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ABSTRACT

For vision-language models (VLMs), understanding the dynamic properties of
objects and their interactions in 3D scenes from videos is crucial for effective
reasoning about high-level temporal and action semantics. Although humans
are adept at understanding these properties by constructing 3D and temporal (4D)
representations of the world, current video understanding models struggle to extract
these dynamic semantics, arguably because these models use cross-frame reasoning
without underlying knowledge of the 3D /4D scenes. In this work, we introduce
DynSuperCLEVR, the first video question answering dataset that focuses on
language understanding of the dynamics properties of 3D objects. We concentrate
on three physical concepts — velocity, acceleration, and collisions within 4D
scenes. We further generate three types of questions, including factual queries,
future prediction, and counterfactual reasoning that involve different aspects of
reasoning on these 4D dynamics properties. To further demonstrate the importance
of explicit scene representations to answer these 4D dynamics questions, we
propose NS-4DPhysics, a Neural-Symbolic VideoQA model integrating Physics
prior for 4D dynamics properties with explicit scene representation of videos.
Instead of answering the questions directly from the video text input, our method
first estimates the 4D world states with a 3D generative model powered by physical
prior, and then use the neural symbolic reasoning to answer the questions on
top of the 4D world states. Our evaluation on all three types of questions in
DynSuperCLEVR show that previous video question answering models and large
multimodal models struggle with questions about 4D dynamics, while our NS-
4DPhysics outperforms previous state-of-the-art models significantly.

1 INTRODUCTION

Visual question answering (VQA) is a comprehensive task to assess how well machine learning
models can identify objects, understand their relationships, and perform reasoning with multimodal
input. When it comes to video question answering (VideoQA), models must not only capture the
static features in frames but also understand temporal dynamics, such as object movements and
interactions over time, especially in 3D space. Despite the recent progress in multimodal foundation
models, understanding these dynamic features remains challenging (Ma et al., 2024).
A series of studies in cognitive science (Hamrick et al., 2016; Ullman et al., 2018) has found that
humans excel at understanding the dynamics and interactions in the physical world. This enables
humans to understand the spatial and temporal relationships between objects, predict future object
states and interactions, and ultimately perform complex tasks such as planning and manipulation
in the 3D world. For video question answering, it is also important to incorporate these dynamic
features as an integral part of video understanding.

However, existing video question answering datasets have primarily focused on high-level temporal
semantics, such as human activities (Fabian Caba Heilbron & Niebles, 2015; Goyal et al., 2017),
due to a lack of 3D/4D annotations. Such evaluations are often susceptible to biases and shortcuts
in natural videos, so models may perform quite well without truly understanding key dynamic
properties (Ma et al., 2024). Another line of work exploits synthetic environments and studies

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Input Videos

(b)

Factual Question 1
How fast is the SUV moving 
compared to the yellow bus?
Factual Question 2
What is the color of the bus 
which collides with the SUV?

Predictive Question
Will the red bus collide with the 
yellow object??

Counterfactual Question
Would the bus collide with the 
minivan if it were standing still 
from the beginning?

(c)

Questions Answers

Green

Slow

Yes

No

(a) …

…

…

Frame 0 Frame 1 Frame 120

Frame 0

Frame 0

Frame 1

Frame 1 Frame 120

Figure 1: We propose DynSuperCLEVR to study the 4D dynamics properties of objects and their
collisions. We also design three types of questions. Factual questions and counterfactual will take the
whole 120 frames as input, and the predictive questions will take the first 30 frames (see Sec. 3.4)

how models understand dynamic and physical properties, given 3D ground truth obtained from
simulators (Yi et al., 2019; Chen et al., 2022; Bear et al., 2021; Tung et al., 2023; Ates et al., 2022;
Patel et al., 2022; Girdhar & Ramanan, 2020; Zheng et al., 2024). However, these datasets often
consider only simplified settings, either lacking diverse physical properties in simulations (Ates
et al., 2022; Yi et al., 2019) or lacking language integration (Bear et al., 2021; Tung et al., 2023).
Moreover, these datasets employed rudimentary rendering with clear backgrounds and toy-like 3D
assets, creating a significant domain gap between synthetic videos and real-world natural videos.
While many conceptual findings have been derived from experiments on these datasets, these results
lack practicality for understanding complex physical events in the real world. Without realistic
rendering and natural language support, these datasets are also not suitable for analyzing the 4D
dynamics understanding of recent large multimodal models.

To quantitatively study 4D dynamics understanding and to analyze the limitations of current video un-
derstanding models, we introduce DynSuperCLEVR, the first video question answering (VideoQA)
dataset that focuses on the language understanding of the dynamic 4D properties of objects. Specifi-
cally, our dataset studies three crucial dynamic properties of 3D objects – velocities, accelerations,
and collisions, and designs natural language questions for three types of reasoning, i.e., factual, future
prediction, and counterfactual. Notably, by introducing acceleration, we achieve a more complex
physical dynamics scene compared to the previous data generator (Greff et al., 2022). Lastly, to
address the synthetic-to-real domain gap in previous video benchmarks (Yi et al., 2019; Tung et al.,
2023) and to enable zero-shot evaluation of large multimodal models on our dataset, we improve the
realism of our videos by introducing diverse appearances of objects and realistic backgrounds with
new materials and textures.
To demonstrate the importance of an explicit scene representation in answering these 4D dynamics
questions, we present NS-4DPhysics, a neural-symbolic model that reasons about these dynamics by
first estimating explicit 4D scene representations. Our NS-4DPhysics consists of two key modules, a
4D scene parsing module followed by a symbolic reasoning module. The 4D scene parsing module
learns a robust 3D generative model (Ma et al., 2022; Wang et al., 2023b) of the scene and captures
the dynamics of objects with a physical prior. With a 3D generative representation of the scene, our
scene parsing module is robust to partial occlusion and general well to unseen 3D poses and object
appearances during training, which are very common in natural videos.

