> Cogito, ergo sum: A Neurobiologically-Inspired

Cognition-Memory-Growth System for Code Generation

Anonymous ACL submission

Abstract

Large language models-based Multi-Agent Sys-
tems (MAS) have demonstrated promising per-
formance for enhancing the efficiency and ac-
curacy of code generation tasks. However,
most existing methods follow a conventional
sequence of planning, coding, and debugging,
which contradicts the growth-driven nature of
human learning process. Additionally, the fre-
quent information interaction between multi-
ple agents inevitably involves high computa-
tional costs. In this paper, we propose Cogito,
a neurobiologically-inspired multi-agent frame-
work to enhance the problem-solving capabil-
ities in code generation tasks with lower cost.
Specifically, Cogito adopts a reverse sequence:
it first undergoes debugging, then coding, and
finally planning. This approach mimics hu-
man learning and development, where knowl-
edge is acquired progressively. Accordingly,
a hippocampus-like memory module with dif-
ferent functions is designed to work with the
pipeline to provide quick retrieval in similar
tasks. Through this growth-based learning
model, Cogito accumulates knowledge and
cognitive skills at each stage, ultimately form-
ing a Super-Role—an all-capable agent to per-
form the code generation task. Extensive exper-
iments against representative baselines demon-
strate the superior performance and efficiency
of Cogito. The code is publicly available at
anonymous.4open.science/r/test_80EF.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable capabilities in code generation (Chowd-
hery et al., 2022), testing (Fakhoury et al., 2024),
and debugging (Xia and Zhang, 2023). Recent
advances highlight the effectiveness multi-agent
collaborative, surpassing single-agent approaches
in software development tasks (Islam et al., 2024;
Rasheed et al.,, 2024a). These advancements
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Figure 1: The intuitions behind this work. (Top): brain’s
different regions are dedicated to distinct functions and
tasks. Inspired by this functional specialization, we
design an agent with distinct roles that evolve through
stages. (Bottom): the growth trajectory of an individual,
progressing from observation and learning in childhood,
to practice and imitation in young adulthood, and finally
to independent problem-solving and planning in the
expert stage.

not only automate complex programming work-
flows but also enhance the models’ reasoning and
problem-solving abilities, attracting attention from
both academia and industry institutions like Ope-
nAI'! and Meta AI 2.

Despite these achievements, existing frame-
works rigidly follow a "plan-first" sequence: agents
plan, code, then debug (Islam et al., 2024, 2025).
While this mimics traditional software workflows,
it fundamentally conflicts with human learning
principles. For example, humans learn through trial
and error (debugging) before developing system-
atic knowledge (planning), a process supported by
cognitive theories like productive failure (Figure 1).
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However, these methods lead to two critical flaws.
First, agents repeatedly solve similar bugs without
learning from past mistakes, mirroring a "cogni-
tive misalignment" between machines and humans.
Second, frequent inter-agent communication dras-
tically increases computational costs (Huang et al.,
2023). These limitations highlight the need for
frameworks that align with human-like learning
while reducing overhead.

Inspired by neurobiological principles, We pro-
pose Cogito, a multi-agent framework that flips
the traditional workflow to debug—code—plan, di-
rectly inspired by human cognitive growth. In-
stead of forcing agents to plan before acting, Cog-
ito lets them learn from failures first, akin to how
children develop skills. At its core, Cogito in-
tegrates a hippocampus-like memory module for
structured storage and retrieval: short-term mem-
ory captures debugging experiences (e.g., error pat-
terns and fixes), while long-term storage retains
validated solutions for future reuse. Over time, spe-
cialized agents merge into a unified Super-Role
that internalizes collective expertise, eliminating
constant communication. This dynamic learning
process transforms code generation from a rigid
pipeline into an evolving practice where agents
"grow smarter" through experience, bridging the
gap between artificial and human intelligence. The
key contributions are summarized as follows:

* We propose Cogito, the first framework
that enables a Super-Role agent to progres-
sively evolve through a human-inspired de-
bug—code—plan sequence, whcih is contrary
to conventional workflows. This biologically
grounded approach is akin to human expertise
development process.

* We design a hippocampus-inspired memory
that stores different content based on learn-
ing stages, where different parts of memory
are inter-connected to ensure the complete-
ness of stored information. The design can
support dynamic and adaptive programming
workflows.

* We conduct extensive experiments to validate
Cogito’s efficiency on eight code generation
tasks. The results show that Cogito reduces
token consumption by up to 66.29% and im-
proves performance by an average of 12.2%
compared to MapCoder, using GPT-3.5-turbo
and GPT-4.

2 Related work
2.1 LLM Agents

LLM-based agents normally consist of four core
components: planning, memory, perception, and
action. Planning and memory form the cognitive
core, while perception and action enable interac-
tion with the environment to achieve goals (Xi
et al., 2023). The planning component decom-
poses complex tasks into manageable subtasks and
schedules their execution to achieve predefined ob-
jectives, while also incorporating the flexibility to
adapt plans dynamically in response to external
feedback. The memory component, on the other
hand, stores historical actions and observations,
enabling agents to draw on past experiences to re-
fine decision-making processes and enhance task
execution efficiency. This dual approach facili-
tates continuous learning and optimization, ensur-
ing improved performance over time. Effective
memory management is critical for system perfor-
mance (Wang et al., 2023; Zhang et al., 2024b).
Due to the suitability of this setup for code gen-
eration problems, a large number of works have
emerged in this field (Wang et al., 2024; Liu et al.,
2024).

2.2 Multi-Agent Collaboration for Software
Development

To effectively solve complex problems, tasks are
divided into specialized roles, each handling a spe-
cific aspect of the process. This role-based divi-
sion, combined with agent collaboration, boosts ef-
ficiency and enhances outcomes. The typical work-
flow includes task refinement, execution, result
validation, and optimization (Lei et al., 2024b,a).
These stages ensure that each component is man-
aged with focus, leading to smoother task exe-
cution and more reliable results. For instance,
MetaGPT (Hong et al., 2023) mimics standardized
real-world collaboration procedures, incorporating
five distinct roles. Similarly, MapCoder (Islam
et al., 2024) adapts the human programming cycle
to define four key roles for task completion, while
CodeSim (Islam et al., 2025) further advances this
idea by enhancing code generation through human-
like planning, coding, and debugging with step-by-
step input/output simulation.

2.3 Prompt Engineering

Prompt engineering plays a crucial role in optimiz-
ing code generation tasks by effectively guiding
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Figure 2: Overview of Cogito. The upper section illustrates the learning process of the Super-Role stored in the
memory module. The lower section provides a detailed explanation of the process: initially, it assumes the role of
the debugger within the group, followed by transitions to the coder and planner roles. After completing the learning

cycle, the final answer is provided by the Super-Role.

model outputs, ensuring both, consistency and effi-
ciency in the process. Inspired by the CoT (Chain
of Thought) (Wei et al., 2022) method, there are
usually three main stages in code generation tasks
to gradually solve the problem while maintaining
clarity and structured reasoning: Planning (Talebi-
rad and Nadiri, 2023; Zhang et al., 2024a; Lin
et al., 2024), Coding (Rasheed et al., 2024a; Zan
et al., 2024; Tao et al., 2024), and Debugging (Li
etal., 2023; Qin et al., 2024; Rasheed et al., 2024b),
AgentCoder (Huang et al., 2023) directs the agent
to produce pseudocode following the phases of
problem comprehension and algorithm selection.
LLMA4CBI (Tu et al., 2023) utilizes a stored com-
ponent that tracks relevant prompts and selects the
most effective ones to guide LLMs in generating
variations.

3 Cogito

3.1 Agent Roles

Building on the "Chain of Thought" (CoT) (Wei
et al., 2022) process, we assign three distinct roles
within the team: Planner, Coder, and Debugger.
The Planner’s role is to outline a clear, step-by-
step strategy for solving the problem, considering
key aspects such as edge cases and performance
issues. This guidance helps the Coder translate the
plan into functional code, ensuring that all criti-

cal scenarios are addressed during implementation.
After the Coder finishes coding, the solution is
tested against a set of sample inputs and expected
outputs (Islam et al., 2024). If the code passes
the tests, it is considered finalized. However, if it
fails, the Debugger steps in, analyzing the trace-
back feedback to identify and correct errors. This
collaborative process ensures that the final code is
both robust and efficient.

3.2 Super-Role

In this experimental setup, we introduce a shared
member known as the Super-Role, who is assigned
to each of the three groups sequentially. This mem-
ber rotates through the roles of Debugger, Coder,
and Planner within each group, contributing to a dy-
namic and collaborative environment. Importantly,
the public role retains the memory of all its prior ex-
periences, which plays a crucial role in informing
and guiding the execution of its current responsibil-
ities. This memory not only enhances the efficiency
of the member’s actions within the same group but
also acts as a communication bridge across differ-
ent groups, facilitating the transfer of knowledge
and strategies. Upon completion of the three dis-
tinct tasks, the public member now equipped with
accumulated expertise will be entrusted with the
task of solving the problem independently. To en-



sure robustness in the final solution, the member
is provided with up to five opportunities for error
correction, allowing iterative refinement of the out-
come. The final answer, enriched by the cumulative
knowledge gained through this process, will be gen-
erated and presented by the Super-Role, reflecting
its comprehensive learning journey across multi-
ple roles and tasks. A complete example of the
response process is shown in Figure 3.

