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ABSTRACT

In this paper, we focus on the task of conditional image generation, where an
image is synthesized according to user instructions. The critical challenge under-
pinning this task is ensuring both the fidelity of the generated images and their
semantic alignment with the provided conditions. To tackle this issue, previ-
ous studies have employed supervised perceptual losses derived from pre-trained
models, i.e., reward models, to enforce alignment between the condition and the
generated result. However, we observe one inherent shortcoming: considering
the diversity of synthesized images, the reward model usually provides inaccu-
rate feedback when encountering newly generated data, which can undermine the
training process. To address this limitation, we propose an uncertainty-aware re-
ward modeling, called Ctrl-U, including uncertainty estimation and uncertainty-
aware regularization, designed to reduce the adverse effects of imprecise feedback
from the reward model. Given the inherent cognitive uncertainty within reward
models, even images generated under identical conditions often result in a rela-
tively large discrepancy in reward loss. Inspired by the observation, we explicitly
leverage such prediction variance as an uncertainty indicator. Based on the un-
certainty estimation, we regularize the model training by adaptively rectifying the
reward. In particular, rewards with lower uncertainty receive higher loss weights,
while those with higher uncertainty are given reduced weights to allow for larger
variability. The proposed uncertainty regularization facilitates reward fine-tuning
through consistency construction. Extensive experiments validate the effective-
ness of our methodology in improving the controllability and generation quality,
as well as its scalability across diverse conditional scenarios, including segmenta-
tion mask, edge, and depth conditions.

1 INTRODUCTION

Driven by the emergence of large-scale image-text datasets (Schuhmann et al., 2021; Changpinyo
et al., 2021; Schuhmann et al., 2022) and the development of diffusion models (Dhariwal & Nichol,
2021; Nichol et al., 2021; Rombach et al., 2022), text-to-image (T2I) diffusion models (Ramesh
et al., 2021; Saharia et al., 2022) have become fundamental in the field of controllable visual gen-
eration. These models excel at producing realistic, high-quality images that accurately reflect the
descriptions provided in natural language. However, due to their inherent properties, text-based con-
ditions often struggle to convey the detailed controls required for final generation results efficiently.
This limitation becomes especially evident in certain scenarios where text prompts alone can not
capture all necessary details, such as when depicting unique artistic styles or accurately rendering
complex scenes. To this end, alongside text descriptions, a substantial body of research focuses on
integrating novel conditional controls, such as user-drawn sketches and semantic masks, into T2I
diffusion models (Qin et al., 2024; Ye et al., 2023; Zhang et al., 2023a; Mou et al., 2024). Despite
investigations into the controllability of T2I diffusion models and their expanded applications (?Li
et al., 2024a; Chen et al., 2024a), achieving precise and fine-grained control remains challenging.
The primary issue lies in ensuring both the fidelity of the generated images and their semantic align-
ment with the provided conditions. To tackle this issue, some efforts, e.g., ControlNet++ (Li et al.,
2024b) attempt to employ a pre-trained reward model to extract the corresponding condition from
the generated images and enforce alignment between the specified condition and the output. How-
ever, we observe that the reward model inevitably produces inaccurate feedback (see Fig. 1). During
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Figure 1: Given a test image and the layout condition, we employ a diffusion model to generate new
images by adding noise and then recovering from the noisy input. (a) Ground-truth segmentation
results with the category illustration. (b) Here we show the reward changes, i.e., mIoU error, on
newly generated images at different timesteps. The horizontal axis represents the current timestep
t and the vertical axis shows the error, i.e., 1-mIoU. As shown, even at t = 0, there are non-zero
mIoU errors. As t increases, although the visual layout aligns with the condition, the reward
model tends to increase the error, leading to the backpropagation of incorrect gradients.

the diffusion training, we add different levels of Guassian noise to the input, which increases the
reconstruction challenge. It also leads to the distribution discrepancy between the generated image
and the real image. As the timestep t increases, such generation discrepancy increases. The reward
model has not "seen" such generation discrepancy before, resulting false segmentation prediction,
even if the generation is correctly aligned with the condition. Due to the diffusion compression
process, we observe that even if t = 0, there is some mis-alignment feedback as well. If we do
not rectify such misleading rewards, enforcing alignment between the provided conditions and the
inaccurate predictions on newly generated data will consistently compromise the training process.

To mitigate the adverse effects of inaccurate rewards, we introduce a robust, controllable image gen-
eration approach via uncertainty-aware reward modeling (Ctrl-U). Motivated by our observation,
we explicitly model the reward uncertainty to facilitate the reward back-propagation. The proposed
uncertainty-based method consists of two phases, i.e., uncertainty estimation and uncertainty regu-
larization. (1) In the uncertainty estimation phase, we forward the identical input condition twice
with different noise timesteps, yielding two similar generation results. We explicitly leverage the
reward variance between these two generations as an uncertainty indicator. Notably, we do not in-
troduce extra parameters and thus do not impact the inference efficiency of the diffusion model. (2)
Following the uncertainty estimation, we adaptively adjust the loss weights of different reward feed-
back. Specially, the alignment reward for each pixel are rectified by its corresponding pixel-wise
uncertainty. Rewards with lower uncertainty, indicating greater stability, should be given higher
weights to encourage the model to learn from these reliable signals. Conversely, rewards with higher
uncertainty, which are less stable, should be assigned reduced weights to minimize the negative im-
pact of potentially inaccurate feedback. Quantitative and qualitative experiments verify the efficacy
of the proposed method on controllability and image quality across various conditions.

