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ABSTRACT

Learning to restore multiple image degradations within a single model is quite
beneficial for real-world applications. Nevertheless, existing works typically con-
centrate on regarding each degradation independently, while their relationship has
been less exploited to ensure the synergistic learning. To this end, we revisit the
diverse degradations through the lens of singular value decomposition, with the
observation that the decomposed singular vectors and singular values naturally
undertake the different types of degradation information, dividing various restora-
tion tasks into two groups, i.e., singular vector dominated and singular value dom-
inated. The above analysis renders a more unified perspective to ascribe the di-
verse degradations, compared to previous task-level independent learning. The
dedicated optimization of degraded singular vectors and singular values inher-
ently utilizes the potential relationship among diverse restoration tasks, attributing
to the Decomposition Ascribed Synergistic Learning (DASL). Specifically, DASL
comprises two effective operators, namely, Singular VEctor Operator (SVEO) and
Singular VAlue Operator (SVAO), to favor the decomposed optimization, which
can be lightly integrated into existing convolutional image restoration backbone.
Moreover, the congruous decomposition loss has been devised for auxiliary. Ex-
tensive experiments on blended five image restoration tasks demonstrate the ef-
fectiveness of our method, including image deraining, image dehazing, image de-
noising, image deblurring, and low-light image enhancement.

1 INTRODUCTION

Image restoration aims to recover the latent clean images from their degraded observations, and has
been widely applied to a series of real-world scenarios, such as photo processing, autopilot, and
surveillance. Compared to single-degradation removal Zhou et al. (2021); Xiao et al. (2022); Qin
et al. (2020); Song et al. (2023); Lehtinen et al. (2018); Lee et al. (2022); Pan et al. (2020); Nah
et al. (2021); Li et al. (2023); Zhang et al. (2022), the recent flourished multi-degradation learning
methods have gathered considerable attention, due to their convenient deployment. However, every
rose has its thorn. How to ensure the synergy among multiple restoration tasks demands a dedicated
investigation, and it is imperative to include their implicit relationship into consideration.

Generally, existing multi-degradation learning methods concentrated on regarding each degradation
independently. For instance, Chen et al. (2021a); Li et al. (2020); Valanarasu et al. (2022) propose to
deal with different restoration tasks through separate subnetworks or distinct transformer queries. Li
et al. (2022); Chen et al. (2022b) propose to distinguish diverse degradation representations via con-
trastive learning. Remarkably, there are also few attempts devoted to duality degradation removal
with synergistic learning. Zhang et al. proposes to leverage the blurry and noisy pairs for joint
restoration as their inherent complementarity during digital imaging. Zhou et al. (2022b) proposes a
unified network with low-light enhancement encoder and deblurring decoder to address hybrid dis-
tortion. Wang et al. (2022a) proposes to quantify the relationship between arbitrary two restoration
tasks, and improve the performance of the anchor task with the aid of another task. However, few
efforts have been made toward synergistic learning among more restoration tasks, and there is a des-
perate lack of perspective to revisit the diverse degradations for combing their implicit relationship,
which set up the stage for this paper.
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Figure 1: An illustration of the decomposition ascribed analysis on various image restoration tasks
through the lens of the singular value decomposition. The decomposed singular vectors and singular
values undertake the different types of degradation information as we recompose the degraded im-
age with portions of the clean counterpart, ascribing diverse restoration tasks into two groups, i.e.,
singular vector dominated rain, noise, blur, and singular value dominated low-light, haze. Dedicated
to the decomposed optimization of degraded singular vectors and singular values rendering a more
unified perspective for synergistic learning, compared to previous task-level independent learning.

To solve the above problem, we propose to revisit diverse degradations through the lens of singular
value decomposition, and conduct experiments on five common image restoration tasks, including
image deraining, dehazing, denoising, deblurring, and low-light enhancement. As shown in Fig. 1,
it can be observed that the decomposed singular vectors and singular values naturally undertake the
different types of degradation information, in that the corruptions fade away when we recompose
the degraded image with portions of the clean counterpart. Thus, various restoration tasks can be
ascribed into two groups, i.e., singular vector dominated degradations and singular value dominated
deagradations. The statistic results in Fig. 2 further validate this phenomenon, where the quantified
recomposed image quality and the singular distribution discrepancy have been presented. There-
fore, the potential relationship emerged among diverse restoration tasks could be inherently utilized
through the decomposed optimization of singular vectors and singular values, considering their as-
cribed common properties and significant discrepancies.

In this way, we decently convert the previous task-level independent learning into more unified
singular vectors and singular values learning, and form our method, Decomposition Ascribed Syn-
ergistic Learning (DASL). Basically, one straightforward way to implement our idea is to directly
perform the decomposition on latent high-dimensional tensors, and conduct the optimization for
decomposed singular vectors and singular values, respectively. However, the huge computational
overhead is non-negligible. To this end, two effective operators have been developed to favor the
decomposed optimization, namely, Singular VEctor Operator (SVEO) and Singular VAlue Operator
(SVAO). Specifically, SVEO takes advantage of the fact that the orthogonal matrices multiplica-
tion makes no effect on singular values and only impacts singular vectors, which can be realized
through simple regularized convolution layer. SVAO resorts to the signal formation homogeneity
between Singular Value Decomposition and the Inverse Discrete Fourier Transform, which can both
be regarded as a weighted sum on a set of basis. While the decomposed singular values and the
transformed fourier coefficients inherently undertake the same role for linear combination. And the
respective base components share similar principle, i.e.from outline to details. Therefore, with ap-
proximate derivation, the unattainable singular values optimization can be translated to accessible
spectrum maps. We show that the fast fourier transform is substantially faster than the singular value
decomposition. Furthermore, the congruous singular decomposition loss has been devised for auxil-
iary. The proposed DASL can be lightly integrated into existing convolutional restoration backbone
for decomposed optimization.

