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Abstract001

Large language models-based Multi-Agent Sys-002
tems (MAS) have demonstrated promising per-003
formance for enhancing the efficiency and ac-004
curacy of code generation tasks. However,005
most existing methods follow a conventional006
sequence of planning, coding, and debugging,007
which contradicts the growth-driven nature of008
human learning process. Additionally, the fre-009
quent information interaction between multi-010
ple agents inevitably involves high computa-011
tional costs. In this paper, we propose Cogito,012
a neurobiologically-inspired multi-agent frame-013
work to enhance the problem-solving capabil-014
ities in code generation tasks with lower cost.015
Specifically, Cogito adopts a reverse sequence:016
it first undergoes debugging, then coding, and017
finally planning. This approach mimics hu-018
man learning and development, where knowl-019
edge is acquired progressively. Accordingly,020
a hippocampus-like memory module with dif-021
ferent functions is designed to work with the022
pipeline to provide quick retrieval in similar023
tasks. Through this growth-based learning024
model, Cogito accumulates knowledge and025
cognitive skills at each stage, ultimately form-026
ing a Super-Role—an all-capable agent to per-027
form the code generation task. Extensive exper-028
iments against representative baselines demon-029
strate the superior performance and efficiency030
of Cogito. The code is publicly available at031
anonymous.4open.science/r/test_80EF.032

1 Introduction033

Large language models (LLMs) have demonstrated034

remarkable capabilities in code generation (Chowd-035

hery et al., 2022), testing (Fakhoury et al., 2024),036

and debugging (Xia and Zhang, 2023). Recent037

advances highlight the effectiveness multi-agent038

collaborative, surpassing single-agent approaches039

in software development tasks (Islam et al., 2024;040

Rasheed et al., 2024a). These advancements041
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Figure 1: The intuitions behind this work. (Top): brain’s
different regions are dedicated to distinct functions and
tasks. Inspired by this functional specialization, we
design an agent with distinct roles that evolve through
stages. (Bottom): the growth trajectory of an individual,
progressing from observation and learning in childhood,
to practice and imitation in young adulthood, and finally
to independent problem-solving and planning in the
expert stage.

not only automate complex programming work- 042

flows but also enhance the models’ reasoning and 043

problem-solving abilities, attracting attention from 044

both academia and industry institutions like Ope- 045

nAI 1 and Meta AI 2. 046

Despite these achievements, existing frame- 047

works rigidly follow a "plan-first" sequence: agents 048

plan, code, then debug (Islam et al., 2024, 2025). 049

While this mimics traditional software workflows, 050

it fundamentally conflicts with human learning 051

principles. For example, humans learn through trial 052

and error (debugging) before developing system- 053

atic knowledge (planning), a process supported by 054

cognitive theories like productive failure (Figure 1). 055

1https://api.semanticscholar.org/CorpusID:257532815
2https://api.semanticscholar.org/CorpusID:271571434
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However, these methods lead to two critical flaws.056

First, agents repeatedly solve similar bugs without057

learning from past mistakes, mirroring a "cogni-058

tive misalignment" between machines and humans.059

Second, frequent inter-agent communication dras-060

tically increases computational costs (Huang et al.,061

2023). These limitations highlight the need for062

frameworks that align with human-like learning063

while reducing overhead.064

Inspired by neurobiological principles, We pro-065

pose Cogito, a multi-agent framework that flips066

the traditional workflow to debug→code→plan, di-067

rectly inspired by human cognitive growth. In-068

stead of forcing agents to plan before acting, Cog-069

ito lets them learn from failures first, akin to how070

children develop skills. At its core, Cogito in-071

tegrates a hippocampus-like memory module for072

structured storage and retrieval: short-term mem-073

ory captures debugging experiences (e.g., error pat-074

terns and fixes), while long-term storage retains075

validated solutions for future reuse. Over time, spe-076

cialized agents merge into a unified Super-Role077

that internalizes collective expertise, eliminating078

constant communication. This dynamic learning079

process transforms code generation from a rigid080

pipeline into an evolving practice where agents081

"grow smarter" through experience, bridging the082

gap between artificial and human intelligence. The083

key contributions are summarized as follows:084

• We propose Cogito, the first framework085

that enables a Super-Role agent to progres-086

sively evolve through a human-inspired de-087

bug→code→plan sequence, whcih is contrary088

to conventional workflows. This biologically089

grounded approach is akin to human expertise090

development process.091

• We design a hippocampus-inspired memory092

that stores different content based on learn-093

ing stages, where different parts of memory094

are inter-connected to ensure the complete-095

ness of stored information. The design can096

support dynamic and adaptive programming097

workflows.098

• We conduct extensive experiments to validate099

Cogito’s efficiency on eight code generation100

tasks. The results show that Cogito reduces101

token consumption by up to 66.29% and im-102

proves performance by an average of 12.2%103

compared to MapCoder, using GPT-3.5-turbo104

and GPT-4.105

2 Related work 106

2.1 LLM Agents 107

LLM-based agents normally consist of four core 108

components: planning, memory, perception, and 109

action. Planning and memory form the cognitive 110

core, while perception and action enable interac- 111

tion with the environment to achieve goals (Xi 112

et al., 2023). The planning component decom- 113

poses complex tasks into manageable subtasks and 114

schedules their execution to achieve predefined ob- 115

jectives, while also incorporating the flexibility to 116

adapt plans dynamically in response to external 117

feedback. The memory component, on the other 118

hand, stores historical actions and observations, 119

enabling agents to draw on past experiences to re- 120

fine decision-making processes and enhance task 121

execution efficiency. This dual approach facili- 122

tates continuous learning and optimization, ensur- 123

ing improved performance over time. Effective 124

memory management is critical for system perfor- 125

mance (Wang et al., 2023; Zhang et al., 2024b). 126

Due to the suitability of this setup for code gen- 127

eration problems, a large number of works have 128

emerged in this field (Wang et al., 2024; Liu et al., 129

2024). 130

2.2 Multi-Agent Collaboration for Software 131

Development 132

To effectively solve complex problems, tasks are 133

divided into specialized roles, each handling a spe- 134

cific aspect of the process. This role-based divi- 135

sion, combined with agent collaboration, boosts ef- 136

ficiency and enhances outcomes. The typical work- 137

flow includes task refinement, execution, result 138

validation, and optimization (Lei et al., 2024b,a). 139

These stages ensure that each component is man- 140

aged with focus, leading to smoother task exe- 141

cution and more reliable results. For instance, 142

MetaGPT (Hong et al., 2023) mimics standardized 143

real-world collaboration procedures, incorporating 144

five distinct roles. Similarly, MapCoder (Islam 145

et al., 2024) adapts the human programming cycle 146

to define four key roles for task completion, while 147

CodeSim (Islam et al., 2025) further advances this 148

idea by enhancing code generation through human- 149

like planning, coding, and debugging with step-by- 150

step input/output simulation. 151

2.3 Prompt Engineering 152

Prompt engineering plays a crucial role in optimiz- 153

ing code generation tasks by effectively guiding 154
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messages = []

for item in text_1:
    role = 'assistant' if item['role'].lower() != 'user' else item['role’]

messages.append({"role": role, "content": item["content"]})

messages.append({"role": "user", "content": prompt})

response = client.chat.completions.create(

    model="gpt-4",

    messages=messages

)
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Figure 2: Overview of Cogito. The upper section illustrates the learning process of the Super-Role stored in the
memory module. The lower section provides a detailed explanation of the process: initially, it assumes the role of
the debugger within the group, followed by transitions to the coder and planner roles. After completing the learning
cycle, the final answer is provided by the Super-Role.

model outputs, ensuring both, consistency and effi-155

ciency in the process. Inspired by the CoT (Chain156

of Thought) (Wei et al., 2022) method, there are157

usually three main stages in code generation tasks158

to gradually solve the problem while maintaining159

clarity and structured reasoning: Planning (Talebi-160

rad and Nadiri, 2023; Zhang et al., 2024a; Lin161

et al., 2024), Coding (Rasheed et al., 2024a; Zan162

et al., 2024; Tao et al., 2024), and Debugging (Li163

et al., 2023; Qin et al., 2024; Rasheed et al., 2024b),164

AgentCoder (Huang et al., 2023) directs the agent165

to produce pseudocode following the phases of166

problem comprehension and algorithm selection.167

LLM4CBI (Tu et al., 2023) utilizes a stored com-168

ponent that tracks relevant prompts and selects the169

most effective ones to guide LLMs in generating170

variations.171

3 Cogito172

3.1 Agent Roles173

Building on the "Chain of Thought" (CoT) (Wei174

et al., 2022) process, we assign three distinct roles175

within the team: Planner, Coder, and Debugger.176

The Planner’s role is to outline a clear, step-by-177

step strategy for solving the problem, considering178

key aspects such as edge cases and performance179

issues. This guidance helps the Coder translate the180

plan into functional code, ensuring that all criti-181

cal scenarios are addressed during implementation. 182

After the Coder finishes coding, the solution is 183

tested against a set of sample inputs and expected 184

outputs (Islam et al., 2024). If the code passes 185

the tests, it is considered finalized. However, if it 186

fails, the Debugger steps in, analyzing the trace- 187

back feedback to identify and correct errors. This 188

collaborative process ensures that the final code is 189

both robust and efficient. 190

3.2 Super-Role 191

In this experimental setup, we introduce a shared 192

member known as the Super-Role, who is assigned 193

to each of the three groups sequentially. This mem- 194

ber rotates through the roles of Debugger, Coder, 195

and Planner within each group, contributing to a dy- 196

namic and collaborative environment. Importantly, 197

the public role retains the memory of all its prior ex- 198

periences, which plays a crucial role in informing 199

and guiding the execution of its current responsibil- 200

ities. This memory not only enhances the efficiency 201

of the member’s actions within the same group but 202

also acts as a communication bridge across differ- 203

ent groups, facilitating the transfer of knowledge 204

and strategies. Upon completion of the three dis- 205

tinct tasks, the public member now equipped with 206

accumulated expertise will be entrusted with the 207

task of solving the problem independently. To en- 208
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sure robustness in the final solution, the member209

