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ABSTRACT

Traffic Signal Control plays a vital role in optimizing urban traffic flow and reducing
accidents by regulating signal phases at intersections. While traditional fixed-time
control methods are simple and infrastructure-efficient, they fail to adapt to complex
and dynamic traffic patterns, particularly during peak periods or in the presence of
emergency vehicles. In this paper, we address the emergency-vehicle-aware traffic
signal control problem by proposing a decoupled policy fusion framework that
separately optimizes control strategies for regular vehicles and emergency vehicles.
The two policies are later combined into a global strategy with automatically
learned weights, mitigating the negative impact of Q-function approximation errors.
We further introduce SplitEMV, a novel multi-agent model that enhances inter-
agent communication and decision efficiency. Experiments demonstrate that our
method significantly improves emergency vehicle response times while preserving
efficiency of regular vehicles. The learned emergency vehicle prioritized policy
also integrates seamlessly with existing traffic signal control methods in a zero-shot
manner, supporting practical deployment.

1 INTRODUCTION

Traffic signal control (TSC) plays a crucial role in optimizing traffic flow and enhancing road
safety within modern urban settings. By coordinating signal phases at congested intersections, TSC
alleviates congestion resulting from conflicting traffic streams Eom & Kim (2020), facilitates orderly
traffic movement Wang et al. (2018), and reduces the risk of collisions Du et al. (2023). Over the
years, numerous approaches have been put forward to tackle the TSC problem. Traditional TSC
methods Albatish & Abu-Naser (2019); Majstorović et al. (2023), recognized for their simplicity and
minimal infrastructure demands, have been widely implemented. As urban traffic grows increasingly
intricate and vehicle volumes surge, these methods prove inadequate in adapting to real-time traffic
dynamics. Although adaptive TSC methods Wang et al. (2018); Cools et al. (2013) utilize modern
sensing technologies to adjust signal timings based on real-time traffic states, their dependence on
domain knowledge from experts limits the effectiveness compared to flexible learning-based methods.

As the TSC problem can be formalized as Markov Decision Process, solving TSC problems with
Reinforcement Learning (RL) becomes a popular way. Classical RL-based methods El-Tantawy et al.
(2013); Chin et al. (2012); Araghi et al. (2013) have achieved promising outcomes in adaptive TSC.
However, they encounter scalability challenges owing to large state spaces and high sample complexity.
Recently, deep RL has outperformed traditional TSC methods in dynamic traffic scenarios Yau et al.
(2017); Wei et al. (2021); Li et al. (2021); Zhao et al. (2024); Zhang et al. (2024). These methods
take the full state as input and utilize deep neural networks to approximate cumulative rewards or
policies. This enables the methods to control traffic signals according to real-time traffic conditions.
Nevertheless, their reliance on manually tuned parameters frequently restricts their efficacy.

Although existing studies have significantly enhanced the efficiency of regular vehicles (RVs), real-
world scenarios involve the priority passage of emergency vehicles (EMVs), which need to their
destinations in the shortest possible time. EMVs are permitted to violate traffic rules in order to
reduce the travel time to their destinations. However, during congestion, they may be impeded
by regular traffic, diminishing their advantage and increasing the risk of accidents. Consequently,
optimizing traffic signals to assist EMVs in traversing intersections is of utmost importance.
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Numerous studies have concentrated on enhancing the efficiency of EMVs through diverse approaches,
including route planning Muzzini & Montangero (2024); Peelam et al. (2024) and signal preemption
strategies Lu & Wang (2019); Humagain et al. (2020). However, these studies do not integrate
adaptive TSC, which might result in sub-optimal policies. Existing regular TSC methods solely focus
on improving the efficiency of RVs and fail to enhance the efficiency of EMVs. The state-of-the-art
method, EMVLight Su et al. (2022; 2023), combines real-time EMV routing with adaptive TSC.
Nevertheless, its effectiveness is limited by complex multi-level signal architectures.

To address the aforementioned issues, we propose Decoupled Learning and Adaptive Strategy
Merging. This approach enables the flexible integration of strategies prioritizing RVs and EMVs. It
significantly enhances the efficiency of EMVs while having a minimal impact on RVs. We implement
Decoupled Learning to separately learn strategies for RV and EMV objectives. Subsequently, we
utilize Adaptive Strategy Merging to smoothly integrate these two strategies. Our fusion strategy is
fully automated and does not depend on manual parameter tuning. Beyond TSC, our method is also
applicable to other multi-objective problems. Particularly when the objectives are independent, it
facilitates efficient task decomposition and improves the model’s ability to achieve multiple goals.

The key contributions of our method are summarized as follows: (1) We propose Decoupled Learning
and Adaptive Strategy Merging strategy for TSC problem. This strategy significantly enhances
the efficiency of EMVs while having a minimal impact on RVs. (2) Based on this framework,
we develop SplitEMV, a multi-stage trained TSC method. It incorporates a zero-shot merging
technique to seamlessly integrate EMV-prioritized strategies with existing RV-prioritized methods.
(3) Extensive experiments on public benchmarks show that our method achieves state-of-the-art
result, significantly improving traffic efficiency for both RVs and EMVs and showcases the ability to
integrate EMV-prioritized capabilities for all existing methods in a zero-shot manner.

2 PRELIMINARIES

We provide a formal definition of the EMV-aware TSC problem in this section, which extends the
conventional multi-intersection TSC problem. We begin by introducing Decentralized Partially
Observable Markov Decision Process (Dec-POMDP), then briefly describe the standard TSC formu-
lation and introduce its extension to incorporate EMVs. We model the TSC task as a Dec-POMDP,
the detailed definition of Dec-POMDP can be found in Appendix B.

The objective of a TSC problem is to minimize the average travel time of vehicles in a road network,
and its formal definition is as follows:

Problem 2.1 (Traffic Signal Control Problem). The environment consists of intersections I, roads
R, and vehicles V . Each intersection Ii ∈ I is controlled by an agent Ai, which executes an action
every ∆t time steps based on its policy πi. At time t, agent Ai receives a partial observation zti and
selects an action ai ∈ Ai to determine the next signal phase.

Definitions of Intersection, Road, Traffic Signal Phase, and Vehicle in the context of the TSC
problem are provided in Appendix C. We now extend the above problem to incorporate EMVs, which
are a subset of V that require prioritized treatment. The definition of Emergency Vehicle and the
EMV-Aware TSC problem is given as follows:

Definition 2.1 (Emergency Vehicle). An emergency vehicle Ei ∈ E ⊆ V is a special vehicle selected
manually or randomly. Its behavior is identical to that of regular vehicles, but in the EMV-aware
TSC problem, its travel time is explicitly prioritized for minimization.

Problem 2.2 (EMV-Aware Traffic Signal Control Problem). The environment is composed of inter-
sections I, roads R, vehicles V , and emergency vehicles E . Each intersection Ii ∈ I is controlled
by an agent Ai, which executes actions every ∆t seconds based on policy πi. At time t, agent Ai

observes partial state zti and selects an action ai ∈ Ai to determine the next phase.

For the EMV-Aware TSC problem, our objective is to minimize the average travel time of EMVs,
while keeping the impact on the average travel time of RVs to a minimum. We formulate this problem
as a Dec-POMDP, with the detailed definitions of the state space s, observation z, action space a,
and joint reward function r provided in Appendix B. Since the goal is to reduce the average travel
time of both RVs and EMVs, the problem can be naturally framed as a multi-objective reinforcement
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learning problem, and the reward function rti for i-th intersection at timestamp t can be defined as:

rti = rn,ti + βre,ti (1)

where rn,ti and re,ti are rewards of RVs and EMVs, and β controls the weight of EMV priority.

3 METHODOLOGY

Since the strategy needs to optimize EMVs while minimizing the impact on RVs, based on Equation 1,
the optimal strategy for the EMV-aware TSC problem should also be optimal for the regular TSC
problem, as the reward function remains identical in the absence of EMVs. However, with the
introduction of EMVs, the weight β influences the performance of the learned strategy. A large β
causes the model to prioritize EMVs, and potentially degrading the performance for RVs. Conversely,
a small β leads the model to ignore EMVs. To address this issue, we first decouple the control
strategies for RVs and EMVs in Sec. 3.1 and then propose a merging method to integrate the two
strategies effectively in Sec. 3.2. Finally, we propose the SplitEMV model and a multi-stage training
strategy to learn the decoupled strategies.

