
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FEATURE DRIVEN GRAPH COARSENING FOR SCALING
GRAPH REPRESENTATION LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Graphical modelling for structured data analysis has gained prominence across nu-
merous domains. A significant computational challenge lies in efficiently capturing
complex relationships within large-scale graph structures. Graph coarsening, which
reduces graph size by merging nodes and edges into supernodes and superedges,
enhances scalability and is crucial for graph neural networks (GNNs). However,
current methods either construct graphs from large-scale attribute data or assume
a pre-existing graph before coarsening, limiting their applicability, especially in
domains like healthcare and finance where graph structure is often unavailable. In
this paper, we present a novel framework that directly learns a coarsened graph
from attribute information, reducing computational complexity and enhancing
robustness against adversarial attacks, which commonly target vulnerabilities in
graph structures. By integrating label information, our framework also enables
semi-supervised learning, leading to improved performance on downstream tasks.
Extensive experiments show that our method outperforms state-of-the-art coarsen-
ing techniques in both accuracy and computational efficiency.

1 INTRODUCTION

Graph-based methods are powerful tools for representing relationships between entities and are
widely used across domains such as biology, finance, sociology, and engineering. In some cases,
relationships are explicit and directly observable, such as friendships in social networks [1], co-
authorships in academic publications [2], or neighbouring nodes in sensor networks [3]. However,
in many scenarios, such as gene regulation [4], stock trading behavior [4], or drug interactions [5],
relationships are latent and must be inferred. Inferring these relationships requires sophisticated
domain-specific approaches to construct high-quality graph representations tailored to specific tasks
[6; 7; 8; 9].

The increasing scale and diversity of modern datasets [10; 11; 12] pose significant challenges to
traditional graph-based methods. Chief among these is the high computational cost of existing
algorithms, which becomes prohibitive for large-scale datasets. Techniques such as graph coarsening,
condensation, and summarization have been introduced to address scalability by reducing the size
of graph structures [13; 14; 15; 16; 17; 18; 19]. However, these approaches rely on the existence
of an explicit graph structure, which is not always available. In such cases, a graph must first be
inferred from raw data, a computationally intensive process that exacerbates scalability and memory
constraints, particularly for large datasets.

To overcome the challenge of learning a graph structure prior to the coarsening process, this work
introduces a novel framework that directly learns a coarsened graph from the data itself. By eliminat-
ing the need for full graph construction, the proposed method effectively addresses key limitations of
traditional approaches, enabling more efficient handling of large-scale datasets and reducing both
computational and memory overhead.

We propose a novel optimization-based framework, Coarsened Graph Learning (CGL), which directly
learns a coarsened graph from feature data alone. CGL simultaneously resolves the challenges of
scalability and the need for an initial graph structure. While GNNs [20; 21; 22] have demonstrated
outstanding graph modeling abilities, they are vulnerable to noisy edge graphs, which can signifi-
cantly degrade their performance [23; 24]. Adversarial edges, often linking nodes with dissimilar
labels or attributes, can contaminate node neighborhoods, propagating noise and corrupting node

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

representations. This issue is particularly prevalent in real-world graphs, such as social networks,
where bots create links with regular users to spread misinformation. Considerable research has
focused on developing robust GNNs [25; 26], and our method also offers robustness by learning a
coarsened graph independently of the graph structure, making it impervious to adversarial attacks on
the structure.

The proposed CGL framework is a multi-block, non-convex optimization problem that can be
efficiently solved using the Block Successive Upper-bound Minimization (BSUM) technique, where
variables are updated iteratively while keeping others fixed. To evaluate our model, we compare the
node classification performance of CGL and its semi-supervised variant, SCGL, against state-of-the-
art methods such as GCOND [15], SCAL [16], and FGC [13] on both homophilic and heterophilic
datasets. We also assess the time required for graph learning and coarsening, comparing traditional
methods like [6] with our direct coarsened graph learning approach via CGL. Finally, we demonstrate
the robustness of CGL by highlighting its resilience to adversarial attacks on graph structure, where
traditional coarsening methods falter.

Additionally, in practical applications, data points often come with some node label information. We
integrate this label information into our objective function, significantly enhancing downstream task
performance. Extensive experiments demonstrate that incorporating label information into the CGL
objective substantially improves its overall effectiveness. The key contributions of this work are:

1. A pipeline for performing downstream tasks using GNNs by utilizing only the features.

2. A novel optimization-based framework that “learns a coarsened graph directly from fea-
tures" or raw data for scaling of GNNs.

3. A label informed “semi-supervised coarsened graph learning" framework which enhances
the downstream task performance using GNNs.

4. Through experimentation demonstrating the efficacy of proposed frameworks in terms of
node classification performance and computational efficiency.

2 BACKGROUND AND PROBLEM FORMULATION

In this section, we review the basics of graphs, learning from graph data, graph coarsening, and
propose a formulation for directly learning a coarsened graph from raw data only. We represent
graph as G(V,E,X, Y), where V is the vertex set comprising the individual nodes constituting the
graph, and E is the edge set capturing the relationships or connections between these nodes. Next,
X ∈ Rp×n is the feature matrix, where X = [x1, x2, . . . , xp]

⊤. Each xi ∈ Rn represents the feature
associated with node i. Finally, Y represents the label information available for some of the nodes
of the graph. Graphs are generally represented by the Laplacian matrix or the Adjacency matrix. A
matrix is said to be a combinatorial Laplacian matrix if it belongs to the following set [27; 28]:

SΘ =
{
Θij = Θji ≤ 0 for i ̸= j; Θii = −

∑
j ̸=i

Θij

}
. (1)

Both Θ and A represent the same graph and are linear transformations of each other Aij = −Θij

for all i ̸= j, and Aii = 0 for all i. However, the Laplacian matrix is positive semidefinite has zero
row sum and column sum. Laplacian matrix representation has been well recognized as a tool for
embedding, manifold learning, spectral sparsification, clustering and semi-supervised learning.

2.1 GRAPH LEARNING FROM DATA X

How to learn a p nodes graph with p data points X = [x1,x2, . . . ,xp]
⊤ ∈ Rp×n is well understood

[28; 29; 30; 6; 31]. The goal here is to infer the connectivity relationships between pair of datapoints
xi and xj in form of a graph matrix which is generally done by solving the following class of
optimization problem:

min
Θ∈SΘ

f(Θ) + g(X,Θ) + αh(Θ) (2)

In this context, f(Θ) is a function that ensures the connectivity of the learned graph. For example,
f(Θ) = − log det(Θ + J) has been used in [32], and f(Θ) = −1T log(A1), where A = D − Θ

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

is the adjacency matrix and D is the degree matrix, has been employed in [6]. These functions are
designed to ensure connectivity in the graph. Next, the term g(X,Θ) is a graph fitting term. One
common choice is g(X,Θ) = tr(X⊤ΘX) [33; 6; 32], known as the smoothness or Dirichlet energy
of the graph. Minimizing this term implies that the learned graph is smooth, meaning that nodes
with similar features are connected through stronger weights. Lastly, h(Θ) acts as a regularizer to
impose additional desirable properties on the graph. For instance, h(Θ) = ∥Θ∥2F is often used to
ensure sparsity in the learned graph.