is provided with up to five opportunities for error210

correction, allowing iterative refinement of the out-211

come. The final answer, enriched by the cumulative212

knowledge gained through this process, will be gen-213

erated and presented by the Super-Role, reflecting214

its comprehensive learning journey across multi-215

ple roles and tasks. A complete example of the216

response process is shown in Figure 3.217

3.3 The Hippocampus-like Memory Module218

Inspired by the structural divisions of the hippocam-219

pus (Burgess et al., 2002; Berron et al., 2017;220

Kesner, 2013), we design a memory-enhanced stor-221

age module that aligns with its specialized func-222

tions. The hippocampus, including regions like223

CA1–CA4 and the Dentate Gyrus (DG), encodes,224

consolidates, and retrieves memories. Our model225

maps task-specific information and generated code226

to different regions, mirroring hierarchical and as-227

sociative memory mechanisms. This biologically228

inspired design enhances long-term retention, con-229

textual recall, and adaptive retrieval, optimizing230

memory utilization for efficient code generation.231

DG Part. The Dentate Gyrus (DG) plays a key232

role in memory formation by performing pattern233

separation, transforming similar inputs into distinct,234

interference-resistant representations. Inspired by235

this, our memory module integrates a tokenizer236

to process diverse task information, organizing it237

into distinct memory traces to enhance retrieval238

efficiency and adaptability in code generation.239

CA1 Region. The CA1 region, pivotal for the240

storage and retrieval of long-term memories, serves241

as the repository for initial responses generated242

during problem-solving. Once formulated, these243

responses are stored for long-term access and ready244

for future retrieval when related tasks arise, much245

like how we retain foundational knowledge and246

lessons learned over time.247

CA2 Region. While research on the CA2 region re-248

mains sparse, its role in social and emotional mem-249

ory inspired our "Personalization Module." Here,250

users can input prior code, enabling the system to251

learn their naming conventions and coding style.252

While optional, this module enhances alignment253

with user preferences, fostering a more intuitive254

coding experience.255

CA3 Region. The CA3 region, which facilitates256

quick recall and rapid learning, stores different ver-257

sions of the code along with the associated error258

tracebacks. This allows for fast retrieval of past259
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Temporary Answer
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Planner  Coder  Debugger
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Planner  Coder  Debugger
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               Initial Code
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def encode(message):
…
    result = []
    for char in message:
        if char in vowels:
            result.append(vowels[char])
…

def encode(message):
    result = []
    for char in message:
        if char.lower() in 
…

1. Understand the Problem…
2. Swap Case
3. Identify Vowels and…
4. Iterate Through…
…

def encode(message):
    def transform_vowel(c):
        vowel_shift = {…}
        return vowel_shift.get(c)
    return  …

Correction

Initial Code

Instruction

Answer

def check(candidate): 
      assert(…)
      assert(…)

Check

Figure 3: The abbreviated explanation of the process
and sample outputs for each step.

mistakes and corrections, helping avoid errors in 260

future problem-solving processes. This mirrors 261

the brain’s ability to learn from past experiences, 262

making future decision-making faster and more 263

efficient. 264

CA4 Region. Finally, the CA4 region serves as 265

a bridge between the DG and CA3, storing only 266

the final, correct result or the last modified ver- 267

sion. This ensures that successful outcomes are 268

quickly accessible for similar tasks, enabling ef- 269

ficient problem-solving and minimizing the time 270

spent on recurring issues. 271

3.4 Agent Collaboration Settings 272

To mitigate the impact of low-quality answers 273

during learning, we assign initial weights of 0.4, 274

0.4, and 0.3 to each role. Importance scores 275

are performance-based: 0.9 if the generated code 276

passes tests in debugging and coding, otherwise 0.1, 277

while planning consistently receives 0.9. The final 278

score aggregates across stages, emphasizing high- 279

quality outputs. To enhance variability and pre- 280

vent over-reliance on faulty answers, two newly se- 281

lected roles—excluding the Super-Role—are rein- 282

troduced in each group. Algorithm 1 summarizes 283

our agent traversal. 284

4 EXPERIMENTS 285

4.1 Experimental Settings 286

Datasets. We adopt 8 widely-used benchmark 287

datasets for testing, with 5 datasets contain- 288
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Algorithm 1 Cogito

1: Common Agent: Ac , Plan Agent: Ap

2: Implement Agent: Ai , Debug Agent: Ad

3: Super Role: SR
4: Plan_A← Ap(Question)
5: Code_A← Ai (Plan_A, Question)
6: Own_Answer← Ac(Code_A, sample_io)
7: Plan_B← Ap(Question)
8: Own_Code← Ai (Plan_B, Question)
9: Answer_B← Ad (Code_B, sample_io)

10: Own_Plan← Ap(Question)
11: Code_C← Ai (Plan_C, Question)
12: Answer_C← Ad (Code_C, sample_io)
13: tem_code ← SR(Question, Own_Answer,

Own_Code, Own_Plan)
14: if test(tem_code, sample_io) then
15: return tem_code
16: else
17: for i = 1 to 5 do
18: code ← SR(Question, Own_Answer,

Own_Code, Own_Plan)
19: if test(code, sample_io) then
20: return code
21: end if
22: tem_code← code
23: end for
24: return tem_code
25: end if

ing only simple programming problems (e.g.,289

HumanEval (Chen et al., 2021), HumanEval-290

ET (Dong et al., 2023a), EvalPlus (Liu et al., 2023),291

MBPP (Austin et al., 2021), MBPP-ET (Dong292

et al., 2023a)), and others that contain complex293

programming problems (e.g., Automated Program-294

ming Progress Standard (APPS), xCodeEval (Khan295

et al., 2023), and CodeContest). More detailed296

information is provided in Appendix B.1.297

Evaluation Metric. For the dataset used in the298

experiment, we uniformly apply the widely-used299

unbiased version of Pass @k as evaluation met-300

ric (Chen et al., 2021; Dong et al., 2023b). Note301

that the unbiased version of Pass @k is a metric302

used to evaluate recommendation systems by cor-303

recting for potential biases in the recommendation304

process. The formula is given by:305

Pass@k = EProblems

[
1−

(
n−c
k

)(
n
k

) ]
, (1)306

where n is the total number of items, c is the307

number of relevant items, and k is the size of the 308

top-k recommendations. More detailed information 309

is provided in Appendix B.2. 310

Baselines. We conduct a comprehensive compar- 311

ison with several representative methods: Direct, 312

Chain-of-Thought (CoT), Self-Planning, Analog- 313

ical Reasoning, MapCoder, and CodeSim. More 314

detailed information is provided in Appendix B.3. 315

4.2 Overall Performance 316

In this section, we conduct a comprehensive evalua- 317

tion of our proposed process, and all the results are 318

systematically presented in Table 1. From the table, 319

it is evident that Cogito outperforms all the other 320

models, achieving the highest scores across all 321

datasets. Notably, the application of GPT-4 signifi- 322

cantly enhances the overall performance, yielding 323

the best results observed in our experiments. These 324

results underscore the effectiveness of Cogito and 325

highlight the substantial improvements brought by 326

the integration of GPT-4 into the process, demon- 327

strating its potential for high-level performance 328

across diverse data scenarios. The results further 329

validate the effectiveness of our growth-based learn- 330

ing concept, demonstrating that enabling the agent 331

to evolve reversely can enhance its problem-solving 332

capabilities. 333

4.2.1 Performance on Simple Code 334

Generation Tasks 335

Table 1 summarizes the performance of vari- 336

ous baselines and the average percentage gains 337

achieved by our method. Compared to the state- 338

of-the-art CodeSim, Cogito yields notable Pass@1 339

improvements of 4.88%, 13.47%, and 12.43% on 340

HumanEval, HumanEval-ET, and EvalPlus, respec- 341

tively, using GPT-3.5-turbo. Against direct prompt- 342

ing, Cogito achieves up to a 119.65% gain. Lever- 343

aging GPT-4 further enhances performance across 344

all datasets, achieving the highest scores in our 345

experiments. Additionally, performance remains 346

stable even with more test cases per problem, high- 347

lighting the robustness of Cogito’s code and its 348

ability to handle edge cases. These results collec- 349

tively demonstrate Cogito’s strong generalization 350

and reliability across diverse evaluation settings. 351

4.2.2 Performance on Complex Code 352

Generation Tasks 353

Contest-level problems feature more comprehen- 354

sive problem descriptions and a greater number of 355

test cases, with no limitation on the generation of 356
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LLM Approach Simple Problems Contest-Level Problems
HumanEval HumanEvalET EvalPlus MBPP MBPPET APPS xCodeEval CodeContest

C
ha

tG
PT

-3
.5

Direct † 48.1 37.2 66.5 49.8 37.7 8.0 17.9 5.5
CoT † 68.9 55.5 65.2 54.5 39.6 7.3 23.6 6.1
Self-Planning † 60.3 46.2 - 55.7 41.9 9.3 18.9 6.1
Analogical † 63.4 50.6 59.1 70.5 46.1 6.7 15.1 7.3
Reflexion † 67.1 49.4 62.2 73.0 47.4 - - -
MapCoder † 80.5 70.1 71.3 78.3 54.4 11.3 27.4 12.7
CodeSim * 86.0 72.0 73.2 86.4 59.7 12.0 - 16.4

Cogito (Ours)
90.2
↑ 37.4%

81.7
↑ 57.2%

82.3
↑ 24.9%

85.1
↑ 32.1%

59.7
↑ 31.0%

18.0
↑ 107.2%

30.2
↑ 53.3%

13.3
↑ 74.7%

G
PT

-4

Direct † 80.1 73.8 81.7 81.1 54.7 12.7 32.1 12.1
CoT † 89.0 61.6 - 82.4 56.2 11.3 36.8 5.5
Self-Planning † 85.4 62.2 - 75.8 50.4 14.7 34.0 10.9
Analogical † 66.5 48.8 62.2 58.4 40.3 12.0 26.4 10.9
Reflexion † 91.0 78.7 81.7 78.3 51.9 - - -
MapCoder † 93.9 82.9 83.5 83.1 57.7 22.0 45.3 28.5
CodeSim * 94.5 81.7 84.8 89.7 61.5 22.0 - 29.1