3.1 DECOUPLED LEARNING FOR ROBUST EMV-AWARE CONTROL

Training a model with the joint reward function that simultaneously considers RVs and EMVs leads
to unstable performance. To mitigate this, we decouple the control strategies, enabling the model
to better distinguish and learn each task. The key difference between the regular and EMV-aware
TSC problems lies in the reward function: the latter introduces an additional weighted emergency
vehicle reward. To ensure that model performance remains independent of the weight β, it is
essential to separate the two reward components. Therefore, we obtain the optimal strategy π∗ of the
EMV-aware TSC problem by substituting the cumulative reward function in reinforcement learning
π∗ = arg maxπ E (

∑∞
t=0 γ

trt) with the following reformulated reward:

π∗ = argmaxπE

( ∞∑
t=0

γt
(
rn,t + βre,t

))
= argmaxπ (RN + βRE) (2)

where rt is the reward at time t, and γ is the discount factor. rn,t and re,t are the rewards of RVs
and EMVs at time t. We also define RN = E (

∑∞
t=0 γ

trn,t) and RE = E (
∑∞

t=0 γ
tre,t) as the

cumulative rewards of RVs and EMVs, respectively.

We decouple the two tasks based on the cumulative reward function from value-based reinforcement
learning methods, which compute the state-action value function (Q-function) and select actions
accordingly. The model is trained to minimize the loss of Q-function based on the Bellman equation.
The loss function LQ = MSE (Q(s, a), rn + βre + γmaxa′ Q(s′, a′)), and Q-function Q∗(s, a)
for the optimal strategy can be expressed as:

Q∗(s, a) = argminQ(s,a)E
[
((Q(s, a)− γQ(s′, a′))− (rn + βre))

2
]
= E

[
RQ

N + βRQ
E

]
(3)

where s and a represent the current state and action, respectively, s′ and a′ is the next state and next
action, β is the weight assigned to the emergency vehicle reward, and γ is the discount factor.

To improve the performance of EMVs while maintaining regular vehicle performance, we
first consider the case without EMVs, i.e., re = 0. In this case, the loss function LN =
MSE (QN (s, a), rn + γmaxa′ QN (s′, a′)) and the optimal Q-function Q∗

N (s, a) for RVs are:

Q∗
N (s, a) = argminQN (s,a)E

[
((QN (s, a)− γQN (s′, a′))− rn)

2
]
= E

[
RN

N

]
. (4)

Based on Eq. 3 and Eq. 4, we can also define an EMV prioritized policy, the loss function LE =
MSE (QE(s, a), r

e + γmaxa′ QE(s
′, a′)) and the optimal Q-function Q∗

E(s, a) for EMVs are:

Q∗
E(s, a) = argminQE(s,a)E

[
((QE(s, a)− γQE(s

′, a′))− re)
2
]
= E

[
RE

E

]
. (5)

RY
X in Eqs. 3, 4, and 5 denotes the cumulative reward of type X when using Y as the action policy.

To integrate the two tasks, we define the combined Q-function as:
Q(s, a) = QN (s, a) + βQE(s, a), (6)

where QN and QE are trained independently using LN and LE , respectively. Q(s, a) is equivalent
to Q∗(s, a), under certain conditions, and the detailed discussion is in Appendix H.
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Figure 1: Average travel time for EMVs in a single-intersection environment; lower is better. (a)
Model is trained using different initial vehicle numbers k and EMV priority weights β. (b) Model is
trained with different k and β = 0.1k, then directly transferred to environments with varying k. (c)
Use ASM to adaptively merge QN and QE , results are compared with the min/max average travel
times for the same k but different β. ASM performs closely to the minimum result.

3.2 ADAPTIVE STRATEGY MERGING FOR ROBUST EMV-AWARE CONTROL

The selection of the weight β in Eq.6 has a substantial influence on the overall performance. In this
section, we conduct a detailed analysis of the impact of β and present Adaptive Strategy Merging
(ASM). Specifically, our objective is to integrate the existing QN (s, a) and QE(s, a) into a unified
Q(s, a) without depending on a fixed, pre-defined β. For the sake of simplicity, we omit the explicit
notation of (s, a) when its context is evident.

We first present the following two propositions, and their proofs can be found in Appendix G.

Proposition 3.1. Assume Q = Q1 + Q2, where Q1 and Q2 are two different Q functions,
second_max(Q) is the second-largest value in Q, When Eq. 7 holds, the position of the element with
the maximum value in Q is the same as that in Q1.

max(Q1)− second_max(Q1) > max(Q2)−min(Q2) (7)

Proposition 3.2. Given Q and any µ, σ2, where µ ∈ R, σ2 ∈ R+. Define Q′ = Q−µ
σ2 , then the

strategy based on Q′ is identical to the strategy based on Q.

A good strategy for the EMV-aware TSC problem should exhibit the same performance as the regular
TSC problem in the absence of EMVs, and the strategy should give precedence to EMVs when EMVs
are present. Formally, when there is no influence from EMVs, we have arg maxa Q = arg maxa QN ,
and when the strategy is influenced by EMVs, arg maxa Q = arg maxa QE .

To achieve this for Q, we must ensure that Proposition 3.1 holds. Subsequently, we can guarantee that
Q accurately selects the action corresponding to the maximum value of Q1, and the addition of Q2

does not alter the maximum-valued action of Q1. It is worth noting that this is a sufficient condition.
When max(Q2) > max(Q1) − second_max(Q1), since the action associated with max(Q2) may
differ from that of second_max(Q1), the maximum value of Q might still be the same as that of Q1.

To enhance the probability that Proposition 3.1 holds, we normalize QN and QE in accordance with
the principle stated in Proposition 3.2. This normalization is of vital importance when integrating QN

and QE to form Q. In the equation Q = QN + βQE , a fixed β fails to satisfy Eq. 7 under different
traffic densities. This is because neural network approximation errors affect QN and QE differently,
which is involved by the average number of vehicles k. As a result, a fixed β causes performance
degradation outside a narrow range of k. Fig. 1 illustrates this phenomenon in a simplified single-
intersection environment. In (a), models trained with different k and β indicate that the optimal β
scales with k, and extreme β values deteriorate performance. In (b), models trained with the optimal
β exhibit poor generalization across unseen k. In (c), a model trained at k = 100 and augmented by
our proposed ASM maintains low EMV travel times close to the best β selection across various k.
The details of the setup and evaluation are presented in Appendix D.
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Figure 2: SplitEMV model structure, training strategy and adaptive strategy merging.

Based on the foregoing analysis, we propose the ASM, which normalizes QN and QE according to
their data-distribution characteristics and then merges them to obtain Q. Regarding QN , when the
number of vehicles varies, the mean and variance of QN are positively correlated with the number
of vehicles. Therefore, when k is large, the impact of QE on the strategy is negligible. Conversely,
when k is small, the variance of QE may significantly disrupt the optimal-strategy selection of
Q. Consequently, we utilize the mean and variance of all actions of QN in the current state for
normalization as Eq. 8. Through this normalization, the mean and variance of Q′

N are 0 and 1
respectively, effectively eliminating the influence of k on QN .

Q′
N (s, a) =

QN (s, a)− 1
|A|
∑

a∈A QN (s, a)√
1
|A|
∑

a∈A (QN (s, a)− µN )
2

(8)

For QE , if we directly normalize it with respect to its actions, the variance will be amplified, because
when there is no EMV, QE is close to 0, and normalization will magnify the noise. On the other hand,
when there are EMVs, the anticipated action will have a relatively larger value compared to other
actions, and normalization will reduce its impact. Therefore, rather than normalizing QE based on its
actions, we first conduct a one-epoch simulation in the environment with the default β to calculate
the mean and variance of QE . The default value of β is set to 1. Additional experiments presented in
Appendix F demonstrate that varying β has a negligible effect on the final strategy. We define σE

as the average of the m largest variances of QE , where m is the number of states containing EMVs.
The normalization of QE is carried out as shown in Eq. 9.

Q′
E(s, a) =

QE(s, a)− 1
|A|
∑

a∈A QE(s, a)

σE
(9)

Then, we can directly calculate Q(s, a) = QN (s, a) + QE(s, a). In Appendix E, we present an
analysis of the values of QN and QE before and after normalization. With Decoupled Learning and
ASM, the model can select the optimal action and reduce the interference of the training error. This
method can operate without any hyper-parameters and is generally applicable to different scenarios.
In Appendix F, we show that during one-epoch simulation, σE is a statistic of the EMV model
and is largely independent of testing scenarios. This indicates that evaluations can be conducted on
simulated scenarios and applied directly to real-world situations.

3.3 SPLITEMV MODEL

Based on the foregoing analysis, we propose a model that is applicable to both QN and QE . A more
elaborate version is presented in Appendix J. The overall structure, depicted in the left of Fig. 2,
comprises two primary components: communication information generation and Q-value estimation.