2.2 GRAPH NEURAL NETWORK

Graph Neural Networks [20; 21] (GNNs) are highly effective at capturing the representations of nodes
and edges within a graph. GNNs are designed to perform various tasks e.g. node classification, graph
classification, edge prediction, etc. on graph data G(V,E,X, Y). GNNs utilize message-passing
mechanisms where each node aggregates information from its neighbors to update its representation
iteratively. One of the common architecture of GNN is graph convolution network(GCN). Let
ht
v represent the feature vector of node v at iteration t. The representation ht+1

v is computed by
aggregating the representation vectors ht

u of neighboring nodes u, resulting in a more stable and
informative representation. These enhanced representation vectors are then input into a task-specific
multi-layer perceptron (MLP) for final predictions.

ht+1
v = Aggregate({ht

v} ∪ {ht
u : u ∈ Neighbour(v)}) (3)

where ht
v is the representation vector of node v after t iterations. To perform downstream tasks using

GNNs, the Laplacian matrix, feature matrix, and some node label information are needed. For various
datasets, this information is available; however, for some datasets, the graph matrix is not available,
and can be learned the graph using graph learning techniques, see for a recent work in [34].

2.3 GRAPH DIMENSIONALITY REDUCTION

The size of the dataset is increasing day by day, leading to significant computational costs and memory
requirements to learn the graph. Graph condensation and coarsening [13; 14; 15; 16; 17; 18; 19] are
techniques to reduce graph complexity while preserving key information. In graph condensation [15],
a smaller synthetic graph Gc = (Vc, Ec,Xc,Yc) is generated to ensure that a graph neural network
(GNN) trained on Gc performs comparably to one trained on the original G, using a loss function
L(GNNθGc

(Gc), GNNθG(G)). Graph coarsening [13; 14; 19], on the other hand, maps G = (V, E)
to a coarser graph Gc = (Vc, Ec), with |Vc| < |V|, often through surjective mappings P , where
each non zero entry of mapping matrix P i.e. Pij indicates the j−th node of the original graph got
mapped to the i-th supernode of the coarsened graph. While condensation focuses on preserving GNN
performance, coarsening emphasizes maintaining structural properties. However, these techniques
assume the graph is available, which is not the case in domains like gene regulation or financial stock
analysis. In such cases, graph learning is required as a preliminary step, which is computationally
intensive for large datasets, and performing coarsening afterward further increases complexity. To
address this, we have developed a coarsened graph learning technique that directly learns a coarsened
graph from raw data, eliminating the need for separate graph learning and coarsening steps, thereby
significantly reducing computational overhead.
Goal: Given p data points X = [x1,x2, . . . ,xp]

⊤ the goal is to efficiently learn a good quality
coarsened graph Gc(Θc, Xc) with k nodes, where k ≪ p.

2.4 PROPOSED FORMULATION FOR COARSENED GRAPH LEARNING(CGL)

Consider an toy example shown in the Figure 1 for learning a coarsened graph from raw data X that
consists of 10 data points. Data points {x1, x3, x8} are mapped to x̃1; {x4, x6} are mapped to x̃4;
{x2, x9, x10} are mapped to x̃3; and {x5, x7} are mapped to x̃2. Utilizing coarsened graph features
X̃ , we learn a coarsened graph. In our framework, we simultaneously learn the coarsened graph
features X̃ and the Laplacian matrix Θc. The original graph feature matrix X is mapped to coarsened
graph feature matrix X̃ using the relation X̃ = PX , where P is the mapping matrix, for this toy
example the mapping matrix P is shown in below figure.
Next, each entry of P ∈ Rp×k

+ matrix i.e, Pij indicate that the j-th original data point is mapped
to i-th supernode of coarsened graph. Where p is the number of original data points and k is the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: Given the data X , we aim to learn a coarsened graph Gc(ΘC , X̃). Each non-zero entry of
mapping matrix P ∈ Rk×p

+ i.e. Pij signifies that jth data point get mapped to ith supernode of the
coarsened graph.

number of nodes or supernodes of the coarsened graph. For a balanced mapping the mapping matrix
P should belong to the following set:

P =
{
P ≥ 0| ⟨[P⊤]i, [P

⊤]j⟩ = 0 ∀ i ̸= j, ⟨Pi, Pi⟩ = I, ∥[P⊤]i∥0 ≥ 1 and ∥Pi∥0 = 1
}

(4)

Given the data X ∈ Rp×n, the proposed formulation for learning a coarsened graph Gc(Θc ∈
Rk×k, X̃ ∈ Rk×n) where k << p is:

minimize
Θc,X̃,P

−γlog det(Θc + J) + tr(X̃TΘcX̃) + h(Θc)

subject to X̃ = PX, P ∈ Sp, PPT = I
(5)

where Sp =
{
P ≥ 0| ∥[PT]i∥22 ≤ 1 ∀ i = 1, .., k

}
. where P denotes the mapping matrix. The

term −γ log det(Θc + J) ensures that the learned coarsened graph is connected. By minimizing
tr(X̃TΘcX̃), we ensure that the coarsened graph is smooth. Here, X̃ = PX transforms the original
data X into the feature matrix X̃ of the coarsened graph. The function h(Θc) acts as a regularizer
to impose a specific structure on the coarsened graph; for example, h(Θc) = ∥Θc∥2F encourages
sparsity within the learned coarsened graph.

3 CGL ALGORITHM DEVELOPMENT

Before moving towards the algorithm development, we will discuss a linear and adjoint operator L
and L∗.

Definition 1 The linear operator L : Rp(p−1)/2 → Rp×p, w 7→ Lw, is defined as [28]

[Lw]ij =
{
−wi+dj

for i > j; [Lw]ji for i < j; −
∑

i̸=j [Lw]ij for i = j, (6)

where dj = −j+ j−1
2 (2p− j). The adjoint operator L∗ : Rp×p → Rp(p−1)/2, Y 7→ L∗Y , is defined

by [28]:

[L∗Y]k = Yi,i − Yi,j − Yj,i + Yj,j , k = i− j +
j − 1

2
(2p− j), (7)

where i, j ∈ Z+ satisfy k = i− j + j−1
2 (2p− j) and i > j.