Cogito (Ours)
95.7
↑ 13.1%

83.5
↑ 23.4%

85.4
↑ 9.8%

88.2
↑ 14.3%

66.3
↑ 26.4%

27.3
↑ 86.3%

47.2
↑ 39.4%

29.7
↑ 156.1%

Table 1: Overall performance comparison across various datasets, categorized into Simple Problems and Contest-
Level Problems. Cogito’s performance is highlighted in blue. The average improvement is highlighted in red. †:
Results are publicly disclosed in the paper of MapCoder. *: Results are publicly disclosed in the paper CodeSim.
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Figure 4: The comparison results on representative
datasets.

a single function to address the task. Cogito has357

shown notable advancements compared to multi-358

ple methods across most datasets, including APPS,359

xCodeEval, and CodeContests. Specifically, When360

using GPT-4, our approach achieves improvements361

of 24.09% and 2.06% over CodeSim, respectively.362

Adhering to the unified testing validation approach,363

we require that all responses within these three364

datasets be implemented as functions that take a365

string parameter, returning the result as a string via366

the ‘return‘ statement. Despite the advantages of367

this methodology, its application has led to a de-368

cline in performance on certain platforms, notably369

xCodeEval and CodeContests.370

Cogito

Direct

CoT

Self-Planning

MapCoder

2 4 6 8 10 12 14

Introductory
Interview
Competition

Figure 5: The comparison results with respect to the
algorithm and difficulty levels (APPS dataset).

4.2.3 Performance Under Different Difficulty 371

Levels 372

Difficulty levels. The APPS dataset consists of 373

problems with three difficulty levels: (i) Introduc- 374

tory, (ii) Interview, and (iii) Competition. Fig- 375

ure 4(a) and Figure 5 show the number of prob- 376

lems solved by different methods at different levels 377

under these three classifications. At the Introduc- 378

tory and Interview levels, Cogito significantly out- 379

performs existing methods, highlighting the effec- 380

tiveness of our approach for relatively simple and 381

moderately difficult code generation tasks. 382

Difficulty score. In the xCodeEval dataset, each 383

task is assigned a difficulty score, with the difficulty 384

scores of the answers that successfully pass the 385

tests ranging from 800 to 1800. We compare our 386

approach with the direct method, and our results 387

consistently outperforme the direct method across 388
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LLM Dataset
Average for Cogito Average for

MapCoder
Average for

CodeSim
Average

API Calls
Reduction

Average
Token

Reduction(k)

Average
ACC
GainAPI Calls Tokens (k) API Calls Tokens (k) API Calls Tokens (k)

C
ha

tG
PT

-3
.5 HumanEval 10 6.26 17 10.41 7 5.48 2 1.70 6.95%

MBPP 9 4.60 12 4.84 6 4.24 0 -0.06 10.6%
APPS 14 14.74 21 26.57 15 19.20 4 8.15 6.35%
xCodeEval 16 18.90 19 24.10 - - 3 5.20 2.8%
CodeContest 15 28.56 23 34.95 16 24.02 4.5 0.93 -1.25%

G
PT

-4

HumanEval 10 7.10 15 12.75 5 5.15 0 1.85 1.5%
MBPP 10 4.80 8 4.96 5 5.21 -3.5 0.29 1.8%
APPS 13 21.96 19 31.80 13 23.18 3 5.53 5.3%
xCodeEval 14 17.93 14 23.45 - - 0 5.52 1.9%
CodeContest 15 32.35 19 38.70 17 41.66 3 7.67 0.9%

Average 13 16.0 16.7 21.25 9.3 13.64 ↓ 1.6 ↓ 3.68

Table 2: The number of API calls and token consumption for different tasks, compared to the usage reduction with
MapCoder and CodeSim.

Model Pass@1 Perforcemance
Drop

Cogito w/o Planning Experience 76.22 14.02

Cogito w/o Implementation Experience 78.05 12.19

Cogito w/o Debugging Experience 79.88 10.36

Cogito w/o Super-Role 69.33 20.91

Normal Sequence 73.17 17.07

Table 3: Ablation study results on HumanEval using
GPT-3.5-turbo. The table shows the impact of different
components or configurations on performance.

different difficulty levels (Figure 4(b)).389

4.2.4 Consumption of API and Tokens390

Table 2 reports the API calls and token usage (in391

thousands) of GPT-3.5-turbo and GPT-4 across392

various datasets. Compared to MapCoder on the393

HumanEval dataset, our method achieves up to394

66.29% fewer tokens and 70% fewer API calls.395

On average, token consumption and API calls are396

reduced by 3.61% and 1.6%, respectively, across397

all tasks. While the complete developmental pro-398

cess introduces slight additional costs in certain399

scenarios—primarily due to multi-stage reasoning400

and role-based iteration—it consistently leads to401

higher pass rates by capturing broader contextual402

and structural nuances. Notably, GPT-4 exhibits403

higher resource consumption than GPT-3.5-turbo,404

which can be attributed to its tendency to generate405

longer and more detailed responses.406

4.3 Ablation Study407

Impact of Different Agents. To verify the effec-408

tiveness of the proposed approach, we systemat-409

ically remove the active participation of various410

key roles involved in the process. The experi- 411

mental results (Table 3) indicate that omitting the 412

critical planning phase led to a maximum perfor- 413

mance drop of 14.02%. The absence of hands-on 414

Implementation practice reduces performance by 415

12.19%, while the lack of expert Debugging knowl- 416

edge causes a 10.36% decline. 417

Impact of Work Sequence. To rigorously assess 418

the distinctions between our work and previous 419

approaches, particularly in terms of the sequence 420

of experience accumulation, we conduct experi- 421

ments in which we systematically alter the order 422

in which experiences accumulate. Initially, we em- 423

ploy a sequence where the planner is introduced 424

first, followed by the coder, and finally the debug- 425

ger. Upon analyzing the results (Table 3), a per- 426

formance drop of 17.07% clearly indicates that the 427

altered sequence contributes to a significant deteri- 428

oration in the final outcome. 429

Impact of Super-Role. In the third group, com- 430

mon roles are actively involved in every stage of the 431

process. However, does this justify relying on them 432

for the final answer? Table 3 presents the results. 433

Even with extensive experience and insightful rec- 434

ommendations, planners may still fail to achieve 435

desired outcomes due to a lack of hands-on experi- 436

ence or expertise in addressing practical challenges 437

during implementation. Thus, the Super-Role’s 438

final answer is indispensable. 439

Impact of Sample I/O. In this study, we aug- 440

ment the HumanEval dataset with input-output 441

pairs from MapCoder (Islam et al., 2024) dataset 442

and five additional test cases from HumanEval-ET 443

dataset. Our results show a modest 0.6% improve- 444

ment, indicating a slight positive effect on model 445
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Dataset
Debug Times(t)
3 5

HumanEval 86.59 90.24

HumanEval-ET 78.05 81.71

Table 4: Analysis of debugging times on representative
datasets.

Number of Groups
Results

Pass@1 Average
Token(k)

Three Groups 90.24 10.41

Six Groups 80.49 17.43

Table 5: Analysis of debugging times on representative
datasets.

performance. These findings suggest that dataset446

augmentation with diverse test cases can improve447

model accuracy.448

4.4 Hyper-parameter Analysis449

Impact of t. It involves a single hyperparameter:450

the number of self-debugging attempts, denoted451

as t. As shown in Table 4, increasing the value452

of t improves the performance. However, this en-453

hancement comes with a trade-off, as it requires454

more computational time and an increased number455

of tokens to complete the process. This observa-456

tion highlights the inherent balance between perfor-457

mance and resource consumption in the proposed458

method.459

Impact of the Number of Iterations for Accumu-460

lating Experience. Initially, we set the number of461

roles to 3, indicating that we require three groups462

per experience-learning cycle. Increasing the num-463

ber to six seems intuitive for better experience ac-464

cumulation. However, as a detailed comparison465

provided in Table 5, increasing the number actually466

leads to decreased performance and higher token467

consumption. Such results indicate that setting one468

experience-learning cycle for Cogito is enough and469

reasonable for improving performance.470

4.5 Case Study471

4.5.1 New Random Roles vs. Same Roles472

In group discussion sessions, each group will rein-473

troduce two new random members to assume two474

distinct roles. The question arises: why not allow475

the same two members to continue participating476

def check_if_last_char_is_a_letter(txt):
    txt = txt.rstrip()
    if not txt or not txt[-1].isalpha():
        return False
    words = txt.split()
    return len(words[-1]) == 1                                      

def check_if_last_char_is_a_letter(txt):
    if not txt:
        return False
    txt = txt.rstrip()
    if not txt:
        return False
    last_char = txt[-1]
    if last_char.isalpha():
        words = txt.split()
        return len(words) > 1 
               and len(words[-1]) == 1
    return False

def check_if_last_char_is_a_letter(txt):
txt = txt.rstrip()
if not txt:

return False
last_char = txt[-1]
if not last_char.isalpha():

return False
words = txt.split()
return len(words) > 0 

and len(words[-1]) == 1

def check_if_last_char_is_a_letter(txt) :
     txt.split()

return (words[-1][-1].isalpha() and
len(words[-1]) == 1) if words 

else False

def check_if_last_char_is_a_letter(txt):
words = txt.split()
return (txt and words 

and words[-1] 
and words[-1][-1].isalpha() 
and len(words[-1]) == 1)

def check_if_last_char_is_a_letter(txt):
if not txt:

return False
last_char = txt.strip()[-1]
if last_char.isalpha() and 

(len(txt.split()) == 1 or txt[-2] == ' '):
return True

return False

First Group

New check part

Still failed at the same test.

