BETTER, FASTER: HARNESSING SELF-IMPROVEMENT IN LARGE REASONING MODELS

Anonymous authorsPaper under double-blind review

000

001

002003004

010 011

012

013

014

015

016

018

019

021

023

025

026

027

028

029

031

033 034

037

040

041

042

043

044

045

046

047

048

051

052

ABSTRACT

While large reasoning models (LRMs) trained with explicit reasoning trajectories have demonstrated impressive performance, obtaining high-quality trajectories is often costly and time-consuming. Hence, recent literature introduces a self-improvement paradigm that enables LRMs to improve themselves by selfgenerating reasoning trajectories as training data without external supervision. However, we find that this method often falls short in complex reasoning tasks and even leads to model collapse. Through a series of preliminary analyses, we reveal two shortcomings of self-improvement in LRMs: (1) data imbalance, where most training samples are simple, but the challenging yet crucial samples are scarce; (2) overthinking, where many undesired samples with redundant and repetitive reasoning steps are used for self-training. To this end, we propose HSIR, which effectively Harnesses Self-Improvement in large Reasoning models via two simple-yet-effective approaches. Specifically, HSIR introduces a verify-then-exit sampling strategy to mitigate data imbalance by efficiently collecting more accurate solutions for difficult queries, and designs an *Intrinsic Diversity* score to quantify overthinking and filter out the undesired solutions. We apply HSIR to various post-training paradigms, among which we further propose H-GRPO, an enhanced GRPO algorithm that leverages the intrinsic diversity as an external reward to encourage concise and diverse reasoning via reinforcement learning. Extensive results show that HSIR not only effectively enhances the reasoning performance, i.e., bringing up to +10.9% average performance gains, but also significantly improves the reasoning efficiency by reducing up to 42.4% relative inference overhead.

1 Introduction

Recently, post-training the large language models (LLMs) with explicit long chain-of-thought (CoT) reasoning trajectories has garnered significant attention (Li et al., 2025; Plaat et al., 2024; Xu et al., 2025a). Owing to the scaling inference compute of long-CoT reasoning, large reasoning models (LRMs) can unleash their reasoning capabilities (e.g., backtracking and self-correction) and achieve better performance in various reasoning tasks, such as mathematical reasoning (Shao et al., 2024) and medical reasoning (Chen et al., 2024c). However, the performance of LRMs highly relies on high-quality intermediate reasoning trajectories (Yang et al., 2025c), which are usually costly and time-consuming to obtain (Peng et al., 2025). In response to this issue, the "self-improvement" paradigm has emerged, i.e., models iteratively improve themselves by using the self-generated reasoning trajectories as training data, thereby reducing their dependence on external supervision.

In the context of LRMs, several self-improvement approaches have been proposed to achieve better reasoning performance, such as STaR (Zelikman et al., 2022) and ReST^{EM} (Singh et al., 2023). For instance, ReST^{EM} first prompts the model to generate multiple reasoning paths for each question, then filters out the incorrect solutions, and finally fine-tunes the model using its own correct outputs. These methods can boost LRMs' performance on conventional reasoning tasks without external supervision. However, in our preliminary experiments (Figure 1), we found that they often fall short in complex reasoning tasks, e.g., medical question-answering that requires the integration of specialized knowledge with detailed patient histories and comorbidities (Huang et al., 2025b). More seriously, they might suffer from *model collapse*, where models' performance degrades due to iterative self-training on model-generated data (Bertrand et al., 2024; Gerstgrasser et al., 2024). Through a series of analyses (§2.2), we reveal that these methods have two major shortcomings:

1 data imbalance, i.e., most training samples are relatively simple, whereas challenging yet crucial samples are scarce; **2** overthinking, i.e., many undesired solutions with redundant and repetitive reasoning steps are used for self-training, hindering models' accurate and concise reasoning.

Several prior studies also recognize these shortcomings and attempt to address them. Specifically, an intuitive way to mitigate data imbalance is to collect more correct solutions for difficult queries. To achieve it, Tong et al. (2024) propose to allocate more trials to difficult queries and Ding et al. (2025) leverage additional signals (e.g., answers) to guide the reasoning of LRMs. Although effective, they mainly rely on increased inference overhead to obtain new solutions, while overlooking the potential value of previously failed solutions. On the other hand, to alleviate overthinking, the key lies in quantifying the redundancy and repetitiveness of reasoning steps. Most existing works involve designing length-oriented metrics and simply regard shorter correct solutions as superior (Team et al., 2025; Munkhbat et al., 2025). While achieving

Figure 1: **Performance comparison** of Qwen2.5-1.5B models using different self-improvement post-training methods on the MedQA (Jin et al., 2021).

remarkable reasoning efficiency, overly emphasizing length reduction may hinder models' deep reasoning and lead to performance degradation (Dai et al., 2025). Thus, there arises a question: can we explore a more effective self-improvement training method to make LRMs both better and faster?

To achieve this goal, we propose HSIR, which effectively Harnesses Self-Improvement in large Reasoning models via two simple-yet-effective approaches. First, to collect more correct responses for difficult queries, HSIR introduces a *verify-then-exit* (denoted as *VeriExit*) sampling strategy, which verifies the correctness of intermediate reasoning steps in the previously failed solution and self-truncates the reasoning once the current step arrives at the ground-truth answer. The motivation of *VeriExit* is that, within the failed solution, LRMs may have arrived at the correct answer during intermediate reasoning steps, yet ultimately failed to produce the accurate outcome due to reasoning deviation. Second, motivated by the intuition that a high similarity among intermediate reasoning steps often signals redundant or repetitive thinking, HSIR designs an *Intrinsic Diversity* score (denoted as *InDiv*) to quantify overthinking using the internal states of LRMs. In practice, *InDiv* performs an attention-aware eigenvalue analysis on the hidden representations of intermediate reasoning steps, where those with smaller eigenvalues are repetitive. Overall, by efficiently collecting more correct solutions and filtering out undesired overthinking solutions, HSIR can ensure the diversity and conciseness of training data, thus achieving better reasoning performance and efficiency.

We apply our HSIR to two iterative post-training paradigms: supervised fine-tuning (SFT) and preference learning. Extensive results on seven cutting-edge LLMs and two representative reasoning tasks, *i.e.*, medical reasoning and mathematical reasoning, show that our HSIR not only outperforms the other counterparts by a clear margin, but also effectively improves the reasoning efficiency. Furthermore, we expand our methods to the currently popular Reinforcement Learning from Verifiable Rewards (RLVR) training paradigm (Guo et al., 2025), and propose H-GRPO, an enhanced GRPO (Shao et al., 2024) algorithm that leverages the *InDiv* scores as an external reward to smoothly alleviate the overthinking. More comparative results prove the superiority of H-GRPO. Additionally, more in-depth analyses prove the effectiveness of HSIR's important components, and indicate that HSIR brings better model generalization. To summarize, our contributions are as follows:

- We reveal two major shortcomings of self-improvement in LRMs, and propose HSIR that leverages two simple-yet-effective approaches to alleviate them and make LRMs both better and faster.
- HSIR can be adopted to various post-training paradigms. Among which, we further expand it to the popular RLVR training paradigm, and propose H-GRPO that improves the GRPO by using our proposed *InDiv* scores as an external reward to encourage LRMs' diverse and concise reasoning.
- Extensive results show that HSIR can consistently and significantly improve the reasoning performance and efficiency for a diversity of LLMs, bringing up to +10.9% average performance gains and reducing up to 42.4% relative inference overhead against the initial reasoning models.

2 RETHINKING SELF-IMPROVEMENT TRAINING IN LRMS

2.1 PRELIMINARIES

Considering that we have a base LLM \mathcal{M}_{base} , a small amount of seed data $\mathcal{S} = \{(x_i, r_i, y_i)\}_{i=1}^N$ and a larger unlabeled dataset $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^M$ ($M \gg N$), where x_i is the query, $r_i = [r_{i,1}, \ldots, r_{i,L}]$ is the corresponding reasoning trajectory with L intermediate steps, and y_i is the ground-truth answer. We first fine-tune \mathcal{M}_{base} on \mathcal{S} to make it have basic long-CoT reasoning ability, and denote the tuned model as \mathcal{M}_0 . The goal of self-improvement is to enhance the reasoning performance of \mathcal{M}_0 by iteratively self-training using its own solutions on \mathcal{D} over T cycles. Specifically, let \mathcal{M}_t denote the model at the t-th iteration ($t \in [1, T]$), the self-improvement training involves the following steps:

Self-generation. At t-th iteration, for each query $x_i \in \mathcal{D}$, we enforce the previous model \mathcal{M}_{t-1} to generate multiple reasoning trajectories and their corresponding answers $\{(\hat{r}_i^k, \hat{y}_i^k)\}_{k=1}^K$, where $k \in [1, K]$ and K denotes the total sampling times for each query. By doing so, we can obtain the self-generated dataset $\hat{\mathcal{D}}_t = \{(x_i, \hat{r}_i^k, \hat{y}_i^k) | x_i \in \mathcal{D}; k \in [1, K]\}$.

Self-training. The self-training process differs across various post-training paradigms. Specifically, during **SFT** training, the ground-truth answer y_i is used to verify the correctness of candidate solutions $\{(r_i^k, \hat{y}_i^k)\}_{k=1}^K$, where only correct solutions with $\mathbb{I}(\hat{y}_i, y_i) = 1$ are filtered to form the pseudo-labeled dataset $\hat{\mathcal{D}}_t^{correct} = \{(x_i, \hat{r}_i^k, \hat{y}_i^k) \mid x_i \in \mathcal{D}; k \in [1, K]; \mathbb{I}(\hat{y}_i^k, y_i) = 1\}$. Notably, to alleviate the model collapse problem, we follow the prior studies (Alemohammad et al., 2024; Wang et al., 2024) and use the combination of the original clean seed dataset \mathcal{S} and the pseudo-labeled dataset $\hat{\mathcal{D}}_t^{correct}$ as the final training dataset $\mathcal{D}_t = \mathcal{S} \cup \hat{\mathcal{D}}_t^{correct}$. Considering that continually fine-tuning \mathcal{M}_{t-1} would lead to overfitting, we fine-tune the base model \mathcal{M}_{base} on \mathcal{D}_t to obtain the new model \mathcal{M}_t , following previous practice (Zelikman et al., 2022; Singh et al., 2023). In particular, we optimize \mathcal{M}_t using the standard negative log likelihood (NLL) loss function:

$$\mathcal{L}_{SFT} = \mathbb{E}_{\mathcal{D}_t} \left[-\log \frac{\mathcal{M}_{\theta}(\hat{r}_i^k, \hat{y}_i^k | x_i)}{|\hat{r}_i^k| + |\hat{y}_i^k|} \right], \tag{1}$$

where \mathcal{M}_{θ} initialized with \mathcal{M}_{base} denotes the current tuned model that will become next model \mathcal{M}_{t} .

For the implementation of **preference learning**, we utilize a representative and effective algorithm, *i.e.*, Direct Preference Optimization (DPO) (Rafailov et al., 2023). Specifically, for each query $x_i \in \hat{\mathcal{D}}_t$, we split the candidate solutions into two sets: winner $\{(x_i, \hat{r}_i^{k_w}, \hat{y}_i^{k_w}) \mid \mathbb{I}(\hat{y}_i^{k_w}, y_i) = 1\}$ and loser $\{(x_i, \hat{r}_i^{k_l}, \hat{y}_i^{k_l}) \mid \mathbb{I}(\hat{y}_i^{k_l}, y_i) = 0\}$. Then, each winning solution and a randomly-selected losing solution are paired to construct the preference training set $\hat{\mathcal{D}}_t^{\text{pairs}} = \{(x_i, \hat{r}_i^{k_w}, \hat{y}_i^{k_w}), (x_i, \hat{r}_i^{k_l}, \hat{y}_i^{k_l}) \mid x_i \in \hat{\mathcal{D}}_t; k_w, k_l \in [1, K)\}$. Lastly, we can obtain the new model \mathcal{M}_t by continually optimizing \mathcal{M}_{t-1} on $\hat{\mathcal{D}}_t^{\text{pairs}}$. Inspired by Pang et al. (2024), we employ an enhanced DPO algorithm that combines the standard DPO loss function and NLL loss function on winning solutions to ensure the training stability, which is formulated as follows:

$$\mathcal{L}_{\text{DPO+NLL}} = \mathcal{L}_{\text{DPO}}(\hat{r}_{i}^{k_{w}}, \hat{y}_{i}^{k_{w}}, \hat{r}_{i}^{k_{l}}, \hat{y}_{i}^{k_{l}} | x_{i}) + \alpha_{nll} \cdot \mathcal{L}_{\text{NLL}}(\hat{r}_{i}^{k_{w}}, \hat{y}_{i}^{k_{w}} | x_{i})$$

$$= \mathbb{E}_{\hat{\mathcal{D}}_{i}^{\text{pairs}}} \left[-\log \sigma \left(f(\hat{r}_{i}^{k_{w}}, \hat{y}_{i}^{k_{w}} | x_{i}) - f(\hat{r}_{i}^{k_{l}}, \hat{y}_{i}^{k_{l}} | x_{i}) \right) - \alpha_{nll} \cdot \frac{\log \mathcal{M}_{\theta}(\hat{r}_{i}^{k_{w}}, \hat{y}_{i}^{k_{w}} | x_{i})}{|\hat{r}_{i}^{k_{w}}| + |\hat{y}_{i}^{k_{w}}|} \right], \quad (2)$$

where σ is the sigmoid function, $f(\cdot|x_i) = \beta \log \frac{\mathcal{M}_{\theta}(\cdot|x_i)}{\mathcal{M}_{t-1}(\cdot|x_i)}$, \mathcal{M}_{θ} is the policy model initialized with \mathcal{M}_{t-1} , α_{nll} and β are coefficients that are empirically set to 0.5 and 0.1, respectively. Finally, we can obtain our next model \mathcal{M}_t , which will be used to generate data for the subsequent iteration.