2



Under review as a conference paper at ICLR 2024

Figure 2: The statistic validation that the decomposed singular vectors and singular values undertake
the different types of degradation information. (a) The reconstruction error between the recomposed
image and paired clean image on five common image restoration tasks. Low error denotes the
degradation primarily distributed in the replaced portion of the image. (b) The boxplot comparison
of singular value distribution between the degraded image and corresponding clean image, where
the singular value dominated low-light and haze exhibit extraordinary difference. (c) The singular
vector difference on separate orders of the component between the degraded image and clean image,
where the singular vector dominated rain, noise, and blur present more disparity. The results are
obtained under calculation on 100 images for each restoration task.

The contributions of this work are summarized below:

• We take a step forward to revisit the diverse degradations through the lens of singular value
decomposition, and observe that the decomposed singular vectors and singular values natu-
rally undertake the different types of degradation information, ascribing various restoration
tasks into two groups, i.e.singular vector dominated and singular value dominated.

• We propose the Decomposition Ascribed Synergistic Learning (DASL) to dedicate the
decomposed optimization of degraded singular vectors and singular values respectively,
which inherently utilizes the potential relationship among diverse restoration tasks.

• Two effective operators have been developed to favor the decomposed optimization, along
with a congruous decomposition loss, which can be lightly integrated into existing convo-
lutional image restoration backbone. Extensive experiments on five image restoration tasks
demonstrate the effectiveness of our method.

2 RELATED WORK

Image Restoration. Image restoration aims to recover the latent clean images from degraded ob-
servations, which has been a long-term problem. Traditional image restoration methods typically
concentrated on incorporating various natural image priors along with hand-crafted features for spe-
cific degradation removal Babacan et al. (2008); He et al. (2010); Kundur & Hatzinakos (1996). Re-
cently, learning-based methods have made compelling progress on various image restoration tasks,
including image denoising Lehtinen et al. (2018); Lee et al. (2022), image deraining Zhou et al.
(2021); Xiao et al. (2022), image deblurring Pan et al. (2020); Nah et al. (2021), image dehazing
Zheng et al. (2021); Song et al. (2023), and low-light image enhancement Li et al. (2023); Guo
et al. (2020), etc. Moreover, numerous general image restoration methods have also been proposed.
Zamir et al. (2021; 2022a); Fu et al. (2021) propose the balance between contextual information and
spatial details. Mou et al. (2022) formulates the image restoration via proximal mapping for iterative
optimization. Zhou et al. (2022a; 2023) proposes to exploit the frequency characteristics to handle
diverse degradations. Additionally, various transformer-based methods Zamir et al. (2022b); Liu
et al. (2022); Liang et al. (2021); Wang et al. (2022c) have also been investigated, due to their im-
pressive performance in modeling global dependencies and superior adaptability to input contents.

Recently, recovering multiple image degradations within a single model has been coming to the
fore, as they are more in line with real-world applications. Zhang et al. proposes to leverage the
short-exposure noisy image and the long-exposure blurry image for joint restoration as their in-
herent complementarity during digital imaging. Zhou et al. (2022b) proposes a unified network
to address low-light image enhancement and image deblurring. Furthermore, numerous all-in-one
fashion methods Chen et al. (2021a); Li et al. (2020; 2022); Valanarasu et al. (2022); Chen et al.
(2022b) have been proposed to deal with multiple degradations. Zhang et al. (2023) proposes to
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correlate various degradations through underlying degradation ingredients. While Park et al. (2023)
advocates to separate the diverse degradations propcessing with specific attributed discriminative
filters. Besides, most of existing methods concentrated on the network architecture design and few
attempts have been made toward exploring the synergy among diverse image restoration tasks.

Tensor Decomposition. Tensor decomposition has been widely applied to a series of fields, such
as model compression Jie & Deng (2022); Obukhov et al. (2020), neural rendering Obukhov et al.
(2022), multi-task learning Kanakis et al. (2020), and reinforcement learning Sozykin et al.. In
terms of image restoration, a large number of decomposition-based methods have been proposed for
hyperspectral and multispectral image restoration Peng et al. (2022); Wang et al. (2020; 2017); Peng
et al. (2014), in that establishing their spatial-spectral correlation with low-rank approximation.

Alternatively, a surge of filter decomposition methods toward networks have also been developed.
Zhang et al. (2015); Li et al. (2019); Jaderberg et al. (2014) propose to approximate the original
filters with efficient representations to reduce the network parameters and inference time. Kanakis
et al. (2020) proposes to reparameterize the convolution operators into a non-trainable shared part
and several task-specific parts for multi-task learning. Sun et al. (2022) proposes to decompose the
backbone network via the singular value decomposition, and only finetune the singular values to
preserve the pre-trained semantic clues for few-shot segmentation.

3 METHOD

In this section, we start with introducing the overall framework of our Decomposition Ascribed
Synergistic Learning in Sec. 3.1, and then elaborate the singular vector operator and singular value
operator in Sec. 3.2 and Sec. 3.3, respectively, which forming our core components. The optimiza-
tion objective is briefly presented in Sec. 3.4.

3.1 OVERVIEW

The intention of the proposed Decomposition Ascribed Synergistic Learning (DASL) is to dedicate
the decomposed optimization of degraded singular vectors and singular values respectively, since
they naturally undertake the different types of degradation information as observed in Figs. 1 and 2.
And the decomposed optimization renders a more unified perspective to revisit diverse degradations
for ascribed synergistic learning. Through examining the singular vector dominated degradations
which containing rain, noise, blur, and singular value dominated degradations including hazy, low-
light, we make the following assumptions: (i) The singular vectors responsible for the content infor-
mation and spatial details. (ii) The singular values represent the global statistical properties of the
image. Therefore, the optimization of the degraded singular vectors could be performed throughout
the backbone network. And the optimization for the degraded singular values can be condensed to a
few of pivotal positions. Specifically, we substitute half of the convolution layers with SVEO, which
are uniformly distributed across the entire network. While the SVAOs are only performed at the bot-
tleneck layers of the backbone network. We ensure the compatibility between the optimized singular
values and singular vectors through remaining regular layers, and the proposed DASL can be lightly
integrated into existing convolutional image restoration backbone for decomposed optimization.

