, Brian Kingsbury, et al. Deep neural networks
for acoustic modeling in speech recognition. IEEE Signal processing magazine, 29, 2012.

10

Published as a conference paper at ICLR 2022

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Hanxun Huang, Xingjun Ma, Sarah Monazam Erfani, James Bailey, and Yisen Wang. Unlearnable
examples: Making personal data unexploitable. arXiv preprint arXiv:2101.04898, 2021.

W Ronny Huang, Jonas Geiping, Liam Fowl, Gavin Taylor, and Tom Goldstein. Metapoison: Prac-
tical general-purpose clean-label data poisoning. arXiv preprint arXiv:2004.00225, 2020.

Andrew Ilyas, Logan Engstrom, Anish Athalye, Jessy Lin, Anish Athalye, Logan Engstrom, Andrew
Ilyas, and Kevin Kwok. Black-box adversarial attacks with limited queries and information. In
ICML, 2018.

Pang Wei Koh, Jacob Steinhardt, and Percy Liang. Stronger data poisoning attacks break data
sanitization defenses. arXiv preprint arXiv:1811.00741, 2018.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Cassidy Laidlaw and Soheil Feizi. Functional adversarial attacks. arXiv preprint arXiv:1906.00001,
2019.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. ICML, 2018.

Seungyong Moon, Gaon An, and Hyun Oh Song. Parsimonious black-box adversarial attacks via
efficient combinatorial optimization. In ICML, pp. 4636–4645, 2019.

Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Paudice, Vasin Wongrassamee,
Emil C Lupu, and Fabio Roli. Towards poisoning of deep learning algorithms with back-gradient
optimization. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security,
pp. 27–38, 2017.

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Ananthram
Swami. Practical black-box attacks against machine learning. In Proceedings of the 2017 ACM
on Asia conference on computer and communications security, pp. 506–519, 2017.

Ximing Qiao, Yukun Yang, and Hai Li. Defending neural backdoors via generative distribution
modeling. arXiv preprint arXiv:1910.04749, 2019.

Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer, Tudor Dumitras,
and Tom Goldstein. Poison frogs! targeted clean-label poisoning attacks on neural networks.
arXiv preprint arXiv:1804.00792, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Yusuke Tashiro, Yang Song, and Stefano Ermon. Diversity can be transferred: Output diversification
for white-and black-box attacks. Advances in Neural Information Processing Systems, 33, 2020.

11

Published as a conference paper at ICLR 2022

Boxi Wu, Jinghui Chen, Deng Cai, Xiaofei He, and Quanquan Gu. Do wider neural networks really
help adversarial robustness? arXiv preprint arXiv:2010.01279, 2020.

Chaofei Yang, Qing Wu, Hai Li, and Yiran Chen. Generative poisoning attack method against neural
networks. arXiv preprint arXiv:1703.01340, 2017.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In Interna-
tional Conference on Computer Vision (ICCV), 2019.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan.
Theoretically principled trade-off between robustness and accuracy. In International Conference
on Machine Learning, pp. 7472–7482. PMLR, 2019a.

Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empiri-
cal risk minimization. In International Conference on Learning Representations, 2018.

Huan Zhang, Hongge Chen, Zhao Song, Duane Boning, Inderjit S Dhillon, and Cho-Jui Hsieh. The
limitations of adversarial training and the blind-spot attack. arXiv preprint arXiv:1901.04684,
2019b.

12

Published as a conference paper at ICLR 2022

A ALGORITHMS FOR CONVOLUTIONAL LEARNABILITY LOCKING AND
UNLOCKING

In this section, we attach the complete algorithms for the convolutional learnability locking and
unlocking process. Specifically, the convolutional learnability locking process is summarized in
Algorithm 3. The general procedure is similar to Algorithm 1: we update the perturbed dataset Dp

with the current convolutional function and then alternatively update θ and ψ using the perturbed
data via stochastic gradient descent.

The unlocking steps are summarized in Algorithm 4. Specifically, the inverse mapping of the resid-
ual network can be approximated by a fixed-point iteration. Note that while this fixed-point iteration
may not perfectly reconstruct the original data, we show that this information loss is essentially
negligible (in terms of both reconstruction error and learnability) in Section B.4.