The first component decomposes the input state into individual incoming lanes. Each lane encom-
passes vehicle count, direction, signal phase, and, if applicable, EMV information. An MLP is
utilized to encode each lane into hL

i . Subsequently, a multi-head attention is employed to capture the
interactions among lanes. To further strengthen communication, the model predicts the contribution
of each lane to adjacent intersections and categorizes them according to their outgoing directions.

The second component combines the communication information received from neighboring agents
with the current local state to predict Q-values. It includes external information in addition to what

5
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the first component has. For each action ai, the lane vectors are grouped according to whether the
corresponding lanes are allowed under the current signal phase. The vectors within each group are
averaged, and then concatenated with an embedding that indicates the activation status of ai. An
MLP is subsequently utilized to generate the Q-value prediction.

There are differences when applying the model to QN and QE . For QN , the EMV-related inputs are
set to zero. This enables the model to concentrate solely on RV optimization. For QE , the EMV
inputs are set to their actual observed values.

3.4 TRAINING STRATEGY

To train the model, A straightforward approach is to train the model using the combined reward of
RVs and EMVs. The loss function Lcombine is as follows:

Lcombine = MSE
(
QN (s, a) +QE(s, a), (r

n + re) + γmax
a′

(QN (s′, a′) +QE (s′, a′))
)

(10)

However, using Lcombine will result in QN and QE being unable to distinguish their respective rewards,
and thus unable to decouple them. An alternative is to ensure the decoupling using Lsplit.

Lsplit = MSE
(
QN (s, a), rn + γmax

a′
QN (s′, a′)

)
+ MSE

(
QE(s, a), r

e + γmax
a′

QE (s′, a′)
)

(11)
Lsplit supervises the training of QN and QE with their respective rewards. However, in practice, Lsplit
does not perform well for the equation implicitly assumes β = 1. From analysis in 3.2, setting a
constant weight will result in a sub-optimal strategy when the average number of vehicles at the
intersection varies, reducing the learning efficiency and stability of the Q-function, especially the RV
model. Through experiments, we can observe a significant performance gap using Lsplit. Therefore,
we propose a multi-stage training strategy, which consists of RV model learning stage, EMV model
initialization stage, and joint training stage, as depicted in the middle of Fig. 2.

In RV model learning stage, we solely train QN , which is focused on RVs only and is identical to
other TSC methods. Its loss function LRV is given by Eq. 12, where EpsRand represents an ϵ-greedy
strategy, which will substitute the selected action by a random action with a probability of ϵ.

LRV = MSE
(
QN (s,EpsRand (argmaxa′QN (s, a′), ϵ)) , rn + γmax

a′
QN (s′, a′)

)
(12)

In EMV model initialization stage, we train QE to learn the strategy for EMVs. Since the occurrence
frequency of EMVs is low, if we directly use QE to control traffic signals, we might encounter the
issue of congestion among RVs. Consequently, we use QN to control the traffic signals and learn QE

using LEMV as presented in Eq. 13.

LEMV = MSE
(
QE (s,EpsRand (argmaxa′ (QN (s, a′)) , ϵ)) , re + γmax

a′
QN (s′, a′)

)
(13)

In joint training stage, both QN and QE have acquired a reasonable strategy. However, QE is not
yet optimized for EMVs. Therefore we perform ϵt-decay to select action a, which is defined as a =
EpsRand

(
arg maxa′

(
QN (s, a′) +QE (s, a′) · 1{u<1−ϵt}

)
, ϵ
)
, here ϵt is a decaying parameter that

starts at 1 and decays to 0, 1 is an indicator function, and u ∼ U(0, 1). This approach enables QE to
transfer its Q-values to those that can influence the traffic signal. Then LJoint is defined as in Eq. 14.

LJoint = MSE
(
QN (s, a) +QE(s, a), r

n + re + γmax
a′

(QE(s
′, a′) +QN (s′, a′))

)
(14)

By adopting the aforementioned multi-stage training strategy, we can obtain QN that is identical to
RV-prioritized methods, and QE that is dedicated to optimizing for EMVs. Subsequently, we can
utilize ASM described in Sec. 3.2 to derive the final Q function, as depicted on the right of Fig. 2.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Baselines We compare SplitEMV with a range of representative baselines, which can be categorized
into two groups: traditional TSC methods and deep reinforcement learning based TSC methods. The
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traditional methods include FixedTime, MaxBandLittle et al. (1981), SOTLCools et al. (2013), Max-
PressureVaraiya (2013), and MARLIN-ATSCEl-Tantawy et al. (2013). The DRL-based approaches
contain CoLightWei et al. (2019b), PressLightWei et al. (2019a), MPLightChen et al. (2020), and
MVNXu et al. (2023). Specifically, EMVLight Su et al. (2022; 2023) prioritizes EMVs through
position-aware reward mechanisms. Further details on these methods are provided in Appendix K.

Datasets and Environments We evaluate our approach on two widely used multi-intersection TSC
datasets: the Hangzhou (HZ) and Jinan (JN) datasets Wei et al. (2019b), each containing one hour of
traffic flow data. To support EMV-aware control, we extend both datasets by labeling certain vehicles
as EMVs. During the training, EMVs are randomly selected, and during the testing vehicles whose
IDs are divisible by 1000 are designated as EMVs. The driving strategy of these EMVs are identical
to RVs but are tracked separately to evaluate EMV passage efficiency.

Evaluation Metrics We adopt the Average Travel Time (ATT) as the primary evaluation metric.
This metric is widely employed to assess the performance of TSC. It computes the average time
that all vehicles spend from entering to leaving the traffic network during the simulation, which is
formulated as ATT = 1

N

∑N
i=1

(
tli − tei

)
, where N represents the total number of vehicles, and tei , t

l
i

are the entering and leaving time of the i-th vehicle. A lower ATT indicates superior performance.

Implementation Details All experiments are conducted in SUMO Lopez et al. (2018) simulator.
To ensure stability, we repeat each experiment multiple times and report the mean and variance.
The implementation details and hyper-parameters can be found in Appendix L. We evaluate the
performance of methods with Average Travel Time of RVs and EMVs in seconds.

4.2 COMPARISON RESULTS

Table 1: Overall performance of different methods, reported as average travel time in seconds.

Method Methods JN HZ
Type RVs(s) EMVs(s) RVs(s) EMVs(s)

Tr
ad

iti
on

al
M

et
ho

ds

FixedTime 442.91 222.69 541.72 1070.9
MaxBand 359.38 134.95 443.86 444.03

SOTL 386.59 131.04 420.52 243.90
MaxPressure 394.58 290.51 380.19 120.13

MARLIN 383.60 125.23 392.14 393.49

D
ee

p
R

L
M

et
ho

ds

CoLight 333.11±2.89 148.41±3.23 349.01±.172 78.038±14.9
PressLight 334.01±1.53 160.72±21.5 357.83±.981 112.29±9.12
MPLight 348.02±1.78 126.35±14.0 353.00±2.27 123.20±37.6

MVN 436.82±34.5 491.23±12.9 445.74±6.17 173.66±104
EMVLight 435.22±7.36 130.39±.783 385.90±2.78 186.31±41.8
SplitEMV 333.18±1.12 38.161±1.28 345.77±.468 48.960±3.02

Overall Performance Comparison We first evaluate the overall performance of all baseline
methods on both RVs and EMVs. Tab. 1 reports the average travel time and standard deviation across
multiple runs on the HZ and JN datasets. For traditional methods, results are deterministic and thus
no standard deviation is reported.

From the results, we observe that Deep RL methods generally outperform traditional methods in terms
of RV efficiency. However, when considering EMVs, only EMVLight and our proposed SplitEMV
are specifically designed for EMV-aware control. While EMVLight incorporates EMV-specific
designs, its lower efficiency for RVs leads to limited overall benefits.

In contrast, SplitEMV achieves the lowest average travel time for EMVs across all settings while
maintaining competitive performance for RVs, which is on par with or better than state-of-the-art
DRL baselines. Other DRL methods, which are not optimized for EMV scenarios, exhibit high
variance in EMVs performance, indicating their instability and limited robustness in this setting.

We also analyze the performance of existing methods when trained with weighted rewards. Due to the
space constraints, the detailed results are put in Appendix M. These results highlight a clear trade-off:

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

small β values may offer marginal improvement in the performance of EMVs without severely
harming regular vehicle flow, but large β values lead to a significant drop in RV performance, which
also leads to the increase of average travel time of EMVs. This confirms the difficulty of achieving
joint optimization via weighted rewards. The analysis of training and inference time provided in
Appendix P. Our method shows no significant difference in runtime compared with other methods.