3.1 COARSENED GRAPH LEARNING(CGL)

Utilizing the Laplacian operator defined in 6, given the data X ∈ Rp×n the proposed formulation
equation 5, can be reformulated as:

minimize
w,X̃,P

− γ log det(Lw + J) + tr(X̃TLwX̃) +
β

2
∥Lw∥2F

subject to P ∈ Sp, PPT = I, X̃ = PX, w ≥ 0

(8)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where Sp =
{
P ≥ 0| ∥[P⊤]i∥22 ≤ 1 ∀ i = 1, .., k

}
is a closed convex set. We further relax the

problem 8 by incorporating the term δ
4∥PPT−I∥2F and α

2 ∥X̃−PX∥2F with δ > 0 and α > 0 instead
of addressing the constraints PPT = I and X̃ = PX . Now the problem 8 can be reformulated as:

minimize
w≥0,X̃,P∈Sp

fCGL = −γ log det(Lw + J) + tr(X̃TLwX̃) +
δ

4
∥PPT − I∥2F

+
α

2
∥X̃ − PX∥2F +

β

2
∥Lw∥2F

(9)

The problem 9 is a multi block non convex optimization problem. We solved this problem using the
BSUM framework [35], which involves updating one variable at a time while keeping the others
fixed. Collecting the variables as w ∈ Rp

+, X̃ ∈ Rk×n, P ∈ Rk×p
+ , we create a block MM-based

algorithm that updates one variable at a time while keeping the others constant.

Update of w: Treating P and X̃ fixed, with w considered as the variable, the corresponding
subproblem for optimizing w can be expressed as follows:

minimize
w≥0

f(w) = −γlog det(Lw + J) + tr(X̃TLwX̃) +
β

2
∥Lw∥2F (10)

The function f(w) is a strictly convex function in w [28]. To get the closed form solution of problem
equation 10, using first order taylor series expansion, we majorized f(w) at wt by the function
[36; 37; 35]:

g
(

w|w(t)
)
= f

(
w(t)

)
+

(
w− w(t)

)⊤
∇f

(
w(t)

)
+

L

2
∥w− w(t)∥2, (11)

where f(w) is L−Lipschitz continuous gradient function having L = max(L1, L2, L3) with
L1, L2, L3 the Lipschitz constants of −γlog det(Lw + J), tr(X̃TLwX̃), and β

2 |Lw|2F respectively.
After ignoring the constant term, the majorised problem of equation 10 is

minimize
w≥0

1
2w⊤w− wT a (12)

where, a = wt− 1
L∇f(w

t) and,∇f(wt) = − γ
βL

∗(Lwt + J)−1 +L∗(Lwt) +L∗(1β X̃X̃T). Using
KKT optimality condition, the solution of problem equation 12 is

w(t+1) =

(
w(t) − 1

L1
∇f

(
w(t)

))+

, (13)

where x+ = max(x, 0)

Update of PPP : While updating P , treating w and X̃ as fixed and P as variable, the subproblem for P
is:

minimize
P≥0

α
2 ∥X̃ − PX∥2F + δ

4

∥∥PPT − I
∥∥2
F (14)

The Lagrangian function of equation 14 by introducing the lagrangian multiplier ϕ is:

L(P,ϕ) =
α

2

∥∥∥X̃ − PX
∥∥∥2
F
+

δ

4

∥∥PPT − I
∥∥2
F
− tr(ϕTP) (15)

The derivative Lagrangian function w.r.t. P and equate it to zero, we get:
∂L(P, ϕ)

∂P
= −α(X̃ − PX)XT + δ(PPT − I)P − ϕ = 0 (16)

To get the update rule of P matrix, the karush-kuhn-Tucker(KKT) condition ϕijPij = 0 is applied.
We get:

Pij ← Pij
(αPXXT + δPPTP)ij

(αX̃XT + δP)ij
(17)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1: CGL Algorithm

Input: X,α, β, γ, δ, P 0,w0, X̃0 = P 0X
t← 0;
while stopping criteria not met do

Update wt+1, P t+1 and X̃t+1 as in
equation 13, equation 17 and equation 19
respectively.

t← t+ 1;
end
Output: P , w, and X̃

Update of X̃̃X̃X: Treating w and P fixed and X̃ as
variable. The subproblem for updating X̃ is

minimize
X̃

tr(X̃TLwX̃) + α
2

∥∥∥X̃ − PX
∥∥∥2
F

(18)

The closed form solution of problem equation 18
can be obtained by putting the gradient of f(X̃)
to zero.

X̃ = α(2Lw + αI)−1PX (19)

The worst-case computational complexity of CGL alorithm per iteration is O(kpn+ k2p).

Theorem 1 The sequence {w(t), P (t), X̃(t)} generated by Algorithm 1 converges to the set of
Karush–Kuhn–Tucker (KKT) points of Problem equation 9.

Proof: The proof is deferred to the Appendix A.1.

4 SEMI-SUPERVISED COARSENED GRAPH LEARNING (SCGL)

In general, datasets consist of features X and label information Y , where Y ∈ {0, 1}n×l. If node vi

is labeled, yi represents the corresponding one-hot indicator vector; otherwise, yi = 0 for unlabeled
data. Incorporating this label information while learning a coarsened graph may lead to improve
performance in downstream tasks. Consider a toy example with 10 data points and 3 labels: {red,
blue, green}. We aim to learn a coarsened graph with 4 nodes. Various structures for the coarsened
graph are possible. Here, we illustrate two possible coarsened graphs, Gc1 and Gc2. Training a GNN
on Gc2 results in a better-trained model compared to Gc1. This is because, in Gc2, data points with
similar labels are grouped into the same supernode, leading to a sparser [PY] matrix, which enhances
the training efficiency and effectiveness of the GNN.