• We observe an inherent drawback in enforcing alignment for conditional image generation
using a pre-trained reward model, as the reward model often fails to generalize to newly
generated data. To address the adverse effects of inaccurate reward feedback on conditional
image generation, we introduce an uncertainty-aware reward modeling approach, termed
Ctrl-U, which adaptively regularizes the reward learning process.

• Through extensive experiments on five benchmarks across three datasets, i.e., ADE20k,
COCO-Stuff, and MultiGen-20M, we validate the effectiveness of our methodology in im-
proving controllability and generation quality. Our approach also shows scalability across
various conditional scenarios, including segmentation masks, edges, and depth conditions.

2 RELATED WORKS

Conditional Generation. Recently, diffusion probabilistic models (Ho et al., 2020; Song et al.,
2021a) have become an important cornerstone in general image generation. As the quality of gen-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

erated images improves, a critical challenge remains, i.e., achieving precise control over these gen-
erative models to meet the intricate and varied demands of real-world applications adequately. Mo-
tivated by the development of guidance mechanism (Song et al., 2021b; Ho & Salimans, 2022),
T2I diffusion models such as GLIDE (Nichol et al., 2021), Imagen (Saharia et al., 2022), DALL·E
2 (Ramesh et al., 2022) excel at modeling fine-grained structures and texture details. To facilitate the
training of diffusion models on limited resources, Latent Diffusion Model (LDM) (Rombach et al.,
2022) maps the diffusion process from pixel space to the latent space. Building upon the founda-
tion of LDM framework, Stable Diffusion (SD) exhibits exceptional capabilities in T2I generation.
Despite the astonishing capabilities of T2I diffusion models, language, with its sparse and high-
level semantic nature, is unsuitable for processing intricate and low-level control images, e.g., depth
maps. To achieve conditional control in T2I diffusion models, researchers are exploring the inte-
gration of various control signals with text descriptions. ControlNet (Zhang et al., 2023a) integrates
image-based conditions by incorporating an additional encoder copy into frozen T2I diffusion mod-
els via zero convolutions. Similarly, GLIGEN (Li et al., 2023) and T2I-Adapter (Mou et al., 2024)
propose utilizing independent adapters (or extra modules) to synchronize internal knowledge within
T2I models with external conditions. Furthermore, Cocktail (Hu et al., 2023) integrates multi-modal
control information to yield more high-quality outputs. With the rapid development of large lan-
guage models, some recent works have explored prompt engineering for regulated generation. For
instance, ReCo (Zhang et al., 2023b) specifies text descriptions of different regions to model the fine-
grained structure and aesthetic features. Control-GPT (Zhang et al., 2023b) applies GPT-4 (OpenAI,
2023) as the sketch generator to incorporate control signals. However, one drawback is that their
generated images usually deviate from input conditions. In this work, we take a closer look at de-
noised results and explicitly introduce the uncertainty to impose consistency constraints adaptively.

Uncertainty-aware learning. As data-driven technologies rapidly advance, the imperative for
model reliability grows. Measuring the "confidence" of predictions has been a long-standing prob-
lem. As a result, researchers are progressively focusing on uncertainty as a viable solution. Kendall
& Gal (2017) categorize uncertainty into two primary types: epistemic uncertainty and aleatoric
uncertainty. The former epistemic uncertainty denotes model uncertainty, reflecting variations in
model weights even when trained on the same dataset. The representative approach in this direction
is Bayesian networks (Jensen & Nielsen, 2007; Neal, 2012), which focuses on learning the distribu-
tion of weights and estimates uncertainty by assessing the distribution variance. Similarly, Monte
Carlo Dropout (Gal & Ghahramani, 2016) is proposed to randomly use varying dropout masks to
simulate variational Bayesian approximation effectively. Another line of research on epistemic un-
certainty (Raghu et al., 2019; Nandy et al., 2020; Lee & AlRegib, 2020) adapts the original model to
measure prediction uncertainty directly. However, incorporating this additional uncertainty estima-
tion typically compromises both the training efficiency and predictive accuracy of the model. In ad-
dition, ensemble methods (Lakshminarayanan et al., 2017; Malinin et al., 2019; Wenzel et al., 2020)
combine various deterministic models in the prediction process to improve prediction accuracy, but
is constrained by the computational burden associated with operating multiple independent networks
and the requisite diversity across ensemble models. Another family of research tackles the inherent
uncertainty in data, arising from noise interference or ambiguous annotations. This methodology for
addressing uncertainty has been applied across various fields: such as image segmentation (Zheng &
Yang, 2021), image retrieval (Chen et al., 2024b), image classification (Litrico et al., 2023), person
re-identification (Zhang et al., 2022), and 3D object detection (Zhang et al., 2024). In particular,
Dou et al. (2022) effectively simulates uncertainty by utilizing model prediction variance to inject
noise into the latent space. In a manner akin to (Kendall & Gal, 2017), a dynamic uncertainty-based
loss is introduced to enhance training stability. Unlike existing uncertainty-based works, we explic-
itly introduce noise at varying intensities into the diffusion model to enable the quantification of
uncertainty. It is worth noting that we explore the utilization of uncertainty in the untapped condi-
tional image generation task, preserving the original diffusion learning and mitigating the adverse
effects of inaccurate feedback from the reward model.