3.3 The Hippocampus-like Memory Module

Inspired by the structural divisions of the hippocam-
pus (Burgess et al., 2002; Berron et al., 2017;
Kesner, 2013), we design a memory-enhanced stor-
age module that aligns with its specialized func-
tions. The hippocampus, including regions like
CA1-CA4 and the Dentate Gyrus (DG), encodes,
consolidates, and retrieves memories. Our model
maps task-specific information and generated code
to different regions, mirroring hierarchical and as-
sociative memory mechanisms. This biologically
inspired design enhances long-term retention, con-
textual recall, and adaptive retrieval, optimizing
memory utilization for efficient code generation.
DG Part. The Dentate Gyrus (DG) plays a key
role in memory formation by performing pattern
separation, transforming similar inputs into distinct,
interference-resistant representations. Inspired by
this, our memory module integrates a tokenizer
to process diverse task information, organizing it
into distinct memory traces to enhance retrieval
efficiency and adaptability in code generation.
CA1l Region. The CA1 region, pivotal for the
storage and retrieval of long-term memories, serves
as the repository for initial responses generated
during problem-solving. Once formulated, these
responses are stored for long-term access and ready
for future retrieval when related tasks arise, much
like how we retain foundational knowledge and
lessons learned over time.

CA2 Region. While research on the CA2 region re-
mains sparse, its role in social and emotional mem-
ory inspired our "Personalization Module." Here,
users can input prior code, enabling the system to
learn their naming conventions and coding style.
While optional, this module enhances alignment
with user preferences, fostering a more intuitive
coding experience.

CA3 Region. The CA3 region, which facilitates
quick recall and rapid learning, stores different ver-
sions of the code along with the associated error
tracebacks. This allows for fast retrieval of past
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Figure 3: The abbreviated explanation of the process
and sample outputs for each step.

mistakes and corrections, helping avoid errors in
future problem-solving processes. This mirrors
the brain’s ability to learn from past experiences,
making future decision-making faster and more
efficient.

CA4 Region. Finally, the CA4 region serves as
a bridge between the DG and CA3, storing only
the final, correct result or the last modified ver-
sion. This ensures that successful outcomes are
quickly accessible for similar tasks, enabling ef-
ficient problem-solving and minimizing the time
spent on recurring issues.

3.4 Agent Collaboration Settings

To mitigate the impact of low-quality answers
during learning, we assign initial weights of 0.4,
0.4, and 0.3 to each role. Importance scores
are performance-based: 0.9 if the generated code
passes tests in debugging and coding, otherwise 0.1,
while planning consistently receives 0.9. The final
score aggregates across stages, emphasizing high-
quality outputs. To enhance variability and pre-
vent over-reliance on faulty answers, two newly se-
lected roles—excluding the Super-Role—are rein-
troduced in each group. Algorithm 1 summarizes
our agent traversal.

4 EXPERIMENTS

4.1 Experimental Settings

Datasets. We adopt 8 widely-used benchmark
datasets for testing, with 5 datasets contain-



Algorithm 1 Cogito

Common Agent: A., Plan Agent: A,

Implement Agent: A;, Debug Agent: A,

Super Role: Sp

Plan_A < A,(Question)

Code_A < A;(Plan_A, Question)

Own_Answer < A (Code_A, sample_io)

Plan_B <— A, (Question)

Own_Code + A;(Plan_B, Question)

Answer_B + A;(Code_B, sample_io)

Own_Plan < A,(Question)

: Code_C < A;(Plan_C, Question)

: Answer_C < A ;(Code_C, sample_io)

. tem_code < Sgi(Question, Own_Answer,
Own_Code, Own_Plan)

14: if test(tem_code, sample_io) then

WX R

—_ = =
W N = O

15: return tem_code

16: else

17: fori=1to5do

18: code < Sr(Question, Own_Answer,
Own_Code, Own_Plan)

19: if test(code, sample_io) then

20: return code

21: end if

22: tem_code < code

23: end for

24: return tem_code

25: end if

ing only simple programming problems (e.g.,
HumanEval (Chen et al., 2021), HumanEval-
ET (Dong et al., 2023a), EvalPlus (Liu et al., 2023),
MBPP (Austin et al., 2021), MBPP-ET (Dong
et al., 2023a)), and others that contain complex
programming problems (e.g., Automated Program-
ming Progress Standard (APPS), xCodeEval (Khan
et al., 2023), and CodeContest). More detailed
information is provided in Appendix B.1.
Evaluation Metric. For the dataset used in the
experiment, we uniformly apply the widely-used
unbiased version of Pass @k as evaluation met-
ric (Chen et al., 2021; Dong et al., 2023b). Note
that the unbiased version of Pass @k is a metric
used to evaluate recommendation systems by cor-
recting for potential biases in the recommendation
process. The formula is given by:
(],
G

where n is the total number of items, c is the

Pass@k = Eproblems [1 -

number of relevant items, and k is the size of the
top-k recommendations. More detailed information
is provided in Appendix B.2.

Baselines. We conduct a comprehensive compar-
ison with several representative methods: Direct,
Chain-of-Thought (CoT), Self-Planning, Analog-
ical Reasoning, MapCoder, and CodeSim. More
detailed information is provided in Appendix B.3.

4.2 Overall Performance

In this section, we conduct a comprehensive evalua-
tion of our proposed process, and all the results are
systematically presented in Table 1. From the table,
it is evident that Cogito outperforms all the other
models, achieving the highest scores across all
datasets. Notably, the application of GPT-4 signifi-
cantly enhances the overall performance, yielding
the best results observed in our experiments. These
results underscore the effectiveness of Cogito and
highlight the substantial improvements brought by
the integration of GPT-4 into the process, demon-
strating its potential for high-level performance
across diverse data scenarios. The results further
validate the effectiveness of our growth-based learn-
ing concept, demonstrating that enabling the agent
to evolve reversely can enhance its problem-solving
capabilities.

4.2.1 Performance on Simple Code
Generation Tasks

Table 1 summarizes the performance of vari-
ous baselines and the average percentage gains
achieved by our method. Compared to the state-
of-the-art CodeSim, Cogito yields notable Pass@ 1
improvements of 4.88%, 13.47%, and 12.43% on
HumanEval, HumanEval-ET, and EvalPlus, respec-
tively, using GPT-3.5-turbo. Against direct prompt-
ing, Cogito achieves up to a 119.65% gain. Lever-
aging GPT-4 further enhances performance across
all datasets, achieving the highest scores in our
experiments. Additionally, performance remains
stable even with more test cases per problem, high-
lighting the robustness of Cogito’s code and its
ability to handle edge cases. These results collec-
tively demonstrate Cogito’s strong generalization
and reliability across diverse evaluation settings.

4.2.2 Performance on Complex Code
Generation Tasks

Contest-level problems feature more comprehen-
sive problem descriptions and a greater number of
test cases, with no limitation on the generation of



LLM Approach Simple Problems Contest-Level Problems
HumanEval HumanEvalET EvalPlus MBPP MBPPET APPS xCodeEval CodeContest

Direct 48.1 372 66.5 49.8 377 8.0 17.9 5.5

| CoTi 68.9 55.5 652 545 39.6 73 236 6.1

@ | Self-Planning f 603 462 ; 55.7 419 9.3 18.9 6.1

E Analogical 63.4 50.6 59.1 70.5 46.1 6.7 15.1 7.3

S | Reflexion 1 67.1 494 622 73.0 474 ; ; -

Z | MapCoder t 80.5 70.1 713 783 544 113 274 12.7
CodeSim # 86.0 72.0 732 86.4 59.7 12.0 - 16.4

o 90.2 81.7 82.3 85.1 59.7 18.0 302 133

Cogito (Ours) | 4 37 44, +57.2% 1249% 1321% 1310% | 11072% 1533%  1747%
Direct 80.1 738 81.7 81.1 547 127 32.1 12.1
CoT § 89.0 61.6 ; 82.4 56.2 1.3 36.8 5.5
Self-Planning 1 85.4 622 ; 75.8 50.4 147 34.0 10.9

« | Analogical ¥ 66.5 4838 622 58.4 403 12,0 26.4 10.9

£ | Reflexion f 91.0 787 81.7 783 51.9 ; ; -

3 | MapCoder 93.9 82.9 83.5 83.1 577 22,0 453 28.5
CodeSim # 94.5 81.7 84.8 89.7 615 220 : 29.1

o 95.7 83.5 85.4 88.2 66.3 273 472 297

Cogito (Ours) | 4 43 14, +23.4% 198% 1143% 1264% | 1863%  1394%  1156.1%

Table 1: Overall performance comparison across various datasets, categorized into Simple Problems and Contest-
Level Problems. Cogito’s performance is highlighted in blue. The average improvement is highlighted in red. {:
Results are publicly disclosed in the paper of MapCoder. =: Results are publicly disclosed in the paper CodeSim.
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Figure 4: The comparison
datasets.

results on representative

a single function to address the task. Cogito has
shown notable advancements compared to multi-
ple methods across most datasets, including APPS,
xCodeEval, and CodeContests. Specifically, When
using GPT-4, our approach achieves improvements
of 24.09% and 2.06% over CodeSim, respectively.
Adhering to the unified testing validation approach,
we require that all responses within these three
datasets be implemented as functions that take a
string parameter, returning the result as a string via
the ‘return® statement. Despite the advantages of
this methodology, its application has led to a de-
cline in performance on certain platforms, notably
xCodeEval and CodeContests.