Algorithm 3 Learnability Locking (convolutional)

1: Inputs: Clean dataset Dc = {(xi, yi)}ni=1, crafting model f with parameters θ, transformation
h with randomly initialized parameters ψ0, perturbation bound ϵ, outer optimization step I ,
inner optimization step J , error rate λ, loss function L

2: while error rate < λ do
3: Dp ← empty dataset
4: for (xi, yi) in Dc do
5: x′

i = xi + ϵ · tanh(h(yi)
ψ (xi))

6: Add (x′
i, yi) to Dp

7: end for
8: repeat I steps: ▷ outer optimization over θ
9: (x′

k,yk)← Sample a new batch from Dp

10: Optimize θ over L(fθ(x′
k + ϵ · tanh(h(yk)

ψ (x′
k))),yk) by SGD

11: repeat J steps: ▷ inner optimization over ψ
12: for (x′

i, yi) in Dp do
13: Optimize ψ over L(fθ(x′

i + ϵ · tanh(h(yi)
ψ (x′

i))), yi) by SGD
14: end for
15: error rate← Evaluate fθ over Dp

16: end while
17: Output Poisoned dataset Dp , key ψ

Algorithm 4 Learnability Unlocking (convolutional)

1: Inputs: Poisoned dataset Dp = {(x′
i, yi)}ni=1, transform function (i-ResNet) hψ , number of

fixed-point iterations m, perturbation bound ϵ
2: Dc̃ ← empty list
3: for each x′

i, yi in Dp do
4: for i = 1, ..., m do
5: xi = x′

i − ϵ · tanh(h(yi)
ψ (xi))

6: end for
7: Append (xi, yi) to Dc̃

8: end for
9: Output Recovered dataset Dc̃ .

B ADDITIONAL EXPERIMENT DETAILS

B.1 EXPERIMENTAL SETUP

For all experiments, we use ResNet-18 (He et al., 2016) as the base model for generating the learn-
ability lock unless specified. Performance of the learnability locking process is evaluated by the

13

Published as a conference paper at ICLR 2022

Table 5: Structure of transformation model h for convolutional learnability lock on CIFAR

Layer Type # channels Filter Size Stride Padding Activation
Conv 8 3× 3 1 1 ReLU
Conv 16 3× 3 1 1 ReLU
Conv 16 1× 1 1 0 ReLU
Conv 8 3× 3 1 1 ReLU
Conv 3 3× 3 1 1 ReLU

testing accuracy of the model train from scratch on the controlled dataset Dp. Similarly, effec-
tiveness of the unlocking process is examined by the testing accuracy of the model trained on the
learnability restored dataset Dc̃. To ensure the stealthiness of the perturbation, we restrict ϵ = 8/255
for CIFAR-10 and CIFAR-100, and ϵ = 16/255 for IMAGENET. To evaluate the effectiveness of
the learnability control, the evaluation models are trained using Stochastic Gradient Descent (SGD)
(LeCun et al., 1998) with initial learning rate of 0.01, momentum of 0.9, and a cosine annealing
scheduler (Loshchilov & Hutter, 2016). For model training during the learnability locking process
(updating fθ), we set initial learning rate of SGD as 0.1 with momentum as 0.9 and cosine anneal-
ing scheduler without restart. Cross-entropy is always used as the loss function if not mentioned
otherwise. The batch size is set as 256 for CIFAR-10 and CIFAR-100, 128 for the IMAGENET due
to memory limitation.

Setup for Linear Learnability Lock For learnability locking using linear transformations, we use
the following hyper-parameters in Algorithm 1: for CIFAR-10, we set I = 20 and J = 1 with a
learning rate over ψ of 0.1 according to (3.3) and (3.4); for CIFAR-100, we let I = 25 and J = 3
with learning rate 0.1; for IMAGENET-10 dataset, we set I = 30 and J = 5 with learning rate 0.1.
In addition, the functional parameters ψ = {W,B} are initialized with all ones to W and all zeros
to B. For the exit condition, λ is set to 0.1.