2.2 EMPIRICAL ANALYSES

Settings. We conduct preliminary experiments by fine-tuning Qwen2.5-1.5B/3B/7B instruct models (Yang et al., 2024) on a challenging medical reasoning dataset, *i.e.*, MedQA (Jin et al., 2021). Specifically, since the original MedQA training set does not contain any reasoning trajectories, we prompt the proprietary DeepSeek-R1 to generate the seed reasoning data. By filtering out incorrect solutions, we ultimately obtained a new training set containing 9.3K reasoning samples. From this

Figure 2: **Left**: Distribution of the number of correct solutions in a single query. **Middle**: Distribution of self-generated training samples with different difficulty levels, where level-1 means the simplest and level-4 means the most difficult. **Right**: Performance comparison between tuned Qwen2.5-1.5B models using different data selection methods. Here, all experiments are based on the MedQA task.

set, we randomly selected 1K as seed data S, while treating the remaining samples as unlabeled data D (*i.e.*, without using their reasoning trajectories). For the implementation of self-improvement training, the number of iterations T is set to 1, and the total sampling times K is set to 10.

Findings. Through extensive analyses on the self-generated training samples, we found that there are two major problems: data imbalance and overthinking. Specifically,

O Data Imbalance: Figure 2 (Left) illustrates the distribution of the number of correct solutions in a query. As seen, there is a positive correlation between the number of correct solutions and model capabilities, where stronger models (*e.g.*, Qwen2.5-7B) can collect more accurate solutions for each query. However, for the difficult queries that are proven to be more crucial for further training (Liu et al., 2024), these models still struggle to collect sufficient correct solutions, thus leading to data imbalance. Specifically, although for the powerful Qwen2.5-7B, there are more than 500 queries that did not obtain any correct solutions. To have a close look, based on the number of correct solutions in a query, we evenly split the queries into four levels, where level-1 refers to the simplest queries obtaining the most correct solutions, and level-4 refers to the most difficult queries. Figure 2 (Middle) shows the distribution of self-generated training samples at different levels, indicating that most training samples are relatively simple, whereas challenging yet crucial samples are scarce.

Q Overthinking: As a common issue in LRMs, overthinking usually leads to inefficient reasoning and suboptimal performance (Chen et al., 2024d). The key to alleviating overthinking lies in quantifying it via a fair and accurate metric. Motivated by the intuition that a high similarity among intermediate reasoning steps often indicates redundant or repetitive thinking, we introduce a **reasoning diversity metric** to measure the diversity of reasoning steps. As shown in Algorithm 1, for each reasoning trajectory \hat{r}_i^k , we first convert all intermediate reasoning steps $[\hat{r}_{i,1}^k, \ldots, \hat{r}_{i,L}^k]$ into sentence embeddings using the BGE-m3 model (Chen et al., 2024b), and then calculate the cosine distance between $\hat{r}_{i,l}^k$ and its nearest neighbor in the current subset. The reasoning steps with cosine distance below the threshold τ_{sim} are regarded as repetitive and are filtered out. The τ_{sim} is empirically set to 0.85 in our work. The metric ρ is defined as the ratio of unfiltered steps to all steps:

$$\rho_i^k = \frac{|\mathcal{U}(\hat{r}_i^k)|}{|[\hat{r}_{i,1}^k, \dots, \hat{r}_{i,L}^k]|}, \quad \rho_i^k \in (0, 1]$$
(3)

where $\mathcal{U}(\cdot)$ denotes the set of unfiltered steps. To verify the effectiveness of this metric, we conduct comparative experiments by using the solution with the highest and lowest ρ_i^k for each query as self-training data, respectively. For reference, we also employ a random and a length-penalty method as baselines, *i.e.*, using a randomly selected solution and the shortest solution for self-training, respectively. Figure 2 (**Right**) shows the comparative results of Qwen2.5-1.5B models on the MedQA test set, using the average accuracy and number of output tokens as metrics. As seen, compared to using random solutions, self-training on solutions with low ρ scores indeed results in more inference overhead and lower accuracy, while using the solutions with high ρ scores can effectively alleviate this problem. Notably, although self-training on shorter solutions is also beneficial to improve reasoning efficiency, it would lead to performance degradation. These results suggest that **self-training with redundant and repetitive reasoning steps undermines the accuracy and conciseness of models' reasoning**, which is difficult to resolve effectively through length-penalty methods alone.

3 HARNESS SELF-IMPROVEMENT FOR BETTER AND FASTER REASONING

3.1 MOTIVATION AND INTUITION OF HSIR

To alleviate the above problems, we propose HSIR that harnesses self-improvement in LRMs via two simple-yet-effective approaches. First, to address data imbalance, we build upon the insight (Yang et al., 2025b; Dai et al., 2025) that failed solutions are not entirely incorrect but often contain valuable, partially correct reasoning steps before deviating. Instead of discarding these outputs, we introduce *VeriExit*, a novel **trajectory recycling** strategy. It efficiently salvages valid initial reasoning from failed attempts to generate correct solutions for difficult queries. This approach provides a significant efficiency gain over costly resampling from scratch. Second, to combat overthinking, our empirical analysis in §2.2 validates that reasoning diversity is a potent signal, yet the preliminary metric (Eq. 3) relies on costly external models. We propose a more elegant solution by harnessing the dense semantic information already present in a model's internal states. We introduce the **Intrinsic Diversity** (*InDiv*) **score**, an efficient metric that measures diversity directly from the models' hidden representations. This makes *InDiv* an **entirely intrinsic** measure that eliminates external dependencies and can be computed with minimal to zero overhead, offering a more scalable and integrated way to encourage concise reasoning. Figure 3 illustrates the overview of our HSIR.

Figure 3: (a) Pipeline of self-improvement training with HSIR. After generating candidate solutions for each query, we first employ our (b) *VeriExit* sampling strategy to collect more accurate solutions for difficult queries, and then quantify the overthinking of correct solutions via our (c) *InDiv* metric. Lastly, the accurate, diverse, and concise solutions are selected for iterative SFT/DPO training.

3.2 IMPORTANT COMPONENTS OF HSIR

Intrinsic Diversity Score. To quantify overthinking, we leverage the LLMs' internal states to measure the semantic diversity of reasoning steps. Specifically, for each correct solution $(x_i, \hat{r}_i^k, \hat{y}_i^k)$, we obtain its hidden representation $\mathbf{H}_i^k \in \mathbb{R}^{d \times m}$ at the middle layer of \mathcal{M}_{t-1} , where d is the dimension of hidden states and m is the number of tokens in the solution. We choose the middle layer as it encodes richer and more useful semantic information (Skean et al., 2025; Azaria & Mitchell,

2023; Liu et al., 2019). Inspired by the fact that eigenvalues of the covariance matrix can capture the divergence and correlation between different embeddings (Chen et al., 2024a), we calculate the eigenvalues of the cross-covariance for \mathbf{H}_{i}^{k} to measure the diversity of intermediate reasoning steps:

$$\boldsymbol{\Sigma}_{i}^{k} = \mathbf{H}_{i}^{k^{\top}} \cdot \mathbf{J}_{d} \cdot \mathbf{H}_{i}^{k}; \quad \mathbf{Eig}_{i}^{k} = \frac{1}{m} \log \det(\boldsymbol{\Sigma}_{i}^{k}) = \frac{1}{m} \sum_{u=1}^{m} \log(\lambda_{i,u}^{k}), \tag{4}$$

where $\mathbf{J}_d = \mathbf{I}_d - \frac{1}{d}\mathbf{1}_{d\times d}$ is the centering matrix, $\mathbf{I}_d \in \mathbb{R}^d$ is the identity matrix, $\mathbf{1}_{d\times d} \in \mathbb{R}^{d\times d}$ is the all-one matrix, $\det(\cdot)$ means the determinant of matrix, and $\{\lambda_{i,u}^k\}_{u=1}^m$ denotes the singular values of matrix Σ_i^k . Furthermore, considering that some important tokens with higher attention weights might contribute more to the reasoning process, we enhance the above method via an attention-aware weighting mechanism. In practice, following the implementation of Su et al. (2024), let $Atten_{i,u}^k \in (0,1)$ denote the normalized maximum self-attention weight for u-th token ($u \in [1,m]$) among all self-attention heads, we can obtain our final reasoning diversity metric, denoted as **Intrinsic Diversity** score (InDiv in short) to distinguish it from Eq. 3, which is formulated as follows:

$$\mathbf{InDiv}_{i}^{k} = \sum_{u=1}^{m} \left[Atten_{i,u}^{k} \cdot \log(\lambda_{i,u}^{k}) \right]; \quad \sum_{u=1}^{m} Atten_{i,u}^{k} = 1.$$
 (5)

When the reasoning steps are repetitive and have similar semantics, the hidden representations will be highly correlated, and their semantic entropy and InDiv scores will be small (more analyses are in Appendix E.2). After calculating the InDiv scores of all candidate correct solutions $\{(x_i, \hat{r}_i^k, \hat{y}_i^k)\}_{k=1}^K$ for x_i , we filter the undesired ones with lower scores. Specifically, inspired by DeepSeek-r1 (Guo et al., 2025), we regularize the scores as $\overline{\mathbf{InDiv}}_i^k = \frac{\mathbf{InDiv}_i^k - \mathbf{mean}(\{\mathbf{InDiv}_i^1, \cdots, \mathbf{InDiv}_i^K\})}{\mathrm{std}(\{\mathbf{InDiv}_i^1, \cdots, \mathbf{InDiv}_i^K\})}$ and filter the solutions with scores below the threshold τ . Finally, we can obtain more accurate, diverse, and concise reasoning data for effective self-training. The pseudo-code of HSIR is shown in Algorithm 2.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Training Details. We conduct main experiments using Qwen2.5-1.5B/3B/7B (Yang et al., 2024) instruct models. Moreover, to verify the universality of HSIR, we also evaluate it on another four cutting-edge instruct LLMs, including Qwen3-1.7B (Yang et al., 2025a), Phi-3.5-mini (Abdin et al., 2024), Mistral-7B (Jiang et al., 2023), and LLaMA3-8B (Dubey et al., 2024). During the implementation of HSIR, the sampling times K and J are set to 10 and 5, respectively. The sampling temperature is 1.0, and the maximum output length is 2,048. The filter threshold τ is set to -0.5. Notably, for the post-training of Qwen2.5 models, the self-improvement iteration T is set to 3, but for the other LLMs, it is set to 1 due to limited computational resources. During inference, we use greedy decoding with a temperature of 0 for reproducibility. The maximum output length is set to 4,096. More dataset and training details are shown in Appendix D.

Baselines. To verify the superiority of HSIR, we compare it with various baselines:

- SFT-Initial: Standard fine-tuning \mathcal{M}_{base} on the seed data \mathcal{S} to obtain the initial SFT model \mathcal{M}_0 .
- **SFT-Oracle**: Standard fine-tuning \mathcal{M}_{base} on the combination of \mathcal{S} and \mathcal{D} with ground-truth reasoning trajectories, which can be considered as the upper bound of SFT training.

Table 1: **Performance comparison between Qwen2.5 family models** using different self-improvement methods on MedQA and GSM8K. "ITrainl" denotes the average training budget among all models and tasks, while "Overall" denotes the average accuracy and number of output tokens.