Direct

Introductory
Interview
Competition

12 14

Cogito

Self-Planning

MapCoder

Figure 5: The comparison results with respect to the
algorithm and difficulty levels (APPS dataset).

4.2.3 Performance Under Different Difficulty
Levels

Difficulty levels. The APPS dataset consists of
problems with three difficulty levels: (i) Introduc-
tory, (ii) Interview, and (iii) Competition. Fig-
ure 4(a) and Figure 5 show the number of prob-
lems solved by different methods at different levels
under these three classifications. At the Introduc-
tory and Interview levels, Cogito significantly out-
performs existing methods, highlighting the effec-
tiveness of our approach for relatively simple and
moderately difficult code generation tasks.

Difficulty score. In the xCodeEval dataset, each
task is assigned a difficulty score, with the difficulty
scores of the answers that successfully pass the
tests ranging from 800 to 1800. We compare our
approach with the direct method, and our results
consistently outperforme the direct method across



. Average for Average for
LLM Dataset Average for Cogito Map Cgo der Co degSim ;&I"Tlgagl(l)s A’;‘,(fll;zxgle A\:(l::a(l:ge
API Calls Tokens (k) | API Calls Tokens (k) | API Calls Tokens (k) Reduction | Reduction(k) Gain
%) HumanEval 10 6.26 17 10.41 7 5.48 2 1.70 6.95%
2 MBPP 9 4.60 12 4.84 6 4.24 0 -0.06 10.6%
% APPS 14 14.74 21 26.57 15 19.20 4 8.15 6.35%
E xCodeEval 16 18.90 19 24.10 - - 3 5.20 2.8%
© CodeContest 15 28.56 23 34.95 16 24.02 4.5 0.93 -1.25%
HumanEval 10 7.10 15 12.75 5.15 0 1.85 1.5%
<+ MBPP 10 4.80 8 4.96 5.21 -3.5 0.29 1.8%
E APPS 13 21.96 19 31.80 13 23.18 5.53 5.3%
© xCodeEval 14 17.93 14 23.45 - - 5.52 1.9%
CodeContest 15 32.35 19 38.70 17 41.66 7.67 0.9%
Average 13 16.0 16.7 21.25 9.3 13.64 J 1.6 1 3.68

Table 2: The number of API calls and token consumption for different tasks, compared to the usage reduction with

MapCoder and CodeSim.
Model Pass@1 Perforcemance

Drop
Cogito w/o Planning Experience 76.22 14.02
Cogito w/o Implementation Experience | 78.05 12.19
Cogito w/o Debugging Experience 79.88 10.36
Cogito w/o Super-Role 69.33 20.91
Normal Sequence 73.17 17.07

Table 3: Ablation study results on HumanEval using
GPT-3.5-turbo. The table shows the impact of different
components or configurations on performance.

different difficulty levels (Figure 4(b)).

4.2.4 Consumption of API and Tokens

Table 2 reports the API calls and token usage (in
thousands) of GPT-3.5-turbo and GPT-4 across
various datasets. Compared to MapCoder on the
HumanEval dataset, our method achieves up to
66.29% fewer tokens and 70% fewer API calls.
On average, token consumption and API calls are
reduced by 3.61% and 1.6%, respectively, across
all tasks. While the complete developmental pro-
cess introduces slight additional costs in certain
scenarios—primarily due to multi-stage reasoning
and role-based iteration—it consistently leads to
higher pass rates by capturing broader contextual
and structural nuances. Notably, GPT-4 exhibits
higher resource consumption than GPT-3.5-turbo,
which can be attributed to its tendency to generate
longer and more detailed responses.

4.3 Ablation Study

Impact of Different Agents. To verify the effec-
tiveness of the proposed approach, we systemat-
ically remove the active participation of various

key roles involved in the process. The experi-
mental results (Table 3) indicate that omitting the
critical planning phase led to a maximum perfor-
mance drop of 14.02%. The absence of hands-on
Implementation practice reduces performance by
12.19%, while the lack of expert Debugging knowl-
edge causes a 10.36% decline.

Impact of Work Sequence. To rigorously assess
the distinctions between our work and previous
approaches, particularly in terms of the sequence
of experience accumulation, we conduct experi-
ments in which we systematically alter the order
in which experiences accumulate. Initially, we em-
ploy a sequence where the planner is introduced
first, followed by the coder, and finally the debug-
ger. Upon analyzing the results (Table 3), a per-
formance drop of 17.07% clearly indicates that the
altered sequence contributes to a significant deteri-
oration in the final outcome.

Impact of Super-Role. In the third group, com-
mon roles are actively involved in every stage of the
process. However, does this justify relying on them
for the final answer? Table 3 presents the results.
Even with extensive experience and insightful rec-
ommendations, planners may still fail to achieve
desired outcomes due to a lack of hands-on experi-
ence or expertise in addressing practical challenges
during implementation. Thus, the Super-Role’s
final answer is indispensable.

Impact of Sample I/O. In this study, we aug-
ment the HumanEval dataset with input-output
pairs from MapCoder (Islam et al., 2024) dataset
and five additional test cases from HumanEval-ET
dataset. Our results show a modest 0.6% improve-
ment, indicating a slight positive effect on model



Debug Times(t
Dataset g ©

| 3 5
HumanEval 86.59 90.24
HumanEval-ET 78.05 81.71

Table 4: Analysis of debugging times on representative
datasets.

Results
Number of Groups
Pass@1 Average
Token(k)
Three Groups 90.24 10.41
Six Groups 80.49 17.43

Table 5: Analysis of debugging times on representative
datasets.

performance. These findings suggest that dataset
augmentation with diverse test cases can improve
model accuracy.

4.4 Hyper-parameter Analysis

Impact of £. It involves a single hyperparameter:
the number of self-debugging attempts, denoted
as t. As shown in Table 4, increasing the value
of ¢ improves the performance. However, this en-
hancement comes with a trade-off, as it requires
more computational time and an increased number
of tokens to complete the process. This observa-
tion highlights the inherent balance between perfor-
mance and resource consumption in the proposed
method.

Impact of the Number of Iterations for Accumu-
lating Experience. Initially, we set the number of
roles to 3, indicating that we require three groups
per experience-learning cycle. Increasing the num-
ber to six seems intuitive for better experience ac-
cumulation. However, as a detailed comparison
provided in Table 5, increasing the number actually
leads to decreased performance and higher token
consumption. Such results indicate that setting one
experience-learning cycle for Cogito is enough and
reasonable for improving performance.

4.5 Case Study

4.5.1 New Random Roles vs. Same Roles

In group discussion sessions, each group will rein-
troduce two new random members to assume two
distinct roles. The question arises: why not allow
the same two members to continue participating

First Group Second Group Third Group
def check_if_last_char_is_a_letter(txt): def check_if_last_char_is_a_letter(txt):  def check_if_last_char_is_a_letter(txt):

txt = txt.rstrip() txt= ip() if not txt:

if not txt or not txt[-1].isalpha(): 1if not txt: return False

return False L _fetun txt = txt.rstrip() Changed
words = txt.split() last_ch: 1] if not txt: order
return len(words[-1]) =1 $¢ if not last_char.isalpha() return False
return False X last_char = txt[-1] X

words = txt.split()
return len(words) > 0
and len(words[-1]) == 1

if last_char.salphal():
words = tt.split()
return len(words) > 1
and len(words[-1]) == 1
return False
Modied

Failed test:

Assert candidate(“eeeee e ) ==
False

Reason: Srengered
It donesn’t correctly handle the
case where the letter is part of a
word

Sample Members

still failed at the same test.

Third Group

First Group Second Group
def check_if_last_char_is_a_letter(txt) : def check_if_last_char_is_a_letter(txt): def check_if_last_char_is_a_letter(txt):
txt.split() words = txt.split() . if not txt:
return (words[-1]{x1].isalpha() and | étarn (txt and words =) Still return False
len(words[-1]) == 1) if | and words[-1] wrong | last_char = txt.strip()[-1]
else False,” s, kenly 1 9¢ { and wnrds{-ll[-llisﬂvha()x

(len(txt.split()) == 1 or txt[-:
return True
return False

if last_char.isalpha() and&K
=)

Failed test:

Assert candidate(“eeeee e ") == Fals¢ | Failed test:
Reason: Assert candidate(* ")
The code incorrectly handle cases

where there are spaces ‘/

Changed way
to solve and
succeed

Variant Members

at the end of string

Figure 6: An example of answers from the same group
members and different group members on HumanEval.

throughout the role transitions? The rationale be-
hind this decision lies in the potential pitfalls of
starting with an incorrect approach. If the direction
of code writing is flawed in the initial phase, any
subsequent improvements or redesigns will be built
upon this foundational error. No matter how many
times debugging is performed, the final result will
inevitably remain compromised. Therefore, it is
essential to ensure that the foundation is correct
before moving forward with further development.
An example is shown in Figure 6, demonstrating
the necessity of introducing new random roles.