Setup for Convolutional Learnability Lock The convolutional model hψ we used for generating
perturbations is demonstrated in Table 5. For experiment on IMAGENET, we use the same h struc-
ture but modify the number of channels in order to 64, 128, 128, 64, 3. The hyper-parameters are
set as follows in Algorithm 3: for CIFAR-10, we use I = 25 and J = 3 with a learning rate of 0.1
with SGD over ψ; for CIFAR-100, we set I = 30 and J = 5 with a initial learning rate 0.05, which
shrinks by half for every 5 iterations of Algorithm 3. On IMAGENET, we instead use I = 40 and
J = 5 with learning rate 0.01. For the unlocking process, we set the number of fixed-point iterations
m = 5. For exit condition, we set λ = 0.2 and also applied early stopping to avoid overfitting.

B.2 LEARNABILITY CONTROL ON MULTIPLE CLASSES

We follow the experimental setup in Section 4.1 and consider the case where multiple, but not all,
classes need to be protected. For linear transformation, we select 4 classes (“automobile”, “cat”,
“dog”, “horse”) from the CIFAR-10 dataset to conduct learnability control. For convolutional trans-
formation, we do the same on another 4 classes (“bird”, “deer”, “frog”, “ship”) for demonstration.
Note that the controlled classes are selected by random and our method also generalizes to other
settings. Figure 5 shows the prediction results of a ResNet-50 trained on the partially controlled
dataset. We can observe that model falsely predict almost all the samples that belong to classes
under learnability control, while remaining unaffected on other classes. The learnability can also
be reliably restored by unlocking the controlled classes. Models trained on the restored datasets
achieve testing accuracies of 94% and 93%, respectively.

B.3 MORE DETAILS ON ADVERSARIAL TRAINING

Generally speaking, adversarial training fails to serve as an ideal counter-measure to our proposed
learnability control. Aside from the extra computational cost to craft adversarial examples in each
training step, it has been shown that adversarially trained models suffer from a compromised nat-
ural accuracy (Zhang et al., 2019a; Wu et al., 2020). Our experiments indicate that with the same
training pipeline, the adversarially trained model on a CIFAR-10 dataset can achieve at best 87%
validation accuracy, while the normally trained model can easily attain a 93%. The degradation is
even more apparent on a industry-level dataset with high resolution (Fowl et al., 2021a). In addition,

14

Published as a conference paper at ICLR 2022

plane car bird cat
deer dog frog

horse ship
truck

Predicted Labels

plane

car

bird

cat

deer

dog

frog

horse

ship

truck

C
or

re
ct

 L
ab

el
s

942 15 0 19 -2 5 5 3 6 7

6 957 0 -3 2 5 2 1 6 24

200 4 24 179 228 115 155 62 24 9

4 3 2 958 0 2 12 12 1 6

17 1 1 10 918 13 9 21 6 4

9 3 2 12 16 907 1 37 6 7

1 4 2 52 36 18 872 3 6 6

13 6 2 18 45 44 6 857 2 7

48 25 1 5 6 3 7 5 892 8

28 44 0 2 2 3 8 -1 10 904

0

200

400

600

800

(a) Linear

plane car bird cat
deer dog frog

horse ship
truck

Predicted Labels

plane

car

bird

cat

deer

dog

frog

horse

ship

truck

C
or

re
ct

 L
ab

el
s

922 4 0 11 17 5 4 12 12 13

9 942 0 1 5 0 2 3 7 31

210 1 4 96 217 194 222 34 15 7

20 3 2 915 5 6 15 20 7 7

11 0 1 13 897 37 32 9 0 0

6 1 0 45 26 896 8 15 1 2

6 3 0 15 28 18 921 3 4 2

8 0 0 15 39 41 3 891 1 2

29 9 1 4 3 3 4 0 937 10

15 17 0 3 4 4 5 4 13 935

0

200

400

600

800

(b) Convolutional

Figure 4: Annotated version of Fig. 2 – classification confusion matrix for learnability control on the
single class ”bird” of CIFAR-10 for (a) linear transformation, and (b) convolutional transformation.