Methods	Train	Qwen2	2.5-1.5B	Qwen2.5-3B		Qwen2.5-7B		Overall	
Wellous	Avg.	MedQA	GSM8K	MedQA	GSM8K	MedQA	GSM8K	Accuracy	Tokens
SFT-Initial	1.0K	38.10	63.99	49.02	77.18	62.45	83.93	62.45	1,536
SFT-Oracle	8.1K	46.58	71.57	58.68	84.31	73.99	87.79	$70.49_{\uparrow 8.04}$	$1,392_{\downarrow 9.4\%}$
(a) Iterative Se	elf-improve	ement SFT	Training						
RFT	132.2K	42.42	71.19	54.60	83.55	64.89	87.87	$67.42_{\uparrow 4.97}$	$1292_{\downarrow 15.9\%}$
ReGenesis	127.2K	44.46	66.26	50.67	79.91	62.22	89.99	$65.59_{\uparrow 3.13}$	363
STaR									
Iteration 1	5.7K	35.98	69.75	49.25	81.96	61.19	87.72	$64.31_{\uparrow 1.86}$	$1,379_{\downarrow 10.2\%}$
Iteration 2	6.1K	37.78	70.96	50.82	81.27	61.04	88.48	$65.06_{\uparrow 2.61}$	$1,328_{\downarrow 13.5\%}$
Iteration 3	6.4K	38.49	72.02	47.76	81.58	61.59	87.49	$64.82_{\uparrow 2.37}$	1,288 _{16.1%}
$ReST^{EM}$									
Iteration 1	44.7K	41.63	69.75	55.22	83.95	64.18	88.17	$67.15_{\uparrow 4.70}$	$1,268_{\downarrow 17.5\%}$
Iteration 2	51.0K	42.81	74.45	56.25	85.13	65.28	90.22	$69.02_{\uparrow 6.57}$	$1,160_{\downarrow 24.5\%}$
Iteration 3	53.6K	45.48	75.13	56.48	86.04	65.28	89.99	$69.73_{\uparrow 7.28}$	$1,114_{\downarrow 27.5\%}$
HSIR-SFT (Ours)								
Iteration 1	33.6K	45.33	71.72	55.70	86.13	67.32	88.78	$69.16_{\uparrow 6.71}$	$1,075_{\downarrow 30.0\%}$
Iteration 2	36.6K	46.50	76.04	56.32	86.51	67.87	90.83	$70.68_{\uparrow 8.23}$	$950_{\downarrow 38.1\%}$
Iteration 3	38.8K	46.58	76.88	57.58	86.81	68.74	91.36	$71.33_{\uparrow 8.88}$	896 _{↓41.7%}
(b) Iterative Se	elf-improve	ement DPC) Training						
RPO									
Iteration 1	22.7K	39.04	70.51	47.99	85.37	64.26	91.43	$66.43_{\uparrow 3.98}$	$1,359_{\downarrow 11.5\%}$
Iteration 2	27.5K	41.08	75.51	49.33	86.66	63.24	91.95	$67.96_{\uparrow 5.51}$	$1,294_{\downarrow 15.7\%}$
Iteration 3	20.5K	43.91	75.36	49.10	87.19	60.57	91.87	$68.00_{\uparrow 5.55}$	$1,271_{\downarrow 17.2\%}$
HSIR-DPO(Ours)								
Iteration 1	17.9K	48.31	75.36	55.77	87.04	67.32	91.36	$70.86_{\uparrow 8.41}$	$1,007_{\downarrow 34.4\%}$
Iteration 2	23.6K	49.10	76.65	59.15	87.49	68.58	91.96	$72.16_{\uparrow 9.70}$	$921_{40.0\%}$
Iteration 3	19.6K	50.90	78.09	60.64	87.53	70.46	92.49	$73.35_{\uparrow 10.90}$	$885_{\downarrow 42.4\%}$

- STaR (Zelikman et al., 2022): Sampling a solution (\hat{r}_i, \hat{y}_i) using greedy decoding for each query $x_i \in \mathcal{D}$, where the correct solutions are used to iteratively fine-tune the models.
- ReST^{EM} (Singh et al., 2023): Extending STaR by sampling K solutions $\{(\hat{r}_i^k, \hat{y}_i^k)\}_{k=1}^K$ for each query $x_i \in \mathcal{D}$, where all correct solutions are used for iterative self-improvement SFT training.
- RFT (Yuan et al., 2023): Similar to ReST^{EM} but not iterative. To maintain consistent training budgets, we sample $T \times K$ candidate solutions $\{(\hat{r}_i^k, \hat{y}_i^k)\}_{k=1}^{T \times K}$ for each query $x_i \in \mathcal{D}$.
- ReGenesis (Peng et al., 2025): Prompting \mathcal{M}_{base} to self-synthesize reasoning paths by converting general reasoning guidelines into task-specific ones, which are used for once self-training. Since it is not designed for long-CoT reasoning, we do not compare its reasoning efficiency.
- **RPO** (Pang et al., 2024): Sampling K solutions for each query, where both correct and incorrect solutions are paired to construct the preference data, allowing for iterative DPO training.

4.2 Main Results

HSIR outperforms the other baseline methods across all post-training settings. Table 1 reports the comparative results (%) of Qwen2.5 family models. As seen, self-improvement training on the relatively simple GSM8K task performs better against the challenging MedQA task, confirming that self-improvement methods fall short in complex reasoning tasks. More specifically, during SFT on MedQA, STaR struggles to enhance the LRMs' reasoning performance, and even leads to performance degradation, e.g., from 38.10% to 35.98% in Qwen2.5-1.5B. By sampling more diverse solutions, RFT and ReST^{EM} alleviate this problem, indicating the importance of self-training with diverse reasoning data. While in the DPO phase, the effectiveness of self-improvement is more dependent on the quality of self-generated data, as preference learning is more data-sensitive. By selecting more diverse and concise self-generated data for training, our HSIR can effectively unleash the reasoning cabilities of LRMs, thus achieving better performance against the other baselines. For instance, our HSIR-DPO outperforms the vanilla iterative DPO method by a clear margin, i.e., bringing +5.35% average performance gains among all Qwen2.5 models after three iterations.

Table 2: **Performance comparison between the other models** using different self-improvement SFT methods on MedQA and GSM8K. Here, we perform the self-improvement training for one iteration.

	Qwen3-1.7B		Phi-3.5-mini		Mistral-7B		LLaMA3-8B		Overall	
Methods	MedQA	GSM8K	MedQA	GSM8K	MedQA	GSM8K	MedQA	GSM8K	Accuracy	Tokens
SFT-Initial	51.61	87.03	66.14	82.56	55.93	64.59	64.57	79.98	69.05	1,540
SFT-Oracle	55.77	87.72	74.07	87.95	70.15	79.08	73.76	86.73	$76.90_{\uparrow 7.85}$	1,383,10,29
STaR	52.87	86.96	65.99	86.28	53.57	68.54	59.63	80.59	69.30 _{10.25}	1,442,6,3%
$ReST^{EM}$	54.67	88.61	67.64	87.86	58.13	72.71	67.79	81.20	$72.33_{13.28}$	1,365,11,49
HSIR-SFT	55.30	89.16	71.17	88.32	61.27	75.82	69.68	86.66	74.67 _{15.62}	1,195,122,4%

HSIR effectively improves the reasoning performance and efficiency of LRMs in both tasks. In addition to the reasoning performance, we also evaluate the reasoning efficiency of LRMs by measuring the number of output tokens. From Table 1, it can be seen that nearly all self-improvement methods reduce the average output tokens. We conjecture that models can sometimes generate concise reasoning paths, which helps guide the efficient reasoning of models. Nevertheless, as shown in our preliminary analysis (§2.2), self-training with overthinking solutions would damage this effect and lead to suboptimal reasoning efficiency. Owing to our *InDiv* metric, we can filter these overthinking solutions and effectively improve reasoning efficiency by reducing up to 42.4% output tokens. These results confirm the significance of alleviating overthinking and prove the effectiveness of HSIR.

HSIR brings consistent and significant performance gains among all model sizes and types. Table 2 presents the results of other LRMs. Notably, due to limited computation resources, we only perform the SFT training using STaR, ReST EM , and our HSIR for one iteration. As seen, HSIR continues to outperform the other baseline methods across all models. Specifically, in LLaMA3-8B, compared to powerful ReST EM , HSIR achieves +1.89% and +5.46% performance gains for MedQA and GSM8K, respectively. Overall, HSIR brings +5.62% average performance gains and reduces 22.4% output tokens against the initial SFT models, showing its universality and superiority.

4.3 More Analyses

Ablation Study. In this part, we validate the important components of HSIR, *i.e.*, *VeriExit* sampling strategy and *InDiv* metric. Firstly, for the analysis of sampling strategy, we ignore the overthinking metric and do not perform the data filtering. To verify the effectiveness of *VeriExit*, we compare it with "-w Answer-driven" that uses the ground-truth answer to guide models' reasoning for collecting more correct solutions (Ding et al., 2025). Similarly, for the analysis of overthinking metric, we do not use extra sampling methods, and compare our *InDiv* with "-w Length-driven" that leverages the length of

Table 3: **Ablation study** on *VeriExit* and *InDiv*.

Method	Med	QA	GSM8K		
Witting	Accuracy	Tokens	Accuracy	Tokens	
SFT-Initial	38.10	1,779	63.99	1,666	
STaR	35.98	1,651	69.75	1,377	
$ReST^{EM}$	41.63	1,424	69.75	1,382	
HSIR-SFT (All)	45.33	1,064	71.72	1,181	
(a) Analysis of sampli	ng strategy (without d	ata filtering)	
-w/ Answer-driven	41.63	1,421	69.29	1,433	
-w/ VeriExit (Ours)	44.46	1,293	70.74	1,361	
(b) Analysis of overthi	nking metri	c (without	extra sampl	ling)	
-w/ Length-driven	42.36	1,321	70.66	1,266	
-w/ InDiv (Ours)	42.66	1,260	71.34	1,256	

solutions as the metric. In practice, the candidate solutions with $\frac{\operatorname{len}(\hat{r}_i^k) - \operatorname{mean}(\{\operatorname{len}(\hat{r}_i^1), \cdots, \operatorname{len}(\hat{r}_i^K)\})}{\operatorname{std}(\{\operatorname{len}(\hat{r}_i^1), \cdots, \operatorname{len}(\hat{r}_i^K)\})} > \tau_{\operatorname{len}(\hat{r}_i^K)}$

are filtered, where $\operatorname{len}(\hat{r}_i^k)$ denotes the length of \hat{r}_i^k and $\tau_{\operatorname{len}}$ is the length threshold set to 0.5 in this experiment. Table 3 reports the results of Qwen2.5-1.5B models after one iteration of self-improvement SFT training. Compared to the full HSIR, removing $\operatorname{VeriExit}$ or InDiv results in performance degradation, indicating their effectiveness. Moreover, our proposed methods consistently perform better than their counterparts. For instance, $\operatorname{VeriExit}$ outperforms the "-w Answer-driven" by 2.14% average performance gains. These comparative results demonstrate the superiority of $\operatorname{VeriExit}$ and InDiv .

Expand to GRPO Training. In addition to SFT and DPO training, reinforcement learning from verifiable rewards via the GRPO (Shao et al., 2024) algorithm is also a popular and effective way to enhance LRMs' reasoning performance. Instead of explicitly supervising the reasoning trajectory, GRPO enables LRMs to learn from free exploration via outcome rewards, *e.g.*, binary accuracy reward. Although effective, GRPO training also suffers from the overthinking problem. To this end, we propose to improve the GRPO by leveraging our *InDiv* score as an extra reward, and denote this method as **H**–**GRPO**. The implementation details of H–GRPO can be found in Appendix C. Intuitively,

by encouraging LRMs to generate diverse and concise reasoning paths, H-GRPO can effectively alleviate overthinking and result in better performance. It is noteworthy that the calculation of InDiv scores is fast and would not lead to much training latency. We apply our H-GRPO to reinforce the \mathcal{M}_0 models using the \mathcal{D} dataset, and report the results of Qwen2.5 family models in Table 4.

Table 4: Performance comparison between Qwen2.5 models using different GRPO algorithms.

Methods	Qwen2	2.5-1.5B	Qwen2.5-3B		Qwen2.5-7B		Overall	
112011043	MedQA	GSM8K	MedQA	GSM8K	MedQA	GSM8K	Accuracy	Tokens
GRPO	46.34	73.08	57.03	82.49	66.46	89.61	69.17	974
+ Long2Short	46.50	72.63	58.21	82.26	66.14	91.13	69.48 10.31	668 31.4%
+ CosFn	47.96	71.72	55.22	82.93	63.71	89.31	$68.48_{\pm 0.69}$	966,10,86%
H-GRPO (Ours)	48.15	74.60	58.98	83.09	68.03	91.43	$70.71_{\uparrow 1.54}$	$710_{\downarrow 27.12\%}$

For comparison, we also employ two widely-used baseline methods: *Long2Short* (Team et al., 2025) and *CosFn* (Yang et al., 2025c), which address overthinking by using length-oriented reward functions. As seen, compared to the vanilla GRPO, all improved methods achieve better reasoning efficiency, indicating the validity of extra rewards. However, both length-oriented methods would cause a decrease in reasoning accuracy, *e.g.*, 1.53% average performance drops in Qwen2.5-7B on MedQA. This indicates that overly emphasizing length reduction might hinder LRMs' deep reasoning and lead to suboptimal results. Conversely, by optimizing the intermediate reasoning process, our H-GRPO can smoothly reduce repetitive and redundant thinking and thus achieve better performance.