× ×

Modified

Failed test: 
Assert candidate(“A”) == True
(Two previous tests before (“eeeee e))

Changed 
order

Failed test: 
Assert candidate(“eeeee e  ”) == False

Reason:
 The code incorrectly handle cases 
 where there are spaces 
       at the end of string

Changed way 
to solve and 

succeed

Split mistakenly 
removes trailing 

space

×

Still 
wrong

More 
limitationFailed test: 

Assert candidate(“ ”) == False
(One previous test before (“eeeee e ”)

×

×

√

Second Group Third Group

Failed test: 
Assert candidate(“eeeee e  ”) == 
False

Reason:
It donesn’t correctly handle the 
case where the letter is part of a 
word
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Figure 6: An example of answers from the same group
members and different group members on HumanEval.

throughout the role transitions? The rationale be- 477

hind this decision lies in the potential pitfalls of 478

starting with an incorrect approach. If the direction 479

of code writing is flawed in the initial phase, any 480

subsequent improvements or redesigns will be built 481

upon this foundational error. No matter how many 482

times debugging is performed, the final result will 483

inevitably remain compromised. Therefore, it is 484

essential to ensure that the foundation is correct 485

before moving forward with further development. 486

An example is shown in Figure 6, demonstrating 487

the necessity of introducing new random roles. 488

5 Conclusion 489

In this work, we introduce Cogito, a 490

neurobiologically-inspired multi-agent framework 491

for code generation that redefines the traditional 492

workflow of planning, coding, and debugging 493

by adopting a reverse approach. By mimicking 494

the human growth process, Cogito progressively 495

develops its capabilities, transitioning through 496

specialized roles—Debugger, Coder, and Plan- 497

ner—and ultimately evolving into a Super-Role 498

capable of autonomously handling complex code 499

generation tasks. Through extensive evaluations 500

on multiple representative datasets, Cogito 501

demonstrates its ability to achieve state-of-the-art 502

performance with higher efficiency and lower 503

computational cost compared to existing methods. 504

These results highlight the potential of biologically- 505

inspired design principles in advancing intelligent 506

systems. Future work will focus on further 507

optimizing Cogito’s architecture and exploring its 508

applicability to broader software engineering tasks. 509
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Limitations510

One limitation arises from the absence of the offi-511

cial evaluation mechanism when handling complex512

programming tasks. As a result, the traceback sig-513

nals obtained from such problems may be inaccu-514

rate, which in turn hinders the model’s ability to515

correctly identify and fix errors. To ensure com-516

patibility with custom-written evaluation scripts,517

we further constrained the model to generate solu-518

tions in the form of a single function. While this519

simplification facilitates evaluation, it also reduces520

the expressiveness and potential correctness of the521

generated solutions.522

Another challenge lies in the retrieval process.523

Due to the limited number of stored examples524

in memory and the lack of a dedicated retrieval525

database tailored for programming problems, the526

quality of the retrieved reference examples is often527

suboptimal. This negatively impacts the relevance528

and usefulness of retrieved contexts in guiding the529

model’s generation.530
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Cogito, ergo sum: A Neurobiologically-Inspired 692

Cognition-Memory-Growth System for Code Generation 693

Appendix 694

A Agent Prompt Details 695

Here are the prompts for different roles. For certain datasets, there are some changes in their data format. 696

697

Prompt for HumanEval, MBPP 698

699

Planning phase prompt template: 700

701
prompt = ( 702

f"Provide guided steps to solve the following problem 703

and identify potential challenges .: {question }. " 704

f"[ requirement ]: less text , don ’t give code" 705

) 706707

Coding phase prompt template: 708

709
prompt = ( 710

f"As a code expert , according to the guidance :{ 711

design_solution }" 712

f"please provide a python solution to the following 713

programming problem: {question }." 714

f"Ensure that the answer produced by your code matches 715

the test cases in the examples :{ test_case }" 716

f"[ Important]only give the code and should not include 717

any explanations or comments. " 718

) 719720

Debugging phase prompt template: 721

722
prompt = ( 723

f"According to the {question}, the code given is:{ 724

implementation_solution} " 725

f":Fix it using traceback :{ result_traceback }. " 726

f"[ Important]Only give code don ’t analyze and no 727

annotation" 728

) 729730

Super-Role’s prompt template: 731

732
prompt = ( 733

f"According to the problem :{ question }" 734

f"Use the experience to give the code to solve it, make 735

sure it will pass the text case:{ test_case }" 736

737

) 738739
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Super-Role’s refinement template:740

741
prompt = (742

f"For this problem , {question}, your previous answer743

encountered an error: {first_solution }. "744

f"Traceback: {result }. "745

f"To proceed , ensure the new solution meets the746

following requirements :\n"747

f"1. Is fundamentally different from the previous748

solution .\n"749

f"2. Fixes the above error.\n"750

f"3. Passes all the given test cases: {test_case }.\n\n"751

f"Here are some examples: {Example }. "752

f"Hint: Try to explore different logic or structures ,753

such as using loops , functions , or list754

comprehensions .\n\n"755

)756757

Prompt for APPS758

759

Planning phase prompt template:760

761
prompt = (762

f"Provide guided steps to solve the following problem763

and identify potential challenges .: {question }. "764

f"[ requirement ]: less text , don ’t give code"765

)766767

Coding phase prompt template:768

769
prompt = (770

f"As a code expert , according to the guidance :{771

design_solution }"772

f"please provide a python solution to the following773

programming problem: {question }."774

f"Ensure that the answer produced by your code matches775

the test cases in the examples :{ test_case }"776

f"The function name must be the same as in the problem{777

prompt_name }"778

f"[ Important]only give the code and should not include779

any explanations or comments. "780

)781782
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Debugging phase prompt template: 783

784
prompt = ( 785

f"According to the {question}, the code given is:{ 786

implementation_solution} " 787

f":Fix it using traceback :{ result_traceback }. " 788

f"[ Important]Only give code don ’t analyze and no 789

annotation" 790

f"Make sure the function name is the same as in the 791

problem{prompt_name }" 792

793

) 794795

Super-Role’s prompt template: 796

797
prompt = ( 798

f"According to the problem :{ question }" 799

f"Use the experience to give the code to solve it, make 800

sure it will pass the text case:{ test_case }" 801

# f"Use the same function name in the problem{ 802

prompt_name }" 803

f"[ Important ]:Only codes. No comments or annotation" 804

) 805806

Super-Role’s refinement template: 807

808
prompt = ( 809

f"For this problem , {question}, your previous answer 810

encountered an error: {first_solution }. " 811

f"Traceback: {result }. " 812

f"To proceed , ensure the new solution meets the 813

following requirements :\n" 814

f"1. Is fundamentally different from the previous 815

solution .\n" 816

f"2. Fixes the above error.\n" 817

f"3. Passes all the given test cases: {test_case }.\n\n" 818

f"Here are some examples: {output }. " 819

f"Hint: Try to explore different logic or structures , 820

such as using loops , functions , or list 821

comprehensions .\n\n" 822

f"[ requirement ]: Only codes. No comments or annotation" 823

f"Use the same function name in the problem{prompt_name 824

}" 825

) 826827

Prompt for xCodeEval, CodeContest 828

Due to our use of a unified test, we have forced both the input and output to be a single string parameter. 829

While this approach standardizes the operation, it does not guarantee 100% success in defining the 830

function, which can lead to discrepancies between the test results and reality. We recommend integrating 831

a standard test and removing the forced content to achieve better results. 832

Planning phase prompt template: 833

13



834
prompt = (835

f"Provide guided steps to solve the following problem836

and identify potential challenges .: {question }. "837

f"[ requirement ]: less text , don ’t give code"838

)839840

Coding phase prompt template:841

842
prompt = (843

f"As a code expert , according to the guidance :{844

design_solution }"845

f"please provide a python solution to the following846

programming problem: {question }."847

f"Ensure that the answer produced by your code matches848

the test cases in the examples :{ test_case }"849

f"[ Important]only give the code and should not include850

any explanations or comments. "851

f"[ Important ]:Use a function to solve the problem ,852

ending with a return.All the code is inside the853

function ."854

f"Make sure the function only requires a single string855

parameter ."856

)857858

Debugging phase prompt template:859

860
prompt = (861

f"According to the {question}, the code given is:{862

implementation_solution} "863

f":Fix it using traceback :{ result_traceback }."864

f"[ Important]Only give code don ’t analyze and no865

annotation"866

f"[ Important ]:Use a function to solve the problem ,867

ending with a return ."868

f"Make sure the function only requires a single string869

parameter.All the code is inside the function ."870

f"Only code no comments or other things"871

)872873

Super-Role’s prompt template:874

875
prompt = (876

f"According to the problem :{ question }"877

f"Use the experience to give the code to solve it, make878

sure it will pass the text case:{ test_case }"879

f"[ Important ]:Only codes. No comments or annotation"880

f"Use a function to solve the problem , ending with a881

return , and only require a single string parameter"882

f"All the code is inside the function ."883

)884885
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Super-Role’s refinement template: 886

887
prompt = ( 888

f"For this problem , {question}, your previous answer 889

encountered an error: {first_solution }. " 890

f"Traceback: {result }. " 891

f"To proceed , ensure the new solution meets the 892

following requirements :\n" 893

f"1. Is fundamentally different from the previous 894

solution .\n" 895

f"2. Fixes the above error.\n" 896

f"3. Passes all the given test cases: {test_case }.\n\n" 897

f"Here are some examples: {output }. " 898

f"Hint: Try to explore different logic or structures , 899

such as using loops , functions , or list 900

comprehensions .\n\n" 901

f"[ requirement ]: Only codes. Make only require a single 902

string parameter" 903

f"All the code is inside the function ." 904

f"code only require a single string parameter" # 905

codecontest 906

) 907908
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B Supplementary Experimental Details909