We test a wide range of state-of-the-art VideoQA models on our DynSuperCLEVR dataset, including
neural symbolic model (Yi et al., 2019; Wang et al., 2024), standard end-to-end models (Perez
et al., 2018), large multimodal models (Xu et al., 2024; Lin et al., 2023), and proprietary model
GPT-4o. Results show that these models struggle to answer challenging questions about dynamic
properties about the 4D scenes, due to a lack of explicit knowledge of the 3D world or 3D dynamics
of objects. Meanwhile, our NS-4DPhysics model outperforms previous state-of-the-art models
by a wide margin, across different dynamic properties and types of reasoning questions. This
demonstrates the importance of developing an explicit 4D dynamics representation for multimodal
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agents to understand physical events presented in the videos and to foresee upcoming events. Our
contributions are as follows: (1) We present DynSuperCLEVR, the first VideoQA dataset that focuses
on language understanding of the dynamics properties of objects (velocity, acceleration) and multi-
object interactions (collisions). (2) We propose NS-4DPhysics, a neural-symbolic model that first
reconstructs the 4D scene with a dynamic 3D generative model with physical priors as the perception
module, and then reasons about dynamics over the explicit 4D scene representation. (3) Extensive
results on different settings of DynSuperCLEVR reveal key pitfalls of state-of-the-art VideoQA
models, including those powered by LMMs and industrial training data. We further demonstrate that
NS-4DPhysics outperforms other VideoQA baselines by a wide margin, showing the advantages of
learning explicit 4D dynamic representations.

2 RELATED WORK

Video question answering. Video questions answering (VideoQA) is a challenging task because
models must not only detect and identify objects from static images, but also track and infer objects’
changes and interactions over a sequence of frames. A number of VideoQA datasets annotate
question-answer pairs on natural videos (Xue et al., 2017; Yang et al., 2022; Majumdar et al., 2024;
Wu et al., 2024). However these datasets are not suitable for studying dynamic physical properties
as natural videos contain limited object interactions. Another line of works focused on physical
reasoning in simulated environments (Yi et al., 2019; Chen et al., 2022; Ding et al., 2021; Tung et al.,
2023). However, these datasets are either built in restricted settings (Yi et al., 2019; Chen et al.,
2022) or lack of real dynamics and forces common in real world (Tung et al., 2023). In order to
further challenge and explore the limitations of current video-text models on dynamics reasoning, we
develop DynSuperCLEVR with improved realism for both video quality and physics simulation.
Video-text models. With the availability web-scale image-text or video-text paired datasets (Schuh-
mann et al., 2022; Bain et al., 2021), recent video-text models (Wang et al., 2022; Lin et al., 2023; Xu
et al., 2024) adopted heavy multi-modal pretraining and achieved improved results on a wide range
video understanding tasks. However, these models often exploit biases and shortcuts for dynamic
reasoning, failing to capture the physical intrinsics that drive object movements and interactions.
Our NS-4DPhysics incorporated a 4D dynamic scene representation in our scene parser, allowing
compositional reasoning of various physical events in the video sequence.
Physical scene understanding. Understanding the physical events in a dynamic 4D scene or
inferring the future state is hard as it requires a model to apply physical principles to explain the
observed events or simulate the future outcomes. Previous studies explored physics engines for
simulation and learning (Kadambi et al., 2023; Battaglia et al., 2013), or integrating a differentiable
physics engine in deep learning models (Wu et al., 2015; 2017; Kyriazis & Argyros, 2013). Another
line of works learned physical properties from a compositional scene (Hamrick et al., 2016; Ullman
et al., 2018; Ding et al., 2021; Chen et al., 2022; Zheng et al., 2024). However, previous methods
were limited to simple scenes where physics models provide good approximations of the world. We
extend our scope to more realistic scenes with real-world objects and complex simulations, and
enable physical scene reasoning with our dynamic 3D compositional reasoning.
3D generative models. Our model is built on top of the previous 3D generative models for image
classification (Jesslen et al., 2023), 6D pose estimation (Ma et al., 2022), and 3D-aware visual
questions answering (Wang et al., 2023a). In image understanding, these generative models learn a
compositional representation of 3D objects with feature activations on vertex, conducting the scene
understanding tasks with analysis-by-synthesis. As found in Wang et al. (2023a), the advantage
of these methods is the robustness in recognizing the 3D objects from scenes, compared with
the discriminate baseline such as FasterRCNN (Ren et al., 2016). We extended the previous 3D
compositional models to video understanding task, which learns a 4D dynamic scene representation
from video. Such representation allows us to reconstruct world states at each timestep, analyze the
trajectories of objects and reason about the physical events.

3 DATASET

To investigate 4D dynamic properties in VideoQA tasks, we introduce the DynSuperCLEVR
dataset. This synthetic dataset provides fully annotated 4D scene structures for videos, along with the
reasoning steps to answer corresponding questions. We concentrate on the 4D dynamics properties
of objects — including velocity, acceleration in 3D scenes and their comparison. We also
introduce the collision event in 3D space, which is more challenging than on the 2D ground
plane. The collision shows how the dynamic properties will affect the interactions among objects.
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(a) Realistic material for objects 
with diverse color.

(b) Environment map in dome 
shape as background.

Static 
Shape Color

Dynamics 

3D position
3D pose

Velocity
Acceleration

frame t frame t+1frame t-1

Select Frame 0

Compare VelocityGet VelocityFilter[suv]

Filter[yellow] Get VelocityFilter[suv]

Question: How fast is the SUV moving compared 
to the yellow bus?

Objects

Collisions
Frame ID Obj. BObj. A

Answer: Slow

(c) Structure of scene annotations 
for objects and events. 

(d) Example of program execution for questions 
answering on dynamical properties 

Figure 2: An illustration of the construction of DynSuperCLEVR. (a) We use the same 3D object
meshes from SuperCLEVR but generate more realistic textures for different colors. (b) The back-
ground is created by mapping a real image environment map onto a dome shape. (c) Our video data
is fully annotated with 4D dynamic scene structure, containing static and dynamic properties for
objects and collision components. (d) For each question, we design new operation programs for 4D
dynamics properties, which can be executed on the scene structure to answer the questions.

As an advanced video reasoning task, we design questions across three levels — (1) factual ques-
tions, which query properties and events directly from the visible frames, (2) predictive questions,
which require forecasting future collisions based on the current 4D dynamics and scenes, and (3)
counterfactual questions, which challenge models to imagine how changes in the 4D dynamics
would alter the outcomes.

In this section, we first introduce the three key components for designing the video data in our
proposed dataset: (1) the design of more realistic texture for objects and backgrounds (Sec.3.1), (2)
the 4D dynamical scene annotations involving 4D dynamics properties for objects (Sec.3.2) and their
collisions events (3) the rendering of the video and physical simulations process (Sec.3.3). Then
in Sec.3.4, we describe our three types of questions at different reasoning level and the reasoning
program for question answering.

3.1 3D SCENE CONSTRUCTION

3D Objects. We use the same 3D objects from SuperCLEVR (Li et al., 2023), which include five
vehicle categories (car, plane, bicycle, motorbike, bus) with 21 sub-types, but we regenerate the
texture for each mesh model to improve the realism. For each color label (gray, red, brown, yellow,
green, cyan, blue, and purple), we create 6 variants and change the faces color of the object meshes.
Based on the part annotation in SuperCLEVR, only the primary body receives color edits, while
others are updated with natural elements like black wheels, transparent windows, or red tail lights on
cars (see Fig. 2a). More examples of all textured 3D objects are provided in the Appendix A.