4.3 ABLATIONS

The effectiveness of Decoupled Learning and ASM Tab. 2 presents the experimental results
of training with a weighted reward function instead of using Decoupled Learning and ASM. The
superscript in the name indicates the weight coefficient β. We can observe that when β is small,
the method fails to significantly improve the traffic efficiency for EMVs. Conversely, when β is
large, although EMV efficiency may improve, the performance for RVs drops significantly, and
EMV efficiency is still suboptimal. In contrast, Decoupled Learning and ASM achieves excellent
performance for both RVs and EMVs.

Table 2: Comparison of SplitEMV with different weighted reward, loss function and training stages.

Methods JN HZ
RVs(s) EMVs(s) RVs(s) EMVs(s)

SplitEMV0 332.44±.218 60.000±5.77 345.13±.532 113.33±43.2
SplitEMV0.1 332.60±1.22 42.022±.711 349.15±.219 77.234±1.05
SplitEMV0.3 332.94±1.69 51.099±8.44 345.64±.137 54.952±1.07
SplitEMV1 340.98±.688 43.356±1.33 367.68±3.23 51.097±1.15
SplitEMV3 410.67±42.0 47.976±2.84 412.74±9.43 57.046±4.76
SplitEMV10 505.46±31.0 55.947±8.67 394.55±13.4 251.06±175

SplitEMVcombine 339.66±1.51 36.805±2.72 369.94±5.35 425.00±373
SplitEMVsplit 336.46±.943 38.878±.929 372.68±12.7 285.02±242
SplitEMVRV 332.52±1.36 112.92±22.4 345.54±.347 81.806±3.90

SplitEMVEMV 352.10±10.5 40.420±3.95 372.83±10.9 49.466±4.98
SplitEMV 333.18±1.12 38.161±1.28 345.77±.468 48.960±3.02

Settings of Different Loss Functions We evaluate our method on Hangzhou and Jinan scenarios
with multiple loss function selections, analyzing their strengths and limitations. Ultimately, we
adopt a three-stage training strategy with distinct loss functions for each stage. Tab. 2 presents the
experimental results under different loss function designs, as well as the performance of the model
after each individual training stage. Here, SplitEMVcombine represents the results obtained using the
combined loss Lcombine throughout training, while SplitEMVsplit refers to training with the split loss
Lsplit. SplitEMVRV and SplitEMVEMV correspond to the outcomes after the first and second stages
of the multi-stage training, respectively. Since the SplitEMVRV focuses solely on optimizing traffic
efficiency of RVs, the Q-function for EMVs is omitted during evaluation.

From Tab. 2, it is evident that our proposed multi-stage training strategy, along with stage-specific
loss functions, significantly improves the ability of model to distinguish and optimize for the two
control objectives compared to using a single loss function (Lcombine or Lsplit). We can also find each
stage in has a clearly defined objective: after RV model learning stage, the model performs well for
RVs; after EMV model initialization stage, the model adopts a fair strategy to optimize both RVs and
EMVs simultaneously; finally after joint training stage, the model further explores optimal control
strategies based on the current state, surpassing the performance of the greedy strategy from Stage 2
and achieving further improvements. We further conduct ablation studies on communication method
and different EMV appearance rate. The corresponding results are presented in Appendix N and O.

4.4 ZERO-SHOT EMV GENERALIZATION ON EXISTING METHODS

As analyzed in Sec. 3.1, Decoupled Learning separates the control strategies for RVs and EMVs.
Therefore, the trained EMV-aware TSC policy can be directly integrated with other Q-learning-based
regular TSC policies. We integrate the trained RV and EMV prioritized strategy using ASM in
a zero-shot fashion with various existing methods to evaluate its generalization capability. The
experimental results are presented in Tab. 3. The symbol "+" indicates that EMV model is merged
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Table 3: Zero-shot EMV generalization on existing methods in HZ and JN datasets.

Methods JN HZ
RVs(s) EMVs(s) RVs(s) EMVs(s)

CoLight 333.11±2.89 136.08±14.3 349.01±.172 94.988±1.15
CoLight+ 357.72±13.7 41.938±5.11 375.27±12.7 57.360±.592
CoLight∗ 334.01±2.74 35.374±.142 349.19±.698 51.652±4.93
PressLight 334.01±1.53 120.77±1.64 357.83±.981 97.122±8.25

PressLight+ 335.50±1.96 46.356±3.31 359.36±1.71 55.582±3.12
PressLight∗ 336.32±.348 41.666±4.40 358.39±1.25 50.339±3.88

MPLight 346.46±1.35 135.00±27.9 353.52±2.79 123.06±29.5
MPLight+ 348.99±.040 44.579±5.82 356.30±.89 81.471±22.6
MPLight∗ 347.89±.638 43.101±.473 353.40±2.11 80.602±17.7

MVN 440.13±31.7 312.91±172 447.70±4.94 144.20±26.7
MVN+ 537.74±24.0 181.28±141 483.27±71.0 68.993±13.3
MVN∗ 433.11±26.6 154.90±106 428.74±11.2 50.873±.935

with β = 1, while "*" indicates the use of the ASM method. Note that EMVLight is excluded
from this experiment as it does not independently optimize RVs but instead jointly optimize RVs
and EMVs. From the results, we observe that the integration strategy preserves the performance of
original methods on RVs while significantly improving the efficiency for EMVs.

5 RELATED WORK

Emergency Vehicle Optimization Existing researches on EMV optimization have explored strate-
gies aimed at route optimization Lu & Wang (2019); Kwon et al. (2003); Humagain et al. (2020).
Other methods Nelson & Bullock (2000); Qin & Khan (2012); Huang et al. (2015); Bieker-Walz
& Behrisch (2019); Wu et al. (2020) have also probed into traffic signal preemption strategies to
tackle the issue that RVs may not be able to yield EMVs. Nonetheless, existing studies predominantly
center around either route planning for EMVs or pre-set adjustments to traffic signals. EMVLight
Su et al. (2022; 2023) integrates real-time route planning with an adaptive TSC algorithm that gives
precedence to EMVs. Nevertheless, its real-time planning system exhibits limited effectiveness, and
the multi-level signal architecture further exacerbates the training complexity and makes it difficult
to transfer to other scenarios. This approach tightly couples the optimization of EMVs and RVs,
affecting the strategy for regular TSC problems.

Deep Reinforcement Learning in TSC Deep reinforcement learning have made great progress in
Traffic Signal Control in the last ten years. Here, we briefly review the latest advances in traditional
TSC methods Buckley & Wheeler (1964); Hunt et al. (1982); Lowrie (1990); Cools et al. (2013);
Varaiya (2013) and RL-based TSC methods Mnih et al. (2015); van Hasselt et al. (2016); Wang et al.
(2016); Fortunato et al. (2018); Schaul et al. (2016); Mnih et al. (2016); Schulman et al. (2017);
Haarnoja et al. (2018); Horgan et al. (2018); Espeholt et al. (2018); Rashid et al. (2018), which are
related to our work. Detailed related works are available in the Appendix A.

6 CONCLUSION

In this paper, we propose a decoupled policy fusion framework to address the limitations of single-
objective reward designs in the presence of EMV-aware TSC problem. By combining independently
learned policies for RVs and EMVs with Adaptive Strategy Merging, our method mitigates ap-
proximation errors in Q-function learning and enhances policy performance. In addition, a new
agent architecture SplitEMV is introduced to improve inter-agent communication. Experiments on
real-world data show that our method and model significantly improves efficiency of EMVs without
compromising RVs. Moreover, the EMV policy can be combined with existing control methods in a
zero-shot manner, offering strong generalization and practical applicability.
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APPENDIX

A MORE RELATED WORKS

Traffic Signal Control TSC methods have been extensively studied and widely deployed to
mitigate congestion and improve traffic flow. Classic approaches include Fixed-time Buckley &
Wheeler (1964), SCOOT Hunt et al. (1982), and SCATS Lowrie (1990), which rely on pre-defined
timing plans or centralized rule-based adaptations to traffic conditions. These systems are stable
but struggle to adapt to complex urban traffic. Later efforts such as SOTL Cools et al. (2013) and
Max-Pressure Varaiya (2013) attempt to improve responsiveness with local traffic states. Nevertheless,
they lack the flexibility to generalize across diverse intersection topologies. Recently, RL-based
TSC methods are widely researched. Initial works on single-intersection TSC problem such as
Intellilight Wei et al. (2018), FRAP Zheng et al. (2019), and AttendLight Oroojlooy et al. (2020),
are struggle to apply on multiple intersection due to the partially observed states. To improve
the performance on multi-intersection TSC problem, methods containing centralized agent A. &
Bhatnagar (2011), communication Wei et al. (2019b), advanced reward Wei et al. (2019a); Chen et al.
(2020), GNN Nishi et al. (2018), partitioning Ma & Wu (2024) and hierarchical learning Zhu et al.
(2022). However, their dependence on manually tuned parameters often limits their effectiveness,
and they are unable to improve the efficiency of EMVs.