Model Generalization. Here, we further investigate the ability of self-improved LRMs to generalize to out-of-distribution (OOD) tasks. Specifically, for models trained on MedQA, we evaluate their performance on the Medbullets (4-option) (Chen et al., 2025). While for models trained on GSM8K, we evaluate on the MATH (Hendrycks et al., 2021). We illustrate the OOD results of Qwen2.5-7B models using different self-training methods in Figure 4. From it, we can observe that: (1) Compared to iterative SFT, self-improvement with iterative DPO training can generally re-

Figure 4: **Comparison of OOD results** between Qwen2.5-7B models using different self-improvement methods.

sult in better OOD performance, similar to the finding of Wu et al. (2025). This is consistent with the wisdom that DPO can improve OOD generalization (Kirk et al., 2024). (2) Both HSIR-SFT and HSIR-DPO can achieve consistently better OOD results against the baseline methods. We attribute it to the *VeriExit* sampling strategy in HSIR as it can collect more diverse solutions for generalized self-training. These results confirm our motivation to mitigate the data imbalance problem.

Note: Due to space limitations, we introduce the related works in Appendix B, the implementation and analysis of H-GRPO in Appendix C, more experimental details in Appendix D, and more experiments and analyses in Appendix E. Please refer to the Appendix for more details.

5 CONCLUSION

In this paper, we reveal and address the limitations of self-improvement post-training in LRMs. Through a series of preliminary analyses, we find that the self-improvement of LRMs usually suffers from data imbalance and overthinking in the complex reasoning scenarios. To address these limitations, we propose HSIR, which effectively harnesses self-improvement in LRMs via two simple-yet-effective approaches: *VeriExit* sampling strategy and *InDiv* metric. Extensive results show that HSIR consistently and significantly improves the reasoning performance and efficiency across all model sizes and architectures. Moreover, we also expand our method to the RLVR training paradigm and propose H-GRPO that improves the GRPO by leveraging the *InDiv* scores as an extra reward. Comparative results with two widely-used GRPO algorithms prove the superiority of H-GRPO.

ETHICS AND REPRODUCIBILITY STATEMENTS

Ethics. We take ethical considerations very seriously and strictly adhere to the ICLR Ethics Policy. This paper proposes a new self-improvement training framework to improve the reasoning performance and efficiency of LRMs. It aims to unleash LRMs' internal reasoning capabilities, instead of encouraging them to learn privacy knowledge that may cause an ethical problem. Moreover, all base models, training and evaluation datasets used in this paper are publicly available and have been widely adopted by researchers. Thus, we believe that this research will not pose ethical issues.

Reproducibility. In this paper, we discuss the detailed experimental setup, such as training hyperparameters and statistical descriptions in Appendix D. More importantly, we have provided our code and data in the Supplementary Material to help reproduce our experimental results.

REFERENCES

- Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3 technical report: A highly capable language model locally on your phone. *arXiv preprint arXiv:2412.08905*, 2024.
- Sina Alemohammad, Josue Casco-Rodriguez, Lorenzo Luzi, Ahmed Imtiaz Humayun, Hossein Babaei, Daniel LeJeune, Ali Siahkoohi, and Richard Baraniuk. Self-consuming generative models go mad. In *The Twelfth International Conference on Learning Representations*, 2024.
- Amos Azaria and Tom Mitchell. The internal state of an llm knows when it's lying. In *Findings of the Association for Computational Linguistics: EMNLP 2023*, 2023.
- Quentin Bertrand, Joey Bose, Alexandre Duplessis, Marco Jiralerspong, and Gauthier Gidel. On the stability of iterative retraining of generative models on their own data. In *The Twelfth International Conference on Learning Representations*, 2024.
- Chao Chen, Kai Liu, Ze Chen, Yi Gu, Yue Wu, Mingyuan Tao, Zhihang Fu, and Jieping Ye. Inside: Llms' internal states retain the power of hallucination detection. In *The Twelfth International Conference on Learning Representations*, 2024a.
- Hanjie Chen, Zhouxiang Fang, Yash Singla, and Mark Dredze. Benchmarking large language models on answering and explaining challenging medical questions. In *Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies*, 2025.
- Jianlyu Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. M3-embedding: Multi-linguality, multi-functionality, multi-granularity text embeddings through self-knowledge distillation. In *Findings of the Association for Computational Linguistics ACL* 2024, 2024b.
- Junying Chen, Zhenyang Cai, Ke Ji, Xidong Wang, Wanlong Liu, Rongsheng Wang, Jianye Hou, and Benyou Wang. Huatuogpt-o1, towards medical complex reasoning with llms. *arXiv preprint arXiv:2412.18925*, 2024c.
- Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu, Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=? on the overthinking of o1-like llms. *arXiv preprint arXiv:2412.21187*, 2024d.
- Zeming Chen, Alejandro Hernández Cano, Angelika Romanou, Antoine Bonnet, Kyle Matoba, Francesco Salvi, Matteo Pagliardini, Simin Fan, Andreas Köpf, Amirkeivan Mohtashami, et al. Meditron-70b: Scaling medical pretraining for large language models. *arXiv* preprint *arXiv*:2311.16079, 2023.
- Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.
- Muzhi Dai, Chenxu Yang, and Qingyi Si. S-grpo: Early exit via reinforcement learning in reasoning models. *arXiv preprint arXiv:2505.07686*, 2025.

- Yiwen Ding, Zhiheng Xi, Wei He, Lizhuoyuan Lizhuoyuan, Yitao Zhai, Shi Xiaowei, Xunliang Cai, Tao Gui, Qi Zhang, and Xuan-Jing Huang. Mitigating tail narrowing in llm self-improvement via socratic-guided sampling. In *Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies*, 2025.
 - Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. *arXiv e-prints arXiv:* 2407.21783, 2024.
 - Matthias Gerstgrasser, Rylan Schaeffer, Apratim Dey, Rafael Rafailov, Tomasz Korbak, Henry Sleight, Rajashree Agrawal, John Hughes, Dhruv Bhandarkar Pai, Andrey Gromov, et al. Is model collapse inevitable? breaking the curse of recursion by accumulating real and synthetic data. In *First Conference on Language Modeling*, 2024.
- Luis Gonzalo Sanchez Giraldo, Murali Rao, and Jose C Principe. Measures of entropy from data using infinitely divisible kernels. *IEEE Transactions on Information Theory*, 2014.
- Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, et al. Reinforced self-training (rest) for language modeling. *arXiv preprint arXiv:2308.08998*, 2023.
- Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.
- Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. In *Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)*, 2021.
- Roger A Horn and Charles R Johnson. *Matrix analysis*. Cambridge university press, 2012.
- Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron Courville, Alessandro Sordoni, and Rishabh Agarwal. V-star: Training verifiers for self-taught reasoners. In *First Conference on Language Modeling*, 2024.
- Audrey Huang, Adam Block, Dylan J Foster, Dhruv Rohatgi, Cyril Zhang, Max Simchowitz, Jordan T Ash, and Akshay Krishnamurthy. Self-improvement in language models: The sharpening mechanism. In *The Thirteenth International Conference on Learning Representations*, 2025a.
- Jiaxin Huang, Shixiang Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei Han. Large language models can self-improve. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, 2023.
- Zhen Huang, Haoyang Zou, Xuefeng Li, Yixiu Liu, Yuxiang Zheng, Ethan Chern, Shijie Xia, Yiwei Qin, Weizhe Yuan, and Pengfei Liu. O1 replication journey–part 2: Surpassing o1-preview through simple distillation, big progress or bitter lesson? *arXiv preprint arXiv:2411.16489*, 2024.
- Zhongzhen Huang, Gui Geng, Shengyi Hua, Zhen Huang, Haoyang Zou, Shaoting Zhang, Pengfei Liu, and Xiaofan Zhang. O1 replication journey–part 3: Inference-time scaling for medical reasoning. *arXiv preprint arXiv:2501.06458*, 2025b.
- Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv preprint arXiv:2412.16720*, 2024.
- Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al. Mistral 7b. *arXiv preprint arXiv:2310.06825*, 2023.
- Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. What disease does this patient have? a large-scale open domain question answering dataset from medical exams. *Applied Sciences*, 2021.

- Robert Kirk, Ishita Mediratta, Christoforos Nalmpantis, Jelena Luketina, Eric Hambro, Edward Grefenstette, and Roberta Raileanu. Understanding the effects of rlhf on llm generalisation and diversity. In *The Twelfth International Conference on Learning Representations*, 2024.
- Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel: Communicative agents for "mind" exploration of large language model society. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.
- Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao, Haotian Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, et al. From system 1 to system 2: A survey of reasoning large language models. *arXiv preprint arXiv:2502.17419*, 2025.
- Nelson F Liu, Matt Gardner, Yonatan Belinkov, Matthew E Peters, and Noah A Smith. Linguistic knowledge and transferability of contextual representations. In *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, 2019.
- Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and Junxian He. What makes good data for alignment? a comprehensive study of automatic data selection in instruction tuning. In *The Twelfth International Conference on Learning Representations*, 2024.
- Seyed Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, Nir Levine, Akihiro Matsukawa, and Hassan Ghasemzadeh. Improved knowledge distillation via teacher assistant. In *Proceedings of the AAAI conference on artificial intelligence*, 2020.
- Tergel Munkhbat, Namgyu Ho, Seo Hyun Kim, Yongjin Yang, Yujin Kim, and Se-Young Yun. Self-training elicits concise reasoning in large language models. In *Findings of the Association for Computational Linguistics: ACL 2025*, 2025.
- Richard Yuanzhe Pang, Weizhe Yuan, He He, Kyunghyun Cho, Sainbayar Sukhbaatar, and Jason Weston. Iterative reasoning preference optimization. In *Advances in Neural Information Processing Systems*, 2024.
- Xiangyu Peng, Congying Xia, Xinyi Yang, Caiming Xiong, Chien-Sheng Wu, and Chen Xing. Regenesis: Llms can grow into reasoning generalists via self-improvement. In *The Thirteenth International Conference on Learning Representations*, 2025.
- Aske Plaat, Annie Wong, Suzan Verberne, Joost Broekens, Niki van Stein, and Thomas Bäck. Reasoning with large language models, a survey. *arXiv e-prints arXiv:2407.11511*, 2024.
- Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model. In *Advances in neural information processing systems*, 2023.
- Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.
- Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Xavier Garcia, Peter J Liu, James Harrison, Jaehoon Lee, Kelvin Xu, et al. Beyond human data: Scaling self-training for problem-solving with language models. *Transactions on Machine Learning Research*, 2023.
- Oscar Skean, Jhoan Keider Hoyos Osorio, Austin J Brockmeier, and Luis Gonzalo Sanchez Giraldo. Dime: Maximizing mutual information by a difference of matrix-based entropies. *arXiv preprint arXiv:2301.08164*, 2023.
- Oscar Skean, Md Rifat Arefin, Dan Zhao, Niket Nikul Patel, Jalal Naghiyev, Yann LeCun, and Ravid Shwartz-Ziv. Layer by layer: Uncovering hidden representations in language models. In *Forty-second International Conference on Machine Learning*, 2025.
- Yuda Song, Hanlin Zhang, Carson Eisenach, Sham M Kakade, Dean Foster, and Udaya Ghai. Mind the gap: Examining the self-improvement capabilities of large language models. In *The Thirteenth International Conference on Learning Representations*, 2025.