Figure 2: This illustration demonstrates that, for a given original graph G, consider two coarsened
graphs, Gc1 and Gc2. In Gc2, data points with similar labels are mapped to the same supernode,
resulting in a sparse PY matrix. This sparsity leads to more effective training of the GNN compared
to Gc1.
Considering the function G(P, Y) that integrates the label Y in the optimization framework for
learning a coarsened graph, which introduces sparsity in the [PY] matrix and ensures that nodes
with similar labels are grouped into the same supernode, the proposed formulation for learning a
coarsened graph given (X,Y) is as follows:

minimize
w≥0,X̃,P

fCGL + ηg(P, Y)

subject to P ∈ Sp
(20)

There are various possibilites of g(P, Y) that introduces sparsity in the [PY] matrix, here we consider
∥PY ∥2F . Each entry of the matrix [PY] ∈ Rk×l

+ , denoted as [PY]ij quantifies the number of data
points with the j-th label is mapped to the i-th supernode of the coarsened graph. For an optimal
coarsened graph, each row i of this matrix should contain exactly one non-zero entry, which should
be 1. This indicates that all data points mapped to the i-th supernode have only the j-th label. The
algorithm development of SCGL follows that of the CGL algorithm. The key difference is that in the
update rule for P , η

2PY Y ⊤ is added to the numerator.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5 EXPERIMENTS

In this section, we conduct an empirical evaluation to assess the effectiveness of our proposed algo-
rithms. We validate the CGL and SCGL algorithms through a comprehensive set of experiments on
real datasets both homophilic and heterophilic graphs, comparing them to state-of-the-art approaches
such as FGC [14], GCOND [15], and SCAL [16].

5.1 EXPERIMENTAL SETUP

Dataset:We run experiments on ten real world datasets including homophilic and heterophilic datasets.
More details about the dataset are in the Appendix A.2.

Experimental Settings: Given a graph G(Θ, X, Y), we performed node classification task
experiments in three settings:
Set1: Use X ∈ Rp×k Learn−−−−→

via 2
G(Θl)

Train GNNs−−−−−−−−−→
on G(Θl,X,Y)

⇒ Testing on G(Θ, X, Y).

Set2: Using X or (X,Y)
Learn via−−−−−−−−−−−→

proposed methods
Gc(Θc, X̃, Ỹ)

Train GNNs−−−−−−−−−−→
on Gc(Θc,X̃,Ỹ)

Testing on G(Θ, X, Y).

Set3: For the existing baseline methods, we performed the node classification task in two ways:
(a): Given G(Θ, X, Y)

Learn−−−−−−−−→
via baselines

Gc(Θc, X̃, Ỹ)
Train GNNs−−−−−−−−−−→
on Gc(Θc,X̃,Ỹ)

Testing on G(Θ, X, Y)

(b): Using X
Learn−−−−→
via 2

G(Θl)
Learn−−−−−−−−→

via baselines
Gc(Θc, X̃, Ỹ)

Train GNNs−−−−−−−−−→
on G(Θc,X̃,Ỹ)

Testing on Gc(Θ, X, Y)

However, note that our proposed algorithms, CGL and SCGL, do not utilize the given adjacency
matrix Θ of the original graph. We have only used the feature matrix X or (X,Y) to learn the
coarsened graph. The adjacency matrix Θ is utilized only during testing on the original graph.

Baseline Proposed

Dataset r GCOND SCAL FGC CGL SCGL Whole
Dataset

Cora
0.3 81.56±0.6 79.42±1.71 85.79±0.24 87.77±0.92 89.29±0.68
0.1 81.37±0.40 71.38±3.62 81.46±0.79 82.60±0.15 88.66±1.14 89.5 ±1.23
0.05 79.93±0.44 55.32±7.03 80.01±0.51 79.02±0.06 88.07±0.59

Citeseer
0.3 72.43±0.94 68.87±1.37 74.64±1.37 77.15±0.09 79.59±0.44
0.1 70.46±0.47 71.38±3.62 73.36±0.53 74.03±0.24 79.17±0.54 78.09±1.96
0.05 64.03±2.4 55.32±7.03 71.02±0.96 70.60±0.23 79.68±0.50

Pubmed
0.05 78.16±0.30 72.82±2.62 80.73±0.44 84.73±0.21 86.43±0.09
0.03 78.04±0.47 70.24±2.63 79.91±0.30 81.40±0.66 85.70±0.11 88.89±0.59
0.01 77.2±0.20 54.49±10.4 78.42±0.43 80.77±0.02 84.73±0.41

Co-phy
0.05 93.05±0.26 73.09±7.41 94.27±0.25 94.76±0.05 95.32±0.21
0.03 92.81±0.31 63.65±9.65 94.02±0.20 91.66±0.48 94.61±0.12 96.22±0.72
0.01 92.79±0.4 31.08±2.65 93.08±0.22 90.65±0.04 94.48±0.10

Co-cs
0.05 86.29±0.63 34.45±10.1 88.06±0.78 88.69±0.16 91.47±0.13
0.03 86.32±0.45 26.06±9.29 87.23±0.70 88.32±4.38 90.61±0.29 93.32±0.60
0.01 84.01±0.02 14.42±8.5 84.71±2.12 86.60±0.32 87.30±0.76

Flickr
0.005 47.14±0.32 OOM 45.32±0.49 55.87±0.23 57.23±0.17
0.003 46.81±0.54 OOM 46.23±0.33 49.34±0.68 50.40±0.64 61.26±0.30
0.001 46.54±0.72 OOM 42.55±1.57 47.32±0.19 49.56±0.44

Table 1: This table shows the node classification performance of the proposed algorithms CGL and
SCGL compared to state-of-the-art methods GCOND [15], SCAL [16], and FGC [13] on homophilic
datasets. It is evident that for coarsening, we have utilized only the feature matrix X and (X,Y) for
CGL and SCGL respectively, and yet our framework outperforms the existing state-of-the-art graph
coarsening methods, which consider both the Laplacian and the feature matrix for coarsening. It
is important to note that for SCGL, we have only considered labels that existing graph coarsening
techniques utilized during the training of GNNs.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Baseline Proposed

Dataset r FGC CGL SCGL Whole
Dataset

Genius 0.001 74.21±2.35 78.30±0.67 80.01±0.78 87.42±0.53
Arxiv-
year 0.001 27.2±0.54 27.42±0.88 31.86±0.38 46.02±0.33

OGBN-
Proteins 0.001 65.2±0.74 66.93±0.70 70.40±0.82 72.51±0.12

OGBN-
Products 0.001 62.4±0.43 67.52±0.12 70.12±0.23 82.33±0.22

Table 2: Performance evaluation of the proposed framework on large-scale datasets with a coarsening
ratio of 0.001. Comparisons were made against FGC, as other baselines ran out of memory during
evaluation. The results demonstrate that the proposed framework significantly enhances the down-
stream GCN performance compared to the state of the art techniques.

Baseline Proposed

Dataset r FGC SCGL Whole
Dataset

Xin
0.5 90.34±0.32 93.92±0.67
0.3 90.12±0.84 92.89±1.12 95.58 ±0.23
0.1 90.01±0.44 90.68±0.13

Table 3: Node classification accuracy on genome sequence data where graph structure matrix is not
explicitly given.