Deep Reinforcement Learning To address the limitations of traditional RL in large state spaces,
deep reinforcement learning (DRL) leverages neural networks to approximate value and policy
functions. A representative method is DQN Mnih et al. (2015), which introduces target networks
and experience replay. Subsequent works improve stability and exploration through techniques van
Hasselt et al. (2016); Wang et al. (2016); Fortunato et al. (2018); Schaul et al. (2016) such as double
Q-learning, dueling architecture, noisy networks, and prioritized replay. In parallel, actor-critic
frameworks Mnih et al. (2016); Schulman et al. (2017); Haarnoja et al. (2018) are widely adopted for
continuous control and stable policy optimization. Large-scale extensions including Ape-X, IMPALA,
and multi-agent methods Horgan et al. (2018); Espeholt et al. (2018); Rashid et al. (2018) further
broaden DRL’s applicability in complex and cooperative environments such as traffic systems.

B DEC-POMDP MODELING FOR EMV-AWARE TSC PROBLEM

We model the TSC task as a Dec-POMDP, defined as

G = ⟨S,A, P, r,Z, O,N, γ⟩
where s ∈ S is the true global state of the environment. N denotes the number of agents, each
controlling one intersection. Each agent i ∈ {1, . . . , N} selects an action ai ∈ A. The joint action is
denoted as a = [ai]

N
i=1 ∈ AN . The environment transitions according to P (s′|s,a) : S×AN×S →

[0, 1]. The environment returns a joint reward r(s′, s,a) : S ×AN × S → R. Each agent receives a
local observation zi = O(s, i) ∈ Z , where zi ⊆ s. The goal of each agent is to learn a policy π∗

i
that maximizes the global discounted cumulative reward

∞∑
t=0

γtr(st,at)

with the discount factor γ ∈ [0, 1].

To solve the EMV-Aware TSC problem, it is modeled as a Dec-POMDP with the following compo-
nents:

• State space s. At time t ∈ N, the true state is st = ⟨I,R,P t,V t,Et⟩, where P t = [P t
i ]

N
i=1

denotes the current phases of all intersections, V t = [V t
i ]

M
i=1 the states of all vehicles, and Et =

[Et
i ]
P
i=1 the states of emergency vehicles. We assume that each intersection has at most one active

emergency vehicle at a time: |Et
i | ≤ 1.

• Observation z. Each agent Ai observes a partial view zti = O(st, i) = ⟨I,R, P t
i ,v

t
i ,E

t⟩. Due
to sensor limitations, the agent cannot access detailed vehicle-level information. Instead, it receives
aggregated statistics (e.g., vehicle counts per lane) via sensors like magnetic loops or cameras. In
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contrast, emergency vehicles are assumed to be network-connected, allowing full access to their state
(location, velocity, route).

• Action space a. After receiving observation zti , agent Ai selects an action ati ∈ Ai, representing
the next signal phase for duration ∆t. If the selected phase P t+1

i differs from the current phase
P t
i , a transition period of 5 seconds is introduced to ensure the safe passage of vehicles through the

intersection. During this transition period, vehicles from all directions are prohibited from entering
the intersection.

• Joint reward function r. To balance traffic efficiency and emergency response, we design a
joint reward that decomposes into local rewards at each intersection. Each local reward includes
two components: one for regular vehicles and one for emergency vehicles. Following the unbiased
estimation method proposed by Hua et al. Wei et al. (2019b), the average number of vehicles on
incoming lanes is used as an unbiased estimator of average travel time. For emergency vehicles, we
directly count their presence on incoming lanes. The reward function at intersection i is:

rti = rn,ti + βre,ti (15)

where β controls the weight of emergency vehicle priority. Finally, the global joint reward is the sum
of all local rewards in intersection i.

C BASIC DEFINITION OF TSC PROBLEM

Definition C.1 (Intersection). An intersection Ii ∈ I denotes the endpoint or starting point of one
or more roads. Each intersection is controlled by a traffic signal. We assume each intersection has
exactly four incoming and four outgoing roads.

Definition C.2 (Road). A road Ri,j ∈ R is a directed edge from intersection Ii to intersection Ij .
Let R be the set of all roads. Each road consists of three lanes: left-turn (Ll

i,j), straight (Ls
i,j), and

right-turn (Lr
i,j).

Definition C.3 (Traffic Signal Phase). A phase Pi at intersection Ii defines a subset of allowed traffic
movements from incoming roads to outgoing roads. If a movement is allowed in a phase, vehicles
planning to take that movement can proceed; otherwise, they must stop and wait. Let Ai denote the
set of all legal signal phases (i.e., the action space for agent Ai).

Definition C.4 (Vehicle). A vehicle Vi ∈ V enters the road network from its boundary and travels
along a predefined route until it exits. Let V denote the set of all vehicles. A vehicle’s state is
represented as:

Vi = ⟨Lz
x,y, s, v, T ⟩

where Lz
x,y is the current lane, s is the position on the lane, v is the velocity, and T is the planned

route.

D β SENSITIVITY IN EMV-AWARE TSC PROBLEM

We make a detailed discussion about what will affect for different β. We firstly give the detailed
definition of the simplified single intersection traffic signal control problem. Then we consider the
error distribution when we use neural networks to approximate Q function. Finally we analyze the
effect of the number of vehicles on the Q function.

D.1 SIMPLIFIED SINGLE INTERSECTION EMV-AWARE TSC PROBLEM

The simplified single-intersection EMV-aware TSC problem is defined as follows: Assume that there
are four incoming roads at the intersection, and each road has only one incoming lane. All vehicles
will leave directly from the opposite lane after passing through the intersection. There are four phases
at the intersection, each phase corresponds to one of the four incoming lanes. At the initial state,
there are k vehicles on each lane, when the time passes ∆t, a random lane will have p vehicles
entering, and the signal light needs to select a phase, which will allow at most p vehicles to leave
the intersection on that corresponding lane, and we assume k ≥ p. At a random time t, one of the
incoming vehicles will be an emergency vehicle.
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D.2 VARIANCE INTRODUCED BY FUNCTION APPROXIMATION

Consider approximating QN , when using a neural network for approximation, as the gradient descent
method is used to fit the function, the trained QN can be approximately expressed as:

QN (s, a) ∼ N (Q∗
N (s, a), σ2) (16)

where Q∗
N (s, a) is the true value of QN (s, a), σ is the standard deviation, which indicates that

QN (s, a) is unbiased with respect to the true value Q∗
N (s, a), but the final learned result has a

standard deviation due to the error of gradient descent. When considering the traffic signal control
problem, the reward is positively correlated with the number of vehicles, as a result, if the number
of vehicles in state s′ is enlarged by k times, the corresponding Q∗

N (s′, a) will also be enlarged
by k times. This means that we can treat Q∗

N satisfies homogeneity, i.e., λf(x) = f(λx). For
neural networks, when trained with data that satisfies homogeneity, it can learn the homogeneity
feature approximately. Then the standard deviation σ will also be enlarged by k times. This standard
deviation will cause QN and QE to interfere with each other, make the inequality Eq.7 not hold, and
ultimately affect the selection of the optimal action.

D.3 EFFECT OF AVERAGE VEHICLE NUMBER

For the proposed environment, We can find an optimal strategy that minimize the average driving time
for regular vehicles, i.e., select the phase corresponding to the lane that has the most vehicles waiting.
With this strategy, the average number of vehicles on the lane is always k, therefore the reward at
each time is −k. Considering the discount factor γ ∈ (0, 1), the Q∗

N function of this strategy is:

Q∗
N (s, a) =

∞∑
t=0

γt (−k) = −k

∞∑
t=0

γt = −k
1− γ∞

1− γ
=

k

γ − 1
(17)

Based on the above analysis, we can find that when using neural network to approximate Q∗
N (s, a),

we have:

QN (s, a) ∼ N (Q∗
N (s, a), σ2

N ) = N
(

k

γ − 1
, (kσN )2

)
(18)

where σN is the standard deviation of QN , which is positively correlated with Q∗
N (s, a), i.e., when k

is enlarged, average and standard deviation of QN (s, a) will also be enlarged.

Then we consider QE . Without loss of generality, we assume that the emergency vehicle appears
on the lane in the east direction at time t = 0. The optimal strategy to minimize the average driving
time of the emergency vehicle is to keep the east lane open until the emergency vehicle leaves the
intersection at time t′ =

⌈
k
p

⌉
. Then we have:

Q∗
E(s, a) =

t′−1∑
t=0

γt (−1) = −
t′−1∑
t=0

γt = −1− γt′

1− γ
=

1− γt′

γ − 1
(19)

QE(s, a) ∼ N (Q∗
E(s, a), σ

2
E) = N

(
1− γt′

γ − 1
, σ2

E

)
(20)

As k has negligible effect on Q∗
E , we can assume that σE is a constant.