- Weihang Su, Yichen Tang, Qingyao Ai, Zhijing Wu, and Yiqun Liu. Dragin: Dynamic retrieval augmented generation based on the real-time information needs of large language models. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics*, 2024.
- Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with llms. *arXiv preprint arXiv:2501.12599*, 2025.
- Yuxuan Tong, Xiwen Zhang, Rui Wang, Ruidong Wu, and Junxian He. Dart-math: Difficulty-aware rejection tuning for mathematical problem-solving. In *Advances in Neural Information Processing Systems*, 2024.
- Tianduo Wang, Shichen Li, and Wei Lu. Self-training with direct preference optimization improves chain-of-thought reasoning. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics*, 2024.
- Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In *International Conference on Learning Representations*, 2022.
- Liang Wen, Yunke Cai, Fenrui Xiao, Xin He, Qi An, Zhenyu Duan, Yimin Du, Junchen Liu, Tanglifu Tanglifu, Xiaowei Lv, Haosheng Zou, Yongchao Deng, Shousheng Jia, and Xiangzheng Zhang. Light-r1: Curriculum SFT, DPO and RL for long COT from scratch and beyond. In *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics*, 2025.
- Ting Wu, Xuefeng Li, and Pengfei Liu. Progress or regress? self-improvement reversal in post-training. In *The Thirteenth International Conference on Learning Representations*, 2025.
- Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang, Yunke Zhang, Jingyi Wang, Xiaochong Lan, Jiahui Gong, Tianjian Ouyang, Fanjin Meng, et al. Towards large reasoning models: A survey of reinforced reasoning with large language models. *arXiv preprint arXiv:2501.09686*, 2025a.
- Haotian Xu, Xing Wu, Weinong Wang, Zhongzhi Li, Da Zheng, Boyuan Chen, Yi Hu, Shijia Kang, Jiaming Ji, Yingying Zhang, et al. Redstar: Does scaling long-cot data unlock better slow-reasoning systems? *arXiv preprint arXiv:2501.11284*, 2025b.
- An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint arXiv:2412.15115*, 2024.
- An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*, 2025a.
- Chenxu Yang, Qingyi Si, Yongjie Duan, Zheliang Zhu, Chenyu Zhu, Qiaowei Li, Zheng Lin, Li Cao, and Weiping Wang. Dynamic early exit in reasoning models. *arXiv preprint arXiv:2504.15895*, 2025b.
- Shiming Yang, Yuxuan Tong, Xinyao Niu, Graham Neubig, and Xiang Yue. Demystifying long chain-of-thought reasoning. In *Forty-second International Conference on Machine Learning*, 2025c.
- Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at scale. *arXiv preprint arXiv:2503.14476*, 2025.
- Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Keming Lu, Chuanqi Tan, Chang Zhou, and Jingren Zhou. Scaling relationship on learning mathematical reasoning with large language models. *arXiv e-prints arXiv:* 2308.01825, 2023.
- Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with reasoning. In *Advances in Neural Information Processing Systems*, 2022.

Chen Zhang, Yang Yang, Jiahao Liu, Jingang Wang, Yunsen Xian, Benyou Wang, and Dawei Song. Lifting the curse of capacity gap in distilling language models. In *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics*, 2023.

Di Zhang, Jianbo Wu, Jingdi Lei, Tong Che, Jiatong Li, Tong Xie, Xiaoshui Huang, Shufei Zhang, Marco Pavone, Yuqiang Li, et al. Llama-berry: Pairwise optimization for olympiad-level mathematical reasoning via o1-like monte carlo tree search. In *Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies*, 2025a.

Kaiyan Zhang, Yuxin Zuo, Bingxiang He, Youbang Sun, Runze Liu, Che Jiang, Yuchen Fan, Kai Tian, Guoli Jia, Pengfei Li, et al. A survey of reinforcement learning for large reasoning models. arXiv preprint arXiv:2509.08827, 2025b.

A LLM USAGE

756

757 758

759

760

761

762

763764765

766 767

768

769

770

771

772

773

774

775

776

777

778

779

781

782 783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804 805

806 807

808

809

During the paper writing, we used the proprietary LLMs as general-purpose assistants to polish some sentences. We did not prompt them to generate research ideas or search for related works, thus avoiding the risk of introducing false information. In the experiments, we instructed the DeepSeek-R1 to obtain the intermediate reasoning trajectories for the unlabeled MedQA training set. The detailed prompt is shown in Table 5. The way of distilling reasoning trajectories from proprietary LLMs is common in the community, and we believe that this behavior does not violate the policies.

B RELATED WORK

Post-training for Reasoning. Inspired by the great success of OpenAI o1 (Jaech et al., 2024) and DeepSeek-R1 (Guo et al., 2025), post-training the LLMs with explicit reasoning paths has shown remarkable potential to unleash their reasoning capabilities (Li et al., 2025; Plaat et al., 2024; Xu et al., 2025a). In the context of LRMs, common post-training paradigms include supervised fine-tuning (SFT) (Wei et al., 2022) and preference learning (Rafailov et al., 2023). Specifically, SFT encourages LLMs to mimic the reasoning behavior demonstrated in training samples (Xu et al., 2025b; Huang et al., 2024), while preference learning aims to align LLMs with human preferences for different reasoning trajectories (Zhang et al., 2025a; Wen et al., 2025). Despite their remarkable performance, these methods are highly dependent on extensive, high-quality reasoning trajectories. Notably, although the new emerging reinforcement learning from verifiable rewards (RLVR) training paradigm can also enhance models' reasoning performance without relying on reasoning trajectories (Guo et al., 2025; Zhang et al., 2025b), cold-start training with these trajectories can improve training efficiency and yield higher performance (Yang et al., 2025c). This also underscores the importance of explicit reasoning trajectories. Besides obtaining the reasoning trajectories from human experts, a common alternative way is to distill the reasoning trajectories from a larger proprietary model, e.g., DeepSeek-R1, which is still costly and time-consuming (Peng et al., 2025). More seriously, for some proprietary LLMs, their reasoning trajectories are even unavailable due to the licensing restrictions.

Self-improvement in Large Reasoning Models. To address the above issue, recent literature introduces the "self-improvement" paradigm, where models improve themselves using self-generated data without any external supervision (Zelikman et al., 2022; Yuan et al., 2023; Huang et al., 2023; Gulcehre et al., 2023; Hosseini et al., 2024; Wu et al., 2025; Huang et al., 2025a; Song et al., 2025). For instance, STaR (Zelikman et al., 2022) utilizes few-shot examples to gather self-synthesizing correct reasoning paths for SFT training, while RFT (Yuan et al., 2023) and ReST^{EM} (Singh et al., 2023) extend STaR by sampling multiple responses for each question. In the preference learning phase, RPO (Pang et al., 2024) constructs preference pairs by using the self-generated correct responses as the pair winners and the incorrect responses as the pair losers. Similarly, Wang et al. (2024) show that self-training augmented by preference learning can improve the CoT reasoning capabilities of small-scale LLMs. Although effective, we empirically find that these self-improvement methods usually suffer from data imbalance and overthinking (§2.2). Some prior studies also recognize these problems and attempt to address them by collecting more correct solutions for difficult queries (Tong et al., 2024; Ding et al., 2025) and designing length-oriented reward functions to penalize too long solutions (Team et al., 2025; Munkhbat et al., 2025). However, they either require more inference budget or lead to performance degradation due to excessive emphasis on length reduction.

Different from prior studies, we propose two simple-yet-effective approaches to address these problems effectively and make LRMs both better and faster. Specifically, instead of solely allocating more trials to difficult queries, our proposed *VeriExit* strategy attempts to reuse partial correct reasoning steps from previous failed solutions to improve the sampling efficiency. To alleviate overthinking, we introduce the *InDiv* score that leverages the internal state of LRMs as a signal to encourage models' diverse and concise reasoning, rather than simply using a length penalty.

C IMPLEMENTATION OF H-GRPO

Background of GRPO and RLVR. Group Relative Policy Optimization (GRPO) (Shao et al., 2024) is a popular RL algorithm, which is widely used in the current popular RLVR training paradigm. Formally, let $\mathcal{M}_{\theta_{\text{ref}}}$ and $\mathcal{M}_{\theta_{\text{new}}}$ denote the reference model and current policy model, GRPO samples

Algorithm 1 Reasoning Diversity Metric

```
811
               1: Input: self-generated reasoning trajectory \hat{r}_i^k = [\hat{r}_{i,1}^k, \dots, \hat{r}_{i,L}^k], similarity threshold \tau_{\text{sim}}
812
               2: Output: reasoning diversity score \rho_i^k
813
               3: Initialize Empty Unfiltered Set \mathcal{U}
814
               4: for Each reasoning step \hat{r}_{i,l}^k \in \hat{r}_i^k do
815
                        Obtaining the sentence embedding emb(\hat{r}_{i,l}^k) using the BGE-m3 model
816
                        //Cos(emb(\hat{r}_{i,l}^k),\mathcal{U}) denotes the cosine distance between emb(\hat{r}_{i,l}^k) and its nearest neighbor in \mathcal{U}
817
                        if Cos(emb(\hat{r}_{i,l}^k), \mathcal{U}) < \tau_{sim} then
818
               8:
                            \mathcal{U} \leftarrow \mathcal{U} \cup \hat{r}_{i,l}^k
819
               9:
                        else
820
              10:
                            Continue
                        end if
              11:
821
              12: end for
822
              13: Return: \rho_i^k = \frac{|\mathcal{U}|}{|[\hat{r}_{i,1}^k,...,\hat{r}_{i,L}^k]|}
823
824
```

a group of solutions $\{(\tilde{r}_i^g, \tilde{y}_i^g)\}_{g=1}^G$ for each query $x_i \in \mathcal{D}$, where G denotes the number of solutions in a group. For ease of description, we simplify the solution $(\tilde{r}_i^g, \tilde{y}_i^g)$ as a_i^g . Then, we can optimize the $\mathcal{M}_{\theta_{\text{new}}}$ by maximizing the GRPO objective. Notably, inspired by Yu et al. (2025) who use a token-level policy gradient loss to address the unhealthy increase in response length problem of the vanilla GRPO method, we employ an improved token-level GRPO objective function as:

$$\mathcal{J}_{GRPO}(\theta) = \mathbb{E}[x_i \in \mathcal{D}, \{a_i^g\}_{g=1}^G \sim \mathcal{M}_{\theta_{\text{ref}}}(\cdot | x_i)] \\
\frac{1}{\sum_{g=1}^G |a_i^g|} \sum_{g=1}^G \sum_{o=1}^{|a_i^g|} \left(\min\left(z_o(a_i^g | x_i) A_g, \text{clip}\left(z_o(a_i^g | x_i), 1 - \epsilon, 1 + \epsilon\right) A_g\right) - \gamma \mathbb{D}_{KL}\left(\mathcal{M}_{\theta_{\text{new}}} || \mathcal{M}_{\theta_{\text{ref}}}\right) \right), \tag{6}$$

$$z_o(a_i^g|x_i) = \frac{\mathcal{M}_{\theta_{\text{new}}}(a_{i,o}^g|x_i, a_{i,< o}^g)}{\mathcal{M}_{\theta_{\text{ref}}}(a_{i,o}^g|x_i, a_{i,< o}^g)},\tag{7}$$

where ϵ and γ are hyper-parameters set to 0.2 and 0.04, respectively, \mathbb{D}_{KL} is a KL penalty term, and A_g is the advantage computed as follows:

$$A_g = \frac{R_g - \text{mean}(\{R_1, R_2, \cdots, R_G\})}{\text{std}(\{R_1, R_2, \cdots, R_G\})},$$
(8)

where R_g denotes the outcome reward of g-th ($g \in [1, G]$) solution in the group. In the reasoning tasks that contain clear and verifiable answers, e.g., mathematical reasoning, the reward R_g mainly consists of two types of rewards:

- Accuracy reward $R^{accuracy}$: It evaluates whether the solution is correct, i.e., $\mathbb{I}(\tilde{y}_i^g, y_i) = 1$.
- **Format reward** R^{format} : It evaluates whether the defined tags are present in the final solution, *i.e.*, '<think>' and '

 i.e., '<think>' and '
 '<answer>' and '</answer>' tags.

Reward of H-GRPO. To alleviate the overthinking problem in the vanilla GRPO, we propose H-GRPO, which improves the GRPO by leveraging our *InDiv* scores as an extra reward. Specifically, for each solution in a group, we calculate its *InDiv* score as Eq. 5, and further normalize the score as:

$$R_g^{InDiv} = \frac{\mathbf{InDiv}^g}{\max(\{\mathbf{InDiv}^1, \cdots, \mathbf{InDiv}^G\})},$$
(9)

where $max(\cdot)$ denotes the maximum InDiv scores in a group. The final reward for H-GRPO is the combination of all rewards:

$$R_g^{all} = R_g^{accuracy} + R_g^{format} + \omega \cdot R_g^{InDiv}, \tag{10} \label{eq:10}$$

where ω is a coefficient to control the weight of R_q^{InDiv} , which is set to 0.2 in our experiments.