5 Conclusion

In this work, we introduce Cogito, a
neurobiologically-inspired multi-agent framework
for code generation that redefines the traditional
workflow of planning, coding, and debugging
by adopting a reverse approach. By mimicking
the human growth process, Cogito progressively
develops its capabilities, transitioning through
specialized roles—Debugger, Coder, and Plan-
ner—and ultimately evolving into a Super-Role
capable of autonomously handling complex code
generation tasks. Through extensive evaluations
on multiple representative datasets, Cogito
demonstrates its ability to achieve state-of-the-art
performance with higher efficiency and lower
computational cost compared to existing methods.
These results highlight the potential of biologically-
inspired design principles in advancing intelligent
systems. Future work will focus on further
optimizing Cogito’s architecture and exploring its
applicability to broader software engineering tasks.



Limitations

One limitation arises from the absence of the offi-
cial evaluation mechanism when handling complex
programming tasks. As a result, the traceback sig-
nals obtained from such problems may be inaccu-
rate, which in turn hinders the model’s ability to
correctly identify and fix errors. To ensure com-
patibility with custom-written evaluation scripts,
we further constrained the model to generate solu-
tions in the form of a single function. While this
simplification facilitates evaluation, it also reduces
the expressiveness and potential correctness of the
generated solutions.

Another challenge lies in the retrieval process.
Due to the limited number of stored examples
in memory and the lack of a dedicated retrieval
database tailored for programming problems, the
quality of the retrieved reference examples is often
suboptimal. This negatively impacts the relevance
and usefulness of retrieved contexts in guiding the
model’s generation.
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Cognition-Memory-Growth System for Code Generation
Appendix
A Agent Prompt Details

Here are the prompts for different roles. For certain datasets, there are some changes in their data format.
Prompt for HumanEval, MBPP

Planning phase prompt template:

prompt = (
f"Provide guided steps to solve the following problem
and identify potential challenges.: {question}. "
f"[requirement]: less text, don’t give code”

Coding phase prompt template:

prompt = (

f"As a code expert, according to the guidance:{
design_solution}”

f"please provide a python solution to the following
programming problem: {question}.”

f"Ensure that the answer produced by your code matches
the test cases in the examples:{test_casel}”

f"[Important]Jonly give the code and should not include
any explanations or comments. "

Debugging phase prompt template:

prompt = (
f"According to the {question}, the code given is:{
implementation_solution} "
f":Fix it using traceback:{result_traceback}. "
f"[Important]Only give code don’t analyze and no
annotation”

Super-Role’s prompt template:

prompt = (
f"According to the problem:{question}”
f"Use the experience to give the code to solve it, make
sure it will pass the text case:{test_casel}"”
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Super-Role’s refinement template:

prompt = (
f"For this problem, {question}, your previous answer
encountered an error: {first_solution}. "
f"Traceback: {result}. "
f"To proceed, ensure the new solution meets the
following requirements:\n"
f"1. Is fundamentally different from the previous
solution.\n"
" Fixes the above error.\n"
" Passes all the given test cases: {test_case}.\n\n"
f"Here are some examples: {Example}. "
f"Hint: Try to explore different logic or structures,
such as using loops, functions, or list
comprehensions.\n\n"

2.
3

Prompt for APPS

Planning phase prompt template:

prompt = (
f"Provide guided steps to solve the following problem
and identify potential challenges.: {question}. "
f"[requirement]: less text, don’t give code”

Coding phase prompt template:

prompt = (

f"As a code expert, according to the guidance:{
design_solution}”

f"please provide a python solution to the following
programming problem: {question}.”

f"Ensure that the answer produced by your code matches
the test cases in the examples:{test_casel}"”

f"The function name must be the same as in the problem{
prompt_name}”

f"[Important]Jonly give the code and should not include
any explanations or comments. "
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Debugging phase prompt template:

prompt = (

f"According to the {question}, the code given is:{
implementation_solution} "

f":Fix it using traceback:{result_traceback}.

f"[LImportant]Only give code don’t analyze and no
annotation”

f"Make sure the function name is the same as in the
problem{prompt_name}"

n

Super-Role’s prompt template:

prompt = (
f"According to the problem:{question}”
f"Use the experience to give the code to solve it, make
sure it will pass the text case:{test_casel}"”
# f"Use the same function name in the problem{
prompt_name}”
f"[Important]:Only codes. No comments or annotation”

Super-Role’s refinement template:

prompt = (
f"For this problem, {question}, your previous answer
encountered an error: {first_solution}. "
f"Traceback: {result}. "
f"To proceed, ensure the new solution meets the
following requirements:\n"
f"1. Is fundamentally different from the previous
solution.\n"
Fixes the above error.\n"
Passes all the given test cases: {test_casel}.\n\n"
ere are some examples: {output}. "

"Hint: Try to explore different logic or structures,
such as using loops, functions, or list
comprehensions.\n\n"

f"[requirement]: Only codes. No comments or annotation”
f"Use the same function name in the problem{prompt_name

}H

- —h —h —h
T w N

Prompt for xCodeEval, CodeContest

Due to our use of a unified test, we have forced both the input and output to be a single string parameter.
While this approach standardizes the operation, it does not guarantee 100% success in defining the

function, which can lead to discrepancies between the test results and reality. We recommend integrating
a standard test and removing the forced content to achieve better results.
Planning phase prompt template:
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prompt = (
f"Provide guided steps to solve the following problem
and identify potential challenges.: {question}. "
f"[requirement]: less text, don’t give code”

Coding phase prompt template:

prompt = (

f"As a code expert, according to the guidance:{
design_solution}”

f"please provide a python solution to the following
programming problem: {question}.”

f"Ensure that the answer produced by your code matches
the test cases in the examples:{test_casel}"”

f"[Important]only give the code and should not include
any explanations or comments. "

f"[Important]:Use a function to solve the problem,
ending with a return.All the code is inside the
function."”

f"Make sure the function only requires a single string
parameter."

Debugging phase prompt template:

prompt = (

f"According to the {question}, the code given is:{
implementation_solution} "

f":Fix it using traceback:{result_traceback}."

f"[Important]Only give code don’t analyze and no
annotation”

f"[Important]:Use a function to solve the problem,
ending with a return.”

f"Make sure the function only requires a single string
parameter.All the code is inside the function.”

f"Only code no comments or other things”

Super-Role’s prompt template:

prompt = (

f"According to the problem:{question}”

f"Use the experience to give the code to solve it, make
sure it will pass the text case:{test_casel}"”

f"[Important]:Only codes. No comments or annotation”

f"Use a function to solve the problem, ending with a
return, and only require a single string parameter”

f"All the code is inside the function.”
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Super-Role’s refinement template:

prompt

(

f"For this problem, {question}, your previous answer
encountered an error: {first_solution}. "

f"Traceback: {result}. "

f"To proceed, ensure the new solution meets the
following requirements:\n"

f"1. Is fundamentally different from the previous
solution.\n"

Fixes the above error.\n"

Passes all the given test cases: {test_case}.\n\n"

n

f"2.

f"3.

f"Here are some examples: {output}.

f"Hint: Try to explore different logic or structures,
such as using loops, functions, or list
comprehensions.\n\n"

f"[requirement]: Only codes. Make only require a single

string parameter”

f"All the code is inside the function.”

f"code only require a single string parameter” #
codecontest
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B Supplementary Experimental Details

B.1 Datasets

For convenience, we used the HumanEval dataset
from Mapcoder (Islam et al., 2024), which contains
a sample column that separately extracts the exe-
cution examples provided in the prompt, making it
easier to execute and return results. Similarly, in
MBPP, they also select some data from the test set
as inputs, but maintain the independence of the test
set and the exclusivity between MBPP and MBPP-
ET. For CodeContest, we only use the test section
consisting of 165 problems. APPS and xCodeEval
utilize a subset of problems extracted from the raw
data by MapCoder.

B.2 Evaluation Metric

The unbiased version of Pass@k is a widely
adopted metric for evaluating the effectiveness of

Pass@k = Eproplems !1 —

recommendation or code generation systems, par-
ticularly under biased sampling or uneven rele-
vance distributions. It estimates the probability
that at least one correct item appears among the
top-k results, while adjusting for inherent biases
such as popularity skew.
Formally, the metric is defined as:
n—c
( x ) , @
()
where n is the number of generated candidates, c
is the number of correct candidates, and k is the
number of top predictions considered. The term
( (,’3)) computes the probability that none of the top-
k
k outputs are correct; subtracting this from 1 yields
the probability that at least one correct solution is
included.