3.2 SINGULAR VECTOR OPERATOR

The singular vector operator is proposed to optimize the degraded singular vectors of the latent
representation, and supposed to be decoupled from the optimization of singular values. Explicitly
performing the singular value decomposition on high-dimensional tensors solves this problem nat-
urally with little effort, however, the huge computational overhead is non-negligible. Whether can
we modify the singular vectors with less computation burden. The answer is affirmative and lies in
the orthogonal matrices multiplication.

Theorem 1 For an arbitrary matrix X ∈ Rh×w and random orthogonal matrices P ∈ Rh×h, Q ∈
Rw×w, the products of the PX , XQ, PXQ have the same singular values with the matrix X .

We provide the proof of theorem 1 in the Appendix. In order to construct the orthogonal regularized
operator to process the latent representation, the form of the convolution operation is much eligible
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Figure 3: An illustration of the proposed Singular Vector Operator (SVEO), which is dedicated on
the optimization of the singular vector dominated degradations, i.e.rain, noise, blur. Theorem 1
supports the feasibility and the orthogonal regularization Lorth refers to Eq. 1.

than matrix multiplication, which is agnostic to the input resolution. Hence the distinction between
these two forms of operation ought to be taken into consideration.

Prior works Sedghi et al. (2019); Jain (1989) have shown that the convolution operation y = conv(x)
with kernel size k × k can be transformed to linear matrix multiplication vec(y) = Avec(x).
Supposing the processed tensors y, x ∈ R1×n×n for simplicity, the size of the projection matrix A
will come to be n2 × n2 with doubly block circulant, which is intolerable to enforce the orthogonal
regularization, especially for high-resolution inputs. Another simple way is to employ the 1 × 1
convolution with regularized orthogonality, however, the singular vectors of the latent representation
along the channel dimension will be changed rather than spatial dimension.

Inspired by this point, SVEO proposes to transpose spatial information of the latent representation
X ∈ Rc×h×w to channel dimension with the ordinary unpixelshuffle operation Shi et al. (2016),
resulting in X

′ ∈ Rcr2×h/r×w/r. And then applying the orthogonal regularized 1 × 1 convolution
K ∈ Rcr2×cr2 in this domain, as shown in Fig. 3. Thereby, the degraded singular vectors can be
revised pertinently, and the common properties among various singular vector dominated degrada-
tions can be implicitly exploited. We note that the differences between SVEO and conventional
convolution lie in the following: (i) The SVEO is more consistent with the matrix multiplication as
it eliminates the overlap operation attached to the convolution. (ii) The weights of SVEO are re-
duced to matrix instead of tensor, where the orthogonal regularization can be enforced comfortably.
Besides, compared to the matrix multiplication, SVEO further utilizes the channel redundancy and
spatial adaptivity within a local r × r region for conducive information utilization. The orthogonal
regularization is formulated as

Lorth = ∥WWT ⊙ (1 − I)∥2F , (1)

where W represents the weight matrix, 1 denotes a matrix with all elements set to 1, and I denotes
the identity matrix.

3.3 SINGULAR VALUE OPERATOR

The singular value operator endeavors to optimize the degraded singular values of the latent repre-
sentation while supposed to be less entangled with the optimization of singular vectors. However,
considering the inherent inaccessibility of the singular values, it is hard to perform the similar op-
eration as SVEO in the same vein. To this end, we instead resort to reconnoitering the essence
of singular values and found that it is eminently associated with inverse discrete fourier transform.
We provide the formation of a two-dimensional signal represented by singular value decomposition
(SVD) and inverse discrete fourier transform (IDFT) in Eq. 2 and Eq. 3 as follows.

X = UΣV T =
∑k

i=1 σiuiv
T
i =

∑k
i=1 σiXi, (2)

where X ∈ Rh×w represents the latent representation and U ∈ Rh×h, V ∈ Rw×w represent
the decomposed singular vectors with columns ui, vi, k = min(h,w) denotes the rank of X . Σ
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Figure 4: An illustration of the core idea of the proposed Singular Value Operator (SVAO), which is
dedicated on the optimization of the singular value dominated degradations, i.e.haze and low-light.
Two-dimensional signal formations are provided for simplicity.

represents the singular values with diagonal elements σi.

X =
1

hw

h−1∑
u=0

w−1∑
v=0

G(u, v)ej2π(
um
h + vn

w ) =
1

hw

h−1∑
u=0

w−1∑
v=0

G(u, v)ϕ(u, v), (3)

where G(u, v) denotes the coefficients of the fourier transform of X , and ϕ(u, v) denotes the corre-
sponding two-dimensional wave component. m ∈ Rh−1, n ∈ Rw−1. Observing that both SVD and
IDFT formation can be regarded as a weighted sum on a set of basis, i.e.uiv

T
i and ej2π(

um
h + vn

w ),
while the decomposed singular values σi and the transformed fourier coefficients G(u, v) inher-
ently undertake the same role for the linear combination of various bases. In Fig. 5, we present
the visualized comparison of the reconstruction results using partial components of SVD and IDFT
progressively, while both formations conform to the principle from outline to details. Therefore,
we presume that the SVD and IDFT operate in a similar way in terms of signal formation, and the
combined coefficients σi and G(u, v) can be approximated to each other.