3 METHOD

3.1 UNCERTAINTY ESTIMATION

We provide a brief overview of the pipeline in Fig. 2. To simplify the explanation, here we take
the segmentation task as an example, if not specified. Given the triplet input, i.e., one source
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Figure 2: A brief overview of our pipeline. Here, we take the segmentation mask as a conditional
generation example. (a) Conditional Generation. Given text, source image x0, and the conditional
control c, we extract feature z0, ft, fc, respectively. Then, we fine-tune the Diffusion model to
generate two intermediate features for the image decoder. (b) Uncertainty Learning. Given the two
features, we decode the two images, i.e., x̂1

0 and x̂2
0. Then we apply the reward model to obtain the

two layout predictions ĉ1 and ĉ2. We leverage the KL-divergence prediction discrepancy between
ĉ1, ĉ2 as the uncertainty indicator U1, U2 (see Eq. 2). Based on U1, U2, we then calculate the rectified
reward loss between the predicted label ĉ1, ĉ2 and the ground-truth label c, as Eq. 3.

image input x0, one text prompt, and the conditional control c, the basic encoders extract the visual
feature z0 of x0, textual feature ft and the control feature fc of c. We fix the weight of the off-
the-shelf image encoder and the text encoder, while finetuning the control encoder. During the
conditional diffusion training, we first add Gaussian noise ϵ to the feature map z0 as the noisy latent.
In particular, we conduct two generation forward with identical condition c but different t1 and t2,
and resampled Gaussian noise ϵ. Therefore, the two noisy latents z1 and z2 can be formulated as:

z1 =
√
ᾱt1z0 +

√
1− ᾱt1ϵ, z2 =

√
ᾱt2z0 +

√
1− ᾱt2ϵ, ϵ ∼ N (0, I), (1)

Following the ControlNet pipeline (Zhang et al., 2023b), we further fuse text condition ft and image
condition fc to predict the added noise. After removing the predicted noise, we obtain the recovered
latent, i.e., ẑ10 and ẑ20 . Then, given the latent ẑ10 and ẑ20 , the pretrained decoder is to reconstruct
the input image as x̂1

0 and x̂2
0, respectively. To align the condition within the generated images,

we follow the existing works and apply an off-the-shelf reward model D to quantify the consistency
between the input condition c and the corresponding output condition of the generated images. How-
ever, as shown in Fig. 1b, the reward model usually contains inaccurate feedback, even if the visual
layout has already aligned with the condition. If we consistently apply strong supervision on the
consistency between inaccurate rewards and conditions predicted on the newly generated data, the
backpropagation of incorrect gradients will significantly compromise the model. To estimate inac-
crate rewards, we explicitly leverage two diffusion forwards for the identical input conditions. We
compare the reward discrepancy between extracted conditions ĉ1, ĉ2 from generated images, which
can be considered as a reward indicator at the current timestep. For the segmentation map condi-
tion, considering the probability output, we quantify uncertainty by calculating the KL-divergence
between the extracted conditions of two generations at the pixel level as:

U1 = E
[
ĉ1 log

(
ĉ1
ĉ2

)]
= E

[
D(x̂1

0) log

(
D(x̂1

0)

D(x̂2
0)

)]
,

U2 = E
[
ĉ2 log

(
ĉ2
ĉ1

)]
= E

[
D(x̂2

0) log

(
D(x̂2

0)

D(x̂1
0)

)]
.

(2)

For other non-probability conditions, e.g., edge and depth, we adopt the ℓ1 distance U1 = U2 =
|ĉ1 − ĉ2|as the uncertainty indicator.

Discussion. 1). Why not use an auxiliary network to directly regress uncertainty? Some exist-
ing methods (Zheng & Yang, 2021; Jain et al., 2024) introduce extra modules to model the uncer-
tainty. However, directly regressing uncertainty often leads to overfitting, where the model predicts
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zero uncertainty for all samples or a large, uniform value. This line of approaches is challenging to
optimize effectively. Therefore, instead of directly regressing uncertainty, we perform predictions
twice to estimate the prediction variance, which serves as a cognitive uncertainty indicator for the
reward model. Additionally, this method has the side benefit of not introducing the extra training
parameters. 2). How about choosing the same timestep for the two-time generations? Using
the same timestep for the two-time generations is possible, and the samples will still differ due to
the inherent randomness in ϵ. However, this approach limits the diversity of the generated images,
which hinders the full utilization of the reward model. In our experiments, we observe that using
different timesteps for the two generated images helps to learn a better and more robust generation
model after rectifying the reward.