B.1 Datasets910

For convenience, we used the HumanEval dataset911

from Mapcoder (Islam et al., 2024), which contains912

a sample column that separately extracts the exe-913

cution examples provided in the prompt, making it914

easier to execute and return results. Similarly, in915

MBPP, they also select some data from the test set916

as inputs, but maintain the independence of the test917

set and the exclusivity between MBPP and MBPP-918

ET. For CodeContest, we only use the test section919

consisting of 165 problems. APPS and xCodeEval920

utilize a subset of problems extracted from the raw921

data by MapCoder.922

B.2 Evaluation Metric923

The unbiased version of Pass@k is a widely924

adopted metric for evaluating the effectiveness of925

recommendation or code generation systems, par-926

ticularly under biased sampling or uneven rele-927

vance distributions. It estimates the probability928

that at least one correct item appears among the929

top-k results, while adjusting for inherent biases930

such as popularity skew.931

Formally, the metric is defined as:932

Pass@k = EProblems

[
1−

(
n−c
k

)(
n
k

) ]
, (2)933

where n is the number of generated candidates, c934

is the number of correct candidates, and k is the935

number of top predictions considered. The term936
(n−c

k )
(nk)

computes the probability that none of the top-937

k outputs are correct; subtracting this from 1 yields938

the probability that at least one correct solution is939

included.940

By averaging over a set of problems, the expecta-941

tion EProblems ensures robustness and generalization942

across diverse test scenarios. This approach miti-943

gates the tendency of traditional metrics to overesti-944

mate performance due to frequent recommendation945

of a small number of highly probable items.946

Pass@1 for One-Shot Evaluation. In our ex-947

periments, we adopt pass@1, which measures the948

probability that the model generates a correct so-949

lution in a single attempt—a critical capability in950

real-time or resource-constrained settings.951

Let D = {x1, x2, . . . , xN} denote a dataset of952

N programming problems. For each xi ∈ D, the953

model outputs one candidate solution ŷi, which is954

then executed against a predefined test suite. Define 955

an indicator function I[ŷi is correct], which equals 956

1 if the solution passes all test cases and 0 otherwise. 957

The pass@1 score is then: 958

pass@1 =
1

N

N∑
i=1

I[ŷi is correct] (3) 959

In settings allowing multiple generations per 960

problem, and assuming c out of n are correct, the 961

expected pass@k is approximated by: 962

pass@k = 1−
(
n−c
k

)(
n
k

) (4) 963

In particular, for k = 1, this reduces to: 964

pass@1 =
c

n
(5) 965

This formulation provides a fairer and more ro- 966

bust evaluation of a model’s ability to generate 967

correct outputs across a variety of tasks. 968

B.3 Baselines 969

We evaluate our approach by comparing it with 970

several baseline methods. First, we use the Di- 971

rect Method, where the prompt is submitted to the 972

LLM without decomposition to assess its intrin- 973

sic reasoning. We then evaluate two structured 974

reasoning methods: Chain-of-Thought (CoT), 975

which solves the problem step-by-step, and Self- 976

Planning, which separates planning and imple- 977

mentation phases. Our approach, which incorpo- 978

rates GitHub searches for relevant code, is com- 979

pared with Analogical Reasoning, a retrieval- 980

based method. Mapcoder, a former state-of-the- 981

art method, as a benchmark. Finally we include 982

CodeSim a multi-agent framework that enhances 983

code generation through step-by-step input/output 984

simulation. All tests are conducted using GPT-3.5- 985

turbo (GPT-3.5-turbo-0125) and GPT-4 (GPT-4- 986

0613) from OpenAI. 987

B.4 An example answer for 5 methods of 988

HumanEval #92 989

We present a detailed comparative analysis of 990

solutions generated by various methods for the 991

92nd problem in the HumanEval benchmark (Fig- 992

ure 7). Among all evaluated approaches, only 993

Cogito successfully passes the initial test case. 994

The test, designed to verify functional correctness, 995

checks whether the output of the candidate func- 996

tion satisfies the condition candidate(’TEST’) 997
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== ’tgst’; all baseline models fail this basic re-998

quirement.999

For each method, we highlight the specific errors1000

in their generated outputs and provide concise ex-1001

planations of the underlying failure modes. These1002

typically include incorrect string manipulations,1003

misunderstanding of character transformations, or1004

misinterpretation of input-output constraints. Such1005

errors underscore the challenges existing methods1006

face when dealing with nuanced program logic or1007

subtle pattern recognition.1008

In contrast, Cogito not only produces a correct1009

solution but also demonstrates consistent reasoning1010

throughout its multi-stage workflow. We present1011

its outputs across different phases of generation,1012

illustrating how it iteratively refines its understand-1013

ing and progressively improves the solution. This1014

example showcases Cogito’s capacity to coordinate1015

planning, coding, and self-correction, enabling it to1016

outperform traditional single-pass generation meth-1017

ods.1018

B.5 The comparison between1019

GPT-3.5-TURBO and GPT-4 responses.1020

We analyze model performance on the HumanEval1021

and APPS benchmarks by comparing responses1022

from GPT-3.5 and GPT-4. To better understand the1023

limitations of earlier models and the improvements1024

in newer ones, we specifically focus on instances1025

where GPT-3.5 fails while GPT-4 produces correct1026

solutions. This targeted comparison allows us to1027

examine the underlying causes of failure and high-1028

light the differences in reasoning and generation1029

strategies between the two models.1030

We begin with two examples from the Hu-1031

manEval benchmark—Problems #32(see Figure 8)1032

and #92(see Figure 9). In both cases, GPT-3.5 ex-1033

plores multiple strategies but ultimately fails to1034

solve the tasks correctly. In contrast, GPT-4, build-1035

ing upon prior trial-and-error attempts, is able to1036

arrive at the correct solution. These examples illus-1037

trate GPT-4’s improved capability to incorporate1038

feedback and refine its reasoning over successive1039

generations.1040

The next two examples are drawn from prob-1041

lems #1628 and #3531 in the APPS dataset,1042

which contains a broader and more diverse set1043

of programming tasks, including algorithmic and1044

implementation-focused challenges (see Figure 10,1045

Figure 11). Similar to the HumanEval case, GPT-1046

3.5 struggles to provide a correct answer, often1047

producing incomplete or logically flawed code. In1048

both cases, the Super-Role, during the planning 1049

phase, successfully leveraged prior learning to pro- 1050

vide guidance that explicitly avoided common pit- 1051

falls. As a result, the final solutions were correct, 1052

demonstrating the effectiveness of accumulated ex- 1053

perience in enhancing decision-making and task 1054

performance. 1055

These examples collectively highlight the ad- 1056

vancements of GPT-4 in terms of code generation 1057

accuracy, problem decomposition, and syntactic 1058

correctness. The improvements are especially ev- 1059

ident on tasks requiring multiple reasoning steps 1060

or understanding of non-trivial control flow, where 1061

GPT-3.5 tends to underperform. While anecdotal 1062

in nature, these qualitative cases complement our 1063

quantitative results and provide concrete insights 1064

into where the improvements of GPT-4 manifest in 1065

practice. 1066

B.6 The complete response process of Cogito 1067

in APPS #1628 1068

Case Study: Task 1628 in APPS. We present a 1069

comprehensive case study of Task 1628 from the 1070

APPS benchmark, illustrating the complete reason- 1071

ing and generation process undertaken by Cogito. 1072

Figure ?? displays the full sequence of responses, 1073

including those from all roles involved in the multi- 1074

agent workflow. 1075

To contextualize the development of the final so- 1076

lution, we also include the intermediate responses 1077

exchanged between adjacent roles within each 1078

group. These interactions provide insight into the 1079

causal relationship between design decisions, im- 1080

plementation strategies, and debugging feedback, 1081

thereby elucidating the contribution of each stage 1082

to the overall outcome. 1083

Furthermore, we annotate each response with 1084

corresponding errors, modifications, and correct 1085

segments. For every modification, we detail the un- 1086

derlying rationale, explaining whether the change 1087

was necessary for correctness, performance, or clar- 1088

ity. This fine-grained analysis allows us to track 1089

the evolution of the code and pinpoint the precise 1090

factors that led to success or failure in each itera- 1091

tion. 1092

By dissecting these role-based interactions and 1093

their iterative refinements, this case study offers a 1094

transparent view into the collaborative dynamics 1095

of Cogito’s problem-solving process and provides 1096

qualitative evidence of its multi-role reasoning ca- 1097

pabilities. 1098
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Figure 7: An example answer for 5 methods of HumanEval #92.
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import math

def is_prime(num):

if num <= 1:

return False

if num == 2:

return True

if num % 2 == 0:

return False

sqrtnum = math.isqrt(num)

for i in range(3, sqrtnum + 1, 2):

if num % i == 0:

return False

return True

def valid_mersenne(n):

mersenne_num = 2 ** n - 1

return is_prime(mersenne_num)

import math

def is_prime(n):

if n == 2 or n == 3: return True

if n == 1 or n % 2 == 0: return False

for i in range(3, int(math.sqrt(n)) + 1, 2):

if n % i == 0:

return False

return True

def valid_mersenne(n):

mersenne_number = (2 ** n) - 1

return is_prime(mersenne_number)

import math

def is_prime(n):

if n <= 1:

return False

if n == 2:

return True

if n % 2 == 0:

return False

sqrt_n = math.isqrt(n)

for divisor in range(3, sqrt_n + 1, 2):

if n % divisor == 0:

return False

return True

def valid_mersenne(n):

Mn = 2 ** n - 1

return is_prime(Mn)

def is_prime(num):

if num == 1:

return False

if num == 2:

return True

for i in range(2, int(num**0.5) + 1):

if num % i == 0:

return False

return True

mersenne_number = 2**n - 1

return is_prime(mersenne_number)

def is_prime(n):

if n < 2:

return False

if n == 2:

return True

if n % 2 == 0:

return False

max_divisor = int(n**0.5) + 1

for d in range(3, max_divisor, 2):

if n % d == 0:

return False

return True

1. Understand the problem: We are given 

an integer `n` and we have to determine 

if this integer generates a Mersenne 

prime or not. 

2. A Mersenne prime can be represented 

by the formula `2^n - 1`.

2. Break down the problem: We first need 

to calculate the value using this formula, 

and then check if the result is a prime 

number.

3. Identify components of the solution: Two 

main components are needed for the 

solution.

a. Prime Checking: Write a helper function 

to verify if a number is prime. This can 

be done by checking if any number from 

2 to the square root of the given number 

divides it. 

b. If anything does, then the number is not 

a prime, else it is.

c. Mersenne Prime Calculation: Calculate 

`2^n - 1` and then use the prime 

checking function to verify if the result is 

a prime.