Table 1: Time comparison (ms) between SVD and
FFT formation for signal representation on high-
dimensional tensor, with supposed size 64× 128×
128, where the Decom. and Comp. represent the
decomposition and composition.

Formation Decom. time Comp.time Total time
SVD 180.243 0.143 180.386
FFT 0.159 0.190 0.349

In this way, we successfully translate the
unattainable singular values optimization to
the accessible fourier coefficients optimiza-
tion, as shown in Fig. 4. Considering the de-
composed singular values typically character-
ize the global statistics of the signal, SVAO
thus concentrates on the optimization of the
norm of G(u, v) for consistency, i.e.the am-
plitude map, since the phase of G(u, v) im-
plicitly represents the structural content Stark
(2013); Oppenheim & Lim (1981) and more in line with the singular vectors. The above two-
dimensional signal formation can be easily extended to the three-dimensional tensor to perform the
1 × 1 convolution. Since we adopt the SVAO merely in the bottleneck layers of the backbone net-
work with low resolution inputs, and the fast fourier transform is substantially faster than the singular
value decomposition; see Table 1. The consequent overhead of SVAO can be greatly compressed.
Note that the formation of Eq. (3) is a bit different from the definitive IDFT, and we provide the
equivalence proof in the Appendix.

3.4 OPTIMIZATION OBJECTIVE

The decomposition loss Ldec is developed to favor the decomposed optimization congruously, for-
mulated as

Ldec =

3∑
i=1

β∥U (i)
recV

(i)T
rec − U

(i)
cleV

(i)T
cle ∥1 + ∥Σ(i)

rec − Σ
(i)
cle∥1, (4)

where Ucle, Vcle, and Σcle represent the decomposed singular vectors and singular values of the clean
image, Urec, Vrec, and Σrec represent the decomposed singular vectors and singular values of the
recovered image. For simplicity, we omit the pseudo-identity matrix between UV T for dimension
transformation. β denotes the weight.

The overall optimization objective of DASL comprises the orthogonal regularization loss Lorth and
the decomposition loss Ldec, together with the original loss functions of the integrated backbone
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Figure 5: Visual comparison of the progres-
sive reconstruction results with SVD and
IDFT components, respectively. First row,
IDFT reconstruction result. Second row,
SVD reconstruction result. Both conform to
the principle from outline to details.

Table 2: Quantitative results on five common image restoration datasets with state-of-the-art general
image restoration and all-in-one methods. The baseline results are in grey.

Rain100L BSD68 GoPro SOTS LOL Average ParamsMethod PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

NAFNet 35.56 0.967 31.02 0.883 26.53 0.808 25.23 0.939 20.49 0.809 27.76 0.881 17.11M
HINet 35.67 0.969 31.00 0.881 26.12 0.788 24.74 0.937 19.47 0.800 27.40 0.875 88.67M
MIRNetV2 33.89 0.954 30.97 0.881 26.30 0.799 24.03 0.927 21.52 0.815 27.34 0.875 5.86M
SwinIR 30.78 0.923 30.59 0.868 24.52 0.773 21.50 0.891 17.81 0.723 25.04 0.835 0.91M
Restormer 34.81 0.962 31.49 0.884 27.22 0.829 24.09 0.927 20.41 0.806 27.60 0.881 26.13M
MPRNet 38.16 0.981 31.35 0.889 26.87 0.823 24.27 0.937 20.84 0.824 28.27 0.890 15.74M
DGUNet 36.62 0.971 31.10 0.883 27.25 0.837 24.78 0.940 21.87 0.823 28.32 0.891 17.33M

DL 21.96 0.762 23.09 0.745 19.86 0.672 20.54 0.826 19.83 0.712 21.05 0.743 2.09M
Transweather 29.43 0.905 29.00 0.841 25.12 0.757 21.32 0.885 21.21 0.792 25.22 0.836 37.93M
TAPE 29.67 0.904 30.18 0.855 24.47 0.763 22.16 0.861 18.97 0.621 25.09 0.801 1.07M
IDR 35.63 0.965 31.60 0.887 27.87 0.846 25.24 0.943 21.34 0.826 28.34 0.893 15.34M
AirNet 32.98 0.951 30.91 0.882 24.35 0.781 21.04 0.884 18.18 0.735 25.49 0.846 8.93M

DASL+MPRNet 38.02 0.980 31.57 0.890 26.91 0.823 25.82 0.947 20.96 0.826 28.66 0.893 15.15M
DASL+DGUNet 36.96 0.972 31.23 0.885 27.23 0.836 25.33 0.943 21.78 0.824 28.51 0.892 16.92M
DASL+AirNet 34.93 0.961 30.99 0.883 26.04 0.788 23.64 0.924 20.06 0.805 27.13 0.872 5.41M

network Lori, formulated as

Ltotal = Lori + λorthLorth + λdecLdec, (5)

where λorth and λdec denote the balanced weights.

4 EXPERIMENTS

In this section, we first clarify the experimental settings, and then present the qualitative and quan-
titative comparison results with eleven baseline methods for unified image restoration. Moreover,
extensive ablation experiments are conducted to verify the effectiveness of our method.

4.1 IMPLEMENTATION DETAILS

Tasks and Metrics. We train our method on five image restoration tasks synchronously. The cor-
responding training set includes Rain200L Yang et al. (2017) for image deraining, RESIDE-OTS Li
et al. (2018) for image dehazing, BSD400 Martin et al. (2001), WED Ma et al. (2016) for image de-
noising, GoPro Nah et al. (2017) for image deblurring, and LOL Chen Wei (2018) for low-light im-
age enhancement. For evaluation, 100 image pairs in Rain100L Yang et al. (2017), 500 image pairs
in SOTS-Outdoor Li et al. (2018), total 192 images in BSD68 Martin et al. (2001), Urban100 Huang
et al. (2015) and Kodak24 Franzen (1999), 1111 image pairs in GoPro Nah et al. (2017), 15 image
pairs in LOL Chen Wei (2018) are utilized as the test set. We report the Peak Signal to Noise Ratio
(PSNR) and Structural Similarity (SSIM) as numerical metrics in our experiments.