3.2 UNCERTAINTY REGULARIZATION

The existing controllability modeling methods (Li et al., 2024b) usually adopt consistency loss be-
tween the input condition and the extracted condition, which can be regarded as a pixel-wise su-
pervision. For example, when using segmentation mask as input condition, Lc can be defined as a
per-pixel cross-entropy loss as:

Lc
1 = −c log(ĉ1), Lc

2 = −c log(ĉ2) (3)
where c denotes the input condition, ĉ1, ĉ2 represent extracted conditions from generated images.
Our objective is to adaptively rectify the inaccurate reward feedback. To achieve this, we adapt the
original consistency loss by incorporating our estimated uncertainty:

Lu
1 =

Lc
1

exp (U1)
+ λ · U1, Lu

2 =
Lc
2

exp (U2)
+ λ · U2, (4)

where λ denotes the regularization factor. The second term λ · U is to prevent the model from
consistently predicting high uncertainty across all samples. The first term diminishes the impact of
reward feedback when significant disagreement is evident, yet retains its influence when predictions
are consistent. Notably, when the uncertainty value is constant, the back-propagation gradient is
identical to the original consistency loss. Finally, to optimize robust conditional image generation,
we adopt a combination of the diffusion loss Ldiffusion and the proposed uncertainty-regularization
loss Lu

1 ,Lu
2 . The original diffusion loss at timestep t1 and t2 can be reformulated as:

Ldiffusion = E
[
∥ϵθ(z1, t1, ft, fc)− ϵ∥22 + ∥ϵθ(z2, t2, ft, fc)− ϵ∥22

]
. (5)

Therefore, the total loss is as follows:
Ltotal = Ldiffusion + µ · (Lu

1 + Lu
2 ), (6)

During training, we balance the ratio µ of diffusion training and reward feedback by:

µ =

{
µ0 if t ≤ tthre

0 if t > tthre
(7)

where µ0 is the consistency weight. If t > tthre, we only consider the diffusion optimization as
existing works (Zhao et al., 2024a). if t ≤ tthre, we incorporate uncertainty-aware reward modeling.

Discussion. 1). Why set timestep threshold tthre for µ? Considering that when t, i.e., t1 and t2, is
large, zt approaches the random noise ϵ, leading to more diverse recovered x̂0 (see Fig. 1). In such
cases, it becomes difficult to ensure that two outputs with identical conditions remain close, which is
necessary for our uncertainty estimation, as it requires visually similar inputs to evaluate the reward
model. In practise, we, therefore, empirically set a threshold to avoid the large timesteps for the
reward modeling. We have conducted the experiment on the choice of tthre (see Section 4.3). 2).
What is the advantage of uncertainty regularization in the reward feedback? The advantage of
uncertainty regularization in the reward feedback is that it helps to mitigate the adverse effects of
imprecise feedback from the reward model. Specifically, by incorporating uncertainty estimation,
the proposed method, Ctrl-U, can adaptively adjust the weights of the rewards during training. Re-
wards with lower uncertainty are given higher loss weights, ensuring that more reliable feedback
has a stronger influence on the training process. Conversely, rewards with higher uncertainty are
given reduced weights, allowing for greater variability and preventing the model from being overly
influenced by potentially inaccurate feedback. This adaptive rectification of rewards based on their
uncertainty improves the consistency and reliability of the training process. As a result, the model
becomes more robust to the diverse and sometimes unpredictable nature of newly generated data,
leading to better controllability and generation quality.
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4 EXPERIMENT

4.1 SETTINGS

Datasets. Our experiments are conducted using three datasets: ADE20K (Zhou et al., 2017; 2019),
COCOStuff (Caesar et al., 2018) and MultiGen-20M dataset (Qin et al., 2024), adhering to the
dataset construction principles of Controlnet++ (Li et al., 2024b). More specifically, we utilize the
ADE20K and COCOStuff for the segmentation task. For Hed and Lineart conditions, we utilize pre-
trained models, which is the same as ControlNet++, to generate annotations for the MultiGen-20M
dataset. Considering that existing datasets usually include masks for pixels with unknown depth
values, we adapt the MultiGen20M depth dataset in a manner similar to the dataset construction
method used by ControlNet (Zhang et al., 2023a). For datasets without image captions, we use the
captions generated by MiniGPT-4 (Zhu et al., 2023). The training and inference are conducted at a
resolution of 512x512 for all datasets and methods.

Evaluation and Metrics. To evaluate semantic segmentation and depth map controls, we adopt
mIoU and RMSE as the metrics, respectively. For the Hed edge and Lineart tasks, we calculate SSIM
to compare the difference between the extracted control and the ground truth. For Sampling, we
employ the UniPC (Zhao et al., 2024b) sampler, implementing 20 denoising steps to generate images
using the original text prompts in accordance with ControlNet v1.1 (Zhang et al., 2023a), without
incorporating any negative prompts. For comparative methods, we utilized their publicly available
code to generate images, ensuring fairness by using the same validation dataset and adhering to their
original inference settings.