Backgrounds. Compared with the previous synthetic dataset (Yi et al., 2019; Li et al., 2023), we
change the background into highly realistic images and lights. As the example in Fig. 2 (b), we use
the real HDRI images1, containing real captured images with environment maps in 509 different
scenes. We map the image as material into a dome shape as background to create a 3D view.

3.2 4D DYNAMICS SCENE ANNOTATIONS

After defining the shape and color of objects as static attributes, we assign them dynamic properties,
allowing them to move and interact within the 3D physical world. Each object is defined by its 3D
position, pose, velocity, and acceleration, as described below (see Fig. 2(c)).

3D Position and pose: The 3D position (x, y, z) records the exact coordinates of the object at each
timestep, specifying its location within the scene. The pose (α, β, γ) describes the object’s orientation
and rotation in 3D space, defining how the object is aligned relative to its surroundings.

Velocity. The velocity (vx, vy, vz) represents the change of the object’s 3D position over time,
capturing both the speed and direction of motion. As one of the properties included in the question
answering, we define three velocity states: static (0m/s), slow (≤ 3m/s) and fast (≥ 3m/s)

1https://polyhaven.com/hdris
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for language description. Given that the exact velocity is often difficult to determine from video
alone, we ensure that each scene includes at least one object moving within each velocity state to
provide clear distinctions.

Acceleration. The acceleration (ax, ay, az) represents the rate of change of velocity over time
in 3D space. Similar with the label for velocity, we define two types of motion for acceleration. Along
the x-axis, objects can either accelerate due to an internal engine force or decelerate due to friction.
In z direction, the objects can either maintain a constant height (zero acceleration) or downward
acceleration with gravity. In our dataset, we simply it in to a binary label: accelerating or not,
and floating or not.

Collision Events. Due to perceptual illusions, reasoning about collisions in 3D space is more
challenging than in 2D plane. Each collision involves two objects, and we record the frame
ID when the collision occurs. The collision between objects is a direct result of their 4D dynamic
properties. In our dataset, we capture not only the collision events in a given frame but also future
collisions from simulation, and counterfactual scenarios, where changes in the 4D dynamic properties
at the beginning lead to a new sequence of collision events. This forms the foundation for the three
question types, which will be introduced in Sec. 3.4.

3.3 PHYSICAL SIMULATION AND VIDEO GENERATION

The video data is rendered using a combination of the physics engine PyBullet and the Blender
renderer. Building on the generation pipeline of Kubric (Greff et al., 2022), we integrate support
for the new acceleration feature. At each timestep, we capture the 3D position, pose, velocity, and
acceleration of all objects, along with all collisions between objects, as described above.

Each scene has a corresponding counterfactual version. We re-simulate the scene, randomly selecting
one object’s 4D dynamic property (velocity or acceleration) to modify its initial value. We then
record the new property values and the resulting sequence of collision events caused by the changes.

3.4 QUESTIONS GENERATION FOR 4D DYNAMICS PROPERTIES

Following previous video question answering datasets (Yi et al., 2019; Chen et al., 2022), we develop
question templates and generate three types of questions for factual, predictive, and counterfactual
reasoning in our DynSuperCLEVR (see Fig. 1). Each question is paired with a corresponding
program execution for reasoning (see Fig. 2(d)). Below, we describe the design of the three question
types, while the full list of programs and more examples of program execution can be found in the
Appendix C.

Factual Questions. Factual questions focus on the direct understanding of static and dynamic
properties of objects, their comparisons, and collision events within 3D space in given frames. For our
newly proposed 4D dynamic properties, we define questions that query the velocity and acceleration
states of objects, or compare their velocities in 3D space at specific moments. These moments are
either defined by the start of a frame or the point when a collision event occurs. The questions
about collisions are predicting whether two objects have collided or identifying which objects
are involved in a collision. We introduce new programs query_velocity, compare_velocity and
query_moving_direction for velocity; query_accelerating, query_floating for acceleration.

Predictive Questions Predictive questions require forecasting future collision events that are not
present in the video. In our DynSuperCLEVR, it is crucial for the model to first understand the
positions, velocities, and accelerations of objects in 3D space from the video, and then apply reasoning
to predict their future trajectories.

Counterfactual Questions. Counterfactual questions challenge the model to reason about hypo-
thetical scenarios by changing the initial 4D dynamic properties of objects. This requires the model
to have a strong understanding of how changes in dynamic features (velocity or acceleration) can
affect the world states and cause collisions, and apply these to re-simulate the potential outcomes
contradicted to the video input.

3.5 DATASET STATISTICS

We generate 1,000 video clips for training, 100 for validation, and 100 for testing. Each video is
2,000 ms long with a frame rate of 60, resulting in 120 frames per scene. In total, we create 7,850
factual questions, 2,750 predictive questions, and 989 counterfactual questions. Factual questions are

5
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Figure 3: Our NS-4DPhysics has three main components. I: A 3D neural mesh scene parser, which
combined the rendering likelihood with a physics prior, to parses the video into 4D dynamic scene
representation. II: The future states or counterfactual states can be simulated with the reconstruction
result by the physics engine. III: A question parser that processes questions into reasoning programs
and then executes the program over the predicted scene representation to answer the questions.

open-ended and can be answered with a few words, while predictive and counterfactual questions are
structured as true or false, requiring the model to determine if events will occur.

4 MODEL

In this section, we introduce NS-4DPhysics, a neural symbolic VideoQA model for solving questions
about the object dynamics in 3D space. As illustrated in Fig. 3, the model combines a 3D-aware scene
parser with a probabilistic physical prior module to convert video sequences into an explicit 4D
scene representation. This explicit representation enables interpretable reasoning, allowing the model
to predict future or counterfactual world states through physics simulation. For question answering,
we employ a question parser to first convert the questions into executable programs, which are then
used to answer the questions step by step based on the predicted 4D scene representation.

In the following sections, we introduce the 4D symbolic scene representation in Section 4.1, the scene
parser with the physical prior in Section 4.2, future and counterfactual simulation in Section 4.3, and
the language model and reasoning program in Section 4.4.

4.1 4D SYMBOLIC SCENE REPRESENTATION

The 4D dynamics scene representation is the world states to reconstruct the video scene annotation
shown in Fig. 2c. For each object O, we define its static attributes as shape si and color ci. The
dynamic properties at each timestep t consist of 3D position Tt, rotation (pose) Rt, velocity vt, and
acceleration at, where each is a 3D vector. For an input video, each image frame at timestep t is
denoted as It. The 4D symbolic scene representation S is defined as a sequence of object states
St = {O1

t , O
2
t , . . . , O

N
t } over time, where N is the number of objects in the scene.