4. Potential challenges: Handling large 

inputs can be tricky.

For example, if `n` is close to 2000, the 

resulting `2^n - 1` is a very large number 

and it might be computationally expensive 

to verify its primality."

import math

def is_prime(n):

if n <= 1:

return False

if n == 2:

return True

if n % 2 == 0:

return False

for i in range(3, math.isqrt(n) + 1, 2):

if n % i == 0:

return False

return True

def is_mersenne(n):

if is_prime(n):

mersenne_num = pow(2, n) - 1

return is_prime(mersenne_num)

else:

return False

import sympy

def valid_mersenne(n):

mersenne = 2**n - 1

return sympy.isprime(mersenne)

1: To solve this problem, we will begin by 

understanding what a Mersenne prime is. By 

definition, a Mersenne prime is a prime number 

that is one less than a power of two. 

Thus, any positive number 'n', such that 2^n - 1 is a 

prime number, generates a Mersenne prime.

2: First, take the input integer n and calculate the 

value of 2^n - 1. This operation will provide you 

with the potential Mersenne prime number.

3: Next, construct a function to check if the 

obtained number is prime or not. A number is 

considered prime if it's greater than 1 and has no 

divisors other than 1 and itself. 

So, iterate from 2 to the square root of the potential 

Mersenne Prime. If any of these numbers divides it 

exactly, it isn't a prime number, and thus, it isn't a 

Mersenne prime. 

4: If the potential Mersenne prime number isn't 

divisible by any numbers, it's indeed a Mersenne 

prime. Your function then returns true.

5: If the potential Mersenne prime was evenly 

divisible by a number, it's not a Mersenne prime, 

and your function should return false.

Potential Challenges:

1. Possible computational overload for large input 

values due to the calculation of 2^n - 1 and 

subsequent prime checking, potentially leading 

to performance issues.

2. 2. Dealing with negative numbers, fractions, or 

zero. Since Mersenne prime calculation is only 

valid for positive integers, your function should 

be designed to handle these cases.

3. 3. The input integer could exceed the size limit 

of your programming languages' integer data 

type while calculating 2^n - 1, causing incorrect 

results.",

def valid_mersenne(n):

def miller_rabin_test(d, n):

a = 2 + random.randint(1, n - 4)

x = pow(a, d, n)

if x == 1 or x == n - 1:

return True

while d != n - 1:

x = pow(x, 2, n)

d *= 2

if x == n - 1:

return True

elif x == 1:

return False

return False

def is_prime(n, k):

if n <= 1 or n == 4:

return False

elif n <= 3:

return True

d = n - 1

while d % 2 == 0:

d //= 2

for _ in range(k):

if not miller_rabin_test(d, n):

return False

return True

return is_prime(2**n - 1, 5)

import random

def valid_mersenne(n):

def miller_rabin(n, k=5):

if n in (2, 7, 61):

return True

if n < 2 or n % 2 == 0:

return False

s, d = 0, n - 1

while d % 2 == 0:

s += 1

d //= 2

for _ in range(k):

a = random.randrange(2, n - 1)

x = pow(a, d, n)

if x == 1 or x == n - 1:

continue

for _ in range(s - 1):

x = pow(x, 2, n)

if x == n - 1:

break

else:

return False

return True

return miller_rabin(pow(2, n) - 1)

import math

def is_prime(n):

if n <= 1:

return False

if n == 2:

return True

if n % 2 == 0:

return False

sq_root = int(math.sqrt(n)) + 1

for divisor in range(3, sq_root, 2):

if n % divisor == 0:

return False

return True

def valid_mersenne(n):

mersenne = 2**n - 1

return is_prime(mersenne)

import sympy

def valid_mersenne(n):

mersenne = 2**n - 1

return sympy.isprime(mersenne)

Question

Group1

Group2

Group3

Can’t compute 
when n is larger

GPT-3.5-TURBO GPT-4

Super Role’s 
Answer Group1

Group2

Group3

Super Role’s 
Answer

×

×

×

×

×

×

√

Can’t handle 
small values

Wrong range

Valid

Wrong check

Wrong

Same problem

"name": "3531",

"description": "A [Mersenne prime](https://en.wikipedia.org/wiki/Mersenne_prime) is a prime number that can be represented as:

Mn = 2^(n) - 1. Therefore, every Mersenne prime is one less than a power of two. 

Write a function that will return whether the given integer `n` will produce a Mersenne prime or not.

The tests will check random integers up to 2000.",

"difficulty": "introductory"

××

×

Figure 8: The comparison of answers between GPT-3.5-TURBO and GPT-4 in HumanEval#32.
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import math

def is_prime(num):

if num <= 1:

return False

if num == 2:

return True

if num % 2 == 0:

return False

sqrtnum = math.isqrt(num)

for i in range(3, sqrtnum + 1, 2):

if num % i == 0:

return False

return True

def valid_mersenne(n):

mersenne_num = 2 ** n - 1

return is_prime(mersenne_num)

import math

def is_prime(n):

if n == 2 or n == 3: return True

if n == 1 or n % 2 == 0: return False

for i in range(3, int(math.sqrt(n)) + 1, 2):

if n % i == 0:

return False

return True

def valid_mersenne(n):

mersenne_number = (2 ** n) - 1

return is_prime(mersenne_number)

import math

def is_prime(n):

if n <= 1:

return False

if n == 2:

return True

if n % 2 == 0:

return False

sqrt_n = math.isqrt(n)

for divisor in range(3, sqrt_n + 1, 2):

if n % divisor == 0:

return False

return True

def valid_mersenne(n):

Mn = 2 ** n - 1

return is_prime(Mn)

def is_prime(num):

if num == 1:

return False

if num == 2:

return True

for i in range(2, int(num**0.5) + 1):

if num % i == 0:

return False

return True

mersenne_number = 2**n - 1

return is_prime(mersenne_number)

def is_prime(n):

if n < 2:

return False

if n == 2:

return True

if n % 2 == 0:

return False

max_divisor = int(n**0.5) + 1

for d in range(3, max_divisor, 2):

if n % d == 0:

return False

return True

1. Understand the problem: We are given 

an integer `n` and we have to determine 

if this integer generates a Mersenne 

prime or not. 

2. A Mersenne prime can be represented 

by the formula `2^n - 1`.

2. Break down the problem: We first need 

to calculate the value using this formula, 

and then check if the result is a prime 

number.

3. Identify components of the solution: Two 

main components are needed for the 

solution.

a. Prime Checking: Write a helper function 

to verify if a number is prime. This can 

be done by checking if any number from 

2 to the square root of the given number 

divides it. 

b. If anything does, then the number is not 

a prime, else it is.

c. Mersenne Prime Calculation: Calculate 

`2^n - 1` and then use the prime 

checking function to verify if the result is 

a prime.

4. Potential challenges: Handling large 

inputs can be tricky.

For example, if `n` is close to 2000, the 

resulting `2^n - 1` is a very large number 

and it might be computationally expensive 

to verify its primality."

import math

def is_prime(n):

if n <= 1:

return False

if n == 2:

return True

if n % 2 == 0:

return False

for i in range(3, math.isqrt(n) + 1, 2):

if n % i == 0:

return False

return True

def is_mersenne(n):

if is_prime(n):

mersenne_num = pow(2, n) - 1

return is_prime(mersenne_num)

else:

return False

import sympy

def valid_mersenne(n):

mersenne = 2**n - 1

return sympy.isprime(mersenne)

1: To solve this problem, we will begin by 

understanding what a Mersenne prime is. By 

definition, a Mersenne prime is a prime number 

that is one less than a power of two. 

Thus, any positive number 'n', such that 2^n - 1 is a 

prime number, generates a Mersenne prime.

2: First, take the input integer n and calculate the 

value of 2^n - 1. This operation will provide you 

with the potential Mersenne prime number.

3: Next, construct a function to check if the 

obtained number is prime or not. A number is 

considered prime if it's greater than 1 and has no 

divisors other than 1 and itself. 

So, iterate from 2 to the square root of the potential 

Mersenne Prime. If any of these numbers divides it 

exactly, it isn't a prime number, and thus, it isn't a 

Mersenne prime. 

4: If the potential Mersenne prime number isn't 

divisible by any numbers, it's indeed a Mersenne 

prime. Your function then returns true.

5: If the potential Mersenne prime was evenly 

divisible by a number, it's not a Mersenne prime, 

and your function should return false.

Potential Challenges:

1. Possible computational overload for large input 

values due to the calculation of 2^n - 1 and 

subsequent prime checking, potentially leading 

to performance issues.

2. 2. Dealing with negative numbers, fractions, or 

zero. Since Mersenne prime calculation is only 

valid for positive integers, your function should 

be designed to handle these cases.

3. 3. The input integer could exceed the size limit 

of your programming languages' integer data 

type while calculating 2^n - 1, causing incorrect 

results.",

def valid_mersenne(n):

def miller_rabin_test(d, n):

a = 2 + random.randint(1, n - 4)

x = pow(a, d, n)

if x == 1 or x == n - 1:

return True

while d != n - 1:

x = pow(x, 2, n)

d *= 2

if x == n - 1:

return True

elif x == 1:

return False

return False

def is_prime(n, k):

if n <= 1 or n == 4:

return False

elif n <= 3:

return True

d = n - 1

while d % 2 == 0:

d //= 2

for _ in range(k):

if not miller_rabin_test(d, n):

return False

return True

return is_prime(2**n - 1, 5)

import random

def valid_mersenne(n):

def miller_rabin(n, k=5):

if n in (2, 7, 61):

return True

if n < 2 or n % 2 == 0:

return False

s, d = 0, n - 1

while d % 2 == 0:

s += 1

d //= 2

for _ in range(k):

a = random.randrange(2, n - 1)

x = pow(a, d, n)

if x == 1 or x == n - 1:

continue

for _ in range(s - 1):

x = pow(x, 2, n)

if x == n - 1:

break

else:

return False

return True

return miller_rabin(pow(2, n) - 1)

import math

def is_prime(n):

if n <= 1:

return False

if n == 2:

return True

if n % 2 == 0:

return False

sq_root = int(math.sqrt(n)) + 1

for divisor in range(3, sq_root, 2):

if n % divisor == 0:

return False

return True

def valid_mersenne(n):

mersenne = 2**n - 1

return is_prime(mersenne)

import sympy

def valid_mersenne(n):

mersenne = 2**n - 1

return sympy.isprime(mersenne)

Question

Group1

Group2

Group3

Can’t compute 
when n is larger

GPT-3.5-TURBO GPT-4

Super Role’s 
Answer Group1

Group2

Group3

Super Role’s 
Answer

×

×

×

×

×

×

√

Can’t handle 
small values

Wrong range

Valid

Wrong check

Wrong

Same problem

"name": "3531",

"description": "A [Mersenne prime](https://en.wikipedia.org/wiki/Mersenne_prime) is a prime number that can be represented as:

Mn = 2^(n) - 1. Therefore, every Mersenne prime is one less than a power of two. 