Implementation Details. In our experiments, we first fine-tune the pre-trained ControlNet model
to convergence, using Adam as the optimizer with a learning rate of 1e-5, weight decay of 1e-
2, and momentum of 0.9. Then, we use the same optimization settings to perform 10k iterations
of uncertainty-aware reward fine-tuning. It is worth noting that we employ an one-step efficient
reward strategy (Li et al., 2024b) to enhance training efficiency. Following the settings of previous
work, we choose slightly weaker models as the reward model and stronger models for evaluation to
guarantee fairness in assessment. We utilize 8 H800 (80G) GPUs for all our experiments. See also
the supplementary material for detailed reward model settings.

Baselines. In our evaluation, we mainly compare with competitive methods, including Control-
Net++ (Li et al., 2024b), T2I-Adapter (Mou et al., 2024), ControlNet v1.1 (Zhang et al., 2023b),
GLIGEN Li et al. (2023), Uni-ControlNet (Zhao et al., 2024a), and UniControl (Qin et al., 2024).
All of the aforementioned methods have been fine-tuned on datasets across various tasks, and Con-
trolNet++ introduces reward-based post-training on the foundation of ControlNet. These models
perform well in controllable text-to-image generation, providing open-source model weights for re-
implementation. For fair comparison, all models are tested under the same image conditions and
text prompts. Although these methods utilize the user-friendly SD1.5 for controllable text-to-image
generation, recent advancements have led to the adoption of SDXL (Podell et al., 2023) by sev-
eral methods. Accordingly, we also present controllability results for ControlNet-SDXL and T2I-
Adapter-SDXL. Since currently there are no officially released models, we deploy the third-party
ControlNet-SDXL for the following experiments.

4.2 EXPERIMENTAL RESULTS

Comparison of Controllability. We present the results on five benchmarks in Table 1. Our
uncertainty-aware method Ctrl-U significantly outperforms the previous state-of-the-art method
ControlNet++ (Li et al., 2024b) by 6.53% in ADE20K and 8.65% in MultiGen20M depth, respec-
tively. Regarding Hed and Lineart edge, the model with uncertainty regularization has obtained
+3.76% and +1.06% increase on SSIM. The most significant improvement is observed in COCO-
Stuff for segmentation masks, with an increase of 44.42%. This performance enhancement confirms
that reducing the adverse effects of imprecise feedback from the reward model can significantly
improve the model controllability. We use the same hyper-parameter settings as those in the Con-
trolNet++ experiments, verifying the effectiveness of our uncertainty-aware reward modeling.

Comparison of Image Quality. We employed the Fréchet Inception Distance (FID) (Heusel et al.,
2017) to measure the distribution distance between generated and real images in Table 2. We could
observe that, compared with existing methods, Ctrl-U exhibits superior FID values in various con-
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Table 1: Controllability comparison under various conditional controls and datasets. ↑ denotes
higher result is better, while ↓ indicates lower is better. ’-’ signifies the absence of a publicly avail-
able model for testing. The best result in each column is marked bold and the second is underlined.
We generate four groups of png images and report their average result to reduce random errors.

Condition
(Metric) T2I

Model

Seg. Mask
(mIoU ↑)

Hed Edge
(SSIM ↑)

LineArt Edge
(SSIM ↑)

Depth Map
(RMSE ↓)

Dataset ADE20K COCO-Stuff MultiGen-20M MultiGen-20M MultiGen-20M
ControlNet SDXL - - - - 40.00
T2I-Adapter SDXL - - - 0.6394 39.75
T2I-Adapter SD1.5 12.61 - - - 48.40

Gligen SD1.4 23.78 - 0.5634 - 38.83
Uni-ControlNet SD1.5 19.39 - 0.6910 - 40.65

UniControl SD1.5 25.44 - 0.7969 - 39.18
ControlNet SD1.5 32.55 27.46 0.7621 0.7054 35.90

ControlNet++ SD1.5 43.64 34.56 0.8097 0.8399 28.32
Ctrl-U (Ours) SD1.5 46.49 49.91 0.8401 0.8488 25.86

Table 2: FID (↓) comparison under various conditional controls and datasets. ’-’ signifies the
absence of a publicly available model for testing. The best result in each column is marked bold and
the second is underlined. We generate four groups of png images and report their average result to
reduce random errors.