By averaging over a set of problems, the expecta-
tion Epyoblems €nsures robustness and generalization
across diverse test scenarios. This approach miti-
gates the tendency of traditional metrics to overesti-
mate performance due to frequent recommendation
of a small number of highly probable items.

Pass@1 for One-Shot Evaluation. In our ex-
periments, we adopt pass@1, which measures the
probability that the model generates a correct so-
lution in a single attempt—a critical capability in
real-time or resource-constrained settings.

Let D = {x1,29,...,xy} denote a dataset of
N programming problems. For each z; € D, the
model outputs one candidate solution ¢;, which is
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then executed against a predefined test suite. Define
an indicator function I[g; is correct], which equals
1 if the solution passes all test cases and 0 otherwise.
The pass@ [ score is then:

N
1 .
pass@1 = N E I[g; is correct]

=1

3)

In settings allowing multiple generations per
problem, and assuming c out of n are correct, the
expected pass@k is approximated by:

)

pass@k =1 — = 4)
(%)
In particular, for £ = 1, this reduces to:
c
pass@1 = — (®)]
n

This formulation provides a fairer and more ro-
bust evaluation of a model’s ability to generate
correct outputs across a variety of tasks.

B.3 Baselines

We evaluate our approach by comparing it with
several baseline methods. First, we use the Di-
rect Method, where the prompt is submitted to the
LLM without decomposition to assess its intrin-
sic reasoning. We then evaluate two structured
reasoning methods: Chain-of-Thought (CoT),
which solves the problem step-by-step, and Self-
Planning, which separates planning and imple-
mentation phases. Our approach, which incorpo-
rates GitHub searches for relevant code, is com-
pared with Analogical Reasoning, a retrieval-
based method. Mapcoder, a former state-of-the-
art method, as a benchmark. Finally we include
CodeSim a multi-agent framework that enhances
code generation through step-by-step input/output
simulation. All tests are conducted using GPT-3.5-
turbo (GPT-3.5-turbo-0125) and GPT-4 (GPT-4-
0613) from OpenAl

B.4 An example answer for 5 methods of
HumanEval #92

We present a detailed comparative analysis of
solutions generated by various methods for the
92nd problem in the HumanEval benchmark (Fig-
ure 7). Among all evaluated approaches, only
Cogito successfully passes the initial test case.
The test, designed to verify functional correctness,
checks whether the output of the candidate func-
tion satisfies the condition candidate(’TEST’)



== ’tgst’; all baseline models fail this basic re-
quirement.

For each method, we highlight the specific errors
in their generated outputs and provide concise ex-
planations of the underlying failure modes. These
typically include incorrect string manipulations,
misunderstanding of character transformations, or
misinterpretation of input-output constraints. Such
errors underscore the challenges existing methods
face when dealing with nuanced program logic or
subtle pattern recognition.

In contrast, Cogito not only produces a correct
solution but also demonstrates consistent reasoning
throughout its multi-stage workflow. We present
its outputs across different phases of generation,
illustrating how it iteratively refines its understand-
ing and progressively improves the solution. This
example showcases Cogito’s capacity to coordinate
planning, coding, and self-correction, enabling it to
outperform traditional single-pass generation meth-
ods.

B.5 The comparison between
GPT-3.5-TURBO and GPT-4 responses.

We analyze model performance on the HumanEval
and APPS benchmarks by comparing responses
from GPT-3.5 and GPT-4. To better understand the
limitations of earlier models and the improvements
in newer ones, we specifically focus on instances
where GPT-3.5 fails while GPT-4 produces correct
solutions. This targeted comparison allows us to
examine the underlying causes of failure and high-
light the differences in reasoning and generation
strategies between the two models.

We begin with two examples from the Hu-
manEval benchmark—Problems #32(see Figure 8)
and #92(see Figure 9). In both cases, GPT-3.5 ex-
plores multiple strategies but ultimately fails to
solve the tasks correctly. In contrast, GPT-4, build-
ing upon prior trial-and-error attempts, is able to
arrive at the correct solution. These examples illus-
trate GPT-4’s improved capability to incorporate
feedback and refine its reasoning over successive
generations.

The next two examples are drawn from prob-
lems #1628 and #3531 in the APPS dataset,
which contains a broader and more diverse set
of programming tasks, including algorithmic and
implementation-focused challenges (see Figure 10,
Figure 11). Similar to the HumanEval case, GPT-
3.5 struggles to provide a correct answer, often
producing incomplete or logically flawed code. In
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both cases, the Super-Role, during the planning
phase, successfully leveraged prior learning to pro-
vide guidance that explicitly avoided common pit-
falls. As a result, the final solutions were correct,
demonstrating the effectiveness of accumulated ex-
perience in enhancing decision-making and task
performance.

These examples collectively highlight the ad-
vancements of GPT-4 in terms of code generation
accuracy, problem decomposition, and syntactic
correctness. The improvements are especially ev-
ident on tasks requiring multiple reasoning steps
or understanding of non-trivial control flow, where
GPT-3.5 tends to underperform. While anecdotal
in nature, these qualitative cases complement our
quantitative results and provide concrete insights
into where the improvements of GPT-4 manifest in
practice.

B.6 The complete response process of Cogito
in APPS #1628

Case Study: Task 1628 in APPS. We present a
comprehensive case study of Task 1628 from the
APPS benchmark, illustrating the complete reason-
ing and generation process undertaken by Cogito.
Figure ?? displays the full sequence of responses,
including those from all roles involved in the multi-
agent workflow.

To contextualize the development of the final so-
lution, we also include the intermediate responses
exchanged between adjacent roles within each
group. These interactions provide insight into the
causal relationship between design decisions, im-
plementation strategies, and debugging feedback,
thereby elucidating the contribution of each stage
to the overall outcome.

Furthermore, we annotate each response with
corresponding errors, modifications, and correct
segments. For every modification, we detail the un-
derlying rationale, explaining whether the change
was necessary for correctness, performance, or clar-
ity. This fine-grained analysis allows us to track
the evolution of the code and pinpoint the precise
factors that led to success or failure in each itera-
tion.

By dissecting these role-based interactions and
their iterative refinements, this case study offers a
transparent view into the collaborative dynamics
of Cogito’s problem-solving process and provides
qualitative evidence of its multi-role reasoning ca-
pabilities.



def encode(message):

Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in

the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.

Examples
anmples: : / (Sample 1/0)
>>> encode('test') i '
HresT :
»>> encode('This is a message') i
‘mxs KS C MGSSCGG' : x
It doesn't properly wrap
. def encode(message): around lowercase lettersand
encoded_message = "" treats all characters as
vowels = "AEIOUaeiou" uppercase.
for char in message:
if char.isalpha():
if char.upper() in vowels:
Encoded_char = chr{ord(char) +2)" "~ " T T T T H

if encoded_char > 'Z": 1
encoded _char

else:
encoded_message += char.swapcase()
else:
encoded_message += char
return encoded_message

| Incorrectly swaps the case of
characters instead of applying
the intended encoding rule for
non-vowel characters

def encode(message):
vowels = 'aeiouAEIOU’
encoded_message ="
for char in message:
if char.isalpha(): |
if char.lower() in vowels:
encoded_message += chr(ord(char) + 2)
else:
! encoded_message += char.upper()
glse:
! encoded_message += char.lower()
else:” T T T T mmmmm e mm—
encoded_message += char
return encoded_message

def encode(message):
result=""
vowels = "aeiouAEIOU"

X

vowel_mapping = {"a': 'c', 'e": 'g", 'i': 'K', '0": g, 'u": 'w', 'A": 'C’, 'E": 'G", I 'K, '0':'Q,

'U'w'}
for char in message:
if chacisalpha():
if char.lower() in vowels:
result += vowel_mapping{char.lower()].upper() if char.isupper() else

I
I
IL vowel mappm[[chnr lower()]

lser T T T e e I
result += char.swapcase() ™
else: Incorrect behavior for vowels that
result += char should be replaced directly without
return result case modification

Crwsesn

def encode(message):

vowels = {
AL, LG W,
2t e, e’ g, it K, Yo' g, U 'w!

}

result=]

for char in message:
if char in vowels:

result. ‘: Is[ch }i
def encode(message):
result=[]

for char in message:
if char.lower() in ‘aeiou’:

! To solve the problem of encoding the message, follow these steps:
| 1. Understand the Problem:
| 2.Swap Case

| 3. Identify Vowelsand Substitutes

| 4. Iterate Through the Message

| 5. Construct the Encoded Message

| 6. Returnthe Encoded Message

! Potential Challenges

| def encode(message):
. deftransform vowel(c)
vowel_shift= {'a

Super
Role

Voo S ‘) ______
\J

L0 g, Ut W,
Q, U 'W'}

A, e G, :
return vowel_shift.get(c, c)

H
i
H
i
'
H
'

e swapcase() forcin messue)

S ——

Figure 7: An example answer for 5 methods of HumanEval #92.
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Debugger

(FINAL ANSWER)

return ".join(transform_vowel(c.swapcase()) if c.swapcase() in 'AEIOUaeiou’ else



"name": "3531",
"description": "A [Mersenne prime](https://en.wikipedia.org/wiki/Mersenne_prime) is a prime number that can be represented as:
Mn = 27(n) - 1. Therefore, every Mersenne prime is one less than a power of two.