Consider Proposition 3.1, we define:

Q∆
N = max(QN )−min(QN ) (21)

Qδ
N = max(QN )− second_max(QN ) ∼ N (kCN , (kσN )2) (22)

Q∆
E = max(QE)−min(QE) (23)

Qδ
E = max(QE)− second_max(QE) ∼ N (CE , σE) (24)

where CN and CE are constants, and QN will increase with the increase of k, but QE is independent
of k. Therefore, we have:
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• When we treat QE as Q1 in Eq. 7, we have:

Qδ
E > Q∆

N

CE + σ′
E > kCN + kσ′

N ≥ kσ′
N

CE > σ′
E + kσ′

N (25)
where σ′

N and σ′
E are the standard deviations of QN and QE , respectively, caused by model

training. As the standard deviation is equally likely to be positive or negative when sampling
from a normal distribution, the negative sign can be reverted when we move σ′

E to the right
side of the inequality. Therefore, when k is too large, the interference caused by the training
standard deviation on the right side of Eq. 25 will increase, making Eq. 7 not hold, and the
maximum value of Q may be different from that of QE .

• When we treat QN as Q1 in Eq. 7, we have:

Qδ
N > Q∆

E

kCN + kσ′
N > CE + σ′

E ≥ σ′
E

CN >
σ′
E

k
+ σ′

N (26)

Therefore, when k is too small, the interference caused by the training standard deviation on
the right side of Eq. 26 will increase, making Eq. 7 not hold, and the maximum value of Q
may be different from that of QN .

To summarize, when QN and QE are fixed weighted, k can only be guaranteed to be in a certain
range to ensure that Eq. 7 holds, and it cannot handle the full range interval.

E NUMERICAL DISTRIBUTION OF QN AND QE
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Figure 3: Numerical Distribution of all QN (s, a) during one epoch testing process. dA/B means the
difference between value A and value B, where A and B can be maximum value (Max), second-
maximum value (Second-Max), or minimum value (Min). dStd(A/B) is the difference between value
A and value B, but firstly applying normalization on QN (s, a) across all actions.

Fig. 3 and Fig. 4 illustrate the numerical distributions of QN and QE trained in a real-world scenario
without and with normalization. As shown in Fig. 3(b) and Fig. 4(b), the normalized distribution of
QN approximates a Gaussian distribution, while the distribution of QE is concentrated near zero,
with only a few larger values. This observation aligns with our earlier assumption: QN follows a
near-normal distribution, whereas QE remains tightly clustered around zero.

Further analysis in Fig. 3(b)(d) and Fig. 4(b)(d) reveals that, after normalization using Eq. 8 and
Eq. 9, the dStd(Max/Min) for QE values close to zero is generally less than 0.3. Additionally, for QN ,
fewer than 5% of the samples violate Eq. 7 when considering dStd(Max/Second-Max). In contrast, without
normalization as shown in Fig. 3(a)(c) and Fig. 4(a)(c), the difference between the maximum and
minimum values of QN is less than 0.1, making the maximum of QN highly susceptible to being
influenced by values from QE .

It is also worth noting that Eq. 7 captures the worst-case scenario: when the best action according
to QE corresponds to the second-best action under QN , and the worst action under QE coincides
with the best action under QN . In practice, when dStd(Max/Second-Max) of QN is small, the concentrated
distribution of QE is unlikely to alter the optimal action selection based on Q.
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Figure 4: Numerical Distribution of all QE(s, a) during one epoch testing process. dA/B means the
difference between value A and value B, where A and B can be maximum value (Max), second-
maximum value (Second-Max), or minimum value (Min). dStd(A/B) is the difference between value
A and value B, but firstly applying normalization on QE(s, a) across all actions.

Table 4: Performance under different values of β during the one-epoch simulation.

β 0.1 0.5 1 5 10

JN-RV 332.8±1.0 334.0±0.3 333.2±1.1 333.0±0.7 331.8±0.7
JN-EMV 38.3±0.8 37.1±2.3 38.2±1.3 37.9±0.6 37.2±0.9
HZ-RV 346.0±0.7 345.9±0.8 345.8±0.5 346.0±0.5 346.5±0.9
HZ-EMV 49.0±0.2 49.4±1.2 49.0±3.0 50.0±3.0 50.3±0.6

F STABILITY OF ONE-EPOCH SIMULATION

We performed one-epoch simulation to estimate the statistics σE on the Q-function of the learned
EMV policy, rather than to artificially interfere with the characteristics of the test scenarios.

We can obtain σE with any scenario, because it is closely related to the policy itself and has very
minor relation to the test scenarios. For example, for a same model, the value of σE obtained through
replay in JN is 0.154, and in HZ it is 0.145. When the frequency of EMV occurrence changes from
1

100 to 1
5000 , the value range of σE is between 0.137 and 0.159. The results highly support that no

matter how the test scenarios change, the obtained σE of a same model is very stable.

The purpose of one-epoch simulation is to avoid manual parameter tuning of σE and enable the
model to get this parameter adaptively. In practical applications, we can estimate δE in the simulation
system based on real-vehicle data and then directly apply it to real-world scenarios.

During one-epoch simulation, we set the default β as 1, because in Joint Training Stage, we use
β = 1 to sum up Q-values of two strategies. However, Adaptive Strategy Merging is insensitive to
the value of β selected in the simulation. In Table 4, we show the performance when we use different
β in the one-epoch simulation to calculate σE . We can find the performance is very stable on both
datasets even β increases or decreases 10 times.

G PROOFS FOR PROPOSITIONS

G.1 PROOF OF PROPOSITION 3.1

Proof. As Q = Q1+Q2, we denote the maximum element position of Q1 as i and the second largest
element position as j. Then, we can transform the inequality 7 into:

max(Q1)− second_max(Q1) > max(Q2)−min(Q2) (27)
max(Q1) + min(Q2) > second_max(Q1) + max(Q2) (28)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

For Q1, we have:

Q(s, i) = Q1(s, i) +Q2(s, i)

≥ Q1(s, i) + min(Q2)

= max(Q1) + min(Q2)

> second_max(Q1) + max(Q2)

≥ Q1(s, j) + max(Q2)

≥ Q(s, j), for j ̸= i (29)

Therefore, Q(s, i) is the maximum element of Q, which means that the position of the maximum
element of Q is the same as that of the maximum element of Q1.

G.2 PROOF OF PROPOSITION 3.2

Proof. Assume that the optimal action of Q is a, then for Q′ we have:

Q′(s, a) =
Q(s, a)− µ

σ2

>
Q(s, j)− µ′

σ2

= Q′(s, j), for j ̸= a (30)

Therefore Q′(s, a) is the maximum element of Q′, which means that Q′ and Q have the same optimal
action.

H OPTIMALITY OF DECOUPLING CONTROL STRATEGY

When we define the cumulative reward as:

Q(s, a) = QN (s, a) + βQE(s, a) (31)

If Q(s, a) is the optimal strategy, we have the following equation:

Q∗(s, a) = Q∗
N (s, a) + βQ∗

E(s, a) (32)

E
[
RQ

N + βRQ
E

]
= E

[
RN

N

]
+ βE

[
RE

E

]
(33)

(34)

To make the above equation hold, a solution should be:

RQ
N + βRQ

E = RN
N + βRE

E (35)

RQ
N = RN

N (36)

RQ
E = RE

E (37)

As RQ
N , RQ

E , RN
N and RE

E are the cumulative rewards based on three different strategies, if Q∗(s, a),
Q∗

N (s, a) and Q∗
E(s, a) are the same strategy, which has the same maximum action for all states,

then Eq. 36 and Eq. 37 hold, and Q(s, a) is identical to Q∗(s, a).

I FAILURE CASES OF ADAPTIVE STRATEGY MERGING

We show a detailed failure case of Adaptive Strategy Merging. Taking the situation in HZ dataset as
an example, a wrong case without ASM is given here: The normalized Q′ values are as follows:

Q′
N = [0.5352,−0.2903, 1.1374,−0.7531, 1.4310, 0.2416,−1.2328,−1.0689],

Q′
E = [−0.7731, 0.9359, 0.0927, 0.2415,−0.6540,−0.5901,−0.5687, 1.3158].
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It can be seen that Q′
N tends to choose action 4, because the lane corresponding to this action has the

longest queue. Q′
E tends to choose action 7, and the lane corresponding to this action contains the

EMV. However, the finally obtained Q is:

Q = [−0.2382, 0.6457, 1.2298,−0.5114, 0.7766,−0.3485,−1.8011, 0.2472]

and the final action is 2. This situation is as analyzed in Section 3.2, after adding the two Q′ values,
the finally selected action is different from the actions preferred by the two policies, thus we consider
it as a failure case.