Dataset r GCOND (τ) FGC (τ) SCGL (τ) Wh. Data
Cora 0.05 329.86 4.84 0.41 2.86
Citeseer 0.05 333.46 7.07 0.64 5.24
Pubmed 0.01 1934.56 34.48 1.58 58.85
Genius 0.001 OOM 2452 20.21 892
Arxiv-year 0.001 OOM 1765 27.16 635
OGBN-Proteins 0.001 OOM 10367 36.39 9654

Table 4: This table shows time(τ) in seconds to perform coarsening and classification and shows
that the proposed SCGL technique is significantly faster than existing graph coarsening techniques.
Methods like FGC [13] and GCOND [15], which consider the adjacency matrix during coarsening,
require substantial time, defeating the purpose of coarsening. In contrast, focusing solely on features
to learn a coarsened graph significantly reduces the time required. For the OGBN-protein dataset, it
is almost 30 times faster, and for the Genius dataset, it is almost 40 times faster than the existing
state-of-the-art method.

5.2 NODE CLASSIFICATION

To validate the efficacy of our proposed algorithm, we performed node classification tasks on both
homophilic and heterophilic datasets. As this is the first study to learn a coarsened graph directly from
the raw dataset X , there are no existing benchmark datasets. We used the graph dataset G(X,Θ, Y)

for this purpose. To derive the coarsened graph Gc(Θc, X̃), we utilized the feature matrix X and
(X,Y) through the CGL and SCGL algorithms, respectively, where Y is the label information for
some of the data points. After obtaining the coarsened graph, we determined the labels of the
coarsened graph using the relation Ỹ = arg max(PY). We then trained a graph neural network using
the coarsened graph Gc(Θc, X̃, Ỹ) and tested it on the original graph. It is important to note that
the original graph Laplacian matrix was used only during testing. The coarsened graph was learned
solely from the feature matrix X . Also. we have taken standard split ratio of (80%, 10%, 10%) where
80% for training, 10% for validation, and 10% for testing. We begin by evaluating our coarsening
framework on traditional small- and medium-scale graph datasets, with results presented in Table 1,
where all baseline methods are included for comparison. To further assess scalability, we conduct

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

evaluations on very large-scale datasets. In this setting, all baseline coarsening methods, except
FGC, encountered memory limitations, and the results are reported in Table 2. To demonstrate the
real-world applicability of our framework, which directly learns a coarsened graph from the feature
matrix, we utilize the Xin dataset. This dataset comprises transcriptomes from single-cell RNA
sequencing (scRNA-seq) of pancreatic cells, covering 1,449 cells and the expression profiles of
33,889 genes across four primary pancreatic cell types: alpha, beta, delta, and gamma. The evaluation
results are detailed in Table 3. Additional results on heterophily datasets is provided in Appendix A.3.

Dataset r FGC FGCL CGL SCGL Wh.Data L.Data

Cora
0.3 85.79±0.24 74.56±0.32 87.77±0.92 89.29±0.68
0.1 81.46±0.79 68.68±0.58 82.60±0.15 88.66±1.14 89.5±1.23 92.54
0.05 80.01±0.51 62.85±0.44 79.02±0.06 88.07±0.59

Citeseer
0.3 74.64±1.37 75.47±0.85 77.15±0.09 79.59±0.44
0.1 73.36±0.53 69.88±0.09 74.03±0.24 79.17±0.54 78.09±1.96 84.58
0.05 71.02±0.96 67.26±0.52 70.60±0.23 79.68±0.50

Pubmed
0.05 80.73±0.44 79.00±0.68 84.73±0.21 86.43±0.09
0.03 79.91±0.30 78.92±0.78 81.40±0.66 85.70±0.11 88.89±0.59 88.81
0.01 78.42±0.43 77.23±0.52 80.77±0.02 84.73±0.41

Co-phy
0.05 94.27±0.25 94.76±0.05 95.32±0.21
0.03 94.02±0.20 OOM 91.66±0.48 94.61±0.12 96.22±0.72 OOM
0.01 93.08±0.22 90.65±0.04 94.48±0.10

Co-cs
0.05 88.06±0.78 88.69±0.16 91.47±0.13
0.03 87.23±0.70 OOM 88.32±4.38 90.61±0.29 93.32±0.60 OOM
0.01 84.71±2.12 86.60±0.32 87.30±0.76

Table 5: This table presents node classification accuracy across three different settings as discussed in
subsection 5.1. FGC, FGCL, and L.Data utilize the experimental settings discussed in subsection 5.1
of the experimental setup, specifically Set3(a), Set3(b), and Set1, respectively. The results clearly
demonstrate that training on a learned graph significantly increases testing accuracy. However, it
is also evident that learning a graph for the Coauthor Physics and Coauthor CS datasets requires
substantial memory, resulting in out-of-memory(OOM) errors on x86-64 processor having 48CPU
and 96GB RAM. Additionally, learning a coarsened graph using proposed SCGL and training the
GNN with this coarsened graph substantially improves testing accuracy compared to existing state-
of-the-art methods.

5.3 TIME COMPLEXITY

The per-iteration time complexity of the proposed CGL and SCGL algorithms is O(kpn + k2p),
where p represents the number of original data points, k is the number of nodes in the coarsened
graph, and n is the dimension of each data point xi. In comparison, the time complexity of existing
state-of-the-art graph coarsening techniques varies significantly. The GCOND algorithm, for instance,
has a time complexity of O(k2d2 + rLpd2 + Lk2d + Lkd), where r is the number of sampled
neighbors per node, L is the number of MLP layers, and d is the number of hidden units for all layers.
On the other hand, the FGC algorithm has a time complexity of O(7p2k + 5k2p+ 5kpn+ k3), with
p representing the number of features, k the number of clusters, and n the number of nodes. It is
evident from Table 6 that proposed CGL algorithm is much faster than existing state of the art graph
coarsening techniques.

5.4 COARSENING UNDER ADVERSARIAL CONDITIONS

Graph Neural Networks (GNNs) are known to exhibit instability under perturbations in input data,
with their performance heavily reliant on the training graph. This sensitivity makes them particularly
vulnerable to structural changes and minor perturbations [38; 39; 40]. Adversarial attacks, which
involve malicious modifications to the graph structure or features, can significantly degrade the
performance of GNNs by causing incorrect predictions [24; 41; 42; 43].