4.2 DYNAMIC SCENE PARSER WITH PHYSICS PRIOR

The scene parser takes the videos as input and estimate the 4D dynamic world state St at time step
t. This involves predicting the 6D poses of objects in frames, predicting their temporal properties
(e.g., velocity and acceleration), and reason about collision events. In this work, we adopt a 3D
generative model that learns a feature representation of the scene and predicts 3D world states from
an analysis-by-synthesis perspective. We extend Ma et al. (2022); Jesslen et al. (2023) to natural
videos by employing a sequence decoding and add a physical prior in our 4D scene representation for
the model to understand real-world physical events.

6
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3D-NMMs scene parser 3D neural mesh models (3D-NMMs) (Ma et al., 2022; Jesslen et al., 2023)
learns a generative model to produce the 3D feature representation of the objects and parses the scene
with analysis-by-synthesis. For each object shape we trains a object mesh Ms = {vi ∈ R3}Ni=1 with
neural texture Ts = {fi ∈ Rc}Ni=1, where s is the object category (shape), N is the number of vertices,
and c is the feature dimension. A 3D-NMMs can generates the 3D aware scene representation by
rendering the neural mesh model Os = (Ms, Ts) in the given 6d pose α : Fs(α) = R(Os, α) ∈
RH×W×c, with soft rasterization (Liu et al., 2019). By comparing the rasterization of 3D features
and the 2D image feature, we can learns the neural textures with ground truth category s and 6D
poses α, or estimate α and s during inference. We formulate this render-and-compare process as an
optimization of the likelihood model:

p(F | Os, αs, B) =
∏

i∈FG
p(fi | Os, αs)

∏
i∈BG

p(f ′
i | B) (1)

where FG and BG are the set of foreground and background locations on the 2D feature map and fi
is the feature vector of F at location i. Here the foreground and background likelihoods are modeled
as Gaussian distributions.

In our NS-4DPhysics, α is the 3D position Tt and rotation Rt of each objects for time step t, which
is estimate independently for each video frame (i.e. image level). The training phase learns the CNN
extractor for feature F , the neural mesh Os and the background feature B jointly (see Appendix D.1
for details). During inference, by maximizing the likelihood function Eq. 7 on each frame, we can
obtain the Tt and Rt for predicted objects.

Physical prior The dynamical 3D world states predicting from the image frame does not consider
the consistency in time dimension. As our algorithm are predicting St for each time step sequentially
with maximizing likelihood function Eq. 7, one strategy is initializing St with the predicted St−1

in gradient descent. However, this only fit to the case when the objects are moving uninterruptedly.
In the complex dynamical 3D scenes, the trajectory of objects can change dramatically due to their
interactions such as collision. These require a comprehensive prior knowledge of the physics world.

It’s nontrivial to directly model the physical functions. Many previous studies incorporate physical
engines within neural networks only applied to simple shapes like cubes, as the complex shapes of
3D objects and the interaction process are hard to model. On the other hand, computational physical
engine(Coumans & Bai, 2016) excel at modeling physical functions for any known shapes but are not
differentiable and challenging to integrate into the de-rendering process during inference.

In our method, we modify a discriminative physics engineering PE(·) into a probabilistic model by
assuming (Rt, Tt) = PE(R̂t−1, T̂t−1) + ε after having R̂t−1, T̂t−1. Here we take ε ∼ N (0, σ2I).
Inspired by the idea from Bayes-Kalman filtering (Salzmann & Urtasun, 2011), we integrate a physics
prior of (Rt, Tt) into the likelihood function as a correction term after Eq. 7. Formally, the prior
q(Rt, Tt | R̂t−1, T̂t−1) can be computed as:

(Rt, Tt | R̂t−1, T̂t−1) ∼ N (PE(R̂t−1, T̂t−1), σ
2I), (2)

q(Rt, Tt | R̂t−1, T̂t−1) = C exp

(
− 1

2σ2
[(Rt, Tt)− µ]

T
[(Rt, Tt)− µ]

)
, (3)

where µ = PE(R̂t−1, T̂t−1), C = 1/
√

(2π)k|σ2I|.
Finally, the rotation Rt and translation Tt can be estimated by maximizing the joint likelihood of the
rendering likelihood in Eq.7 and the physical prior likelihood in Eq.3:

R̂t, T̂t = arg max
Rt,Tt

p(F | Oy, Tt, Rt, B) · q(Rt, Tt | R̂t−1, T̂t−1). (4)

Dynamics attributes. After estimating the world states (Rt, Tt), we compute the dynamics attributes
Velocity and acceleration by calculating the differences between consecutive translations
and velocities over time. To reduce noise, a moving average filter with a window size of 5 is applied.
Static attributes. Shape is determined by selecting the mesh model category with the highest
likelihood (Wang et al., 2024). For color prediction, we crop the object’s region from the RGB
image and train an additional CNN classifier for color recognition.
Collisions. Collisions are obtained from the physics engine PE(·) at the time of estimating the
physical prior. For each collision, we record the time and objects involved.
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4.3 FUTURE AND COUNTERFACTUAL SIMULATION

From the explicit 4D scene representation, we can easily simulate the future or counterfactual states
of the objects. For either two cases, we apply the physics engine and assign the predicted translation,
rotation, velocity or counterfactual condition to all objects as initial conditions and simulate. We
visualize the re-simulation results in Sec. 5.4.

4.4 QUESTIONS PARSING AND PROGRAM EXECUTION

After having the 4D scene representation from the scene parser, we can parse the question into
reasoning programs, which is then executed on the scene representation to predict the answer.
The question parser follows previous work (Yi et al., 2019; Chen et al., 2022), where an LSTM
sequence-to-sequence model is trained to parse the question into its corresponding program.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Baseline models. We select the representation models from the following 3 categories as baseline
models on DynSuperCLEVR. (1) The simple classification-based methods: CNN+LSTM and FiLM.
We extract frame-level features and average them over the time dimension. We encode questions with
the last hidden state from an LSTM, and then concatenate the two features to predict answers. (2)
Neural symbolic models: NS-DR and PO3D-VQA, which represent the model with explicit 2D / 3D
scene representation for question answering, compared with our 4D representation; (3) Video large
language models (Video-LLMs): including a fine-tuned InternVideo, and Video-LLaVA, PLLaVA,
GPT-4o for zero-shot evaluation with in-context learning. Please refer to the appendix for detailed
implementations.
NS-4DPhysics implementation. The dynamic scene parser and CNN classifier is trained on the
images and 120k images are used for training. The dynamic scene parser uses ResNeXT for the
feature extractor and is trained for 50 epochs with batch size 4 on 4 GPUs. The attributes classifier
uses ResNet50 and is trained with the cropped images by the ground truth bounding box. During
inference, we set the variance of the physical prior as 3.

