
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BETTER, FASTER: HARNESSING SELF-IMPROVEMENT
IN LARGE REASONING MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

While large reasoning models (LRMs) trained with explicit reasoning trajecto-
ries have demonstrated impressive performance, obtaining high-quality trajecto-
ries is often costly and time-consuming. Hence, recent literature introduces a
self-improvement paradigm that enables LRMs to improve themselves by self-
generating reasoning trajectories as training data without external supervision.
However, we find that this method often falls short in complex reasoning tasks
and even leads to model collapse. Through a series of preliminary analyses, we
reveal two shortcomings of self-improvement in LRMs: (1) data imbalance, where
most training samples are simple, but the challenging yet crucial samples are
scarce; (2) overthinking, where many undesired samples with redundant and repet-
itive reasoning steps are used for self-training. To this end, we propose HSIR,
which effectively Harnesses Self-Improvement in large Reasoning models via two
simple-yet-effective approaches. Specifically, HSIR introduces a verify-then-exit
sampling strategy to mitigate data imbalance by efficiently collecting more accurate
solutions for difficult queries, and designs an Intrinsic Diversity score to quantify
overthinking and filter out the undesired solutions. We apply HSIR to various
post-training paradigms, among which we further propose H-GRPO, an enhanced
GRPO algorithm that leverages the intrinsic diversity as an external reward to
encourage concise and diverse reasoning via reinforcement learning. Extensive re-
sults show that HSIR not only effectively enhances the reasoning performance, i.e.,
bringing up to +10.9% average performance gains, but also significantly improves
the reasoning efficiency by reducing up to 42.4% relative inference overhead.

1 INTRODUCTION

Recently, post-training the large language models (LLMs) with explicit long chain-of-thought (CoT)
reasoning trajectories has garnered significant attention (Li et al., 2025; Plaat et al., 2024; Xu et al.,
2025). Owing to the scaling inference compute of long-CoT reasoning, large reasoning models
(LRMs) can unleash their reasoning capabilities (e.g., backtracking and self-correction) and achieve
better performance in various reasoning tasks, such as mathematical reasoning (Shao et al., 2024)
and medical reasoning (Chen et al., 2024c). However, the performance of LRMs highly relies on
high-quality intermediate reasoning trajectories (Yang et al., 2025c), which are usually costly and
time-consuming to obtain (Peng et al., 2025). In response to this issue, the “self-improvement”
paradigm has emerged, i.e., models iteratively improve themselves by using the self-generated
reasoning trajectories as training data, thereby reducing their dependence on external supervision.

In the context of LRMs, several self-improvement approaches have been proposed to achieve better
reasoning performance, such as STaR (Zelikman et al., 2022) and ReSTEM (Singh et al., 2023). For
instance, ReSTEM first prompts the model to generate multiple reasoning paths for each question,
then filters out the incorrect solutions, and finally fine-tunes the model using its own correct outputs.
These methods can boost LRMs’ performance on conventional reasoning tasks without external
supervision. However, in our preliminary experiments (Figure 1), we found that they often fall
short in complex reasoning tasks, e.g., medical question-answering that requires the integration
of specialized knowledge with detailed patient histories and comorbidities (Huang et al., 2025b).
More seriously, they might suffer from model collapse, where models’ performance degrades due
to iterative self-training on model-generated data (Bertrand et al., 2024; Gerstgrasser et al., 2024).
Through a series of analyses (§2.2), we reveal that these methods have two major shortcomings:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

❶ data imbalance, i.e., most training samples are relatively simple, whereas challenging yet crucial
samples are scarce; ❷ overthinking, i.e., many undesired solutions with redundant and repetitive
reasoning steps are used for self-training, hindering models’ accurate and concise reasoning.

+12.8

-2.12

Figure 1: Performance comparison of Qwen2.5-
1.5B models using different self-improvement post-
training methods on the MedQA (Jin et al., 2021).

Several prior studies also recognize these short-
comings and attempt to address them. Specifi-
cally, an intuitive way to mitigate data imbalance
is to collect more correct solutions for difficult
queries. To achieve it, Tong et al. (2024) pro-
pose to allocate more trials to difficult queries
and Ding et al. (2025) leverage additional sig-
nals (e.g., answers) to guide the reasoning of
LRMs. Although effective, they mainly rely on
increased inference overhead to obtain new so-
lutions, while overlooking the potential value of
previously failed solutions. On the other hand,
to alleviate overthinking, the key lies in quantify-
ing the redundancy and repetitiveness of reason-
ing steps. Most existing works involve design-
ing length-oriented metrics and simply regard
shorter correct solutions as superior (Team et al.,
2025; Munkhbat et al., 2025). While achieving
remarkable reasoning efficiency, overly emphasizing length reduction may hinder models’ deep
reasoning and lead to performance degradation (Dai et al., 2025). Thus, there arises a question: can
we explore a more effective self-improvement training method to make LRMs both better and faster?