It is difficult to count the occurrence frequency of similar failure cases, as it is hard to determine
whether the selected phase is wrong without manually checking. We assume the phases that are
different from those of Q′

N and Q′
E as wrong phases, the occurrence frequency of ASM for wrong

phases is 2.2%. While when directly using β = 1, this frequency is 8.4%. This shows that ASM
significantly reduces the probability of choosing the wrong phase.

J DETAILED DESCRIPTION OF SPLITEMV MODEL

We propose a detailed network structure that is applicable to both QN and QE . The network consists
of two main parts: generating the communication information, and estimating the Q function.

The first part of the model is used to generate the communication information. It firstly split the input
state into each incoming lane, which contains the number of vehicles on the lane, lane direction,
signal phase of the lane, and the speed and position of the emergency vehicle if there is one. Then it
use a multi-layer perceptron to generate the lane vector representation hL

i . We then use a multi-head
attention module to process the lane vector representation to catch information between lanes.

To make communication information more effective, we consider predicting the contribution of each
lane to the corresponding adjacent intersection. It is achieved by predicting the contribution of each
lane and group them based on their outgoing directions.

hL
i = MLP(vi ⊕ di ⊕ gi ⊕ ei ⊕ si) (38)

where vi is the number of vehicles, di is the approaching direction of lanes (i.e. go straight, turn left
and turn right) with one-hot encoding. gi indicates whether the current lane is allowed to pass under
the overall traffic signal phase Pi. ei indicates whether there is an emergency vehicle, and si is the
speed of the emergency vehicle, when there is no emergency vehicle, si is set to 0. ⊕ indicates the
vector concatenation operation, and MLP is the multi-layer perceptron, which consists of an input
layer, two hidden layers with 32 neurons, and an output layer with ReLU activation function.

Then, the model applies a multi-head attention module to interact and integrate the lane information:

h′L = MultiHeadAttention(hL) (39)

where hL is the concatenation of all lane vector representations, and h′L is the lane information after
processing by the multi-head attention module. Then we predict the contribution gi of each lane with
a multi-layer perceptron followed by a Sigmoid function:

g′i = Sigmoid(MLP(h′L
i )) (40)

The higher the value of g′i, the higher the contribution that this lane contributes to the adjacent
intersection. Finally, we sum up the lane vector representations which are connected to the same
intersection, followed by a multi-layer perceptron:

voi = MLP(
∑

j∈From(i)

h′L
j · g′j) (41)

where From(i) is the set of lanes connected to the outgoing lane i. vio will be used as the input of the
Q function for adjacent intersections.

After receiving the communication information from adjacent agents, the model will combine the
communication information with current state as the following, and predict the Q value.

hi = MLP(vi ⊕ di ⊕ gi ⊕ ei ⊕ si ⊕ voi ) (42)
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Compared with Eq. 38, the difference is that we add the predicted traffic flow information voi as the
input. Then, for action ai, the corresponding Q function value is:

gi = Permit(ai) (43)
ri = Reject(ai) (44)

hg
i = {hj |j ∈ gi} (45)

hr
i = {hj |j ∈ ri} (46)
pi = Embedding(Pi) (47)

Qi = MLP(hg
i ⊕ hr

i ⊕ pi) (48)
where Permit(ai) and Reject(ai) are the set of lane numbers that are allowed and rejected to pass the
intersection under action ai. h

g
i and hr

i are the set of lane vector representations that are allowed and
rejected to pass the intersection. Embedding is an embedding layer that maps the traffic signal phase
Pi into a vector representation. hg

i and hr
i are the average values of hg

i and hr
i . Qi is the Q function

value corresponding to action ai, i.e. Q(s, ai).

There are differences when applying the model to different scenarios. When applying the model to
QN , we set ei and si to 0 in Eq. 38 and Eq. 42, to ensure that the model can focus on learning the
control logic of regular vehicles. When applying the model to QE , ei and si will be set according to
the actual value.

K DETAILS OF COMPARED BASELINES

We make a brief introduction to baseline approaches. Traditional methods include:

• FixedTime, which based on pre-defined signal phase and time interval to perform cyclic
control on traffic signals.

• MaxBand Little et al. (1981), which is similar to GreenWave , to control multiple intersec-
tions. Each intersection is controlled by FixedTime, and it will change the offset between
adjacent intersections to optimize the time on both side to pass the arterial without stopping.

• SOTL Cools et al. (2013), which is an adaptive traffic signal control method, it decides
whether to change the traffic signal phase base on the vehicle number on lanes that is allowed
by current traffic signal phase and next traffic signal phase. It contains two thresholds g and
r, when vehicle number of current phase is smaller than g and vehicle number of next phase
is larger than r, the traffic phase is changed.

• MaxPressure Varaiya (2013), which proposes the Pressure metric, to indicate whether an
intersection has the balanced incoming and outgoing traffic flows, and proposes a greedy
method to minimize the Pressure of all intersections.

• MARLIN El-Tantawy et al. (2013), which is a tabular Q-learning method to perform multi-
intersection traffic signal control, and proposed independent and integrated mode to control
agents individually or cooperate with adjacent agents.

DRL-based methods include:

• CoLight Wei et al. (2019b), which is a multi-agent reinforcement learning method that
integrates graph attention for agent communication, and increases the performance compared
with traffic signal control methods with individual agents.

• PressLight Wei et al. (2019a), which extends from MaxPressure, uses Pressure as the
reward function and perform deep reinforcement learning to learn better control strategies
that minimizes the Pressure of intersections.

• MPLight Chen et al. (2020), which shares the parameters of Q function prediction model
between all intersections, integrates the symmetry structure of FRAP Zheng et al. (2019) for
better learning speed, and use Pressure as reward function to stablize the training process,
which makes it able to control thousands of intersections.

• MVN Xu et al. (2023), which is designed to have better robustness under Carlin & Wagner
attacks, and performs reward detection to find abnormal rewards from regular rewards, to
avoid performing a wrong action when input state is not reliable.
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• EMVLight Su et al. (2022; 2023), which prioritizes emergency vehicles by designing the
path for emergency vehicles to their destination, and can dynamically change in real time
based on current road conditions. It also proposes a reinforcement learning based method
to control the traffic signals, and designs multi-class reinforcement learning agents to have
different reward function based on the position relative to the emergency vehicle.

These baselines provide a comprehensive comparison across classical heuristics, traditional RL,
and modern DRL methods with and without emergency vehicle considerations. For algorithms that
are not open-sourced, we implemented them ourselves based on the descriptions provided in the
corresponding papers. For open-source algorithms that were directly compatible with our research,
we used their official implementations. In cases where open-source implementations presented
compatibility issues—such as mismatches with the simulator interface or outdated deep neural
network frameworks—we re-implemented them in our environment using their released code as
reference. Throughout this process, we strictly adhered to the descriptions in the original papers. For
parameters not specified in detail, we performed a simple parameter search to determine optimal
values.

L IMPLEMENTATION DETAILS

All experiments are conducted using the SUMO simulator Lopez et al. (2018). Each experiment is
initialized with a random seed and trained on a fixed dataset, with periodic validation to identify and
retain the best-performing policy. To ensure robustness, each experiment is repeated multiple times,
and we report the mean and variance of the results. For open-source methods, we use the official
implementations or adopt the hyper-parameters provided in their released code. For non-open-source
methods, we follow the hyper-parameters specified in their original papers; for any unspecified
parameters, we apply grid search to determine the optimal configuration. To ensure fair comparison,
all general hyper-parameters are standardized across methods, as listed in Tab. 5. Hyper-parameters
specific to SplitEMV are provided separately in Tab. 6. We conduct all experiments on a system
equipped with an AMD Ryzen 7950X CPU, 128 GB DDR5 RAM, and an NVIDIA RTX 4090 GPU,
running Ubuntu 20.04, Python 3.10.6, and PyTorch 1.12.0.

Table 5: General hyper-parameters for all methods.