Algorithm 2 Self-improvement Training with HSIR

864

902903904

905

906

907

908

909

910

911

912

913

914

915 916

917

```
865
                  1: Input: base model \mathcal{M}_{base}, seed data \mathcal{S} = \{(x_i, r_i, y_i)\}_{i=1}^N, unlabeled dataset \mathcal{D} = \{(x_i, y_i)\}_{i=1}^M
866
                 2: Output: self-improved model \mathcal{M}_T
                 3: Fine-tune \mathcal{M}_{base} on \mathcal{S} to get initial reasoning model \mathcal{M}_0
868
                 4: for t \in [1, T] do
                           Obtain K solutions \{(\hat{r}_i^k, \hat{y}_i^k)\}_{k=1}^K generated by \mathcal{M}_{t-1} for each x_i \in \mathcal{D}
                 6:
870
                           Verify the correctness of self-generated solutions, and split them into two groups:
                 7:
871
                                \hat{\mathcal{D}}_{t}^{correct} = \{(x_{i}, \hat{r}_{i}^{k}, \hat{y}_{i}^{k}) | x_{i} \in \mathcal{D}; k \in [1, K]; \mathbb{I}(\hat{y}_{i}^{k}, y_{i}) = 1\} 
 \hat{\mathcal{D}}_{t}^{wrong} = \{(x_{i}, \hat{r}_{i}^{k}, \hat{y}_{i}^{k}) | x_{i} \in \mathcal{D}; k \in [1, K]; \mathbb{I}(\hat{y}_{i}^{k}, y_{i}) = 0\} 
872
873
                 8:
874
                            # VeriExit sampling process
                 9:
875
                           for Each sample (x_i, \hat{r}_i^k, \hat{y}_i^k) \in \hat{\mathcal{D}}_t^{wrong} do
                10:
876
                                for Each reasoning step \hat{r}_{i,l}^k \in [\hat{r}_{i,1}^k, \dots, \hat{r}_{i,L}^k] do
                11:
877
                                     if \hat{r}_{i,l}^k arrives at y_i then
                12:
878
                                         13:
879
                14:
                                         Feed the new query into \mathcal{M}_{t-1} to resample J answers \{\hat{y}_i^{k,j}\}_{j=1}^J
880
                15:
                16:
                                     else
                17:
                                         Continue
                                     end if
                18:
883
                19:
                                end for
884
                20:
                            end for
885
                           Build a new dataset \hat{\mathcal{D}}_t^{VeriExit} = \{(x_i, \hat{r}_{i,1...l}^k, \hat{y}_i^{k,j}) \mid \mathbb{I}(\hat{y}_i^{k,j}, y_i) = 1; k \in [1, K]; j \in [1, J]\}
                21:
                           Merge \hat{\mathcal{D}}_t^{VeriExit} into \hat{\mathcal{D}}_t^{correct} to obtain the dataset with all correct solutions
                22:
887
                23:
888
                24:
                             # Calculate the InDiv score
                           for Each query x_i \in \hat{\mathcal{D}}_t^{correct} do
889
                25:
                                Calculate the InDiv score InDiv<sup>k</sup> for each correct solution (\hat{r}_i^k, \hat{y}_i^k)_{k=1}^K as Eq. 5
                26:
890
                                Get the regularized \mathit{InDiv}_i^k = \frac{\mathbf{InDiv}_i^k - \max(\{\mathbf{InDiv}_i^1, \cdots, \mathbf{InDiv}_i^K\})}{\mathrm{std}(\{\mathbf{InDiv}_i^1, \cdots, \mathbf{InDiv}_i^K\})} for k-th solution
891
                27:
892
                                Update the dataset \hat{\mathcal{D}}_t^{correct} by filtering the undesired solution with \overline{\mathbf{InDiv}}_i^k < \tau
                28:
893
                29:
894
                30:
                31:
895
                           # SFT Training
                           Fine-tune \mathcal{M}_{base} with \mathcal{L}_{SFT} in Eq. 1 on the combination of \mathcal{S} and \hat{\mathcal{D}}_{t}^{correct}
                32:
                33:
                           # or DPO Training
897
                           Obtain a pairwise dataset \hat{\mathcal{D}}_t^{\text{pairs}} = \{(x_i, \hat{r}_i^{k_w}, \hat{y}_i^{k_w}), (x_i, \hat{r}_i^{k_l}, \hat{y}_i^{k_l}) \mid x_i \in \hat{\mathcal{D}}_t; k_w, k_l \in [1, K)\}, where (\hat{r}_i^{k_w}, \hat{y}_i^{k_w}) \sim \hat{\mathcal{D}}_t^{correct} and (\hat{r}_i^{k_l}, \hat{y}_i^{k_l}) \sim \hat{\mathcal{D}}_t^{wrong}
899
                            Continually train \mathcal{M}_{t-1} with \mathcal{L}_{\text{DPO+NLL}} in Eq. 2 on \hat{\mathcal{D}}_t^{\text{pairs}}
                35:
900
                36: end for
901
```

More analyses of Table 4. We present the results of Qwen2.5 models trained with different GRPO methods in Table 4. Some readers may wonder why the output length of the tuned model significantly decreases after GRPO training, compared to the initial SFT, *i.e.*, from 1,540 to 987 average tokens. We conjecture that there are two main reasons. On the one hand, the token-level loss function used in the improved GRPO algorithm (Eq. 6) can effectively alleviate the abnormal increase in response length (Yu et al., 2025). On the other hand, according to the public experimental record of ms-swift, during the GRPO training, the solution length initially decreases and then increases, indicating that the model changed its reasoning manner. Since the GRPO training is computationally expensive, we do not train the models for very long steps. That is, the training of our models may still be in the stage of decreasing output length. Despite all this, our H-GRPO can further reduce the inference overhead, while achieving better reasoning performance. These results can prove the superiority of H-GRPO, and we believe that it has great potential to perform better after longer GRPO training.

¹https://swift.readthedocs.io/en/latest/BestPractices/GRPO.html#grpo-training-experiment-record ²https://github.com/modelscope/ms-swift

D MORE EXPERIMENTAL DETAILS

D.1 DATASET DETAILS

In this work, we conduct the main experiments on the MedQA and GSM8K tasks. Here, we introduce the descriptions of these tasks and their evaluated datasets. Specifically,

- MedQA: MedQA (Jin et al., 2021) is a challenging medical question-answering task, which consists of questions and corresponding 4-option or 5-option answers in the style of the US Medical License Exam (USMLE). Since the original MedQA training set does not contain the reasoning trajectories, we prompt the DeepSeek-R1 to generate the reasoning data. The prompt is shown in Table 5, and Table 6 presents a case of distilled reasoning trajectories. For in-distribution evaluation, we follow prior works (Chen et al., 2023) and use the 4-option MedQA with 1,273 samples as the test set.
- **GSM8K**: GSM8K (Cobbe et al., 2021) is a widely-used mathematical reasoning task, which contains 8.5K high-quality grade school math word problems. Since the original GSM8K does not contain any reasoning trajectories, we alternatively use the GSM8K version³ released by CAMEL (Li et al., 2023). Notably, the dataset is also distilled from the DeepSeek-R1. Table 7 presents a case of distilled GSM8K training data. For in-distribution evaluation, we directly use the original GSM8K with 1.32K test samples.
- Medbullets: Medbullets (Chen et al., 2025) comprises 308 difficult USMLE Step 2&3 style medical questions collected from real-world conversations. Each question is paired with a case description and multiple answer choices. In our work, we use the 4-option Medbullets as the OOD test set of LRMs trained on MedQA.
- MATH: MATH (Hendrycks et al., 2021) comprises 500 problems spanning five core mathematical
 domains: algebra, combinatorics, geometry, number theory, and precalculus. Each problem is
 designed to test the multi-step and complex reasoning abilities of LRMs, requiring more than
 simple calculation or knowledge recall. In our experiments, we use this challenging dataset to
 evaluate the OOD performance of models trained on GSM8K.

D.2 TRAINING AND EVALUATION DETAILS

In the SFT phase, we fine-tune each model with a batch size of 8 and a peak learning rate of 1e-5, except 2e-6 for 7B/8B models. In the DPO phase, the batch size is set to 16, and the peak learning rates for smaller (1.5B/3B) models and larger(7B/8B) models are set to 1e-6 and 2e-7, respectively. In both training settings, the warm-up ratio is 0.1, and the maximum tokenizer length is 2,048. All models are trained with full parameter fine-tuning for 3 epochs. We use the popular LLaMA-Factory⁴ as the training codebase.

For the RLVR training, we implement the GRPO with the open-r1⁵ framework. The rollout size for each query is set to 8, the learning rate is set to 1e-6, and the batch size is set to 14. Since the GRPO training is time-consuming and costly, we only train the models for 300 steps. For the implementation of our H-GRPO, the coefficient ω to control the weight of R^{InDiv} is set to 0.2. All experiments are conducted on 8 NVIDIA A800 (80GB) GPUs.

During evaluation, we sample the model responses by using the greedy decoding method, *i.e.*, temperature set to 0 for reproducibility. The maximum output length is set 4,096. All models are evaluated in a zero-shot manner. We extract the final answer from the model response according to the given format. If no valid answer is extracted, the response is considered incorrect.

Table 5: **Prompts used for distilling reasoning paths** for MedQA from DeepSeek-R1.

System Prompt:

³https://huggingface.co/datasets/camel-ai/gsm8k_distilled

⁴https://github.com/hiyouga/LLaMA-Factory

⁵https://github.com/huggingface/open-r1

You are a helpful medical AI Assistant. Your task is to select one correct answer from A to D for the medical question. Please respond in the following format: $\#Explanation:\n[explanation]\n\m]$

User Prompt:

For the following medical question, select one correct answer from A to D.

Question: {Question}

Options:

A. {Option-A}

B. {Option-B}

C. {Option-C}

D. {Option-D}

Table 6: An example of seed data in MedQA distilled from DeepSeek-R1.

System Prompt:

You are a helpful medical AI Assistant that provides well-reasoned and detailed responses for medical questions. You first think about the reasoning process as an internal monologue and then provide the user with the concise and accurate answer. Respond in the following format: <think>\n...\n

Instruction:

For the following medical question, select one correct answer from A to D.

Question: A 55-year-old woman comes to the physician because of fevers for 2 weeks. She works as a nurse and recently returned from a charity work trip to India, where she worked in a medically-underserved rural community. A tuberculin skin test 3 months ago prior to her trip showed an induration of 3 mm. Physical examination is unremarkable. An x-ray of the chest shows right-sided hilar lymphadenopathy. A sputum culture shows acid-fast bacilli. Which of the following immunologic processes most likely occurred first?

Options:

- A. Formation of a nodular tubercle in the lung
- B. Replication of bacteria within alveolar macrophages
- C. Production of interferon-gamma by T-helper cells
- D. Migration of T-helper cells to the lungs

Please respond in the following format: '##Explanation:\n[explanation]\n\n##Answer:\n[option]'

Output:

<think> #reasoning trajectory

Okay, let's tackle this question step by step. The patient is a 55-year-old nurse who recently returned from India and has symptoms of TB. Let's break down the information given.

She had a tuberculin skin test (TST) three months ago with 3 mm induration, which is considered negative (since the cutoff for healthcare workers is usually 10 mm). Now, she has a positive sputum culture for acid-fast bacilli, which points to active tuberculosis. The chest X-ray shows hilar lymphadenopathy, which is common in primary TB, especially in the right side.

The question is asking about the first immunologic process that occurred. The options are about the sequence of immune responses when someone is infected with Mycobacterium tuberculosis.

So, the initial step when TB bacteria enter the body is inhalation. The bacilli reach the alveoli, where they are taken up by alveolar macrophages. However, M. tuberculosis has mechanisms to survive inside these macrophages. The bacteria can replicate within the macrophages until the macrophages are overwhelmed and lyse, releasing more bacteria. This replication within macrophages is an early step before the immune system starts to respond more effectively.

After that, the adaptive immune response kicks in. T-helper cells (CD4+ T cells) migrate to the site of infection. These cells release cytokines like interferon-gamma, which activate macrophages to become more effective at killing the bacteria. The activated macrophages form granulomas (tubercles) to contain the infection. The formation of the granuloma is part of the body's attempt to wall off the infection.

So the sequence would be: bacteria enter macrophages and replicate (B), then T-cells migrate (D), produce interferon-gamma (C), leading to granuloma formation (A).

The question asks which happened first. So the first step after exposure would be the replication within macrophages. The TST was negative before her trip, suggesting she wasn't previously infected. Now she's positive, so this is a new infection. The initial infection's first immunologic process is the bacteria replicating in macrophages before the immune response starts.

</think>

 <answer> #answer

##Explanation:

The patient's recent exposure and subsequent active tuberculosis indicate a new infection. The initial immunologic process begins when Mycobacterium tuberculosis is inhaled and phagocytosed by alveolar macrophages. The bacteria survive and replicate within these macrophages (option B), which occurs before the adaptive immune response. Subsequent steps include T-helper cell migration to the lungs (D), interferon-gamma production (C), and granuloma formation (A). The replication within macrophages is the earliest event in the immunologic cascade.

##Answer:

B

</answer>

Table 7: An example of seed data in GSM8K distilled from DeepSeek-R1.