(a) Linear (b) Convolutional

Figure 5: Prediction results of a ResNet-50 model trained on partially learnability-controlled
CIFAR-10. The classes under control are circled in red. It is easy to see that the model has fairly
bad performance on learnability-controlled classes, while nearly unaffected on other classes.

the adversarial training could be less effective without knowing the exact method an adversary used
for the attack. This is also true in our learnability control setting as the adversary is unaware of the
transformations used within the learnability lock.

To further explore the stability of our learnability control strategy, we envision a hypothetical sce-
nario that the adversary actually know what type of transformation is used for our learnability lock.
Therefore, the adversary may choose to adversarially train the model using the exact same type of
transformations for solving the min-max problem. Specifically, if the learnability lock is crafted
based on a linear transformation, then the adversary can also first solve the maximizer for W and
B that mostly degrades the model performance at each training step and then solve the minimizer
on the outer model training problem. We test out this concern for both the linear and convolutional
learnability control processes. Specifically, we adversarially train a ResNet-50 on the CIFAR-10
dataset based on class-wise noises with linear and convolutional transformations respectively. In
addition, we also use the sample-wise linear transformation (which is much computationally inten-
sive) to craft the noise for adversarial training. We are not able to leverage the sample-wise convolu-
tional transformation for the full adversarial training process due to the high computational burden.
Instead, we craft the sample-wise noises based on convolutional transformation on a well-trained
model on Dp, and include the perturbed samples as data augmentation to Dp. We then continue
training the model for 20 iterations. The result is summarized in Figure 6, suggesting that none of
the adversarial training techniques can reliably defeat our method. From Figure 6 we also observe

15

Published as a conference paper at ICLR 2022

that when the adversary is unaware of the type of transformation used, the best strategy is probably
to apply the standard adversarial training, even though its learnability recovery ability is also limited
(as previously shown in Section 4.2.2).

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

92.1

16.09

63.21 65.53

17.13 21.66

71.78

0

10

20

30

40

50

60

70

80

90

100

Clean AT linear(c) AT linear(s) AT linear(st) AT conv(c) AT conv(s) AT conv(st)

Te
st

in
g

A
cc

ur
ac

y

Figure 6: Performance on the learnability locked dataset trained by adapted adversarial training with
respect to the transformation functions. Specifically, “c” stands for adversarial training with class-
wise perturbations, “s” means sample-wise, and “st” means the standard adversarial training using
PGD.

B.4 RECONSTRUCTION LOSS

Normally the encryption and decryption process is accompanied by a certain degree of information
loss. This is also true for the linear and convolutional learnability lock. On the one hand, the samples
transformed by the lock may be further clipped into range [0, 1] in image classification tasks. This
introduces slight information loss when we reconstruct the samples with inverse transformation.
Additionally, for the convolutional lock, the inverse transformation is approximated by fixed-point
iterations, bringing a certain degree of information loss. While we already show in Table 1 that this
loss is negligible for restoring the learnability, here we explore the ability to reconstruct the original
dataset with the two proposed transformations. The experiment is conducted on CIFAR-10 with
two pre-trained learnability locks. The information loss is measured by the average L2 loss between
retrieved images from Dc̃ and original images from Dc, calculated on 500 randomly selected images.
Results are included in Table 6. It shows that the information loss is trivial compared with the
distance from perturbed images, and thus the learnability control process is rarely affected.

Table 6: Reconstruction losses for learnability locks with both linear and convolutional transforma-
tions measured in L2 distance.

Average L2 loss compared to Dc Dp Dc̃

Linear 0.81± 0.07 2.58e−7± 9.78e−8
Conv 1.67± 0.06 4.91e−4± 1.21e−3

C ABLATION STUDY

In this section, we present some important ablation studies to our proposed learnability lock frame-
work.

C.1 PERTURBATION PERCENTAGES

In case when the entire training data collection is not available for the data controller to leverage
learnability control, we examine the potency of our method when we perturb merely a portion of the
training data. This is different from the aforementioned single-class experiments, which constrain
the perturbation to only one single class. In this section, we study the effect if only part of the
randomly selected samples from a full dataset has been controlled for learnability. Figure 7 shows
that the effectiveness of both transformation functions is compromised when the training samples
are not all under learnability control. The result suggests that the data provider should possess at

16

Published as a conference paper at ICLR 2022

20% 40% 60% 80% 100%
Perturbation Percentage

20

40

60

80

Te
st

 A
cc

ur
ac

y

Linear Lock(ours)
Convolutional Lock(ours)
Unlearnable Examples

Figure 7: Test accuracy against perturbation percentage for models trained on learnability controlled
dataset with different percentage of perturbed samples.

least 60% of the training data in order to activate the learnability control effect. This vulnerability
is also noted in previous work (Huang et al., 2021). Compared with Huang et al. (2021)4, we
observed that both our linear and convolutional transformations achieve much better learnability
locking performances especially when the perturbation percentage lies in the middle range (40% ∼
80%).