Method T2I
Model

Seg. Mask Hed Edge LineArt Edge Depth Map
ADE20K COCO-Stuff MultiGen-20M MultiGen-20M MultiGen-20M

Gligen SD1.4 33.02 - - - 18.36
T2I-Adapter SD1.5 39.15 - - - 22.52

UniControlNet SD1.5 39.70 - 17.08 - 20.27
UniControl SD1.5 46.34 - 15.99 - 18.66
ControlNet SD1.5 33.28 21.33 15.41 17.44 17.76

ControlNet++ SD1.5 29.49 19.29 15.01 13.88 16.66
Ctrl-U (Ours) SD1.5 28.61 15.79 11.59 11.99 15.48

ditional generation tasks. Notably, in the COCO-Stuff for segmentation masks and MultiGen20M
for Hed edge, Ctrl-U achieves impressive improvements of 18.14% and 22.74%, respectively. This
significant boost indicates that our method not only enhances the controllability but also improves
the quality of image generation, underscoring the efficacy of our proposed uncertainty-aware reward
modeling in adaptively adjusting the weights of the rewards during training.

Comparison of CLIP Score. To assess the potential impact on text controllability, we reported
the CLIP-Score metrics across various conditional generation tasks in Table 3. We discovered that
Ctrl-U generally exhibits comparable or superior CLIP-Score results in most cases, suggesting that
our approach not only enhances the controllability of conditional controls but also maintains the
original proficiency of text-to-image generation. To ensure a more comprehensive comparison, we
re-implemented the CLIP-Score using the official checkpoint for ControlNet++ (Li et al., 2024b),
and marked the results with ∗ and gray in Table 3.

Qualitative Analysis. We show the visual comparisons between our Ctrl-U and previous state-of-
the-art methods across various conditional scenarios in Fig. 3. Given the same text prompts and
image-based conditions, we observe that existing methods usually generate images with areas that
do not align with the image conditions. Other methods, taking the segmentation mask generation
task as an example, produce content on the building that is irrelevant to the provided condition,
reflecting relatively poor controllability. Similarly, under edge and depth conditions, other methods
fail to accurately represent the nuances of various image controls. In contrast, images generated by
Ctrl-U exhibit better consistency with the input conditions.

Human Evaluation. Following ControlNet++ (Li et al., 2024b), we choose four types of conditional
controls (segmentation masks, Hed edge, Lineart edge, and depth conditions) for human evaluation.
We invite 20 participants to rank each result based on three distinct criteria. According to the average
rankings shown in Table 4, users prefer the results produced by our method over those generated by
the comparative methods.
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Table 3: CLIP-score (↑) comparison under various conditional controls and datasets. ’-’ signifies
the absence of a publicly available model for testing. The best result in each column is marked
bold and the second is underlined. ∗ and gray denote the CLIP-score we re-implemented using the
checkpoints provided by Controlnet++. We generate four groups of png images and report their
average result to reduce random errors.

Method T2I
Model

Seg. Mask Hed Edge LineArt Edge Depth Map
ADE20K COCO-Stuff MultiGen-20M MultiGen-20M MultiGen-20M

Gligen SD1.4 31.12 - - - 31.48
T2I-Adapter SD1.5 30.65 - - - 31.46

UniControlNet SD1.5 30.59 - 31.94 - 31.66
UniControl SD1.5 30.92 - 32.02 - 31.68
ControlNet SD1.5 30.16 31.18 31.46 31.26 32.11

ControlNet++ SD1.5 31.96 13.13 32.05 31.95 32.09
ControlNet++∗ SD1.5 31.24 30.93 30.49 30.34 30.02
Ctrl-U (Ours) SD1.5 31.26 31.23 32.05 31.87 31.72

Table 4: Results of Human Evaluation

Evaluation Category Ours ControlNet++ ControlNet UniControl UniControlNet
Image-Condition Alignment 72.5% 7.5% 6.2% 7.5% 12.5%

Image Quality 56.2% 10.0% 15.0% 15.0% 13.7%
Image-Text Alignment 50% 27.5% 22.5% 7.5% 12.5%

4.3 ABLATION STUDIES AND FURTHER DISCUSSION

Design of Uncertainty Estimation. We present an ablation study on the design of the two-time gen-
eration in Table 5a. To mitigate the adverse effects of inaccurate rewards, we forward the identical
input condition twice with different noise timestep to estimate uncertainty. Specifically, we adjust
the disparity between the two timesteps, i.e., |t1 − t2|. A short interval, such as t1 = t2, where the
only randomness stems from resampled noise ϵ, limits the diversity of the generated images. Con-
sidering the generated images are too similar, the reward discrepancy is small, and could not serve as
uncertainty indicator. Conversely, a long interval indicates a significant gap between the two noisy
latents, which, in turn, increase the generation discrepancy. Too large discrepancy also impacts the
accurate uncertainty estimation, and thus compromises reward modeling. When |t1 − t2| = 1, the
model achieves the optimal FID and relatively strong mIoU and CLIP-score.

Impact of Different Timestep Threshold tthre. We investigate the impact of varying timestep
threshold tthre (see Eq. 7) in Table 5b. We observe that, as the tthre increases, the scope of our
uncertainty-aware reward rectification broadens, leading to improved mIoU. However, while in-
creasing the rectification range can improve alignment between generated images and input con-
ditions, setting the threshold too high will negatively affect image quality, resulting in higher FID
scores. We find that the tthre = 400 setting strikes an optimal balance, facilitating uncertainty esti-
mation and regularization to adaptively correct the reward learning process.