Write a function that will return whether the given integer "n* will produce a Mersenne prime or not.

The tests will check random integers up to 2000.",

Group1
import math

def is_prime(n):
ifn<=1:
return False
ifn==2:
return True
ifn%2==0:
return False
foriin range(3, math.isqgrt(n) + 1, 2):
ifn%i==0:
return False
return True

return is_prime(mersenne_num)
else:
return False

Group2

import sympy

def valid_mersenne(n): ,/
mersenne = 2**n - 1

Group3

1: To solve this problem, we will begin by
understanding what a Mersenne prime is. By
definition, a Mersenne prime is a prime number
that is one less than a power of two.

Thus, any positive number 'n’, such that 2*n - 1is a

prime number, generates a Mersenne prime.

2: First, take the input integer n and calculate the

value of 2"n - 1. This operation will provide you

with the potential Mersenne prime number.

3: Next, construct a function to check if the

obtained number is prime or not. A number is

considered prime if it's greater than 1 and has no
divisors other than 1 and itself.

So, iterate from 2 to the square root of the potential

Mersenne Prime. If any of these numbers divides it

exactly, itisn't a prime number, and thus, itisn'ta

Mersenne prime.

4: If the potential Mersenne prime number isn't

divisible by any numbers, it's indeed a Mersenne

prime. Your function then returns true.

5: If the potential Mersenne prime was evenly

divisible by a number, it's not a Mersenne prime,

and your function should return false.

Potential Challenges:

1. Possible computational overload for large input
values due to the calculation of 2"n - 1 and

1t prime checking, p ially leading
to performance issues.

2. 2. Dealing with negative numbers, fractions, or
zero. Since Mersenne prime calculation is only
valid for positive integers, your function should
be designed to handle these cases.

3. 3. Theinputinteger could exceed the size limit
of your programming languages' integer data
type while calculating 2”n - 1, causing incorrect
results.”,

Super Role’s
Answer

def valid_mersenne(n):

ifx==n-1
return True
elifx==1:
retum False
retumn False

def is_prime(n, k)
ifn<=1or
return False

i
for _ in range(k):
if not miller_rabin_test(d, n):
return False
return True

return is_prime(2*n - 1, 5) x

import random

def valid_mersenne(n):
def miller_rabin(n, k=5):
itnin (2, 7, 61)

it -
break

retum False
retum True.

retum miller_rabin(pow(2, n) - 1)

import math

itn==

retum False
sq_root = int(math.sqrt(n)) + 1
for divisor in range(3, sq_root/2):
if 1 % divisor == 0;
retum False
retum True

ne
el prme(irsenne)

import sympy
def valid_mersenne(n);
v

s
(mersenne)

X

import math

def is_prime(n):
ifn<=1:
return False
ifn==2:
return True
ifn%2==0:

return False
sqrt_n = math.isqrt(n)
for divisor in range(3, sqrt_n/+ 1, 2):
if n % divisor == 0:
return False
return True

i Mn=2*n- i
L retm is_prime(Mn) ; X
Group2
import math

import math

def is_prime(num):

if num <= 1:
return False

if num == 2:
return True

if num % 2 =:
return False

sqgrtnum = math.isqrt(num)

foriin range(3, sqrtnum + 1, 2):
ifnum % i==0:

return False
return True

def valid_mersenne(n):_____ .

Lmersenne_num=2*n -1
return is_prime(mersenne_num) x

Same problem
defis_prime(n):

if n==2orn == 3: return True
ifn==1o0rn% 2==0: return False
for i in range(3, int(math.sqrt(n)) +,
ifn%i==0:
return False
return True

def

L2):
C
return is_piime(mersenne_number) 9K

Group3

1. Understand the problem: We are given
an integer ‘n" and we have to determine
if this integer generates a Mersenne
prime or not.

2. A Mersenne prime can be represented
by the formula "2”n - 1"

2. Break down the problem: We first need

to calculate the value using this formula,

and then check if the result is a prime
number.

3. Identify components of the solution: Two

main components are needed for the

solution.

a. Prime Checking: Write a helper function
to verify if a number is prime. This can
be done by checking if any number from
2 to the square root of the given number
divides it.

. If anything does, then the number is not
a prime, else it is.

. Mersenne Prime Calculation: Calculate
*27n - 1" and then use the prime
checking function to verify if the result is
a prime.

4. Potential challenges: Handling large

inputs can be tricky.

For example, if 'n" is close to 2000, the

resulting “2”n - 1" is a very large number

and it might be computationally expensive
to verify its primality.”

o

o

def is_prime(n):

ifn<2:
return False
ifn==2:
return True
ifn%2==0:
return False
max_divisor = int(n**0.5) + 1
for d in range(3, max_divisor, 2):
ifn%d==0:
return False
return True ‘I

Figure 8: The comparison of answers between GPT-3.5-TURBO and GPT-4 in HumanEval#32.
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"name": "3531",
"description": "A [Mersenne prime](https://en.wikipedia.org/wiki/Mersenne_prime) is a prime number that can be represented as:
Mn = 27(n) - 1. Therefore, every Mersenne prime is one less than a power of two.

Write a function that will return whether the given integer "n* will produce a Mersenne prime or not.

The tests will check random integers up to 2000.",

Group1
import math

def is_prime(n):
ifn<=1:
return False
ifn==2:
return True
ifn%2==0:
return False
foriin range(3, math.isqgrt(n) + 1, 2):
ifn%i==0:
return False
return True

return is_prime(mersenne_num)
else:
return False

Group2

import sympy

def valid_mersenne(n): ,/
mersenne = 2**n - 1

Group3

1: To solve this problem, we will begin by
understanding what a Mersenne prime is. By
definition, a Mersenne prime is a prime number
that is one less than a power of two.

Thus, any positive number 'n’, such that 2*n - 1is a

prime number, generates a Mersenne prime.

2: First, take the input integer n and calculate the

value of 2"n - 1. This operation will provide you

with the potential Mersenne prime number.

3: Next, construct a function to check if the

obtained number is prime or not. A number is

considered prime if it's greater than 1 and has no
divisors other than 1 and itself.

So, iterate from 2 to the square root of the potential

Mersenne Prime. If any of these numbers divides it

exactly, itisn't a prime number, and thus, itisn'ta

Mersenne prime.

4: If the potential Mersenne prime number isn't

divisible by any numbers, it's indeed a Mersenne

prime. Your function then returns true.

5: If the potential Mersenne prime was evenly

divisible by a number, it's not a Mersenne prime,

and your function should return false.

Potential Challenges:

1. Possible computational overload for large input
values due to the calculation of 2"n - 1 and

1t prime checking, p ially leading
to performance issues.

2. 2. Dealing with negative numbers, fractions, or
zero. Since Mersenne prime calculation is only
valid for positive integers, your function should
be designed to handle these cases.

3. 3. Theinputinteger could exceed the size limit
of your programming languages' integer data
type while calculating 2”n - 1, causing incorrect
results.”,

Super Role’s
Answer

def valid_mersenne(n):

ifx==n-1
return True
elifx==1:
retum False
retumn False

def is_prime(n, k)
ifn<=1or
return False

i
for _ in range(k):
if not miller_rabin_test(d, n):
return False
return True

return is_prime(2*n - 1, 5) x

import random

def valid_mersenne(n):
def miller_rabin(n, k=5):
itnin (2, 7, 61)

it -
break

retum False
retum True.

retum miller_rabin(pow(2, n) - 1)

import math

itn==

retum False
sq_root = int(math.sqrt(n)) + 1
for divisor in range(3, sq_root/2):
if 1 % divisor == 0;
retum False
retum True

ne
el prme(irsenne)

import sympy
def valid_mersenne(n);
v

s
(mersenne)

X

import math

def is_prime(n):
ifn<=1:
return False
ifn==2:
return True
ifn%2==0:

return False
sqrt_n = math.isqrt(n)
for divisor in range(3, sqrt_n/+ 1, 2):
if n % divisor == 0:
return False
return True

i Mn=2*n- i
L retm is_prime(Mn) ; X
Group2
import math

import math

def is_prime(num):

if num <= 1:
return False

if num == 2:
return True

if num % 2 =:
return False

sqgrtnum = math.isqrt(num)

foriin range(3, sqrtnum + 1, 2):
ifnum % i==0:

return False
return True

def valid_mersenne(n):_____ .

Lmersenne_num=2*n -1
return is_prime(mersenne_num) x

Same problem
defis_prime(n):

if n==2orn == 3: return True
ifn==1o0rn% 2==0: return False
for i in range(3, int(math.sqrt(n)) +,
ifn%i==0:
return False
return True

def

L2):
C
return is_piime(mersenne_number) 9K

Group3

1. Understand the problem: We are given
an integer ‘n" and we have to determine
if this integer generates a Mersenne
prime or not.