5.2 VIDEO QUESTION ANSWERING RESULTS

We first compare the NS-4DPhysics with baseline models for the VideoQA task of DynSuperCLEVR,
the results are shown in Tab. 1. For GPT-4o, we also prompt GPT-4o to first describe the video, then
reason step-by-step before answering questions (GPT-4o+reasoning).

Table 1: Performance on the DynSuperCLEVR testing split for each question type: factual, predictive,
and counterfactual. Factual questions are further divided into sub-types: Velocity, Acceleration, and
Collision, with "All" representing overall accuracy. The average is taken as the overall accuracy across
the three question types. � indicates GPT-assisted zero-shot evaluation. The highest performance
among all baseline models is indicated by underlined values.

Average Factual Predictive CounterfactualAll Vel. Acc. Col.

CNN+LSTM 48.03 40.63 41.71 56.79 25.37 56.04 47.42
FiLM (Perez et al., 2018) 50.18 44.07 48.58 53.09 26.87 54.94 51.54

NS-DR (Yi et al., 2019) 51.44 51.44 55.63 46.34 46.86 - -
PO3D-VQA (Wang et al., 2024) 62.93 61.22 62.21 73.17 51.20 65.33 62.24

InternVideo (Wang et al., 2022) 52.62 51.07 59.29 49.08 36.06 54.74 59.18

Video-LLaVA � (Lin et al., 2023) 38.09 37.04 37.62 52.76 23.56 38.78 40.88
PLLaVA � (Xu et al., 2024) 59.24 54.61 55.00 63.80 46.63 67.52 73.47
GPT-4o� 51.59 50.82 51.19 57.67 44.71 54.38 50.00
GPT-4o + reasoning � 56.06 55.50 58.81 57.67 47.12 56.93 58.16

NS-4DPhysics 82.64 87.70 88.66 83.73 88.46 85.71 74.51

Comparison with classification-based methods. CNN+LSTM only reaches 40.63%, 56.04% and
47.42% for factual, predictive, and counterfactual questions; and FiLM achieves 44.07%, 54.94%
and 51.54%. The performance of these models is notably lower than that of NS-4DPhysics, which
achieves 87.70%, 85.71% and 74.51% for factual, respectively. As classification-based methods
generally rely on extracting features through CNNs, we demonstrates significant advancements in
handling dynamic content with explicit scene representation.
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Comparison with the Neural-Symbolic methods The comparison between the Neural-Symbolic
models shows significant performance improvement as the dimension of scene representation in-
creases. PO3D-VQA constructs explicit 3D scene representation, leading to a better estimation to the
objects’ position and poses, which is beneficial to infer the dynamics and interaction compared with
the 2D presentation in VR-DR (9.78%) for the factual questions. As pushing the dimension into 4D
and considering the physical prior knowledge, our NS-4DPhysics achieves 82.64% overall accuracy
which is 19.71% higher than PO3D-VQA.

Comparison with the Video-LLM Although Video-LLMs demonstrate strong video understanding
and generalization abilities, they underperform on DynSuperCLEVR. In zero-shot settings, Video-
LLaVA achieves an overall accuracy of 38.09%, while PLLaVA performs better at 59.24%, excelling
in predictive and counterfactual reasoning among the baselines. Even with finetuning, InternVideo
reaches only 52.62% , lagging behind our NS-4DPhysics. These results indicate that existing video
foundation models struggle to reason effectively in complex dynamic scenes.

5.3 ANALYSIS

We further analyze the effectiveness of two key components of NS-4DPhysics: the physics prior and
the symbolic reasoning model. (1) Without the physics prior, the 4D world states are estimated using
only the rendering likelihood, with time consistency maintained by initializing St from the previous
frame, Ŝt−1. The result in Table 2 shows that adding the physics prior to the 4D scene representation
significantly improves VideoQA performance. We also visualize the predicted world states of both
models in Sec. 5.4 with the failure cases. (2) We also compare a variant of GPT4-o, where as a
language model, it processes the predicted scene structure from NS-4DPhysics as text input instead
of raw images. However, the LLM still underperforms in 4D dynamic reasoning, highlighting the
advantages of our symbolic reasoning model in capturing dynamic object properties.

Table 2: Analysis of the physics prior module and symbolic reasoning (SR) in our model. We compare
our variants without the physics prior and augment LLM with explicit 4D scene representation.

Average Factual Predictive CounterfactualAll Vel. Acc. Col.

4D representation + SR (Ours) 82.64 87.70 88.66 83.73 88.46 85.71 74.51
w/o physics prior + SR 75.97 79.68 81.40 81.30 74.88 78.83 69.39

4D representation + GPT-4o 61.39 65.49 66.67 54.60 71.63 57.14 51.09
video + GPT-4o 56.06 55.50 58.81 57.67 47.12 56.93 58.16

5.4 QUALITATIVE RESULTS

We visualize how our model achieves more accurate results in reconstructing scenes and simulating
future scenes for predictive questions, assisted by the physics prior. Fig. 4 shows an example of a
factual question. Without the physics prior (row c), the model fails to track the correct position of the
minivan and provides the wrong answer regarding the collision.

Question: Dose the 
green minivan collide 
with the cyan thing in 
the given frames?
Answer: Yes

w/o physics: 
Prediction: No

Ours:
Prediction: Yes

(a)

(b)

(c)

Frame 
0

Frame 20 Frame 40 Frame 60 Frame 80

In
pu

t
O

ur
s

w
/o

 p
hy

si
cs

 

Figure 4: Qualitative examples of factual questions. (a) shows the input video; (b)We show our
NS-4DPhysics can have a better estimation for the motion with the physical prior. (c) The error of
position predicted by baseline w/o physics in the red box leads to the mistake in the answer.

Fig. 5 illustrates a predictive question. In row b1, our model predicts more accurate positions for
all the objects, and the simulation of future frames in (b2) shows no collisions between the objects.
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However, without the physics prior, the error in 3D position prediction (especially for the school bus)
causes all the vehicles to collide in future frames.