Impact of Regularization Weight λ. We conducted a study to analyze the impact of varying uncer-
tainty regularization weight λ in Table 5c. When using a low value for λ, which imposes a minimal
penalty for high uncertainty, it leads to excessively high uncertainty values across all samples. Con-
versely, a high value of λ imposes a strong penalty on high uncertainty, suppressing the impact of
uncertainty during reward fine-tuning. The setting with λ = 1 achieves an optimal balance. This
configuration provides enough model capacity to accurately fit reward feedback while preventing
overfitting to inaccurate rewards. As a result, the adaptive rectification of rewards based on uncer-
tainty regularization improves the consistency and reliability of the training process.

Impact of the Consistency Weight µ0. We conduct an ablation study on the consistency weight
µ0 as shown in Table 5d. We notice that the model shows insensitivity to the µ0 change in terms
of CLIP-score. Setting µ0 to 1 yields the highest mIoU but at the cost of FID performance. This is
due to the high weight of the consistency loss, which biases model training towards reward learning,
thereby enhancing controllability but compromising generation quality. When µ0 = 0.1, FID per-
formance reaches its optimum, and mIoU remains strong, effectively balancing diffusion training
and uncertainty-aware reward learning without causing the uncertainty to either vanish or explode.
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Table 5: Ablation studies on the ADE20K dataset. We report mIoU, FID and CLIP-score to evaluate
controllability and image quality respectively. (a) We show the impact of the interval between t1 and
t2. We find that a short interval limits the diversity of the generated images, making it challenging
to estimate uncertainty. In contrast, a long interval impacts accurate uncertainty estimation and thus
compromises reward modeling. (b) We study the timestep threshold tthre. We find that the tthre = 1
setting strikes an optimal balance, facilitating uncertainty estimation and regularization to adaptively
correct the reward learning process. (c) The impact of the regularization weight λ. With λ = 1, we
obtain best results. This setting provides enough model capacity to accurately fit reward feedback
while preventing overfitting to inaccurate rewards. (d) The impact of the consistency weight µ0.
Considering the balance between diffusion training and uncertainty-aware reward learning, we set
µ0 = 0.1 to ensure enhanced controllability while improving generation quality.

(a)

|t1 − t2| 0 1 3 5 7 9

mIoU 45.33 46.49 46.72 45.94 45.11 44.88
FID 29.01 28.61 29.01 29.81 29.10 28.94

CLIP-score 30.92 31.26 31.01 31.06 30.93 31.09
(b)

tthre 200 300 400 500 600 700

mIoU 43.82 43.89 46.49 46.72 47.92 50.11
FID 29.70 30.34 28.61 31.04 32.98 34.21

CLIP-score 31.13 30.68 31.26 31.07 31.01 30.98

(c)

λ 0.05 0.1 1

mIoU 43.06 43.47 46.49
FID 30.15 30.60 28.61

CLIP-score 30.88 30.80 31.26
(d)

µ0 0.05 0.1 1

mIoU 42.37 46.49 49.48
FID 30.16 28.61 30.89

CLIP-score 31.02 31.26 30.84

Efficacy of Uncertainty-aware Reward Modeling. We validate the superiority of our learnable
uncertainty-aware reward method by comparing it with the vanilla reward learning. As depicted
in Fig. 4, under the identical input conditions and timesteps, although the generated images align
with the given conditions, reward learning without uncertainty produces inaccurate predictions. On
the contrary, our uncertainty-aware reward fine-tuning generates higher-quality images. Addition-
ally, the reward model can accurately extract conditions from these images. This improvement is
attributed to the reward uncertainty, which adaptively rectifies inaccurate rewards and improves the
reliability of the training process. Specifically, rewards with lower uncertainty are given higher loss
weights, enhancing the influence of precise feedback in the training process. Conversely, rewards
with higher uncertainty are assigned lower weights, leading to greater variability and ensuring the
model is not excessively influenced by potentially inaccurate feedback. Consequently, the model
becomes more robust to the diversity of the newly generated images, enhancing both controllability
and the quality of generation.

5 CONCLUSION

In this work, we focus on the challenge of ensuring both high fidelity and semantic alignment in
conditional image generation. We highlight a significant limitation in existing methods that use pre-
trained reward models for enforcing alignment. Yet these models often provide inaccurate feedback
when encountering diverse, newly generated data, which can negatively impact the training process.
To alleviate this issue, we propose an uncertainty-aware reward modeling approach, termed Ctrl-U,
which incorporates uncertainty estimation and adaptive regularization. This method assigns higher
loss weights to rewards with lower uncertainty and reduces the weights for highly uncertain rewards,
thereby enhancing the consistency and reliability of the training process. Our extensive experiments
across five benchmarks on three datasets, i.e., ADE20k, COCO-Stuff, and MultiGen-20M, validate
the effectiveness of our methodology in improving controllability and generation quality. Addition-
ally, Ctrl-U shows robust scalability, performing well across various conditional scenarios, including
segmentation masks, edges, and depth conditions. These results indicate the potential of our method
to contribute to advancements in conditional image generation.
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Figure 3: Qualitative comparisons with different conditional controls on unseen test images. We
observe that our generated image preserves condition alignment with good visual quality. Some
models do not have open-source weights for Hed or Lineart condition, and thus we skip them.
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Figure 4: Ablation study on the uncertainty-aware reward modeling. Here, we show the recovered
test image with different denoising timesteps. Since we mitigate the negative impact of noisy re-
wards, our output maintains consistent semantic conditions with fewer blurred areas.
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A APPENDIX

A.1 MORE IMPLEMENTATION DETAILS.