C.2 GLOBAL TRANSFORMATION FUNCTION

Our method focuses on class-wise transformation functions. Of particular interest is whether one
global transformation function can be applied over the whole dataset and still lock the learnability.
One advantage of applying a universal transformation is a smaller amount of parameters (size of the
keys) needed. This makes transferring the keys between the data owner and clients more convenient.
We test with both proposed perturbation functions on the CIFAR-10 dataset. Specifically, for the
convolutional transformation, we use a deep network with 20 convolution layers (to ensure enough
expressiveness for perturbing the entire dataset). As shown in Figure 8, while the potency of our
method is decreased, the learnability lock is still effective in degrading the model performance by
20-30 percent. We believe that the performance can be further improved by either designing more
effective perturbation functions or advanced optimization steps. We leave it for future study.

93.97

72.79

61.38

0

10

20

30

40

50

60

70

80

90

100

clean locked(linear) locked(conv)

T
es

t
A

cc
u

ra
cy

Figure 8: Experimental result for global transformation functions on CIFAR-10 dataset.

C.3 MIXTURE OF PERTURBATION FUNCTIONS

Another way to improve the complexity of learnability control process against potential counter-
measures is to apply a mixture of perturbation functions. In this sense, we can apply different
transformation functions to each class in a random order so that the order itself could serve as
another secret key. We show that this is possible by applying the linear transformation (Algorithm
1) on classes with odd labels and convolutional transformation (Algorithm 3) on classes with even
labels from CIFAR-10. The result is listed in Table 7, generated on a ResNet-50 model. It is

4We directly use the data provided in the original paper of Huang et al. (2021) as the baseline.

17

Published as a conference paper at ICLR 2022

Table 7: Performance comparison when using a mixture of perturbation functions.

Perturbation ↓ Val Acc
None 93.89
Linear 13.93
Conv 17.06

Mixture 21.29

observed that using a combination of different locks has little impact on the potency of learnability
control. Yet without knowing the exact transformation functions and the orders applied, it is harder
for attackers to mitigate or reverse-engineer the perturbation patterns in order to compromise the
protection.

C.4 EFFECT ON CRAFTING MODEL ARCHITECTURES

While ResNet-18 is used as the default model architecture for crafting the learnability locked dataset
in our experiments, we verify that other model architectures could serve the same purpose equiv-
alently. Specifically, we use VGG-11 and DenseNet-121 as crafting models and evaluate the per-
formance of the trained adversarial transformations on CIFAR-10 with ResNet-50. The results are
listed in Table 8. For both linear and convolutional transformations, the learnability control process
is still effective under different model architectures, suggesting that the learnability lock has the de-
sired property that it is agnostic to network structures. In addition, we observe that a more powerful
crafting model always generates a stronger learnability lock. For example, the validation accuracy
of model trained on CIFAR-10 controlled by a lock crafted with DenseNet-121 is always lower than
that crafted with VGG-11.

Table 8: Learnability locking performances with different model architectures of fθ.

gψ fθ Test Acc (locked) Test Acc (unlocked)

Linear VGG-11 17.53 91.35
Densenet-121 12.01 90.34

Conv VGG-11 19.21 91.67
Densenet-121 14.56 92.75

C.5 COMPARISON TO ADDITIVE PERTURBATION

Additive noise is widely adopted in the literature of adversarial machine learning. It usually has the
form x′ = x + δ where δ stands for the noise pattern being mapped onto a clean sample. Several
recent works leverage additive perturbation to prevent models from learning useful features on a
poisoned dataset (Fowl et al., 2021a; Huang et al., 2021; Fowl et al., 2021b). Existing additive
noises can be summarized into two categories: sample-wise and class-wise. However, we argue that
both kinds of them are not suitable for a task of learnability control due to several major drawbacks.