System Prompt:

You are a helpful AI Assistant that provides well-reasoned and detailed responses for the math word problems. You first think about the reasoning process as an internal monologue and then provide the user with the concise and accurate answer. The final answer should be provided in the \boxed{}.

Instruction:

John starts at an elevation of 400 feet. He travels downward at a rate of 10 feet down per minute for 5 minutes. What is his elevation now?

Output:

<think> #reasoning trajectory

Okay, so I need to figure out John's elevation after he travels downward for 5 minutes at a rate of 10 feet per minute. Let me start by understanding the problem. John starts at 400 feet, and he's moving downward. Moving downward would decrease his elevation, right? So, he's going from higher elevation to lower.

First, I should note his starting point: 400 feet. Then, he's going down at 10 feet per minute for 5 minutes. So, I think I can calculate the total distance he descended by multiplying the rate by the time. That makes sense because if you go 10 feet every minute, then in 5 minutes, that's 10 * 5 = 50 feet. Wait, yes, so he would have gone down 50 feet in total.

Since he's moving downward, his new elevation will be the original elevation minus that descent. So, subtracting 50 feet from 400 feet. Let me do that calculation: 400 - 50. That gives 350 feet. Hmm, so his elevation after 5 minutes should be 350 feet.

Wait, let me check that again. Multiplication first: 10 feet per minute times 5 minutes is indeed 50 feet. Then subtract that from the starting elevation. Yeah, 400 minus 50 is 350. I think that's correct. Maybe I should visualize this. Imagine he's on a hill at 400 feet. Each minute, he goes down 10 feet, so after 1 minute, he's at 390, then 380, 370, 360, 350 after 5 minutes. Each step is 10 feet lower. So yes, five steps would be 50 feet total.

Is there any chance I might have mixed up the direction? Like thinking he's ascending? But the problem clearly states he's traveling downward. So subtracting is the right operation. Okay, I feel confident that this is right. Let me just go through the steps again to confirm. Starting elevation 400. Rate: 10 ft/min downward. Time: 5 min. Total descent is rate * time = 10*5=50 ft. New elevation: 400 - 50 = 350 ft. Yeah, that checks out. I think that's the correct answer.

</think>

#answer

John starts at an elevation of **400 feet**.

To find his elevation after descending:

- 1. **Calculate total descent**: Rate = 10 feet/minute × 5 minutes = **50 feet**.
- 2. **Subtract the descent from the starting elevation**: 400 feet 50 feet = **350 feet**.
- **Verification**: Each minute, his elevation decreases by 10 feet:
- After 1 minute: 400 10 = 390 feet
- After 2 minutes: 390 10 = 380 feet
- Continuing this pattern for 5 minutes leads to **350 feet**.
- **Final Answer**:

\boxed{350}

E More Experiments and Analyses

E.1 ANALYSIS OF VeriExit SAMPLING STRATEGY

Figure 5: **Left**: Coverage of verifiable successful solutions. The x-axis denotes the number of verifiable successful solutions in a query. **Middle**: Distribution of the number of output tokens of correct self-generated solutions. **Right**: Distribution of *InDiv* scores of correct self-generated solutions. In the middle and right sub-figures, we use the initial SFT Qwen2.5-1.5B models.

In HSIR, we propose VeriExit to efficiently collect more successful solutions for difficult queries by reusing partial correct reasoning steps of previous failed solutions. Here, to verify the reliability of this idea, we calculate the coverage of these verifiable successful solutions, which contain intermediate reasoning steps that arrived at the correct answer. Figure 5 (Left) illustrates the coverage of these solutions in the most difficult queries of MedQA. Specifically, we refer to the queries that did not obtain any correct solutions during the K-times (K=10 in our experiments) self-generation processes as the most difficult ones. The x-axis denotes the number of verifiable successful solutions in a query, and the y-axis denotes the proportion of queries. As seen, among all Qwen2.5 family models, nearly 70% of these most difficult queries have at least one verifiable successful solution, and more than 10% of these queries have 4 or more verifiable successful solutions. We believe that

in the simpler queries, there is a larger proportion of previous failed solutions that can be converted into verifiable successful solutions by *VeriExit*. These results can demonstrate the reliability of our *VeriExit* Sampling Strategy.

Moreover, we compare the solutions resampled by *VeriExit* and the previous correct solutions. In practice, we measure the length and *InDiv* scores of solutions on the difficult MedQA queries (obtaining four correct solutions during the previous self-generation) generated by initial SFT Qwen2.5-1.5B models, and visualize the distributions in Figure 5 (**Middle** and **Right**). As seen, compared to the previous correct solutions generated by the vanilla sampling strategy, our *VeriExit* can sample shorter and concise reasoning trajectories. We attribute it to the self-truncation and early-exit processes of *VeriExit*, which can skip the redundant and repetitive reasoning steps. This can also explain why the "-w/ VeriExit" method in Table 3 can improve reasoning efficiency against the ReST^{EM}.

E.2 ANALYSIS OF *InDiv* SCORE

Figure 6: **Left**: Distribution of eigenvalues of hidden representation in the concise and overthinking solutions. **Middle**: t-SNE visualizations of hidden representations in the concise solution. **Right**: t-SNE visualizations of hidden representations in the overthinking solution. Here, we use the initial SFT Qwen2.5-1.5B as the test model. The concise and overthinking solutions are from Table 10.

Here, we investigate the correlation between our InDiv scores and the semantic entropy of hidden representations \mathbf{H} . First, we introduce the **Matrix-Based Entropy** (Giraldo et al., 2014; Skean et al., 2023; 2025), which is a famous information-theoretic quantity. For the cross-covariance matrix $\Sigma_i^k = \mathbf{H}_i^{k^{\top}} \cdot \mathbf{J}_d \cdot \mathbf{H}_i^k$ and its eigenvalues $\{\lambda_{i,u}^k\}_{u=1}^m$, the matrix-based entropy of order $\alpha > 0$ is:

$$\mathbf{S}_{\alpha,i}^{k}(\mathbf{H}_{i}^{k}) = \frac{1}{1-\alpha} \log \left[\sum_{u=1}^{m} \left(\frac{\lambda_{i,u}^{k}}{\text{Tr}(\mathbf{H}_{i}^{k})} \right)^{\alpha} \right], \tag{11}$$

where $\text{Tr}(\cdot)$ denotes the trace operator obtained from the sum of α -power of each eigenvalues (Horn & Johnson, 2012). When $\alpha \to 1$, the entropy $\mathbf{S}^k_{\alpha,i}(\mathbf{H}^k_i)$ corresponds to the Shannon's entropy of hidden representations. Intuitively, if the eigenvalues of \mathbf{H} are in a uniform distribution, the entropy will be higher, indicating that \mathbf{H} contains more diverse features (Skean et al., 2025). Conversely, if the eigenvalues collapse to a small area, the entropy will be smaller. To verify it, we compare the distributions of eigenvalues between the concise and overthinking solutions identified by our InDiv scores. Specifically, we directly use the solutions in Table 10, and illustrate their eigenvalue distributions in Figure 6 (Left). It can be found that the eigenvalue distributions of the concise solution are more uniform than those of the overthinking solution. To have a closer look, we directly visualize the hidden representations of both solutions. Figure 6 (Middle) and (Right) show the t-SNE results of the concise and overthinking solutions, respectively. We can observe that the distribution of hidden representations of the concise solution is more diverse and uniform, while that of the overthinking solution is more similar and concentrated. Overall, these results indicate that a higher InDiv score usually refers to a higher semantic entropy of hidden representations, which effectively proves why our InDiv score can help identify overthinking solutions.

E.3 IMPACT OF SEED DATA

As mentioned in §2.1, we first fine-tune the base model \mathcal{M}_{base} on the seed dataset \mathcal{S} to make it have basic long-CoT reasoning abilities. Intuitively, high-quality seed data can improve the basic reasoning ability of LRMs and boost the effectiveness of self-improvement training. To verify it,

Table 8: **Performance comparison of the seed data distilled from different LRMs**. We evaluate the Qwen2.5 models fine-tuned with different self-improvement SFT methods for one iteration.

Methods	Train	Qwen2.5-1.5B		Qwen2.5-3B		Qwen2.5-7B		Overall		
	Avg.	MedQA	Tokens	MedQA	Tokens	MedQA	Tokens	Accuracy	Tokens	
Seed data distilled from DeepSeek-R1										
SFT-Initial	1.0K	38.10	1,779	49.02	1,644	62.45	1,428	49.86	1,617	
Seed data dis	tilled from	QWQ-32B								
SFT-Initial	1.0K	40.22	1,677	50.04	1,569	61.12	1,607	50.46	1,618	
SFT-Oracle	8.0K	43.99	1,781	60.25	1,451	69.13	1,419	$57.79_{\uparrow 7.33}$	$1,550_{\downarrow 4.2\%}$	
STaR	- 4.9K -	39.35	1,576	49.25	1,500	61.82	1,541	$\bar{50.14}_{\downarrow 0.32}$	$1,5\overline{39}_{\downarrow 4.9\%}$	
$ReST^{EM}$	37.9K	44.38	1,431	54.77	1,307	65.43	1,401	54.86 _{14.40}	$1,380_{\downarrow 14.7\%}$	
HSIR-SFT	29.6K	46.58	1,167	55.70	1,192	66.93	1,266	56.40 _{↑5.94}	1,208 125.3%	

we replace the seed data used in our main experiments with that distilled from QWQ-32B⁶. Taking the MedQA as an example, we fine-tune the Qwen2.5 family models on the seed data distilled from QWQ-32B and self-generated pseudo-labeled data for one iteration, using different self-improvement training methods. Table 8 reports the average accuracy and number of output tokens of all tuned models, from which we find that: (1) Compared to the seed data distilled from DeepSeek-R1, the seed data generated by QWQ-32B performs differently in different models. For the smaller models (i.e., Qwen2.5-1.5B), the seed data from QWQ-32B brings more performance gains. Conversely, for the larger 7B model, it leads to worse results. We conjecture that there is a large capacity gap between Qwen2.5-1.5B and DeepSeek-R1, while using a smaller QWQ-32B as a teacher can achieve a smooth knowledge transfer (Mirzadeh et al., 2020; Zhang et al., 2023). However, for the Qwen2.5-7B, a smaller teacher model might struggle to provide sufficient knowledge, thus leading to suboptimal performance. (2) When using the seed data generated by QWQ-32B, our HSIR can still outperform the other baseline methods and achieve better reasoning performance and efficiency. These results demonstrate the universality and robustness of HSIR.

E.4 PARAMETER ANALYSIS

The threshold τ , used to filter the overthinking solutions, is an important hyperparameter in our HSIR. In this study, we analyze its influence by evaluating the performance with different τ values, spanning from -0.75 to 0.75. Figure 7 illustrates the comparative results of Qwen2.5-3B models trained with HSIR-SFT on MedQA and GSM8K. For reference, we also report the results without data filtering as the baseline. As seen, compared to the baseline, HSIR with suitable τ can generally achieve better performance, showing the effectiveness of using InDiv scores to filter overthinking solutions. However, too large τ (i.e., 0.75) would lead to performance degradation, as many helpful training samples might be ignored. HSIR performs best with $\tau = -0.5$, thus leaving as our default experimental settings.

Figure 7: **Analysis of threshold** τ . "Baseline" means that we do not filter the overthinking solutions, *i.e.*, removing the InDiv in HSIR.

E.5 EFFICIENCY OF HSIR

Some readers may worry about the efficiency of our HSIR method, as it requires additional forward passes of LRMs. Actually, in our *VeriExit* sampling phase, we only sample the final answer without regenerating the intermediate reasoning trajectories, which is much faster than simply allocating more trials to failed queries. In our preliminary experiments, we found that the *VeriExit* sampling processes

⁶https://qwenlm.github.io/blog/qwq-32b-preview/

can be finished in an hour on 8 GPUs, which is about 1/4 of the time of reasoning trajectories generation. On the other hand, to obtain the *InDiv* scores, the query and its solution are fed into the model in a teacher-forcing manner, which only requires one forward pass and will not induce much latency. Moreover, during the H-GRPO training, we can reuse the hidden representation obtained by the reference model, without any extra forward pass. The computation of *InDiv* score is also marginal, as it only requires simple vector operations, which can be finished in a few seconds. More importantly, owing to the data filtering process of HSIR, the training budget can be significantly reduced, *e.g.*, from 53.6K to 38.8K during fine-tuning Qwen2.5-1.5B at the last iteration. In general, the latency of HSIR is tolerable against its performance gains.