Coarsening on a poisoned dataset further exacerbates this instability, making it challenging to
maintain robust performance. Our proposed framework mitigates the impact of adversarial attacks
while simultaneously learning coarsened structure and feature matrices. Notably, since our framework

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Dataset/τ (sec.) τl r τFGC τTotal τCGL

Cora 114.23
0.3 12.95 127.18 5.43
0.1 5.86 120.09 1.19
0.05 4.84 119.07 0.41

Citeseer 170.55
0.3 17.67 188.22 6.82
0.1 9.70 180.25 2.14
0.05 7.07 177.62 0.64

Pubmed 10162.18
0.05 73.42 10235.60 8.69
0.03 46.66 10208.24 5.55
0.01 26.12 10188.3 1.58

Co-phy OOM
0.05 2950.25 36.10
0.03 1640.79 OOM 15.16
0.01 338.90 5.63

Co-cs OOM
0.05 1177.32 10.44
0.03 622.61 OOM 6.30
0.01 66.92 1.63

Table 6: This table compares the time required for graph learning and coarsening processes. Specifi-
cally, τl represents the time to learn the graph from data X [6], τFGC is the time to learn a coarsened
graph using the FGC method [13], and τTotal is the total time required to learn and coarsen the graph
using FGC. Additionally, τCGL denotes the time required to learn the coarsened graph directly from
raw data X using our proposed CGL method. Note that for the Coauthor Physics and Coauthor CS
datasets, a out of memory error(OOM) occurred on a x86-64 processor having 48CPU and 96GB
RAM. For these datasets, we reported τFGC considering the original graph Laplacian matrix. It
is evident that the proposed CGL algorithm is significantly faster than the existing state-of-the-art
methods.

pr (%) Cora Citeseer Co-phy Co-cs Pubmed
15 76.77 70.39 94.93 90.09 84.00
10 80.76 70.63 95.01 90.53 84.59
5 78.43 70.99 94.94 89.82 85.34
0 79.02 70.60 94.76 88.69 84.73

Table 7: Node classification performance under an adversarial attack on the graph’s feature matrix.
The table demonstrates that increasing the perturbation rate minimally impacts performance.

is designed without direct reliance on structure information, it remains robust to perturbations in
the structure matrix. Thus, structural perturbations introduced during coarsening do not degrade its
performance. For evaluation, we focus on feature attacks, where a random subset of elements in
the feature matrix X is perturbed by setting them to zero. We define the perturbation rate (pr) as
the percentage of perturbed elements relative to the total number of elements. Table 7 presents the
performance of CGL algorithms on node classification tasks under various perturbation rates. The
results demonstrate the resilience of our approach to feature perturbations and its effectiveness in
maintaining stable performance across adversarially attacked graphs.

6 CONCLUSION

This paper introduces a novel Coarsened Graph Learning (CGL) framework that directly learns a
coarsened graph from raw data or features, eliminating the need for a graph structure. The framework
also includes a pipeline for GNNs that utilizes only feature data. By incorporating label information,
CGL enhances performance in node classification tasks. Extensive experiments show that CGL
outperforms existing state-of-the-art methods in terms of accuracy and efficiency. Additionally,
CGL demonstrates robustness against adversarial attacks and generalizability across various GNN
architectures, maintaining high node classification performance.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

[1] S. Wasserman and K. Faust, “Social network analysis: Methods and applications,” 1994.

[2] C. D. McLaren and M. W. Bruner, “Citation network analysis,” International Review of Sport
and Exercise Psychology, vol. 15, no. 1, pp. 179–198, 2022.

[3] G. Dong, M. Tang, Z. Wang, J. Gao, S. Guo, L. Cai, R. Gutierrez, B. Campbel, L. E. Barnes,
and M. Boukhechba, “Graph neural networks in iot: A survey,” ACM Transactions on Sensor
Networks, vol. 19, no. 2, pp. 1–50, 2023.

[4] S. Saha, J. Gao, and R. Gerlach, “A survey of the application of graph-based approaches in
stock market analysis and prediction,” International Journal of Data Science and Analytics,
vol. 14, no. 1, pp. 1–15, 2022.

[5] X. Lin, Z. Quan, Z.-J. Wang, T. Ma, and X. Zeng, “Kgnn: Knowledge graph neural network for
drug-drug interaction prediction.” in IJCAI, vol. 380, 2020, pp. 2739–2745.

[6] V. Kalofolias, “How to learn a graph from smooth signals,” in Artificial intelligence and statistics.
PMLR, 2016, pp. 920–929.

[7] F. Wang and C. Zhang, “Label propagation through linear neighborhoods,” in Proceedings of
the 23rd international conference on Machine learning, 2006, pp. 985–992.

[8] S. I. Daitch, J. A. Kelner, and D. A. Spielman, “Fitting a graph to vector data,” in Proceedings
of the 26th annual international conference on machine learning, 2009, pp. 201–208.

[9] T. Jebara, J. Wang, and S.-F. Chang, “Graph construction and b-matching for semi-supervised
learning,” in Proceedings of the 26th annual international conference on machine learning,
2009, pp. 441–448.

[10] L. Luo, Y.-F. Li, G. Haffari, and S. Pan, “Normalizing flow-based neural process for few-shot
knowledge graph completion,” in Proceedings of the 46th International ACM SIGIR Conference
on Research and Development in Information Retrieval, 2023, pp. 900–910.

[11] ——, “Reasoning on graphs: Faithful and interpretable large language model reasoning,” arXiv
preprint arXiv:2310.01061, 2023.

[12] S. Pan, L. Luo, Y. Wang, C. Chen, J. Wang, and X. Wu, “Unifying large language models
and knowledge graphs: A roadmap,” IEEE Transactions on Knowledge and Data Engineering,
2024.

[13] M. Kumar, A. Sharma, S. Saxena, and S. Kumar, “Featured graph coarsening with similarity
guarantees,” in International Conference on Machine Learning. PMLR, 2023, pp. 17 953–
17 975.

[14] M. Kumar, A. Sharma, and S. Kumar, “A unified framework for optimization-based graph
coarsening,” Journal of Machine Learning Research, vol. 24, no. 118, pp. 1–50, 2023.

[15] W. Jin, L. Zhao, S. Zhang, Y. Liu, J. Tang, and N. Shah, “Graph condensation for graph neural
networks,” arXiv preprint arXiv:2110.07580, 2021.

[16] Z. Huang, S. Zhang, C. Xi, T. Liu, and M. Zhou, “Scaling up graph neural networks via graph
coarsening,” in Proceedings of the 27th ACM SIGKDD conference on knowledge discovery &
data mining, 2021, pp. 675–684.