2. A Mersenne prime can be represented
by the formula "2”n - 1"

2. Break down the problem: We first need

to calculate the value using this formula,

and then check if the result is a prime
number.

3. Identify components of the solution: Two

main components are needed for the

solution.

a. Prime Checking: Write a helper function
to verify if a number is prime. This can
be done by checking if any number from
2 to the square root of the given number
divides it.

. If anything does, then the number is not
a prime, else it is.

. Mersenne Prime Calculation: Calculate
*27n - 1" and then use the prime
checking function to verify if the result is
a prime.

4. Potential challenges: Handling large

inputs can be tricky.

For example, if 'n" is close to 2000, the

resulting “2”n - 1" is a very large number

and it might be computationally expensive
to verify its primality.”

o

o

def is_prime(n):

ifn<2:
return False
ifn==2:
return True
ifn%2==0:
return False
max_divisor = int(n**0.5) + 1
for d in range(3, max_divisor, 2):
ifn%d==0:
return False
return True ‘I

Figure 9: The comparison of answers between GPT-3.5-TURBO and GPT-4 in HumanEval#92.
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def find_zero(xs: list):

Group1

nge(-1000, 1000)

X

def find_zero(xs: list):
return -next(x for x in,
if round(poly(xs, X);

Group2

def find_zero(xs: list):
leading_coeff = max(xs, key=abs)
return -leading_coeff / xs[0]

assert round(find_zero([1, 2]), 2) ==-0.5
assert round(find_zero([-6, 11, -6, 1]), 2) == 1.0

X

Group3

Problem: Given an array, find the
maximum element in the array.
1. Start by defining a variable to
store the maximum element,
and initialize it as the first
element of the array.

Iterate over the array elements
from the second element
onwards.

3. Compare each element with
the current maximum element,
and if the current element is
greater, update the maximum
element.

4. After iterating through all the

elements, the variable storing
the maximum element will hold
the result.

Challenges:

. 1. Handling edge cases like
empty arrays or arrays with
only one element.

. 2. Ensuring that the array

elements are of consistent data
type for proper comparison.

3. Dealing with very large

arrays that may impact
performance.

4. Considering alternative

approaches like sorting the
array before finding the
maximum element

L

oo

~

©

©

xs are coefficients of a polynomial.
find_zero finds x such that poly(x) = 0.
find_zero returns only one zero point, even if there are many.

GPT-3.5-TURBO

Super Role’s
Answer

import math

def poly(xs: list, x: float):

return sum([coeff * math.pow(x, i) for i, coeff

in enumerate(xs)])

/

def find_zero(xs: list):

X

import math

def poly(xs: list, x: float):
return sum([coeff * math.pow(x, i) for i, coeff in

Can't solve situation
def find_zero(xs: list): / whenx =0

n=len(xs) - 1
=1in%2:

returnb /(2 * n)

import math

def poly(xs: list, x: float):
return sum([coeff * math.pow(x, i) for i, coeff in

Still wrong
ifn%2==0

else -1
Fath a1y # 247 7 LI AT R T
:

def find_zero(xs: list):
n=len(xs) - 1

_______________________________

fetum b7 (2 ¥ )
import math
def poly(xs: list, x: float):

return sum([coeff * math.pow(x, i) for i,
coeff in enumerate(xs)])

list):
ifien T
return -xs[0] / xs[1]
elif len(xs) =:
return 1.0

import math

def poly(xs: list, x: float):
return sum(coeff * x**i for i, coeff in
enumerate(xs))

def find_zero(xs: list): /
if len(xs L
returri -xs[0] / xs[1]!

elif len(xs) =

return 1.0

return None

>>>
-0.

>>> round(find_zero([-6, 11, -6, 1]), 2) # (x - 1) * (x - 2) * (x - 3) = -6 + 11X - 6x"2 + X3

round(find_zero([1, 2]), 2) # f(x) = 1 + 2x
5

1.0

Group1

Moreover, find_zero only takes list xs having an even number of coefficients
and the largest non-zero coefficient, as it guarantees a solution.

from scipy.optimize import newton

def poly(xs: list, x: float) -> float:
return sum([coeff * x **i for i, coeff in
enumerate(xs)])

def find_zero(xs: list) -> float:

/

Start using 0

Group3 More detailed guidance

"The task involves defining two functions, *poly()’

and “find_zero()". Steps to solve the task:

. The first function, "poly()’, computes the
value of a polynomial for a given input 'x.
This function will first enumerate over the list
“xs[]" (provided as a parameter that list of
coefficients of the polynomial), using both the
index ‘i* and the corresponding coefficient.

Then, it will compute the i-th term of the

by the

“i-th* power of X (input value).

The *math.pow()" function is used for this

computation. The “sum()* function sums all these

computed terms, giving the final value of the
polynomial far the innut "

-

with the

Group2

import math

def poly(xs: list, x: float) -> float:
return sum(coeff * math.pow(x, i) for i, coeffin

1. The second function, “find_zero()", uses
coefficients of a polynomial provided as a
parameter, then finds one of the "x” values for
which the polynomial equals to zero.

To do this, however, we need some form of root

1inding algorithm, such as the bisection method,

Newton's method, or others.

-or these methods, starting points or ranges are

usually required. The task doesn't provide clear

enumerate(xs))
Start using 0.0
def dpoly(xs: list, x: float) -> float:

return sum(coeff * i * math.pow(x/i - 1) for i, coeff
in enumerate(xs) if i 1= 0)

def find_zero(xs: list) -> float:

X=00
:while abs(poly(xs, x)) > 0.00001: | x

on this, so we need to make an

assumption.

1. Implement the root finding algorithm and

return the computed zero of polynomial.

Potential challenges:

. When implementing the “find_zero® function,
we often need initial guesses or ranges for
the root finding algorithm, which the task
agenda doesn't specify. This can affect how
we design of the “find_zero" function.

wn

4. 2. Ifthe polynomial has more than one oot
(more than one x-value for which poly(x) = 0),
the function might only return one root,
depending on the implementation.

5. 3.Itsindicated that the function ‘find_zero"
should only accept lists of coefficients with
even numbers of terms. This involves
checking the input and handling the error if
the list length is odd.

5. 4.1tis specified that “find_zero()' should only
accept lists having largest non-zero
coefficient, another check which needs to be
implemented.

. 5. For certain polynomials and certain root
finding algorithms, finding a root may not
even be possible if the coefficients lead to a
function with no real roots.",

Super Role’s
Answer

import math

def poly(xs: list, x: float):
return sum([coeff * x ** i for i, coeff in
enumerate(xs)])

def find_zero(xs: list):
x=0.0
while abs(poly(xs, x)) > 1e-6:
derivative = sum([i * coeff * x ** (i- 1) ifi I=0
else 0 for i, coeff in enumerate(xs)])
X = X - poly(xs, x) / derivative
return x V

Figure 10: The comparison of answers between GPT-3.5-TURBO and GPT-4 in in APPS#1628.
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def find_zero(xs: list):

Group1

nge(-1000, 1000)

X

def find_zero(xs: list):
return -next(x for x in,
if round(poly(xs, X);

Group2

def find_zero(xs: list):
leading_coeff = max(xs, key=abs)
return -leading_coeff / xs[0]

assert round(find_zero([1, 2]), 2) ==-0.5
assert round(find_zero([-6, 11, -6, 1]), 2) == 1.0

X

Group3

Problem: Given an array, find the
maximum element in the array.
1. Start by defining a variable to
store the maximum element,
and initialize it as the first
element of the array.

Iterate over the array elements
from the second element
onwards.

3. Compare each element with
the current maximum element,
and if the current element is
greater, update the maximum
element.

4. After iterating through all the

elements, the variable storing
the maximum element will hold
the result.

Challenges:

. 1. Handling edge cases like
empty arrays or arrays with
only one element.

. 2. Ensuring that the array

elements are of consistent data
type for proper comparison.

3. Dealing with very large

arrays that may impact
performance.

4. Considering alternative

approaches like sorting the
array before finding the
maximum element

L

oo

~

©

©

xs are coefficients of a polynomial.
find_zero finds x such that poly(x) = 0.
find_zero returns only one zero point, even if there are many.