Training. We implement our method on single NVIDIA Geforce RTX 3090 GPU. For fair compar-
ison, all comparison methods have been retrained in the new mixed dataset with their default hyper
parameter settings. We adopt the MPRNet Zamir et al. (2021), DGUNet Mou et al. (2022), and
AirNet Li et al. (2022) as our baseline to validate the proposed Decomposition Ascribed Synergistic
Learning. The entire network is trained with Adam optimizer for 1200 epochs. We set the batch size
as 8 and random crop 128x128 patch from the original image as network input after data augmenta-
tion. We set the β in Ldec as 0.01, and the λorth, λdec are set to be 1e-4 and 0.1, respectively. We
perform evaluations every 20 epochs with the highest average PSNR scores as the final parameters
result. More model details and training protocols are presented in the supplementary material.
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Table 3: Quantitative results of image denoising on
BSD68, Urban100 and Kodak24 datasets (PSNR↑).

BSD68 Urban100 Kodak24
Method σ=15 σ=25 σ=50 σ=15 σ=25 σ=50 σ=15 σ=25 σ=50

NAFNet 33.67 31.02 27.73 33.14 30.64 27.20 34.27 31.80 28.62
HINet 33.72 31.00 27.63 33.49 30.94 27.32 34.38 31.84 28.52
MIRNetV2 33.66 30.97 27.66 33.30 30.75 27.22 34.29 31.81 28.55
SwinIR 33.31 30.59 27.13 32.79 30.18 26.52 33.89 31.32 27.93
Restormer 34.03 31.49 28.11 33.72 31.26 28.03 34.78 32.37 29.08
MPRNet 34.01 31.35 28.08 34.13 31.75 28.41 34.77 32.31 29.11
DGUNet 33.85 31.10 27.92 33.67 31.27 27.94 34.56 32.10 28.91

DL 23.16 23.09 22.09 21.10 21.28 20.42 22.63 22.66 21.95
Transweather 31.16 29.00 26.08 29.64 27.97 26.08 31.67 29.64 26.74
TAPE 32.86 30.18 26.63 32.19 29.65 25.87 33.24 30.70 27.19
IDR 34.11 31.60 28.14 33.82 31.29 28.07 34.78 32.42 29.13
AirNet 33.49 30.91 27.66 33.16 30.83 27.45 34.14 31.74 28.59

DASL+MPRNet 34.16 31.57 28.18 34.21 31.82 28.47 34.91 32.46 29.18
DASL+DGUNet 33.94 31.23 27.94 33.74 31.31 27.96 34.69 32.16 28.93
DASL+AirNet 33.69 30.99 27.68 33.35 30.89 27.46 34.32 31.79 28.61

Table 4: Evaluating the scalability of decom-
posed optimization on the full test set with
merely trained on singular vector dominated
degradations (vec.) and singular value domi-
nated degradations (val.) (PSNR↑).

Method Rain100L BSD68 GoPro SOTS LOL
MPRNet (vec.) 39.47 31.50 27.61 15.91 7.77
MPRNet (val.) - - - - -
DGUNet (vec.) 39.04 31.46 28.22 15.92 7.76
DGUNet (val.) 23.10 20.39 21.84 24.59 20.45
AirNet (vec.) 39.04 31.46 28.22 15.92 7.76
AirNet (val.) 23.10 20.39 21.84 24.59 20.45
DASL+MPRNet (vec.) 39.39 31.63 27.57 17.21 11.23
DASL+MPRNet (val.) 21.87 19.96 21.35 25.13 20.33
DASL+DGUNet (vec.) 39.11 31.55 28.16 16.87 10.21
DASL+DGUNet (val.) 23.19 20.28 22.69 25.05 20.87
DASL+AirNet (vec.) 39.11 31.55 28.16 16.87 10.21
DASL+AirNet (val.) 23.19 20.28 22.69 25.05 20.87

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

We compare our DASL with eleven state-of-the-art methods, including general image restora-
tion methods: NAFNet Chen et al. (2022a), HINet Chen et al. (2021b), MPRNet Zamir et al.
(2021), DGUNet Mou et al. (2022), MIRNetV2 Zamir et al. (2022a), SwinIR Liang et al. (2021),
Restormer Zamir et al. (2022b), and all-in-one fashion methods: DL Fan et al. (2019), Tran-
sweather Valanarasu et al. (2022), TAPE Liu et al. (2022), AirNet Li et al. (2022) and IDR Zhang
et al. (2023) on five common image restoration tasks.

Table 2 reports the quantitative comparison results. It can be observed that the performance of the
general image restoration methods is systematically superior to the professional all-in-one fashion
methods when more degradations are involved, attributed to the large model size. While our DASL
further advances the backbone network capability with fewer parameters, owing to the implicit syn-
ergistic learning. Consistent with existing unified image restoration methods Zamir et al. (2022b);
Li et al. (2022), we report the detailed denoising results at different noise ratio in Table 3, where the
performance gain are consistent.

Table 5: Comparison of the model size and compu-
tation complexity between baseline / DASL.