Sample-wise perturbation falls short of recovering the learnability for the whole dataset because of
the extremely high cost to pass all the noise patterns to an authorized user. Obviously, the potential
cost of transferring the “secret key” grows with the number of samples contained in the dataset,
which tends to be large in a practical commercial setting. On the other hand, additive perturbations
injected class-wise has much lower transferring cost. In specific, the secret key would involve a
unique noise pattern for each class so that the cost is merely O(d × k), where d stands for the
sample dimension and k represents the number of classes. However, the downside of class-wise
additive perturbation is that it applies the same perturbation for all data in one class, and thus can be
easily detected or reverse-engineered.

A transformation-based perturbation resolves both concerns raised above. First, the inversion cost is
much lower than that of sample-wise additive noises. The proposed linear learnability lock involves

18

Published as a conference paper at ICLR 2022

O(d × k) parameters to do the inverse transformation. This is merely 61440 parameter values in
the case of CIFAR-10. The cost Sof convolutional learnability lock is also low, with around 30000
parameters on CIFAR-10 (based on h provided in Table 5). On the other hand, the transformation
based perturbation, though performed class-wise, can generate different noise patterns for each sam-
ple. This improves the stealthiness and stability of the learnability control process. Furthermore, it
is shown that the transformation-based perturbation is more robust to standard adversarial training
as counter-measure. Table 9 compares the maximum achievable accuracy of our method with Huang
et al. (2021) that is based on additive noise. It shows that while the validation accuracy on the un-
learnable data produced by our method is comparable to that of Huang et al. (2021), our method can
ensure a much lower maximum achievable accuracy taking into account adversarial training. Table
10 summarizes the comparisons between our method and additive noises in terms of several signifi-
cant properties for learnability control. Specifically, the “stealthiness” is reflected through diversity
of functional perturbations rather than the value5 of ϵ. The diversity of functionally perturbations
make it harder to reverse-engineer the noise patterns from the unlearnable dataset and thus break our
protection. For example, suppose a key-lock pair (one noisy image and the original clean sample)
is disclosed, then for the additive noise, it is easy for the attacker to detect or reverse-engineer the
noise pattern and remove all of them. This is not true for our method as the functional parameters
(e.g. an invertible resnet) are essentially impossible to recover with one key-lock pair.

Table 9: Comparison of maximum achievable accuracy with unlearnable examples (Huang et al.,
2021). Here we focus on the maximum achievable validation accuracy of a ResNet-50 trained on
the CIFAR-10 dataset using any training schemes.

Normal Training Adv Training Max Achievable Accuracy
Unlearnable 13.45 85.89 85.89
Ours (linear) 15.62 65.53 65.53
Ours (conv) 19.39 71.78 71.78

Table 10: Comparison of different strategies under the setting of learnability control. The ”stealth-
iness” evaluates based on if the noise is easily detectable or can be reverse-engineered. (✓denotes
“yes”, ✗ denotes “no”).

Perturbation ↓ Inverse Transfer Cost Adv. Train Stealthiness

Additive (sample-wise) ✗ high ✗ ✓
Additive (class-wise) ✓ low ✗ ✗

Linear (ours) ✓ low ✓ ✓
Convolutional (ours) ✓ low ✓ ✓

5All the experiments apply the same ϵ for all baselines.

19

	Introduction
	Related Work
	Method
	Problem Definition
	Linear functional perturbation
	Convolutional functional perturbation

	Experiments
	Learnability Control
	Robustness Analysis
	Data augmentation and filtering techniques
	Adversarial Training

	Practical Guidelines

	Conclusion
	Algorithms for Convolutional Learnability Locking and Unlocking
	Additional Experiment Details
	Experimental Setup
	Learnability Control on Multiple Classes
	More Details on Adversarial Training
	Reconstruction Loss

	Ablation Study
	Perturbation Percentages
	Global Transformation Function
	Mixture of Perturbation Functions
	Effect on Crafting Model Architectures
	Comparison to additive perturbation