Dataset Details. We use the ADE20K dataset for segmentation masks, which includes 20,210
images in the training set and 2,000 images in the validation set. The dataset contains 150 types of
segmentation annotations, covering most objects found in daily life scenes. Since ADE20K (Zhou
et al., 2017; 2019) lacks text prompts, we follow ControlNet++ (Li et al., 2024b) and use MiniGPT-
4 (Zhu et al., 2023) to generate image captions by instructing: "Please briefly describe this image
in one sentence". Similarly, COCO-Stuff provides segmentation annotations, with 118,287 images
in the training set and 5,000 in the validation set. It is challenging to find datasets with accurate
annotations for Hed and LineArt edge. To tackle this issue, we adhere to the dataset construction
principles of ControlNet (Zhang et al., 2023a) and train our model using the MultiGen20M (Qin
et al., 2024) dataset, which includes annotations generated by the model. The images and their
corresponding captions are displayed in Fig. 5.

A group of cows grazing 
on a lush green hillside.

A wooden billiards table 
with a green felt surface 
and ornate wooden trim, 

surrounded by a stone wall 
with a chandelier hanging 

from it.

A yellow sports car is 
driving on a track in front 

of a large crowd of 
people watching.

A group of upright 
pianos arranged in a 

row in a room.

Figure 5: Text prompts generated by MiniGPT-4

Reward Model Details. We provide details of the models and evaluation metrics in Table 6. Consid-
ering that the Hed and Lineart edge extraction models are neural networks without non-differentiable
operations, we achieve differentiability by modifying the forward code. We have improved the
reward fine-tuning process by the proposed uncertainty-aware reward modeling, resulting in sig-
nificant enhancement in controllability and generation quality across four control conditions. Our
research will expand to encompass additional control scenarios, such as human pose and scribbles.

Table 6: Details of the reward model, evaluation model, and training loss under different conditional
controls. ControlNet* indicates that we utilize the same model for condition extraction as employed
in ControlNet (Zhang et al., 2023a).

Seg. Mask Depth Edge Hed Edge LineArt Edge
Reward Model (RM) UperNet-R50 DPT-Hybrid ControlNet* ControlNet*

RM Performance ADE20K (mIoU): 42.05 NYU (AbsRel): 8.69 - -
Evaluation Model (EM) Mask2Former DPT-Large ControlNet* ControlNet*

EM Performance ADE20K (mIoU): 56.01 NYU (AbsRel): 8.32 - -
Consistency Loss CrossEntropy Loss MSE Loss MSE Loss MSE Loss

A.2 EXPLANATION OF UNCERTAINTY VISUALIZATION

We present additional qualitative results in Fig. 6. As shown in Fig. 6b, we could observe that the
high variance usually exists in the area with incorrect reward. The proposed rectified loss assigns
different thresholds to different areas. For example, for the location with coherent rewards between
two generations, the variance regularization drives the model trust reward feedback. For the area
with ambiguous rewards, the variance regularization drives the model to neglect reward feedback.
Our uncertainty-aware framework adaptively adjusts the loss weights of different reward feedback,
facilitating more effective reward optimization.
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Figure 6: Illustration of the estimated uncertainty of inaccurate reward. (a) Detailed category illus-
tration. (b) The areas in the reward condition, where generated images align with the real condition,
but receive incorrect rewards, obtain large value of the prediction variance. Meanwhile, we could
observe that the high-variance area has considerable overlaps with the wrong segmentation feedback
from the reward model.

A.3 MORE VISUALIZATION

More visualization results across different conditional controls for our image generation on the val-
idation set are shown in Figures 7, 8, 9, 10. We observe that our uncertainty-aware framework is
capable of generating diverse images that align well with the given inputs across semantic masks,
edge, and depth conditions. Attributed to our proposed uncertainty estimation and regularization,
the adaptive rectification of inaccurate rewards enhances the diversity of the generated data and its
alignment with the given conditions.
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      Image & Condition Generated Images & Extracted Conditions

Figure 7: More visualization results of ours on unseen test images (Segmentation Mask)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

      Image & Condition Generated Images & Extracted Conditions

Figure 8: More visualization results of ours on unseen test images (Depth Map)
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      Image & Condition Generated Images & Extracted Conditions

Figure 9: More visualization results of ours on unseen test images (Hed Edge)
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      Image & Condition Generated Images & Extracted Conditions

Figure 10: More visualization results of ours on unseen test images (LineArt Edge)
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