Method Params (M) FLOPs (B) Inference Time (s)
MPRNet 15.74 / 15.15 5575.32 / 2905.14 0.241 / 0.210
DGUNet 17.33 / 16.92 3463.66 / 3020.22 0.397 / 0.391
AirNet 8.93 / 5.41 1205.09 / 767.89 0.459 / 0.190

In Table 5, we present the computation over-
head involved in DASL, where the FLOPs
and inference time are calculated over 100
testing images with the size of 512×512. It
can be observed that our DASL substantially
reduces the computation complexity of the
baseline methods with considerable inference
acceleration, e.g.12.86% accelerated on MPRNet and 58.61% accelerated on AirNet. We present the
bountiful visual comparison results in the Appendix, while our DASL exhibits superior visual re-
covery quality, i.e.more precise details in singular vector dominated degradations and more stable
global recovery in singular value dominated degradations.

4.3 ABALATION STUDIES

We present the ablation experiments on the combined degradation dataset with MPRNet as the
backbone to verify the effectiveness of our method. In Table 6, we quantitatively evaluate the two
developed operators SVEO and SVAO, and the decomposition loss. The metrics are reported on the
each of degradations in detail, from which we can make the following observations: a) Both SVEO
and SVAO are beneficial for advancing the unified degradation restoration performance, attributing
to the ascribed synergistic learning. b) The congruous decomposition loss is capable to work alone,
and well collaborated with developed operators for decomposed optimization. c) The orthogonal
regularization is crucial to the reliable optimization of SVEO for preventing the performance drop.

To further verify the scalability of the decomposed optimization, Table 4 evaluates the performance
with merely trained on singular vector dominated degradations (vec.) and singular value dominated
degradations (val.). While some properties have been observed: a) Basically, the baseline methods
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Table 6: Ablation experiments on the components design.

Rain100L BSD68 GoPro SOTS LOL
Method SVEO SVAO Lorth Ldec PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
Baseline 38.16 0.981 31.35 0.889 26.87 0.823 24.27 0.937 20.84 0.824
With no orth. SVEO ✓ 37.73 0.981 31.31 0.889 26.79 0.819 24.63 0.939 20.83 0.824
With SVAO ✓ 37.92 0.980 31.41 0.889 26.85 0.821 25.58 0.943 21.05 0.828
With SVEO ✓ ✓ 38.04 0.981 31.46 0.890 26.97 0.826 25.53 0.945 20.76 0.822
With SVEO and SVAO ✓ ✓ ✓ 38.01 0.980 31.53 0.890 26.94 0.825 25.63 0.948 20.92 0.826
With Ldec ✓ 38.10 0.982 31.39 0.889 26.78 0.819 24.70 0.942 20.98 0.827
DASL+MPRNet ✓ ✓ ✓ ✓ 38.02 0.980 31.57 0.890 26.91 0.823 25.82 0.947 20.96 0.826

Figure 6: Evaluating the synergy effect through
training trajectory comparison between baseline
and DASL on vec. dominated degradations.

Figure 7: Evaluating the synergy effect through
training trajectory comparison between baseline
and DASL on val. dominated degradations.

concentrate on the trainable degradations, while our DASL further contemplates the untrainable
ones in virtue of its slight task dependency. b) The performance of MPRNet on val. is unattainable
due to the non-convergence, however, our DASL successfully circumvents this drawback owing to
the more unified decomposed optimization on singular values rather than task-level learning. c) The
vec. seems to be supportive to the restoration performance of val., see the comparison of Tables 2
and 4, indicating the potential relationship among decomposed two types of degradations.

We present the comparison of the training trajectory between baseline and DASL on singular vector
dominated and singular value dominated degradations in Figs. 6 and 7. It can be observed that our
DASL significantly suppresses the drastic optimization process, retaining the overall steady to better
convergence point with even fewer parameters, attributing to the ascribed synergistic learning.

4.4 LIMITATION AND FUTURE WORKS

Despite the great progress that DASL has been made in ascribing the implicit relationship among
diverse degradations for synergistic learning, the more sophisticated correlations demand further
investigation. We notice that beyond the decomposed singular vectors and singular values, the dis-
tribution discrepancy of various degradations on separate orders of decomposed components ex-
hibits the splendid potential, which can be glimpsed from Fig. 2. Additionally, how to leverage and
represent their sophisticated relationship in a unified framework remains an open problem.

5 CONCLUSION

In this paper, we revisit the diverse degradations through the lens of singular value decomposi-
tion to excavate their relationship, and observed that the decomposed singular vectors and singular
values naturally undertake the different types of degradation information, ascribing various restora-
tion tasks into two groups, i.e.singular vector dominated degradations and singular value dominated
degradations. The proposed Decomposition Ascribed Synergistic Learning dedicates the decom-
posed optimization of degraded singular vectors and singular values respectively, rendering a more
unified perspective to inherently utilize the potential relationship among diverse restoration tasks
for ascribed synergistic learning. Furthermore, two effective operators SVEO and SVAO have been
developed to favor the decomposed optimization, along with a congruous decomposition loss, which
can be lightly integrated into existing convolutional image restoration backbone. Extensive experi-
ments on blended five image restoration tasks validate the effectiveness of the proposed method.
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A PROOF OF THE PROPOSITIONS

A.1 PROOF OF THEOREM 1

Theorem 1 For an arbitrary matrix X ∈ Rh×w and random orthogonal matrices P ∈ Rh×h, Q ∈
Rw×w, the products of the PX , XQ, PXQ have the same singular values with the matrix X .

Proof. According to the definition of Singular Value Decomposition (SVD), we can decompose ma-
trix X ∈ Rh×w into USV T , where U ∈ Rh×h and V ∈ Rw×w indicate the orthogonal singular vec-
tor matrices, S ∈ Rh×w indicates the diagonal singular value matrix. Thus X

′
=PXQ=PUSV TQ.

Denotes U
′
=PU and V

′T =V TQ, then X
′

can be decomposed into U
′
SV

′T if U
′

and V
′T are

orthogonal matrices.