(a1) (a2)

(b1) (b2)

(c1) (c2)

Question: Will the red SUV 
collide with the school bus 
next?
Answer: No
 

w/o physics: 
Prediction: Yes
 

Ours:
Prediction: No

In
pu

t
O

ur
s

w
/o

 p
hy

si
cs

 

Reconstruction Future simulation

Ground Truth Future FramesInput Frames

Figure 5: Qualitative examples of predictive questions. (a1) The first 30 frames are given to models
as input video and (a2) the following are hidden as ground truth future states; (b1) our NS-4DPhysics
has a better estimation of the poses of objects, and (b2) a plausible imagination by re-simulation. (c1)
The red box shows the error of poses estimation of bus when without physics prior, which (c2) makes
the red SUV collide with the school bus in the future.

Analysis of Video-LLM. To analyze the reasoning failures in VideoLLM, we examine two failure
cases of PLLaVA and GPT-4o. (a) Misunderstanding the location and collisions in 3D space: Both
PLLaVA and GPT-4o incorrectly predict that the truck collides with the fighter jet. In reality, the
truck only collides with the purple articulated bus, while the plane is near the truck but does not
make contact. This error is a result of relying on 2D projection, which fails to capture the correct 3D
spatial relationships. (b) Fail to predict future 4D dynamics world states: Both models identify the
objects correctly, but they fail to understand the objects’ motion from the given frames. Although no
collision occurs in the current frames, the bus is moving toward the airplane and will collide in the
future—something the models are unable to predict.

Frame 0 Frame 15

Frame 30 Frame 45

collision
Frame 0 Frame 15

Frame 30 [Collision] Frame 42

Moving

Question: Will the double bus collide with the airliner next?

Ours : Yes

PLLaVA: The image shows a model 
airplane, a bicycle and a bus on a flat 
surface and  there is no indication of any 
collision between them. 

(b) Fail to predict future 4D dynamics world states

Question: What is the shape of the thing which collides with 
the truck in the given frames?

Ours: Articulated bus 

PLLaVA: The object that collides 
with the truck in the given frames is 
shaped like a plane.

GPT-4o: It appears that the double bus is 
positioned near the airliner, but from the 
current frames, it is unclear whether the 
bus is moving towards the airliner or not.

GPT-4o: Based on the images 
provided, the object that collides 
with the truck has the shape of a 
fighter jet or plane

(a) Misunderstand the location and collisions in 3D space

Figure 6: Two failure cases of PLLaVA and GPT-4o. (a) Both models incorrectly predict a truck
colliding with a fighter due to misunderstanding 3D spatial relationships, likely caused by reliance on
2D projection; (b) While the models correctly identify objects, they fail to predict future collisions as
not understanding the 4D dynamics of objects from the given frames.

6 CONCLUSION AND DISCUSSION

In this work, we explore 3D dynamic properties in video question answering. We introduce DynSu-
perCLEVR to study 4D dynamics of scenes in the VideoQA tasks with improved realistic texture.
Our findings show that existing video-language models, even those with large-scale pretraining,
struggle to capture critical 4D dynamic properties necessary for temporal and predictive reasoning.
To address this, we develop NS-4DPhysics, a neural-symbolic model that estimates an explicit 4D
scene representation and answers questions through program execution. Experimental results on
DynSuperCLEVR demonstrate that our approach significantly outperforms previous state-of-the-art
methods, highlighting its effectiveness in inferring dynamic properties and predicting future states.
In ongoing work, as Kaushik et al. (2024) has demonstrated the potential of 3D NMMs for domain
adaptation from synthetic images to real image data, we are studying how our NS-4DPhysics can be
extended to work with real images.

Limitations. As a synthetic VideoQA dataset, our DynSuperCLEVR currently focuses only on
rigid objects with linear velocity and acceleration. More complex objects, such as articulated and
non-rigid objects with complex trajectories, are not yet considered.
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A 3D OBJECTS AND COLORS

In DynSuperCLEVR, we have 21 object classes and 8 colors. As described in the main paper, we
improve upon previous datasets by generating new 3D textures with different colors. Below, we
present all the 3D objects, with one object selected in each color.
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Figure 7: Examples of 3D objects in DynSuperCLEVR with a selected color for each object.

B DYNAMIC PROPERTIES SETTING

When constructing DynSuperCLEVR, we need to set the extra physical properties to objects for
physics simulation. In the main paper, we have introduced the design of the 4D dynamics properties
like position, velocity and acceleration. Here we describe how the exact values are set in the physics
engine in Table. 3. Also, we need to set a series of physical properties in the physics engine, such as
mass, friction and restitution.

(1) Mass and gravity: The mass for each object is calculated based on its specific shape model,
which is linearly related to its volume with a density of 2.7; All objects in the dataset are subject to
gravity, which influences their vertical movements and impacts when in flight or during falls. The
gravitational constant is set as 10.

(2) Friction: Frictional forces affect the movement of all objects, especially when they interact with
the ground or each other, slowing them down and eventually bringing them to a stop. The friction of
objects are set as 0.2; the friction floor (the dome shaped background) is set as 0.4.

(3) Restitution: When objects collide or drop to the ground, the elastic forces come into play, defined
by elasticity coefficients. These forces affect how objects bounce off each other or rebound from
barriers, significantly altering their trajectories and speeds. The restitution of objects and the floor’s
are set to 0.5.

Table 3: Dynamic settings of DynSuperCLEVR
Attribute Description Aeroplanes Others

Mass Calculated from volume ρV

Position (x, y) Beta distribution

z Uniform distribution 0

Orientation Faces to the center with noises -

Velocity Initial state: static, slow, fast {0, 3, 6} m/s

Internal Force Engine force (Forwards) {1, 0}m/s2

Floating force(Upwards) {10, 0} Mass × m/s2 0 Mass × m/s2

C PROGRAM EXECUTION

In our DynSuperCLEVR, we introduce new programs for the 4D dynamics properties and the
collisions events. In table 4, we list all the programs and their input / output types, involved in the
DynSuperCLEVR.
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Table 4: All operations and their input / output types involved in the DynSuperCLEVR
Type Operation Input Type Output Type

Event Operations

filter_collision CollisionEventSet, Object CollisionEventSet

get_all_col_partners CollisionEventSet, Object ObjectSet

get_frame CollisionEvent FrameID

come_in_frame Object FrameID

Object filter Operations

filter_attributes ObjectSet ObjectSet

filter_static ObjectSet, FrameID ObjectSet

filter_moving_velocity ObjectSet, FrameID ObjectSet

filter_accelerating ObjectSet, FrameID ObjectSet

filter_floating ObjectSet, FrameID ObjectSet

Object Query Operations

query_attributes Object Shape or color

is_static Object, FrameID Bool

query_moving_velocity Object, FrameID Velocity

query_moving_direction Object, FrameID Direction

is_accelerating Object, FrameID Bool

is_floating Object, FrameID Bool

Object comparison faster_velocity Object, Object, FrameID Bool

slower_velocity Object, Object, FrameID Bool

Input Operations
Objects None ObjectSet

Events None CollisionEventSet

futureEvents None CollisionEventSet

Counterfactual Operation

Counterfactual_static Object CollisionEventSet

Counterfactual_moving_slow Object CollisionEventSet

Counterfactual_moving_fast Object CollisionEventSet

Counterfactual_accelerating Object CollisionEventSet

Counterfactual_floating Object CollisionEventSet

Others unique ObjectSet Object

exist ObjectSet Bool

Based on the programs above, we generate the corresponding program execution for each factual,
predictive and counterfactual question. Here we provide more example of the program execution in
Fig. 8.