Parameter Value

Learning Rate 5× 10−5

Batch Size 256
Discount Factor γ 0.8
Target Network Update Frequency 5
Replay Buffer Size 16000
Initial ϵ-greedy Rate 0.9
Final ϵ-greedy Rate 0.02
ϵ-greedy Decay Percentage 30%
Training Steps 120000
EMV Reward Coefficient β 0.1, 0.3, 1, 3, 10
Training Runs 4
Validation Runs 10

M WEIGHTED REWARD ANALYSIS

To further investigate whether existing DRL methods can be adapted for emergency-aware control,
we introduce a weighted reward strategy that incorporates a coefficient β to balance the priorities
between regular and emergency vehicles. For each method, we augment its reward function by
assigning additional weight to emergency vehicle rewards, with the corresponding β value indicated
as a superscript.

Tab. 7 summarizes the performance of each DRL method under varying β values, alongside results
from the original EMVLight and SplitEMV for comparison. As β increases, the efficiency of regular
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Table 6: Hyper-parameters specific for SplitEMV.

Parameter Value

MLP Hidden Layer Number 2
MLP Hidden Dimension 32
Communication Hidden Dimension 32
Stage 1 Training Steps 60000
Stage 2 Training Steps 30000
Stage 3 Training Steps 30000

Table 7: Performance with weighted rewards of existing methods (average travel time in seconds,
lower is better).

Reward
Methods

JN HZ
Function RVs EMVs RVs EMVs

W
ei

gh
te

d
R

ew
ar

d

CoLight0.1 342.53±1.09 129.08±7.36 359.36±2.46 130.31±43.0
CoLight0.3 330.85±.417 108.61±6.50 349.87±2.04 77.502±6.91
CoLight1 487.71±48.7 286.72±89.9 539.87±41.1 398.26±218
CoLight3 699.33±66.0 342.16±18.6 695.77±34.4 102.81±45.5
CoLight10 767.43±52.2 286.20±87.8 741.99±89.6 326.54±32.6

PressLight0.1 336.01±4.48 115.08±3.13 358.17±.425 97.730±4.87
PressLight0.3 334.59±.791 108.82±1.06 359.38±.38 132.81±5.39
PressLight1 338.77±1.69 110.58±9.99 362.23±1.08 113.69±17.1
PressLight3 359.81±2.30 141.58±28.4 372.37±1.29 93.141±20.5
PressLight10 433.77±10.3 150.67±43.0 404.11±1.15 381.64±221
MPLight0.1 354.65±1.12 158.25±55.9 353.05±4.03 151.45±73.8
MPLight0.3 350.50±1.72 156.80±50.9 348.13±1.02 92.249±4.21
MPLight1 360.65±12.6 194.02±77.6 353.12±3.36 102.24±.369
MPLight3 350.22±14.0 200.44±6.86 369.94±12.7 151.28±36.4
MPLight10 367.37±22.1 163.57±66.8 365.69±4.49 238.07±114

MVN0.1 359.25±7.66 430.45±11.0 403.33±15.8 567.84±444
MVN0.3 424.05±84.3 158.50±36.6 407.32±2.00 132.47±6.92
MVN1 637.78±31.9 243.82±60.2 581.95±72.2 980.87±260
MVN3 734.60±70.6 513.91±56.0 742.53±53.4 932.41±246
MVN10 778.98±68.2 540.02±49.6 628.43±56.2 1021.9±216

O
ri

gi
na

lR
ew

ar
d CoLight 333.11±2.89 148.41±3.23 349.01±.172 78.038±14.9

PressLight 334.01±1.53 160.72±21.5 357.83±.981 112.29±9.12
MPLight 348.02±1.78 126.35±14.0 353.00±2.27 123.20±37.6

MVN 436.82±34.5 491.23±12.9 445.74±6.17 173.66±104
EMVLight 435.22±7.36 130.39±.783 385.90±2.78 186.31±41.8
SplitEMV 333.18±1.12 38.161±1.28 345.77±.468 48.960±3.02

vehicles consistently declines—particularly when β > 1, where the performance drops sharply.
However, the efficiency of emergency vehicles does not exhibit proportional improvement and
typically peaks at moderate values such as β = 0.1 or β = 0.3.

These findings underscore a fundamental trade-off: small β values may yield modest gains for
emergency vehicles without significantly impairing regular traffic flow, whereas large β values induce
severe traffic imbalance and increased overall congestion, which ultimately deteriorates both control
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Table 8: Performance comparison of different communication strategies.

Method SplitEMV GNN No Commu.

JN-RV 333.2±1.1 346.9±3.3 348.0±3.0
JN-EMV 38.2±1.3 41.3±0.5 39.5±1.8
HZ-RV 345.8±0.5 347.2±0.3 347.5±0.9
HZ-EMV 49.0±3.0 55.9±3.3 49.5±7.7

Table 9: Performance comparison across different sampling rates.

Rate 1/100 1/200 1/1000 1/2000 1/5000

JN-RV 333.5±1.5 332.0±0.6 333.2±1.1 332.1±0.3 331.8±0.6
JN-EMV 38.9±0.5 26.1±0.9 38.2±1.3 115.1±4.0 40.6±0.9
HZ-RV 346.0±0.8 346.0±0.3 346.1±0.8 346.7±0.4 346.3±0.3
HZ-EMV 21.8±0.1 27.2±0.6 50.2±4.2 34.7±1.6 62.3±5.3

objectives. This result highlights the limitations of naive reward reweighting for achieving joint
optimization in emergency-aware traffic signal control.

N EFFECTIVENESS OF COMMUNICATION IN SPLITEMV

We conducted ablation experiments on the communication module, comparing the cases of directly
using GNN and not conducting communication at all. The experimental results are shown in Table 8.
From the table, we can find that when compared with SplitEMV, whether using GNN to replace the
communication module or directly not conducting communication decline the performance.

O EFFECT OF THE EMV APPEARING RATE

We analyze the effect of the EMV appearing rate to SplitEMV. Different EMV rate occurs commonly
in real situations. If traffic signals are set near key facilities (such as hospitals and police stations),
the appearance frequency of EMVs may be relatively high. However, as the shown in Figure 1 (c),
ASM is able to construct good strategies with arbitrary EMV appearing rates.

We also tested the model’s performance under different appearance frequencies of EMVs, and
Table ?? shows the results, which reflects that the superior performance of ASM and SplitEMV is
independent of the environment. It should be noted that since the EMV set changes when the EMV
appearning frequency changes, the traffic efficiency of EMVs under different frequencies and
datasets cannot be compared with each other.

P TRAINING AND INFERENCE TIME ANALYSIS

The time consumed for algorithm training and inference are shown in the following Table. Given that
SplitEMV contains two networks, its running time is indeed slightly longer than that of the existing
algorithms. However, its processing speed is still within the same order of magnitude, and compared
with the control frequency (10 seconds), this additional time can be almost negligible.

The time consumed for algorithm training and inference are shown in Table 10. Although our
training is divided into three stages, the number of training frames is kept the same as other methods.
Specifically, all compared methods trained 120,000 frames, while our three stages trained 60,000,
30,000, and 30,000 frames respectively. As for the training time, since EMVLight can make better
use of multi-threading, it trains faster than other algorithms, and SplitEMV needs to perform forward
propagation for two models in the second half of training, so the time consumption is slightly
increased. For inference time, it can be seen that although our method is slightly slower than that
of EMVLight, the time difference is not significant, and compared with the control frequency (10
seconds), both are at a negligible level.
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Table 10: Training and inference time comparison of different methods.

Method SplitEMV CoLight PressLight MPLight MVN EMVLight

Train (min) 1148 839 944 911 1007 593
Inference (ms) 23.6 17.5 20.3 17.9 16.4 22.6

Q APPLICATIONS AND LIMITATION

The Decoupled Learning and Adaptive Strategy Merging method we proposed can significantly
enhance the efficiency of emergency vehicles without compromising that of regular vehicles, and
it is adaptable to diverse traffic densities. Meanwhile, the SplitEMV method achieves performance
comparable to the baseline when emergency vehicles are absent and can substantially boost the
efficiency of emergency vehicles when they are present. This method has no additional hyper-
parameters, eliminating the need for parameter tuning across different scenarios. Furthermore,
through the use of Adaptive Strategy Merging, the capacity to improve emergency vehicle efficiency
can be integrated with any existing traffic signal control method, thereby enhancing the efficiency of
emergency vehicles for existing algorithms. This characteristic significantly broadens the application
scenarios of this method, rendering it more suitable for real-world implementations. In addition, our
method, aside from its application in solving traffic signal control problems, also holds the potential
for application in other multi-objective reinforcement learning problems. Specifically, when multiple
objectives are independent of one another, this method can more effectively differentiate tasks without
introducing hyper-parameters, facilitating agents in better achieving multiple objectives. However,
one shortcoming of this work is that, as this method is founded on the value-based approach, namely
learning the state-action function, its application to the policy-based approach proves challenging.
Some potential solutions involve adjusting the action probability based on the variance of different
action logits or based on the Critic network.
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