U
′−1 = (PU)−1 = U−1P−1 = UTPT = (PU)T = U

′T (1)

(V
′T )−1 = (V TQ)−1 = Q−1(V T )−1 = QTV = (V TQ)T = V

′
(2)

Therefore, U
′
U

′T = I and V
′TV

′
= I , where I denotes the identity matrix, and U

′
, V

′T are
orthogonal. X

′
and X have the same singular values S, and the singular vectors of X can be

orthogonally transformed to PU , QTV . Correspondingly, it can be easily extended to the case of
PX and XQ. □

A.2 EQUIVALENCE PROOF OF EQUATION 3 AND IDFT

Proposition. The signal formation principle in Equation 3 is equivalence to the definitive Inverse
Discrete Fourier Transform (IDFT), where we restate the Equation 3 as following:

X =
1

hw

h−1∑
u=0

w−1∑
v=0

G(u, v)ej2π(
um
h + vn

w ), m ∈ Rh−1, n ∈ Rw−1. (3)

Proof. For the two-dimensional signal X ∈ Rh×w, we can represent any point on it through IDFT.
Supposing (m,n) and (m

′
, n

′
) are two random points on X , where m, m

′ ∈ [0, h-1], n, n
′ ∈ [0,

w-1], and (m,n) ̸= (m
′
, n

′
), we have

X(m,n) =
1

hw

h−1∑
u=0

w−1∑
v=0

G(u, v)ej2π(
um
h + vn

w ), (4)

X(m
′
, n

′
) =

1

hw

h−1∑
u=0

w−1∑
v=0

G(u, v)ej2π(
um

′

h + vn
′

w ). (5)

X(m,n) represents the signal value at (m,n) position on X , and the same as X(m
′
, n

′
). Thus, we

can rewrite X as

X =

 X(0, 0) · · · X(0, w − 1)
...

. . .
...

X(h− 1, 0) · · · X(h− 1, w − 1)



=
1

hw

h−1∑
u=0

w−1∑
v=0

G(u, v) •


ej2π(

u0
h + v0

w ) · · · ej2π(
u0
h +

v(w−1)
w )

...
. . .

...
ej2π(

u(h−1)
h + v0

w ) · · · ej2π(
u(h−1)

h +
v(w−1)

w )


=

1

hw

h−1∑
u=0

w−1∑
v=0

G(u, v)ej2π(
um
h + vn

w ), (6)
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where m ∈ Rh−1, n ∈ Rw−1. And the two-dimensional wave ej2π(
um
h + vn

w ) ∈ Rh−1×w−1 denotes
the base component. Therefore, the formation principle of Eq. (3) is equivalent to the definitive
IDFT, i.e.Eqs. (4) and (5). □

B MODEL DETAILS AND TRAINING PROTOCOLS

We implement our DASL with integrated MPRNet Zamir et al. (2021), DGUNet Mou et al. (2022),
and AirNet Li et al. (2022) backbone to validate the effectiveness of the decomposed optimization.
All experiments are conducted using PyTorch, with model details and training protocols provided in
Table 1. Fig. 1 (a) presents the compound working flow of our operator. Note that the SVAO is only
adopted in the bottleneck layer, as described in Sec. 3.1. We introduce how we embed our operator
into the backbone network from a microscopic perspective. Sincerely, the most convenient way is
to directly reform the basic block of the backbone network. We present two fashions of the basic
block of baseline in Fig. 1 (b) and (c), where the MPRNet fashion is composed of two basic units,
e.g., channel attention block (CAB) Zhang et al. (2018), and DGUNet is constructed by two vanilla
activated convolutions. We simply replace one of them (dashed line) with our operator to realize the
DASL integration. Note that AirNet shares the similar fashion as MPRNet.

Configurations MPRNet DGUNet AirNet

optimizer Adam Adam Adam
base learning rate 2e-4 1e-4 1e-3
learning rate schedular Cosine decay Cosine decay Linear decay
momentum of Adam β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.99
channel dimension 80 80 256
augmentation RandomCropFlip RandomCropFlip RandomCropFlip
num. of replaced operator 18 14 50
basic block channel attention block activated convolution degradation guided module
optimization objective CharbonnierLoss + EdgeLoss CharbonnierLoss + EdgeLoss L1Loss

Table 1: Model details and training protocols for DASL integrated baselines.

Figure 1: The strategy of model integration with DASL. (a) The working flow of our operator. (b)
The basic building block of MPRNet fashion. (c) The basic building block of DGUNet fashion.

C TRIVIAL ABLATIONS ON OPERATOR DESIGN

The ablation experiment on the choice of scale factor r in SVEO is provided in Table 2. Note that the
larger r will incur larger model size. We empirically set the scale ratio r in SVEO as 2. The working
flow ablation of combined operator is provided in Table 3, and the compound fashion is preferred.

Table 2: Ablation experiments on the scale ra-
tio r in the SVEO (PSNR↑).

Scale ratio r Rain100L SOTS GoPro BSD68 LOL
1 38.01 31.55 26.88 25.84 20.93
2 38.02 31.57 26.91 25.82 20.96
4 38.07 31.58 26.92 25.81 20.98

Table 3: Ablation experiments on the working flow
of the combined operator (PSNR↑).

Working flow Rain100L SOTS GoPro BSD68 LOL
cascaded 38.01 31.55 26.88 25.84 20.87
parallel 38.02 31.57 26.91 25.82 20.88

cascaded + parallel 38.02 31.57 26.91 25.82 20.96

D EXTENSION EXPERIMENTS FOR PROPERTY VALIDATION

In Table 4, we provide the performance of DASL on real-world hybrid image restoration tasks, i.e.,
under-display camera (UDC) image enhancement. Typically, images captured under UDC system
suffer from both blurring due to the point spread function, and lower light transmission rate. Com-
pared to vanilla baseline models, DASL is capable of boosting the performance consistently. Note
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that the above experiments are performed on real-world UDC dataset Zhou et al. (2021) without
any fine-tuning, validating the capability of the model for processing undesirable degradations. Ta-
ble 5 evaluates the potential of DASL integration on transformer-based image restoration backbone.
Albeit the convolution form of the developed decomposed operators, the supposed architecture in-
compatibility problem is not come to be an obstacle. Note that we replace the projection layer at the
end of the attention mechanism with developed operators for transformer-based methods.