D DETAILS OF 3D NNMS SCENE PARSER WITH PHYSICS PRIOR

The ultimate goal of the scene parser is to estimate the all dynamic state St from the corresponding
observation It and the previous states S<t using a probabilistic model. The previous work in 6D
pose estimation has proposed to use render-and-compare to maximize scene likelihood for static
images. For the video data, we further consider the temporal consistency and physical plausibility of
the dynamics estimation.

Ŝt = argmax
St

p (f(It)|St) · p(St|S<t), (5)

Ŝ0 = argmax
S0

p(f(I0)|S0). (6)

D.1 3D NEURAL MESH MODEL

Inspired by the 3D-neural-meshed based generative mode for pose estimation methods on static
images Wang et al. (2021); Ma et al. (2022), we develop a de-rendering based generative model to
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How fast is the SUV moving compared 
to the yellow bus?

Slow

Factual
Question

Answer

Program Execution

Frame 0 Frame 5 Frame 10 Frame 15 Frame N

…

What is the color of the bus which collides 
with the SUV?

Will the SUV collide with a bus in the 
future?

Green

Factual
Question

Answer

Input Video

Question & Answer

Yes

Predictive
Question

Answer

If the brown objects is static at the begin, 
will it collide with a school bus?

Counter- 
factual

Question

Answer

CollisionEvenets

Filter[suv] Filter_collision Get_All_Col_Partners

Filter[bus] Query_Color

Objects

FutureEvenets

Filter[suv]

Filter_collision Get_All_Col_Partners

Filter[bus] Exist

Objects

No

Figure 8: Examples of the reasoning program. From the input questions, we provide new operation
programs to answer these questions step by step using a 4D dynamic scene representation defined in
the main paper.

reconstruct the 4D dynamic scene representation frame by frame. To ensure the predictions are not
only plausible in 3D positions but also in physical rules, we incorporate a physical likelihood model
and a 3D generative model with rendering likelihood, as shown in Fig. 3 in the main paper. Here we
describe the more details of the 3D neural mesh models as preliminary.

Preliminaries. In the previous work for static imagesMa et al. (2022), Neural Meshes model were
introduced for 6D pose estimation through inverse rendering. For that task, the goal is to jointly
estimate the 6D pose (2D location (x, y), distance d to the camera and 3D pose (α, β, γ) of objects
in an image by comparing the Neural Meshes feature after rendering with the input image feature
and maximizing the rendering likelihood. More formally, the mesh for a given object in category c is
represented as Mc = {vi ∈ R3|i = 1 . . . N} where vi means the vertex. The corresponding neural
texture of the mesh Mc is Tc ∈ RN×l where l is the dimension of the feature. So that the neural mesh
model for category c is their aggregation Oc = {Mc, Tc} . The render-and-compare process as an
optimization of the likelihood model:

p(F | Oc, αs, B) =
∏

i∈FG
p(fi | Oc, αc)

∏
i∈BG

p(f ′
i | B) (7)

where FG and BG are the set of foreground and background locations on the 2D feature map and fi
is the feature vector of F at location i, produced by CNN feature extractor Φ. Here the foreground
and background likelihoods are modeled as Gaussian distributions.
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In this work, we use transform the position into a world coordinate instead. Given the object 3D
rotation R = (α, β, γ) and translation T = (x, y, z), we can render the neural mesh model Oc into a
feature map Fc with soft rasterization Liu et al. (2019):

Training: During training, we follow (Ma et al., 2022) and first jointly train a CNN feature extractor
Φ, the neural texture {Ty} and the background model B. We utilize the EM-type learning strategy
as originally introduced for keypoint detection in CoKe(Bai et al., 2023). Specifically, the feature
extractor that produces fi is trained using stochastic gradient descent while the parameters of the
generative model {Ty} and B are trained using momentum update after every gradient step in the
feature extractor, which was found to stabilize training convergence. The final loss function is defined
as a constructive loss between the feature of vertex.

Lcontrastive = −
∑
i∈FG

∑
i∈FG\{i}

∥fi − fj∥2 −
∑
i∈FG

∑
i∈BG

∥fi − fj∥2 (8)

Inference as scene parsing For static images, the previous work Wang et al. (2021) has shown that
the rendering likelihood can be used to estimate the 6D pose of objects. In our dynamics scene, similar
strategies can be applied to each frame at time step t. As the neural mesh models are probabilistic
generative model of neural feature activation, we can first define the rendering likelihood of the
feature map Ft given any 6D pose Rt, Tt as:

p(It|St) = p(Ft | Oc, Rt, Tt, B) (9)

=
∏

i∈FG
p(f

(i)
t | Oc, Rt, Tt)

∏
j∈BG

p(f
(j)
t | B), (10)

where FG and BG are the set of foreground and background locations on the 2D feature map and
f
(i)
t is the feature vector of F at location i at timestep t. B is a background parameter learned from

training. Here the foreground and background likelihoods are modeled as Gaussian distributions.

D.2 PHYSICAL PRIOR

Rendering likelihood alone is insufficient to reconstruct a physically plausible 4D dynamic scene
representation. We also integrate a physics prior into our likelihood model. The physical process can
be modeled as a Markov model Salzmann & Urtasun (2011), where the physical prior distribution of
rotation Rt and translation Tt at time step t can be expressed as:

p(St|S<t) = q(Rt, Tt | R̂t−1, T̂t−1). (11)

However, it’s nontrivial to directly model the physical functions. Most current studies on physical
engines within neural networks only focus on simple shapes like cubes as the complexity in shapes
of objects and the interaction process is hard to model. On the other hand, computational physical
engines such as Bullet excel at modeling physical functions for any known shapes but are not
differentiable and challenging to integrate into the de-rendering process during inference.