GPT-3.5-TURBO

>>> round(find_zero([1, 2]), 2) # f(x) = 1 + 2x

Super Role’s
Answer

import math

def poly(xs: list, x: float):

return sum([coeff * math.pow(x, i) for i, coeff

in enumerate(xs)]) /

def find_zero(xs: list):

X

import math

def poly(xs: list, x: float):
return sum([coeff * math.pow(x, i) for i, coeff in

Can't solve situation
def find_zero(xs: list): / whenx =0

n=len(xs) - 1
=1in%2:

refurn b /(2 * n)

import math

def poly(xs: list, x: float):
return sum([coeff * math.pow(x, i) for i, coeff in
n=len(xs)- 1

Still wrong
ifn%2==0else-1
s 1) % 2= 4% 7 RSLIa) TR T
'

1)*a
Wra !
Tt b7 (2 ¥ iy X

import math

def find_zero(xs: list):

def poly(xs: list, x: float):
return sum([coeff * math.pow(x, i) for i,
coeff in enumerate(xs)])

import math

def poly(xs: list, x: float):
return sum(coeff * x**i for i, coeff in
enumerate(xs))

def find_zero(xs: list): /
if len(xs L
returri -xs[0] / xs[1]!

elif len(xs) =

return 1.0

return None

-0.5

>>> round(find_zero([-6, 11, -6, 1]), 2) # (x - 1) * (x - 2) * (x - 3) = -6 + 11X - 6x"2 + X3

1.0

Moreover, find_zero only takes list xs having an even number of coefficients
and the largest non-zero coefficient, as it guarantees a solution.

Group1

from scipy.optimize import newton

def poly(xs: list, x: float) -> float:
return sum([coeff * x **i for i, coeff in
enumerate(xs)])

def find_zero(xs: list) -> float:

/

Start using 0

Group2

import math

def poly(xs: list, x: float) -> float:
return sum(coeff * math.pow(x, i) for i, coeffin

Group3 More detailed guidance

"The task involves defining two functions, *poly()’

and “find_zero()". Steps to solve the task:

. The first function, "poly()’, computes the
value of a polynomial for a given input 'x.
This function will first enumerate over the list
“xs[]" (provided as a parameter that list of
coefficients of the polynomial), using both the
index 'i" and the corresponding coefficient.

Then, it will compute the i-th term of the

by the

“i-th” power of "x" (input value).

The *math.pow()" function is used for this

computation. The “sum()* function sums all these

computed terms, giving the final value of the
polynomial far the innut "

1. The second function, “find_zero()", uses
coefficients of a polynomial provided as a
parameter, then finds one of the "x" values for
which the polynomial equals to zero.

To do this, however, we need some form of root

1inding algorithm, such as the bisection method,

Newton's method, or others.

-or these methods, starting points or ranges are

usually required. The task doesn't provide clear

-

with the

enumerate(xs))
Start using 0.0
def dpoly(xs: list, x: float) -> float:

return sum(coeff * i * math.pow(x/i - 1) for i, coeff
in enumerate(xs) if i 1= 0)

def find_zero(xs: list) -> float:

X=00
:while abs(poly(xs, x)) > 0.00001: | x

on this, so we need to make an

assumption.

1. Implement the root finding algorithm and

return the computed zero of polynomial.

Potential challenges:

. When implementing the “find_zero® function,
we often need initial guesses or ranges for
the root finding algorithm, which the task
agenda doesn't specify. This can affect how
we design of the “find_zero" function.

4. 2. Ifthe polynomial has more than one root
(more than one x-value for which poly(x) = 0),
the function might only return one root,
depending on the implementation.

5. 3. Itsindicated that the function “find_zero"
should only accept lists of coefficients with
even numbers of terms. This involves
checking the input and handling the error if
the list length is odd.

5. 4. Itis specified that “find_zero()" should only
accept lists having largest non-zero
coefficient, another check which needs to be
implemented.

. 5. For certain polynomials and certain root
finding algorithms, finding a root may not
even be possible if the coefficients lead to a
function with no real roots.”,

wn

Super Role’s
Answer

import math

def poly(xs: list, x: float):
return sum([coeff * x ** i for i, coeff in
enumerate(xs)])

def find_zero(xs: list):
x=0.0
while abs(poly(xs, x)) > 1e-6:
derivative = sum([i * coeff * x ** (i- 1) ifi I=0
else 0 for i, coeff in enumerate(xs)])
X = X - poly(xs, x) / derivative
return x V

Figure 11: The comparison of answers between GPT-3.5-TURBO and GPT-4 in APPS#3531
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"name": "1628",

"description": "If n is the numerator and d the denominator of a fraction, that fraction is defined a (reduced) proper

fraction if and only if GCD(n,d)==1.\n\nFor example '5/16" is a proper fraction, while '6/16" is not, as both 6 and 16 are divisible by 2, thus the fraction can be reduced to '3/8".
\n\nNow, if you consider a given number d, how many proper

fractions can be built using d as a denominator?\n\nFor example, let's assume that d is 15: you can build a total of 8 different proper fractions between 0 and 1 with it:
1/15, 2/15, 4/15, 7/15, 8/15, 11/15, 13/15 and 14/15.\n\nYou are to build a function

that computes how many proper fractions you can build with a given
denominator:\n""python\nproper_fractions(1)==0\nproper_fractions(2)==1\nproper_fractions(5)==4\nproper_fractions(15)=
=8\nproper_fractions(25)==20\n""\n\nBe ready to handle big numbers.\n\nEdit: to be extra precise, the term should be

\"reduced\" fractions...”

"difficulty": "interview", "id": 1628,

"sample_io": [{"input": "1", "output": [0]}, {"input": "2", "output": [1]}, {"input": "5", "output": [4]}, {"input": "15", "output":

[8]}, {"input": "25", "output": [20]}], "test_list": [{"input": "1", "output": [0]}, {"input": "2", "output": [1]}, {"input": "5",

"output": [4]}, {"input": "15", "output": [8]}, {"input": "25", "output": [20]}, {"input": "9999999", "output": [6637344]}, {"input":

"500000003", "output": [500000002]}, {"input": "1532420", "output": [608256]}, {"input": "123456789", "output": [82260072]},

{"input": "9999999999", "output": [5890320000]}], "starter_code": "\ndef proper_fractions(n):\n\t"}

7, 2,
Group1 Coder’s Answer Debugger’s Answer(Com_A)
ifn<2: ifn==1:
rreturn O return 0
factors = set()
phi=n factor =
p=2 m=n
while factor * factor <= n:
while p*p <=n: if n % factor:
ifn%p: factor += 1
pa=1 \ else:
else: n /I= factor
while n % p = factors.add(factor)

ni=p
phi-= phi// p

Because none of them followed the P
LS. process of generating a o™
return n
return phi complete function, they both failed.
Group2 Coder’s Answer (Com_A) Debugger’s Answer

def proper_fractions(n): def proper_fractions(n):

ifn==
return 0
hi=n
e ¥~ | The case where
— “whilep*p<=n: | 1 =17 i
The code does not explicitly L E’*j';{? r?%pfi n ! n=1 is considered
handle the case wheren =1 : p+=1
result -= result // n else:

return result phi -=phi// p
\ ) ifn>1:
#JIestcases phi -= phi / n
Lassert proper fractions(1) ” - - return phi
assert proper_fractions(2) ‘ But there is a logical error:Did not

assert proper_fractions(5)
assert proper_fractions(15) = completely decompose the factors.

assert proper_fractions(25) 0

Group2 Planner’s Answer(Com_A)

+First, notice the pattern. Let's take the example of 15. The results for 15 exclude multiples of 3 and 5, because these numbers have common factors with 15. This removed 1/3rd and 1/5th of the numbers up to 15 (excluding 15 itself),i.e., 5 numbers and 3 numbers. \n
You need to know what's the count of numbers that are multiples of 3 and 5 within the range. Subtract everything else. \n\nStep 3: Write a function to compute the greatest common divisor of two numbers. \n< /> /: Next, write a function that computes the total numbers (not only prime)
that can divide a given number 'd". (This will be used in step 5)\n< - 5: Now, initialize a counter variable to 'd-1'. This is because, all numbers less than 'd’ can be potential numerators. We need to subtract from this those which have common factors with 'd". We know that any number
that is divisible by factors of 'd' other than 1and 'd" itself will have a common factor with 'd'. Subtract from the counter the count of multiples of each of the factors computed in step 4 within the range up to 'd"\n< > &: Remember that multiples common to more than one factor (like
multiples of 6, which are multiples of 2,3) would have been subtracted more than once. So, add back such multipl es to the
counter.\n : Return the final value of counter after all the subtractions and additions. This is the final solution.\n\nPotential
challenges:\n1. The logic requires knowledge of number theory.\n2. When the 'd' is very large computing all factors of ‘d' may be time consuming.\n3. There may be a large number of multiples of factors to be excluded. So a lot of computation is required.\nd. The algorithm must
handle the inclusion-exclusion principle correctly, i.e., it must exclude all multiples of each factor and include multiples of their combinations correctly.\nS. Precision could be lost with very large numbers due to object size limitations. In Python, this can be avoided by using the 'long"
data type for large numbers.” |

and highlight potential problem. |

Super Role’s Answer 1¢t tem 2" tem

oper_fractions(n):

The same approach was
used as when acting as
adebugger.

| R

def proper_fractions(n):

def phi(n): Check more situations
amount=0k=1
while k < n:

Failed because if math.gcd(n, K)
doesn’t Import math amount += 1
k += 1 return amount

return phi(n) if n > 1 else 0

The same logic when
cting as a Coder.

refurn totient

Figure 12: The complete solution process of Cogito in APPS#1628.
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