Write a function that will return whether the given integer `n` will produce a Mersenne prime or not.

The tests will check random integers up to 2000.",

"difficulty": "introductory"

××

×

Figure 9: The comparison of answers between GPT-3.5-TURBO and GPT-4 in HumanEval#92.
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from scipy.optimize import newton

def poly(xs: list, x: float) -> float:

return sum([coeff * x ** i for i, coeff in

enumerate(xs)])

def find_zero(xs: list) -> float:

return newton(lambda x: poly(xs, x), 0)

import math

def poly(xs: list, x: float):

return sum([coeff * math.pow(x, i) for i,

coeff in enumerate(xs)])

def find_zero(xs: list):

if len(xs) == 2:

return -xs[0] / xs[1]

elif len(xs) == 4:

return 1.0

else:

return None

import math

def poly(xs: list, x: float):

return sum(coeff * x**i for i, coeff in

enumerate(xs))

def find_zero(xs: list):

if len(xs) == 2:

return -xs[0] / xs[1]

elif len(xs) == 4:

return 1.0

return None

import math

def poly(xs: list, x: float):

return sum([coeff * math.pow(x, i) for i, coeff in

enumerate(xs)])

def find_zero(xs: list):

n = len(xs) - 1

a = 1 if n % 2 == 0 else -1

b = math.sqrt((n - 1) ** 2 - 4 * n * xs[-1]) - (n - 1)

return b / (2 * n)

import math

def poly(xs: list, x: float):

return sum([coeff * x ** i for i, coeff in

enumerate(xs)])

def find_zero(xs: list):

x = 0.0

while abs(poly(xs, x)) > 1e-6:

derivative = sum([i * coeff * x ** (i - 1) if i != 0

else 0 for i, coeff in enumerate(xs)])

x = x - poly(xs, x) / derivative

return x

Problem: Given an array, find the

maximum element in the array.

1. Start by defining a variable to

store the maximum element,

and initialize it as the first

element of the array.

2. Iterate over the array elements

from the second element

onwards.

3. Compare each element with

the current maximum element,

and if the current element is

greater, update the maximum

element.

4. After iterating through all the

elements, the variable storing

the maximum element will hold

the result.

5. Challenges:

6. 1. Handling edge cases like

empty arrays or arrays with

only one element.

7. 2. Ensuring that the array

elements are of consistent data

type for proper comparison.

8. 3. Dealing with very large

arrays that may impact

performance.

9. 4. Considering alternative

approaches like sorting the

array before finding the

maximum element

import math

def poly(xs: list, x: float) -> float:

return sum(coeff * math.pow(x, i) for i, coeff in

enumerate(xs))

def dpoly(xs: list, x: float) -> float:

return sum(coeff * i * math.pow(x, i - 1) for i, coeff

in enumerate(xs) if i != 0)

def find_zero(xs: list) -> float:

x = 0.0

while abs(poly(xs, x)) > 0.00001:

x = x - poly(xs, x) / dpoly(xs, x)

return x

def find_zero(xs: list):

return -next(x for x in range(-1000, 1000)

if round(poly(xs, x), 5) == 0)

"The task involves defining two functions, `poly()`

and `find_zero()`. Steps to solve the task:

1. The first function, `poly()`, computes the

value of a polynomial for a given input `x`.

This function will first enumerate over the list

`xs[]` (provided as a parameter that list of

coefficients of the polynomial), using both the

index `i` and the corresponding coefficient.

Then, it will compute the i-th term of the

polynomial by multiplying the coefficient with the

`i-th` power of `x` (input value).

The `math.pow()` function is used for this

computation. The `sum()` function sums all these

computed terms, giving the final value of the

polynomial for the input `x`.

1. The second function, `find_zero()`, uses

coefficients of a polynomial provided as a

parameter, then finds one of the `x` values for

which the polynomial equals to zero.

To do this, however, we need some form of root

finding algorithm, such as the bisection method,

Newton's method, or others.

For these methods, starting points or ranges are

usually required. The task doesn't provide clear

instructions on this, so we need to make an

assumption.

1. Implement the root finding algorithm and

return the computed zero of polynomial.

2. Potential challenges:

3. When implementing the `find_zero` function,

we often need initial guesses or ranges for

the root finding algorithm, which the task

agenda doesn't specify. This can affect how

we design of the `find_zero` function.

4. 2. If the polynomial has more than one root

(more than one x-value for which poly(x) = 0),

the function might only return one root,

depending on the implementation.

5. 3. It's indicated that the function `find_zero`

should only accept lists of coefficients with

even numbers of terms. This involves

checking the input and handling the error if

the list length is odd.

6. 4. It is specified that `find_zero()` should only

accept lists having largest non-zero

coefficient, another check which needs to be

implemented.

7. 5. For certain polynomials and certain root

finding algorithms, finding a root may not

even be possible if the coefficients lead to a

function with no real roots.",

Question

Group1

Group2

Group3

def find_zero(xs: list):

leading_coeff = max(xs, key=abs)

return -leading_coeff / xs[0]

assert round(find_zero([1, 2]), 2) == -0.5

assert round(find_zero([-6, 11, -6, 1]), 2) == 1.0

poly() doesn’t exist

import math

def poly(xs: list, x: float):

return sum([coeff * math.pow(x, i) for i, coeff in

enumerate(xs)])

def find_zero(xs: list):

n = len(xs) - 1

a = 1 if n % 2 == 0 else -1

b = math.sqrt((n - 1) ** 2 - 4 * n * xs[-1] * a) - (n -

1) * a

return b / (2 * n)

import math

def poly(xs: list, x: float):

return sum([coeff * math.pow(x, i) for i, coeff

in enumerate(xs)])

def find_zero(xs: list):

max_coeff = max(xs, key=abs)

return -max_coeff / xs[0]

GPT-4

Super Role’s
Answer

Group1

Group2

Group3

Super Role’s
Answer

More detailed guidance

×

×

×

×

×

×

×

×

×

√

Calculate wrongly

Can’t solve situation
when x = 0

Still wrong

Only handle 2
situations correctly

Wrong

Start using 0

Start using 0.0

GPT-3.5-TURBO

def find_zero(xs: list):

"""

xs are coefficients of a polynomial.

find_zero finds x such that poly(x) = 0.

find_zero returns only one zero point, even if there are many.

Moreover, find_zero only takes list xs having an even number of coefficients

and the largest non-zero coefficient, as it guarantees a solution.

>>> round(find_zero([1, 2]), 2) # f(x) = 1 + 2x

-0.5

>>> round(find_zero([-6, 11, -6, 1]), 2) # (x - 1) * (x - 2) * (x - 3) = -6 + 11x - 6x^2 + x^3

1.0

"""

Figure 10: The comparison of answers between GPT-3.5-TURBO and GPT-4 in in APPS#1628.
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from scipy.optimize import newton

def poly(xs: list, x: float) -> float:

return sum([coeff * x ** i for i, coeff in

enumerate(xs)])

def find_zero(xs: list) -> float:

return newton(lambda x: poly(xs, x), 0)

import math

def poly(xs: list, x: float):

return sum([coeff * math.pow(x, i) for i,

coeff in enumerate(xs)])

def find_zero(xs: list):

if len(xs) == 2:

return -xs[0] / xs[1]

elif len(xs) == 4:

return 1.0

else:

return None

import math

def poly(xs: list, x: float):

return sum(coeff * x**i for i, coeff in

enumerate(xs))

def find_zero(xs: list):

if len(xs) == 2:

return -xs[0] / xs[1]

elif len(xs) == 4:

return 1.0

return None

import math

def poly(xs: list, x: float):

return sum([coeff * math.pow(x, i) for i, coeff in

enumerate(xs)])

def find_zero(xs: list):

n = len(xs) - 1

a = 1 if n % 2 == 0 else -1

b = math.sqrt((n - 1) ** 2 - 4 * n * xs[-1]) - (n - 1)

return b / (2 * n)

import math

def poly(xs: list, x: float):

return sum([coeff * x ** i for i, coeff in

enumerate(xs)])

def find_zero(xs: list):

x = 0.0

while abs(poly(xs, x)) > 1e-6:

derivative = sum([i * coeff * x ** (i - 1) if i != 0

else 0 for i, coeff in enumerate(xs)])

x = x - poly(xs, x) / derivative

return x

Problem: Given an array, find the

maximum element in the array.

1. Start by defining a variable to

store the maximum element,

and initialize it as the first

element of the array.

2. Iterate over the array elements

from the second element

onwards.

3. Compare each element with

the current maximum element,

and if the current element is

greater, update the maximum

element.

4. After iterating through all the

elements, the variable storing

the maximum element will hold

the result.

5. Challenges:

6. 1. Handling edge cases like

empty arrays or arrays with

only one element.

7. 2. Ensuring that the array

elements are of consistent data

type for proper comparison.

8. 3. Dealing with very large

arrays that may impact

performance.