E.6 CASE STUDY

To have a closer look, we provide some cases in this part. Specifically, Table 9 shows the comparison of self-generated solutions between before and after using our *VeriExit* sampling strategy. We show the self-generated results of Qwen2.5-1.5B on the MedQA task. As seen, in the previous failed solutions, the model indeed arrived at the correct answer during intermediate reasoning steps, yet ultimately failed to produce the accurate outcome due to reasoning deviation. Conversely, by using our verify-then-exit strategy, we can convert it into a collect solution. Table 10 shows the comparison of *InDiv* scores between concise and overthinking self-generated solutions. Obviously, *InDiv* scores can reflect the redundancy and repetitiveness of reasoning steps generated by Qwen2.5-1.5B on the MedQA task. We observe that the overthinking solution indeed obtains a much lower *InDiv* score. These case studies support the intuition and soundness of our proposed methods.

Table 11 and Table 12 show the comparison of reasoning results of Qwen2.5-7B models before and after training using <code>HSIR</code> on MedQA and GSM8K test sets, respectively. It can be found that, with the help of <code>HSIR</code>, the model can reason more accurately and concisely, thus resulting in better performance. These case studies prove the effectiveness of <code>HSIR</code>.

Table 9: An example of converting the failed solution into the correct one via the *VeriExit* strategy. In this case from MedQA, the ground-truth answer is "D". As seen, the failed solution arrived at the correct answer during intermediate reasoning steps (highlighted in green), but diverted into an incorrect one due to overly backtracking (highlighted in red).

Previous Failed Solution:

<think>

Okay, let's try to work through this question.

.

So, if the options include allopurinol (option C), then that's the answer. But the options given here are D. Xanthine oxidase inhibitor. Wait, but xanthine oxidase inhibitors are allopurinol and other drugs like febuxostat. So, allopurinol is a xanthine oxidase inhibitor. So, if the answer is C, then allopurinol. But the question is asking for the long-term treatment. So, if the options don't include allopurinol, then perhaps the answer is D. Wait, I think the answer is C. Allopurinol. So, the correct answer would be C.

. . .

##Answer:

C

</answer>

New Solution Generated by *VeriExit*:

<think>

Okay, let's try to work through this question.

.

So, if the options include allopurinol (option C), then that's the answer. But the options given here are D. Xanthine oxidase inhibitor. Wait, but xanthine oxidase inhibitors are allopurinol and other drugs like febuxostat. So, allopurinol is a xanthine oxidase inhibitor. So, if the answer is C, then allopurinol. But the question is asking for the long-term treatment. So, if the options don't include allopurinol, then perhaps the answer is D.

Table 10: **Comparison of** *InDiv* **scores between concise and overthinking solutions in a single query**. Here, we use the case of MedQA. Compared to the concise solution, the overthinking solution contains more repetitive reasoning steps (highlighted in orange).

Concise Solution:

<think>

Okay, let's try to figure this out. So the question is about malnutrition in children and which amino acid is needed for them. The symptoms described are Kwashiorkor, which is protein deficiency. The options are A. Alanine, B. Tyrosine, C. Arginine, D. Methionine.

First, I remember that kwashiorkor is typically due to inadequate protein intake. The main issue is the lack of essential amino acids, especially the ones that the body can't make on its own. The nine essential amino acids are tryptophan, threonine, histidine, lysine, isoleucine, leucine, methionine, phenylalanine, and valine.

Looking at the options, Methionine (D) is one of those essential amino acids. Alanine (A) is a non-essential one, so maybe not needed here. Tyrosine (B) is an amino that's non-essential and involved in protein synthesis but not for this presentation. Arginine (C) is also a non-essential one and more associated with metabolic pathways like making creatine or proteins, not really for this symptom. So the answer should be D. Methionine.

</think>

• • •

</answer>

InDiv Score: 5.99

Overthinking Solution:

<think>

Okay, let's tackle this question.

So the answer would be D. Methionine. Wait, but I thought Tyrosine is an essential amino acid ...

So perhaps the answer is D. Methionine, because in some cases, the body uses up all the available EAA's . . .

So the answer is D. Methionine. Because in kwashiorkor, without proper nutrition, the body cannot utilize other amino acids. So supplementing with Methionine would help...

Therefore, the correct answer is D. Methionine. Because even if the diet has methionine, the body can't utilize it. . . .

Alternatively, maybe the answer is Tyrosine. But I think not. So the answer is D.

1341 </think>

1343 </answer>

InDiv Score: 5.01

Table 11: Comparison of MedQA reasoning results of Qwen2.5-7B models before and after training using HSIR. The ground-truth answer of this case is "D".

Instruction:

For the following medical question, select one correct answer from A to D.

Question: A 25-year-old African American man presents to his primary care provider for routine blood work. He is a well-known case of sickle cell disease treated with hydroxyurea and tramadol as needed for pain. He does not smoke or drink alcohol. The patient asks if his disease can adversely affect his kidneys because his friend was recently diagnosed with end-stage renal failure. Which of the following is a renal complication of sickle cell disease?

Options:

- A. Membranous glomerulonephritis
- B. Proximal renal tubular acidosis
- C. Impaired urine diluting ability
- D. Impaired urine concentration ability

Output of SFT-Intial Model:

<think>

Okay, let's tackle this question. So, the patient is a 25-year-old African American man with sickle cell disease. He's on hydroxyurea and tramadol for pain. His friend has end-stage renal failure, and he's asking if his disease can affect his kidneys. The question is about a renal complication of sickle cell disease. The options are A to D.

First, I need to recall the common renal complications associated with sickle cell disease. Sickle cell disease can lead to various kidney issues. Let me think. The kidneys are affected because of the hemolytic anemia and the high levels of hemoglobin S, which can cause microangiopathic hemolysis.

Membranous glomerulonephritis (option A) is a type of nephrotic syndrome. I remember that in sickle cell disease, membranous nephropathy is a known complication. It's an immune complex-mediated process, leading to proteinuria and nephrotic syndrome. So that's a possibility.

Proximal renal tubular acidosis (option B) is a genetic disorder where the kidneys can't excrete acids properly. But I don't think that's linked to sickle cell. PRSA is more about a defect in the renal tubules' ability to handle acid, which isn't directly related to sickle cell's hemolysis.

Impaired urine diluting ability (option C) would be nephrogenic diabetes insipidus. That's when the kidneys can't concentrate urine due to a defect in response to ADH. Again, not directly linked to sickle cell. Maybe from other causes like certain drugs or genetic disorders.

Impaired urine concentration ability (option D) is nephrogenic diabetes insipidus as well. So this is the same as option C. So D is not the right answer here.

So the options are between A and C. Wait, the question is about a renal complication. Sickle cell can cause various issues. Let me think again. The patient's friend had end-stage renal failure, which could be due to chronic kidney disease from sickle cell. The options given are specific conditions.

Membranous glomerulonephritis (A) is a type of glomerular disease leading to nephrotic syndrome. In sickle cell, membranous nephropathy is a recognized complication, often presenting with nephrotic syndrome. So A is a possible answer.

Impaired urine diluting ability (C) would be nephrogenic DI, which is unrelated. So the correct answer here is A. Membranous glomerulonephritis.

<answer>

1400 ...

1401 ##Answer:

</answer>

Output of HSIR-DPO Model:

<think>

Okay, let's tackle this question. So, the patient is a 25-year-old African American man with sickle cell disease. He's on hydroxyurea and tramadol for pain. His friend had end-stage renal failure, and the patient wants to know if his disease can affect his kidneys. The options are about different renal complications.

First, I need to recall the common renal issues associated with sickle cell disease. Sickle cell disease can cause various complications, including kidney problems. I remember that sickle cell can lead to different glomerular diseases. For example, sickle cell nephropathy, which is a type of glomerulonephritis. But looking at the options, option A is membranous glomerulonephritis. I think that's more commonly associated with conditions like lupus or hepatitis B, but maybe I'm mixing up. Alternatively, maybe it's a rare complication.

Wait, another possibility is that sickle cell can cause tubular issues. The options include proximal renal tubular acidosis (option B). I know that sickle cell can lead to Fanconi syndrome, which is a form of proximal tubular dysfunction. Fanconi syndrome includes glucosuria, aminoaciduria, etc. But option B is specifically proximal RTA, which is a different condition. Proximal RTA is when the proximal tubule can't reabsorb properly, leading to loss of nutrients and acidosis. But I'm not sure if that's directly linked to sickle cell.

Alternatively, the question might be pointing towards glomerular issues. The options include impaired urine diluting ability (option C) and impaired concentration ability (option D). I remember that in sickle cell disease, there's a condition called hypernephrosis, which is an increase in kidney size due to fluid overload. This can lead to dilutional hyponatremia because the kidneys can't concentrate urine properly. So, impaired concentration ability (option D) would be the issue here. But wait, the options are C and D as separate. Wait, impaired urine diluting ability—so the kidneys can't excrete concentrated urine. Impaired concentration ability would be the opposite, right? So in sickle cell, the kidneys might have trouble concentrating urine, leading to dilutional hyponatremia. So option D would be the correct answer here.

But wait, another thought: sickle cell can cause glomerulonephritis leading to proteinuria, hematuria, etc. But the options don't mention that. The options given are specific. So, if the question is about a renal complication, maybe the answer is D.

</think>

<answer>

##Answer:

D

</answer>

Table 12: Comparison of GSM8K reasoning results of Qwen2.5-7B models before and after training using HSIR. The ground-truth answer of this case is "20".

Instruction:

Toby is reading a book that is 45 pages long. It averages 200 words a page. Toby can read at a rate of 300 words per minute. He has to be at the airport in 60 minutes and plans to leave as soon as he finishes the book. It takes 10 minutes to get to the airport. How many minutes early will Toby be?

Output of SFT-Intial Model:

<think>

Okay, let's see. So the problem is about Toby reading a book and figuring out how early he'll be at the airport. Hmm. Let me start by understanding each part step by step.

First, the book is 45 pages long. Each page averages 200 words. So, to find the total number of words in the book, I need to multiply the number of pages by the average words per page. That would be 45 pages times 200 words per page. Let me calculate that. 45 times 200... 45 times 200 is 9,000 words. So the book has 9,000 words in total.

Next, Toby's reading rate is 300 words per minute. So, to find out how long it takes him to read the entire book, I need to divide the total number of words by his reading rate. That's 9,000 words divided by 300 words per minute. Let me do that division. 9,000 divided by 300. Hmm, 300 times 30 is 9,000. So that's 30 minutes. So Toby will take 30 minutes to read the book.

But wait, he has to be at the airport in 60 minutes, and it takes him 10 minutes to get there. So the total time he needs to leave his house is 60 minutes (time to be at the airport) plus 10 minutes (travel time) which is 70 minutes. But he only needs 30 minutes to read the book. So if he starts reading now, he'll finish in 30 minutes. Then he has 70 - 30 = 40 minutes left before he needs to leave. Therefore, he'll be 40 minutes early.

Wait, but let me check again to make sure I didn't miss anything. Let me recap: Total words in the book: 45 pages * 200 words/page = 9,000 words. Reading time: 9,000 words / 300 words per minute = 30 minutes. Time needed to get to the airport: 10 minutes. Total time before he needs to leave: 60 minutes.

So time he has after finishing reading: 60 + 10 - 30 = 40 minutes. Therefore, he's 40 minutes early. That seems right. I don't think I made any mistakes here. The key steps were calculating the total words, then the reading time, and then subtracting that from the total time he has before he needs to leave. Yeah, that makes sense.

</think>

. . .

 Final Answer: \boxed{40}

Output of HSIR-DPO Model:

<think>

Okay, let's see. Toby has a 45-page book to read. Each page averages 200 words. He reads at 300 words per minute. He has 60 minutes before he needs to be at the airport, and it takes him 10 minutes to get there. The question is how many minutes early he'll be if he reads the whole book and leaves right after. Hmm, let me break this down step by step.

First, I need to figure out how many words are in the entire book. Since there are 45 pages and each page has 200 words, I can multiply those two numbers. So 45 pages times 200 words per page. Let me calculate that. 45 times 200... 45 times 200 is 9,000 words. So the book has 9,000 words total.

Next, Toby reads at a rate of 300 words per minute. To find out how long it takes him to read the entire book, I need to divide the total number of words by his reading rate. That's 9,000 words divided by 300 words per minute. Let me do that division. $9,000 \div 300$. Hmm, 300 times 30 is 9,000. So that's 30 minutes. So reading the book takes him 30 minutes.

But he has to get to the airport, which takes 10 minutes. So the total time from when he starts reading until he leaves for the airport is the time reading plus the time to get there. That's 30 minutes + 10 minutes = 40 minutes. Wait, but he has 60 minutes before he needs to be at the airport. So if he finishes reading and leaves 40 minutes later, he'll have 60 - 40 = 20 minutes left. That means he'll be 20 minutes early.

Let me just verify each step again. Pages times words per page: 45*200=9000. Reading time: 9000/300=30. Time to airport:10. Total time:30+10=40. Time left:60-40=20. Yep, that checks out. So the answer is 20 minutes early.

</think>

. . .

Final Answer: \boxed{20}