[17] T. Ma and J. Chen, “Unsupervised learning of graph hierarchical abstractions with differen-
tiable coarsening and optimal transport,” in Proceedings of the AAAI conference on artificial
intelligence, vol. 35, no. 10, 2021, pp. 8856–8864.

[18] X. Zheng, M. Zhang, C. Chen, Q. V. H. Nguyen, X. Zhu, and S. Pan, “Structure-free graph
condensation: From large-scale graphs to condensed graph-free data,” Advances in Neural
Information Processing Systems, vol. 36, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

[19] M. Hashemi, S. Gong, J. Ni, W. Fan, B. A. Prakash, and W. Jin, “A comprehensive
survey on graph reduction: Sparsification, coarsening, and condensation,” arXiv preprint
arXiv:2402.03358, 2024.

[20] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun, “Graph neural
networks: A review of methods and applications,” AI open, vol. 1, pp. 57–81, 2020.

[21] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A comprehensive survey on graph
neural networks,” IEEE transactions on neural networks and learning systems, vol. 32, no. 1,
pp. 4–24, 2020.

[22] H. Zhang, B. Wu, X. Yuan, S. Pan, H. Tong, and J. Pei, “Trustworthy graph neural networks:
Aspects, methods, and trends,” Proceedings of the IEEE, 2024.

[23] H. Wu, C. Wang, Y. Tyshetskiy, A. Docherty, K. Lu, and L. Zhu, “Adversarial examples on
graph data: Deep insights into attack and defense,” arXiv preprint arXiv:1903.01610, 2019.

[24] H. Dai, H. Li, T. Tian, X. Huang, L. Wang, J. Zhu, and L. Song, “Adversarial attack on
graph structured data,” in International conference on machine learning. PMLR, 2018, pp.
1115–1124.

[25] W. Jin, Y. Ma, X. Liu, X. Tang, S. Wang, and J. Tang, “Graph structure learning for robust
graph neural networks,” in Proceedings of the 26th ACM SIGKDD international conference on
knowledge discovery & data mining, 2020, pp. 66–74.

[26] X. Tang, Y. Li, Y. Sun, H. Yao, P. Mitra, and S. Wang, “Robust graph neural network against
poisoning a acks via transfer learning,” 2016.

[27] R. Merris, “Laplacian matrices of graphs: a survey,” Linear algebra and its applications, vol.
197, pp. 143–176, 1994.

[28] S. Kumar, J. Ying, J. V. d. M. Cardoso, and D. P. Palomar, “A unified framework for structured
graph learning via spectral constraints,” Journal of Machine Learning Research, vol. 21, no. 22,
pp. 1–60, 2020.

[29] O. Banerjee, L. El Ghaoui, and A. d’Aspremont, “Model selection through sparse maximum
likelihood estimation for multivariate gaussian or binary data,” The Journal of Machine Learning
Research, vol. 9, pp. 485–516, 2008.

[30] Y. Park, D. Hallac, S. Boyd, and J. Leskovec, “Learning the network structure of heterogeneous
data via pairwise exponential markov random fields,” in Artificial Intelligence and Statistics.
PMLR, 2017, pp. 1302–1310.

[31] H. E. Egilmez, E. Pavez, and A. Ortega, “Graph learning from data under laplacian and structural
constraints,” IEEE Journal of Selected Topics in Signal Processing, vol. 11, no. 6, pp. 825–841,
2017.

[32] J. Ying, J. V. de Miranda Cardoso, and D. Palomar, “Nonconvex sparse graph learning under
laplacian constrained graphical model,” Advances in Neural Information Processing Systems,
vol. 33, pp. 7101–7113, 2020.

[33] S. P. Chepuri, S. Liu, G. Leus, and A. O. Hero, “Learning sparse graphs under smoothness prior,”
in 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2017, pp. 6508–6512.

[34] A. Shahane, S. Swapna Manjiri, A. Jain, and S. Kumar, “Graph of circuits with gnn for exploring
the optimal design space,” Advances in Neural Information Processing Systems, vol. 36, 2024.

[35] Y. Sun, P. Babu, and D. P. Palomar, “Majorization-minimization algorithms in signal processing,
communications, and machine learning,” IEEE Transactions on Signal Processing, vol. 65,
no. 3, pp. 794–816, 2016.

[36] A. Beck and D. Pan, Convergence of an Inexact Majorization-Minimization Method for Solving
a Class of Composite Optimization Problems, 01 2018, pp. 375–410.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

[37] M. Razaviyayn, M. Hong, and Z.-Q. Luo, “A unified convergence analysis of block successive
minimization methods for nonsmooth optimization,” SIAM Journal on Optimization, vol. 23, 09
2012.

[38] F. Zhou, C. Cao, K. Zhang, G. Trajcevski, T. Zhong, and J. Geng, “Meta-gnn: On few-shot node
classification in graph meta-learning,” in Proceedings of the 28th ACM International Conference
on Information and Knowledge Management, 2019, pp. 2357–2360.

[39] Y. Xie, Y. Liang, M. Gong, A. Qin, Y.-S. Ong, and T. He, “Semisupervised graph neural
networks for graph classification,” IEEE Transactions on Cybernetics, 2022.

[40] M. Li, A. Micheli, Y. G. Wang, S. Pan, P. Lió, G. S. Gnecco, and M. Sanguineti, “Guest
editorial: deep neural networks for graphs: theory, models, algorithms, and applications,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 35, no. 4, pp. 4367–4372, 2024.

[41] W. Jin, Y. Li, H. Xu, Y. Wang, S. Ji, C. Aggarwal, and J. Tang, “Adversarial attacks and defenses
on graphs,” ACM SIGKDD Explorations Newsletter, vol. 22, no. 2, pp. 19–34, 2021.

[42] S. Geisler, T. Schmidt, H. Şirin, D. Zügner, A. Bojchevski, and S. Günnemann, “Robustness of
graph neural networks at scale,” Advances in Neural Information Processing Systems, vol. 34,
pp. 7637–7649, 2021.

[43] Y. Scholten, J. Schuchardt, S. Geisler, A. Bojchevski, and S. Günnemann, “Randomized
message-interception smoothing: Gray-box certificates for graph neural networks,” Advances in
Neural Information Processing Systems, vol. 35, pp. 33 146–33 158, 2022.

[44] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,”
arXiv preprint arXiv:1609.02907, 2016.

[45] J. Gasteiger, A. Bojchevski, and S. Günnemann, “Predict then propagate: Graph neural networks
meet personalized pagerank,” arXiv preprint arXiv:1810.05997, 2018.

[46] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph attention
networks,” arXiv preprint arXiv:1710.10903, 2017.