In our method, we modify the discriminative physics engineering into a probabilistic model by
introducing an uncertainty term ε ∼ N (0, σ2). Denoted a physics engine as PE(·), then the q(Rt, Tt |
R̂t−1, T̂t−1) can be assumed by:

(Rt, Tt) = PE(R̂t−1, T̂t−1) + ε, (12)

(Rt, Tt) | (R̂t−1, T̂t−1) ∼ N (PE(R̂t−1, T̂t−1), σ
2I), (13)

q(Rt, Tt | R̂t−1, T̂t−1) = C exp

(
− 1

2σ2
[(Rt, Tt)− µ]

T
[(Rt, Tt)− µ]

)
, (14)

where µ = PE(R̂t−1, T̂t−1), C = 1/
√

(2π)k|σ2I|.
Finally, the rotation Rt and translation Tt can be estimated by maximizing the joint likelihood of the
rendering likelihood and the physical prior likelihood:

R̂t, T̂t = arg max
Rt,Tt

p(Ft | Oc, Rt, Tt, B) · q(Rt, Tt | R̂t−1, T̂t−1). (15)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Relationship to Bayes-Kalman filtering The conceptual ideas are directly inspired by the classic
ideas of Bayes-Kalman filtering where the goal is to estimate a hidden state based on a sequence of
observations. Bayes-Kalman filtering consists of updating a probability distribution of the hidden
state by a prediction step followed by a correction step which incorporates evidence from a new
observation. It uses a dynamic model for how the hidden state changes with time which is directly
analogous to our physical prior. It has an observation model, corresponding to our scene parser,
for how new observations give evidence for the hidden state. Bayes-Kalman, however, is difficult
to implement in complex applications, like ours, because it requires us to represent and update a
complex probability distribution. The standard approach for doing this is particle filtering where
the probability distribution is represented by a set of point particles which are updated during the
prediction and correction steps. This is also challenging so instead we use a simple approximation
which essentially uses a single particle. In future work we will experiments to see if our model gives
even better results if instead of this approximation we use particle filtering.

E DETAILS OF THE BASELINE MODELS

We select 7 representative models from the following 3 categories as baseline models on DynSuper-
CLEVR.

(1) Simple classification-based methods encode videos with a CNN backbone and predict answers
with a classifier head. Specifically, we consider CNN+LSTM, which aggregates frame-level CNN
features and encodes the question using an LSTM, and FiLM Perez et al. (2018), which incorporates
a feature-level linear modulation module for question answering.

(2) Neural symbolic models first parse the scene into object instances and then execute a program
for question answering. NS-DR Yi et al. (2019) adopts Mask R-CNN for object detection. We
modify it with the new program in DynSuperCLEVR and evaluate it on factual questions. Since
their 2D simulator is unable to reason about objects in 3D, we do not compare it on predictive and
counterfactual questions. PO3D-VQA Wang et al. (2024) uses a 3D detector and reconstructs an
explicit 3D scene representation for each frame. We extend the model for VideoQA by computing
dynamic properties from object locations and predicting collisions by filtering the distance between
objects.

(3) Large multimodal models leverage large-scale image-text or video-text data for pretraining and
achieve strong generalization abilities across various video-text tasks. We consider Video-LLaVA Lin
et al. (2023) and PLLaVA Xu et al. (2024) for zero-shot evaluation, where a GPT model is used to
evaluate the correctness of free-form answers. Additionally, we fine-tune a pretrained InternVideo
Wang et al. (2022) model that predicts answers using a classifier head. Finally, we evaluate the
proprietary model GPT-4o by accessing it through the OpenAI API with customized system prompts.
Specifically, we consider two settings: (i) asking the GPT-4o model to treat the problem as a multiple-
choice question and predict the answer directly (see Figure 9); and (ii) asking the GPT-4o model to
think step by step, provide necessary reasoning about the dynamic and physical events, and then give
the answer to the question (see Figure 10).
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Zero-shot evaluation of GPT-4o with multiple choice questions

System:
You are an intelligent chatbot designed for answering questions based on eight frames
obtained from a video.

Your task is to analyze the frames of the video, identify the nature of the object movements
(such as speed, acceleration, and direction), and then determine the answer to the question.

INSTRUCTIONS:
Directly answer the question with one of the choices: airliner, articulated bus, back, blue,
brown, chopper motorcycle, cruiser, cyan, dirtbike, double bus, down, false, fighter aircraft,
front, gray, green, jet, left, minivan, mountain bike, purple, red, right, school bus, scooter,
sedan, suv, tandem bike, truck, true, up, utility bike, wagon, yellow.

User:
Watch the eight frames in the video and answer the question: Is the red mountain moving fast
at the beginning?

GPT-4o:
false

Figure 9: Zero-shot evaluation of GPT-4v with multiple choice questions. We evaluate the
proprietary model GPT-4o by accessing the model through OpenAI API with customized system
prompts.
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Zero-shot evaluation of GPT-4o with step-by-step reasoning

System:
You are an intelligent chatbot designed for answering questions based on eight frames
obtained from a video.

Your task is to analyze the frames of the video, identify the nature of the object movements
(such as speed, acceleration, and direction), and then determine the answer to the question.

INSTRUCTIONS:
- Think step by step, reason about the dynamic and physical events, and then give the answer.
- End your response with the exact answer to the question, from one of the choices: airliner,
articulated bus, back, blue, brown, chopper motorcycle, cruiser, cyan, dirtbike, double bus,
down, false, fighter aircraft, front, gray, green, jet, left, minivan, mountain bike, purple, red,
right, school bus, scooter, sedan, suv, tandem bike, truck, true, up, utility bike, wagon, yellow.

User:
Watch the eight frames in the video. Think step by step and then answer the question: Is the
red mountain moving fast at the beginning?

GPT-4o:
To determine if the red mountain bike is moving fast at the beginning of the sequence, we
need to closely analyze its position in the first few frames:

1. In the first frame, observe the position of the red mountain bike.
2. In the second frame, note any change in position of the red mountain bike.
3. Compare the distance covered by the red mountain bike between these frames.

If the red mountain bike has moved a significant distance between the first two frames, it is
moving fast at the beginning. If it has moved only a small distance, it is not moving fast.

From the frames:

- The red mountain bike does not show significant movement between the first two frames.
- The red mountain bike appears to be in almost the same position.
Thus, the red mountain bike does not move fast at the beginning.

The answer is: false.

Figure 10: Zero-shot evaluation of GPT-4v with step-by-step reasoning. We evaluate the propri-
etary model GPT-4V by accessing the model through OpenAI API with customized system prompts.
Specifically, we encourage the GPT-4o model to think step by step and reason about the dynamic and
physical events before predicting the answer.
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