Table 4: Quantitative results of real-world hybrid
image restoration tasks (under-display camera im-
age enhancement) on TOLED and POLED datasets.

TOLED POLED
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

MPRNet 24.69 0.707 0.347 8.34 0.365 0.798
DGUNet 19.67 0.627 0.384 8.88 0.391 0.810
AirNet 14.58 0.609 0.445 7.53 0.350 0.820

DASL+MPRNet 25.65 0.733 0.326 8.95 0.392 0.788
DASL+DGUNet 25.25 0.727 0.329 9.80 0.410 0.783
DASL+AirNet 18.83 0.637 0.426 9.13 0.398 0.784

Table 5: Evaluating the generality of the
DASL integration on transformer-based im-
age restoration backbone among five common
image restoration tasks (PSNR↑).

Methods Rain100L BSD68 GoPro SOTS LOL
SwinIR 30.78 30.59 24.52 21.50 17.81
Restormer 34.81 31.49 27.22 24.09 20.41
DASL+SwinIR 33.53 30.84 25.72 24.10 20.36
DASL+Restormer 35.79 31.67 27.35 25.90 21.39

E CULTIVATING THE SVD POTENTIAL FOR IMAGE RESTORATION.

In fact, Singular Value Decomposition (SVD) has been widely applied for a range of image restora-
tion tasks, such as image denoising, image compression, etc., attributing to the attractive rank prop-
erties Sadek (2012) including truncated energy maximization and orthogonal subspaces projection.
The former takes the fact that SVD provides the optima low rank approximation of the signal in
terms of dominant energy preservation, which could greatly benefit the signal compression. The lat-
ter exploits the fact that the separate order of SVD-decomposed components are orthogonal, which
inherently partition the signal into independent rank space, e.g., signal and noise space or range and
null space for further manipulation, supporting the application of image denoising or even prevail-
ing inverse problem solvers Wang et al. (2022b). Moreover, the SVD-based degradation analysis
proposed in this work excavates another promising property of SVD from the vector-value perspec-
tive, which is essentially different from previous rank-based method. Encouragingly, the above two
perspectives have the potential to collaborate well and the separate order property is supposed to be
incorporated into the DASL for sophisticated degradation relationship investigation in future works.
We note that the above two SVD perspectives have the opportunity to collaborate well and the sep-
arate order potential is supposed to be incorporated into the DASL for sophisticated degradation
relationship investigation in future works.

F MORE DECOMPOSITION ASCRIBED ANALYSIS FOR DEGRADATIONS

We provide more visual results of decomposition ascribed analysis for diverse degradations in Figs. 2
and 3, to further verify our observation that the decomposed singular vectors and singular values nat-
urally undertake the different types of degradation information. In Figs. 4 and 5, we provide more
degradation analysis to validate the generality of the proposed decomposition ascribed analysis,
including downsampling, compression, color shifting, underwater enhancement, and sandstorm en-
hancement. The former three types ascribed into singular vector dominated degradations and the
latter two types ascribed into singular value dominated degradations. Note that the aforementioned
analysis also holds for real scene degradation.

G VISUAL COMPARISON RESULTS

We present the visual comparison results of the aforementioned image restoration tasks in Figs. 6
to 10, including singular vector dominated degradations rain, noise, blur, and singular value dom-
inated degradations low-light, haze. It can be observed that our DASL exhibits superior visual
recovery quality in both types of degradation, i.e., more precise content details in singular vector
dominated degradations and more stable global recovery in singular value dominated degradations,
compared to the integrated baseline method.
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Figure 2: An illustration of the decomposition ascribed degradation analysis on various image
restoration tasks through the lens of the singular value decomposition.

Figure 3: An illustration of the decomposition ascribed degradation analysis on various image
restoration tasks through the lens of the singular value decomposition.
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Figure 4: An illustration of the decomposition ascribed degradation analysis on various image
restoration tasks through the lens of the singular value decomposition.

Figure 5: An illustration of the decomposition ascribed degradation analysis on various image
restoration tasks through the lens of the singular value decomposition.
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Rainy Image Rainy NAFNet HINet MPRNet

DGUNet MIRNetV2 Transweather SwinIR TAPE

DL Restormer AirNet DASL+MPRNet GT

Figure 6: Visual comparison with state-of-the-art methods on Rain100L dataset.

Noisy Image Noisy NAFNet HINet MPRNet

DGUNet MIRNetV2 Transweather SwinIR TAPE

DL Restormer AirNet DASL+MPRNet GT

Figure 7: Visual comparison with state-of-the-art methods on BSD68 dataset.

Blurry Image Blurry NAFNet HINet MPRNet

DGUNet MIRNetV2 Transweather SwinIR TAPE

DL Restormer AirNet DASL+MPRNet GT

Figure 8: Visual comparison with state-of-the-art methods on GoPro dataset.
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Hazy Image Hazy NAFNet HINet MPRNet

DGUNet MIRNetV2 Transweather SwinIR TAPE

DL Restormer AirNet DASL+MPRNet GT

Figure 9: Visual comparison with state-of-the-art methods on SOTS dataset.

Low-light Image Low-light NAFNet HINet MPRNet

DGUNet MIRNetV2 Transweather SwinIR TAPE

DL Restormer AirNet DASL+MPRNet GT

Figure 10: Visual comparison with state-of-the-art methods on LOL dataset.
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