9. 4. Considering alternative

approaches like sorting the

array before finding the

maximum element

import math

def poly(xs: list, x: float) -> float:

return sum(coeff * math.pow(x, i) for i, coeff in

enumerate(xs))

def dpoly(xs: list, x: float) -> float:

return sum(coeff * i * math.pow(x, i - 1) for i, coeff

in enumerate(xs) if i != 0)

def find_zero(xs: list) -> float:

x = 0.0

while abs(poly(xs, x)) > 0.00001:

x = x - poly(xs, x) / dpoly(xs, x)

return x

def find_zero(xs: list):

return -next(x for x in range(-1000, 1000)

if round(poly(xs, x), 5) == 0)

"The task involves defining two functions, `poly()`

and `find_zero()`. Steps to solve the task:

1. The first function, `poly()`, computes the

value of a polynomial for a given input `x`.

This function will first enumerate over the list

`xs[]` (provided as a parameter that list of

coefficients of the polynomial), using both the

index `i` and the corresponding coefficient.

Then, it will compute the i-th term of the

polynomial by multiplying the coefficient with the

`i-th` power of `x` (input value).

The `math.pow()` function is used for this

computation. The `sum()` function sums all these

computed terms, giving the final value of the

polynomial for the input `x`.

1. The second function, `find_zero()`, uses

coefficients of a polynomial provided as a

parameter, then finds one of the `x` values for

which the polynomial equals to zero.

To do this, however, we need some form of root

finding algorithm, such as the bisection method,

Newton's method, or others.

For these methods, starting points or ranges are

usually required. The task doesn't provide clear

instructions on this, so we need to make an

assumption.

1. Implement the root finding algorithm and

return the computed zero of polynomial.

2. Potential challenges:

3. When implementing the `find_zero` function,

we often need initial guesses or ranges for

the root finding algorithm, which the task

agenda doesn't specify. This can affect how

we design of the `find_zero` function.

4. 2. If the polynomial has more than one root

(more than one x-value for which poly(x) = 0),

the function might only return one root,

depending on the implementation.

5. 3. It's indicated that the function `find_zero`

should only accept lists of coefficients with

even numbers of terms. This involves

checking the input and handling the error if

the list length is odd.

6. 4. It is specified that `find_zero()` should only

accept lists having largest non-zero

coefficient, another check which needs to be

implemented.

7. 5. For certain polynomials and certain root

finding algorithms, finding a root may not

even be possible if the coefficients lead to a

function with no real roots.",

Question

Group1

Group2

Group3

def find_zero(xs: list):

leading_coeff = max(xs, key=abs)

return -leading_coeff / xs[0]

assert round(find_zero([1, 2]), 2) == -0.5

assert round(find_zero([-6, 11, -6, 1]), 2) == 1.0

poly() doesn’t exist

import math

def poly(xs: list, x: float):

return sum([coeff * math.pow(x, i) for i, coeff in

enumerate(xs)])

def find_zero(xs: list):

n = len(xs) - 1

a = 1 if n % 2 == 0 else -1

b = math.sqrt((n - 1) ** 2 - 4 * n * xs[-1] * a) - (n -

1) * a

return b / (2 * n)

import math

def poly(xs: list, x: float):

return sum([coeff * math.pow(x, i) for i, coeff

in enumerate(xs)])

def find_zero(xs: list):

max_coeff = max(xs, key=abs)

return -max_coeff / xs[0]

GPT-4

Super Role’s
Answer

Group1

Group2

Group3

Super Role’s
Answer

More detailed guidance

×

×

×

×

×

×

×

×

×

√

Calculate wrongly

Can’t solve situation
when x = 0

Still wrong

Only handle 2
situations correctly

Wrong

Start using 0

Start using 0.0

GPT-3.5-TURBO

def find_zero(xs: list):

"""

xs are coefficients of a polynomial.

find_zero finds x such that poly(x) = 0.

find_zero returns only one zero point, even if there are many.

Moreover, find_zero only takes list xs having an even number of coefficients

and the largest non-zero coefficient, as it guarantees a solution.

>>> round(find_zero([1, 2]), 2) # f(x) = 1 + 2x

-0.5

>>> round(find_zero([-6, 11, -6, 1]), 2) # (x - 1) * (x - 2) * (x - 3) = -6 + 11x - 6x^2 + x^3

1.0

"""

Figure 11: The comparison of answers between GPT-3.5-TURBO and GPT-4 in APPS#3531
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def proper_fractions(n):

if n == 1:

return 0

else:

totient = n

if n % 2 == 0:

while n % 2 == 0:

n = n // 2

totient -= totient // 2

p = 3

while p * p <= n:

if n % p == 0:

while n % p == 0:

n = n // p

totient -= totient // p

p = p + 2

if n > 1:

totient -= totient // n

return totient

def proper_fractions(n):

def phi(n):

amount = 0 k = 1 

while k < n:

if math.gcd(n, k) == 1:

amount += 1

k += 1 return amount

return phi(n) if n > 1 else 0

Question

while p * p <= n:

if n == 1:

return 0

Debugger’s Answer

def proper_fractions(n):

phi = n 

p = 2

if n % p:

p += 1

else:

phi -= phi // p 

if n > 1:

phi -= phi // n 

return phi

Super Role’s Answer                                  1st  tem                                                                               2nd tem

Because none of them followed the 

process of generating a

complete function, they both failed.

The code does not explicitly 
handle the case where n = 1 

The case where 

n=1 is considered

Group2

But there is a logical error:Did not 
completely decompose the factors.

Group3

Provide step-by-step instructions based on experience and highlight potential problem.

Super-Role‘ s Answer 1st version

Failed because 
doesn’t Import math

The same approach was 
used as when acting as 
a debugger.

Check more situations

The same logic when 
acting as a Coder.

√

"name": "1628",

"description": "If n is the numerator and d the denominator of a fraction, that fraction is defined a (reduced) proper 

fraction if and only if GCD(n,d)==1.\n\nFor example `5/16` is a proper fraction, while `6/16` is not, as both 6 and 16 are divisible by 2, thus the fraction can be reduced to `3/8`.
\n\nNow, if you consider a given number d, how many proper 
fractions can be built using d as a denominator?\n\nFor example, let's assume that d is 15: you can build a total of 8 different proper fractions between 0 and 1 with it:
 1/15, 2/15, 4/15, 7/15, 8/15, 11/15, 13/15 and 14/15.\n\nYou are to build a function 
that computes how many proper fractions you can build with a given 
denominator:\n```python\nproper_fractions(1)==0\nproper_fractions(2)==1\nproper_fractions(5)==4\nproper_fractions(15)= 
=8\nproper_fractions(25)==20\n```\n\nBe ready to handle big numbers.\n\nEdit: to be extra precise, the term should be 
\"reduced\" fractions…”

"difficulty": "interview", "id": 1628,
"sample_io": [{"input": "1", "output": [0]}, {"input": "2", "output": [1]}, {"input": "5", "output": [4]}, {"input": "15", "output":

[8]}, {"input": "25", "output": [20]}], "test_list": [{"input": "1", "output": [0]}, {"input": "2", "output": [1]}, {"input": "5", 
"output": [4]}, {"input": "15", "output": [8]}, {"input": "25", "output": [20]}, {"input": "9999999", "output": [6637344]}, {"input":
"500000003", "output": [500000002]}, {"input": "1532420", "output": [608256]}, {"input": "123456789", "output": [82260072]}, 
{"input": "9999999999", "output": [5890320000]}], "starter_code": "\ndef proper_fractions(n):\n\t"}

Group1                                         Coder’s Answer                                                                Debugger’s Answer(Com_A)

if n < 2:

rreturn 0

phi = n

p = 2

while p * p <= n:

if n % p:

p += 1

else:

while n % p == 0:

n //= p

phi -= phi // p

if n > 1:

phi -= phi // n

return phi

if n == 1:

return 0

factors = set()

factor = 2

nn = n

while factor * factor <= n:

if n % factor:

factor += 1

else:

n //= factor

factors.add(factor)

if n > 1:

factors.add(n)

n = nn

for factor in factors:

n -= nn // factor

return n

Group2                                     Coder’s Answer (Com_A)                                                                               Debugger’s Answer

def proper_fractions(n):

result = n

i = 2

while i * i <= n:

if n % i:

i += 1

else:

n //= i

if n > 1:

result -= result // n

return result

# Test cases

assert proper_fractions(1) == 0

assert proper_fractions(2) == 1

assert proper_fractions(5) == 4

assert proper_fractions(15) == 8

assert proper_fractions(25) == 20

Group2                                                  Planner’s Answer(Com_A)

Step 1: First, notice the pattern. Let's take the example of 15. The results for 15 exclude multiples of 3 and 5, because these numbers have common factors with 15. This removed 1/3rd and 1/5th of the numbers up to 15 (excluding 15 itself), i.e., 5 numbers and 3 numbers. \nStep 2:
You need to know what's the count of numbers that are multiples of 3 and 5 within the range. Subtract everything else. \n\nStep 3: Write a function to compute the greatest common divisor of two numbers. \nStep 4: Next, write a function that computes the total numbers (not only prime) 
that can divide a given number 'd'. (This will be used in step 5)\nStep 5: Now, initialize a counter variable to 'd-1'. This is because, all numbers less than 'd' can be potential numerators. We need to subtract from this those which have common factors with 'd'. We know that any number 
that is divisible by factors of 'd' other than 1 and 'd' itself will have a common factor with 'd'. Subtract from the counter the count of multiples of each of the factors computed in step 4 within the range up to 'd'.\nStep 6: Remember that multiples common to more than one factor (like 
multiples of 6, which are multiples of 2,3) would have been subtracted more than once. So, add back such multipl es to the 
counter.\nStep 7: Return the final value of counter after all the subtractions and additions. This is the final solution.\n\nPotential 
challenges:\n1. The logic requires knowledge of number theory.\n2. When the 'd' is very large computing all factors of 'd' may be time consuming.\n3. There may be a large number of multiples of factors to be excluded. So a lot of computation is required.\n4. The algorithm must 
handle the inclusion-exclusion principle correctly, i.e., it must exclude all multiples of each factor and include multiples of their combinations correctly.\n5. Precision could be lost with very large numbers due to object size limitations. In Python, this can be avoided by using the 'long' 
data type for large numbers."

Figure 12: The complete solution process of Cogito in APPS#1628.
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