A APPENDIX

A.1 PROOF OF THEOREM 1

We show that each limit point (wt, P t, X̃t) satisfies KKT condition for equation 9. Let
(w∞, P∞, X̃∞) be a limit point of the generated sequence. Next, the Lagrangian function of
equation 9 is:

L(w, P, X̃,µ1,µ2) = −γ log det(Lw + J) + tr(X̃TLwX̃) +
δ

4
∥PPT − I∥2F − µ⊤

1 w

+
α

2
∥X̃ − PX∥2F +

β

2
∥Lw∥2F − µ⊤

2 P + µT
3

[
∥PT

1 ∥22 − 1 ∥PT
2 ∥22 − 1 . . . ∥PT

k ∥22 − 1
]T

(21)

where µ1, µ2 and µ3 are the dual variables.
(1) The KKT condition with respect to w is:

−γL∗(Lwt + J)−1 + βL∗(Lwt) + L∗(X̃X̃T)− µ1 = 0 (22)

µ⊤
1 w = 0, (23)
µ1 ≥ 0, (24)
w ≥ 0, (25)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

w is derived by using KKT condition from equation 13:

w∞ −w∞ +
1

L

(
− γ

β
L∗(Lw∞ + J)−1 + L∗(Lw∞) + L∗(

1

β
X̃X̃T)

)
= 0 (26)

For µ1 = 0, we observe that w∞ satisfies the KKT condition.
(2) The KKT condition with respect to P is

−α(X̃ − PX)XT + δ(PPT − I)P − µ2 + 2
[
µ31P

T
1 , . . . µ3kP

T
k]T = 0 (27)

µT
3

[
∥PT

1 ∥22 − 1 ∥PT
2 ∥22 − 1 . . . ∥PT

k ∥22 − 1
]T

= 0, (28)

µ⊤
2 P = 0, (29)
µ2 ≥ 0, (30)
P ≥ 0, (31)
µ3 ≥ 0, (32)

∥[PT]i∥22 ≤ 1 (33)

For µ2 = ϕ and µ2i[P
T]∞i = 0 ∀ i = 1, 2, . . . k, we observe that P∞ satisfies the KKT condition

from 17.
(3) The KKT condition with respect to X̃ is

2LwX̃ + α(X̃ − PX) = 0

This concludes the proof.

A.2 DATASETS

Dataset Nodes (p) Edges (e) Features (n) Classes (c)
Cora 2708 5429 1433 7
Citeseer 3327 9104 3703 6
Pubmed 19717 44338 500 3
Coauthor CS 18333 163788 6805 15
Coauthor Physics 34493 247962 8415 5
Cornell 183 295 1703 5
Texas 183 309 1703 5
Wisconsin 251 499 1703 5
Chameleon 2277 31421 2325 5
Squirrel 5201 198493 2089 5
Flickr 89250 899756 500 7
Genius 421961 922868 12 2
Arxiv-year 169343 1166243 128 5
OGBN-Proteins 132534 39561252 8 112
OGBN-Product 2449029 61859140 100 47

Table 8: Node Classification Datasets

The hyperparameters for graph coarsening and GNN model are tuned using grid search. The learning
rate and decay rate used in the node classification experiments are 0.01 and 0.0001 respectively.

A.3 COARSENING OF HETEROPHILY DATASETS

We present the coarsening results on different heterophily datasets in the Table 9.

A.4 GENERALIZABILITY OF PROPOSED CGL ALGORITHM

Next, in this subsection, we will illustrate the generalizability of the learned coarsened graph from
the proposed CGL algorithm by using different architectures to train the GNN. Specifically, we have
used GNN architectures like GCN [44], APPNP [45], and GAT [46] to train our GNN and perform
the node classification task. Table 10 demonstrates that CGL is compatible with different widely used
GNN architectures, giving almost similar Node Classification accuracy across all the datasets.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Dataset r GCOND FGC CGL SCGL Whole Dataset

Texas
0.7 - 69.74 68.3 71.18
0.5 - 67.97 68.85 70.49 56.18
0.3 - 65.02 66.12 66.67

Cornell
0.7 51.25 62.86 61.25 63.93
0.5 45.94 60.80 61.26 62.29 52.10
0.3 43.24 58.25 60.11 61.75

Chameleon
0.7 38.78 48.25 57.4 59.33
0.5 36.25 46.96 53.35 56.17 39.38
0.3 37.7 37.74 50.50 53.84

Squirrel
0.7 - 34.83 45.59 46.72
0.5 - 33.29 42.05 42.99 24.3
0.3 - 28.74 36.72 37.75

Wisconsin
0.7 58.8 60.68 61.35 62.15
0.5 56.32 60.78 60.95 61.75 66.9
0.3 54.24 58.88 60.15 60.56

Table 9: This table shows the node classification performance on the heterophilic datasets. It is
evident that for coarsening, we have utilized only the feature matrix X of the graph, and yet our
framework outperforms or comparable against the existing state-of-the-art graph coarsening methods,
which consider both the Laplacian and the feature matrix for coarsening. Additionally, according to
the available code, SCAL shows errors on heterophilic datasets, and GCOND shows errors on some
datasets, such as Texas and Squirrel.

Dataset GCN APPNP GAT
Cora 79.025 79.57 77.32
Citeseer 70.60 70.42 68.29
Pubmed 84.73 84.49 84.25
Co-cs 88.69 86.40 87.67

Table 10: This table depicts the CGL Node Classification using multiple GNN architectures for a
coarsening ratio of 0.05. It is evident that the proposed CGL algorithm can be utilized with any GNN
architecture without compromising accuracy.

Dataset r
Proposed SCGL
(Coarsening+
Classification)

Whole
Dataset

Cora 0.1 556 4096
Citeseer 0.05 597 8099
Flickr 0.01 1126 86016
OGBN-
Proteins 0.001 1638 91136

Arxiv-
year 0.001 978 95232

Table 11: The table indicates that graph coarsening significantly reduces memory usage (in MB) for
node classification tasks compared to using the original dataset.

15

	Introduction
	Background and Problem Formulation
	Graph Learning from Data X
	Graph Neural Network
	Graph Dimensionality Reduction
	Proposed Formulation for Coarsened Graph Learning(CGL)

	CGL Algorithm Development
	Coarsened Graph Learning(CGL)

	Semi-supervised Coarsened Graph Learning (SCGL)
	Experiments
	Experimental Setup
	Node Classification
	Time Complexity
	Coarsening Under Adversarial Conditions

	Conclusion
	Appendix
	Proof of Theorem 1
	Datasets
	Coarsening of Heterophily Datasets
	Generalizability of Proposed CGL Algorithm