To achieve this goal, we propose HSIR, which effectively Harnesses Self-Improvement in large
Reasoning models via two simple-yet-effective approaches. First, to collect more correct responses
for difficult queries, HSIR introduces a verify-then-exit (denoted as VeriExit) sampling strategy,
which verifies the correctness of intermediate reasoning steps in the previously failed solution and
self-truncates the reasoning once the current step arrives at the ground-truth answer. The motivation
of VeriExit is that, within the failed solution, LRMs may have arrived at the correct answer during
intermediate reasoning steps, yet ultimately failed to produce the accurate outcome due to reasoning
deviation. Second, motivated by the intuition that a high similarity among intermediate reasoning steps
often signals redundant or repetitive thinking, HSIR designs an Intrinsic Diversity score (denoted as
InDiv) to quantify overthinking using the internal states of LRMs. In practice, InDiv performs an
attention-aware eigenvalue analysis on the hidden representations of intermediate reasoning steps,
where those with smaller eigenvalues are repetitive. Overall, by efficiently collecting more correct
solutions and filtering out undesired overthinking solutions, HSIR can ensure the diversity and
conciseness of training data, thus achieving better reasoning performance and efficiency.

We apply our HSIR to two iterative post-training paradigms: supervised fine-tuning (SFT) and
preference learning. Extensive results on seven cutting-edge LLMs and two representative reasoning
tasks, i.e., medical reasoning and mathematical reasoning, show that our HSIR not only outperforms
the other counterparts by a clear margin, but also effectively improves the reasoning efficiency.
Furthermore, we expand our methods to the currently popular Reinforcement Learning from Veri-
fiable Rewards (RLVR) training paradigm (Guo et al., 2025), and propose H-GRPO, an enhanced
GRPO (Shao et al., 2024) algorithm that leverages the InDiv scores as an external reward to smoothly
alleviate the overthinking. More comparative results prove the superiority of H-GRPO. Additionally,
more in-depth analyses prove the effectiveness of HSIR’s important components, and indicate that
HSIR brings better model generalization. To summarize, our contributions are as follows:

• We reveal two major shortcomings of self-improvement in LRMs, and propose HSIR that leverages
two simple-yet-effective approaches to alleviate them and make LRMs both better and faster.

• HSIR can be adopted to various post-training paradigms. Among which, we further expand it to
the popular RLVR training paradigm, and propose H-GRPO that improves the GRPO by using our
proposed InDiv scores as an external reward to encourage LRMs’ diverse and concise reasoning.

• Extensive results show that HSIR can consistently and significantly improve the reasoning perfor-
mance and efficiency for a diversity of LLMs, bringing up to +10.9% average performance gains
and reducing up to 42.4% relative inference overhead against the initial reasoning models.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RETHINKING SELF-IMPROVEMENT TRAINING IN LRMS

2.1 PRELIMINARIES

Considering that we have a base LLM Mbase, a small amount of seed data S = {(xi, ri, yi)}Ni=1 and
a larger unlabeled dataset D = {(xi, yi)}Mi=1 (M ≫ N), where xi is the query, ri = [ri,1, . . . , ri,L]
is the corresponding reasoning trajectory with L intermediate steps, and yi is the ground-truth answer.
We first fine-tune Mbase on S to make it have basic long-CoT reasoning ability, and denote the tuned
model as M0. The goal of self-improvement is to enhance the reasoning performance of M0 by
iteratively self-training using its own solutions on D over T cycles. Specifically, let Mt denote the
model at the t-th iteration (t ∈ [1, T]), the self-improvement training involves the following steps:

Self-generation. At t-th iteration, for each query xi ∈ D, we enforce the previous model Mt−1

to generate multiple reasoning trajectories and their corresponding answers {(r̂ki , ŷki)}Kk=1, where
k ∈ [1, K] and K denotes the total sampling times for each query. By doing so, we can obtain the
self-generated dataset D̂t = {(xi, r̂

k
i , ŷ

k
i) |xi ∈ D; k ∈ [1, K]}.

Self-training. The self-training process differs across various post-training paradigms. Specifically,
during SFT training, the ground-truth answer yi is used to verify the correctness of candidate solutions
{(rki , ŷki)}Kk=1, where only correct solutions with I(ŷi, yi) = 1 are filtered to form the pseudo-labeled
dataset D̂correct

t = {(xi, r̂
k
i , ŷ

k
i) |xi ∈ D; k ∈ [1, K]; I(ŷki , yi) = 1}. Notably, to alleviate the

model collapse problem, we follow the prior studies (Alemohammad et al., 2024; Wang et al., 2024)
and use the combination of the original clean seed dataset S and the pseudo-labeled dataset D̂correct

t

as the final training dataset Dt = S ∪D̂correct
t . Considering that continually fine-tuning Mt−1 would

lead to overfitting, we fine-tune the base model Mbase on Dt to obtain the new model Mt, following
previous practice (Zelikman et al., 2022; Singh et al., 2023). In particular, we optimize Mt using the
standard negative log likelihood (NLL) loss function:

LSFT = EDt

[
− log

Mθ(r̂
k
i , ŷ

k
i |xi)

|r̂ki |+ |ŷki |

]
, (1)

where Mθ initialized with Mbase denotes the current tuned model that will become next model Mt.

For the implementation of preference learning, we utilize a representative and effective algorithm,
i.e., Direct Preference Optimization (DPO) (Rafailov et al., 2023). Specifically, for each query xi ∈
D̂t, we split the candidate solutions into two sets: winner {(xi, r̂

kw
i , ŷkw

i) | I(ŷkw
i , yi) = 1} and loser

{(xi, r̂
kl
i , ŷkl

i) | I(ŷkl
i , yi) = 0}. Then, each winning solution and a randomly-selected losing solution

are paired to construct the preference training set D̂pairs
t = {(xi, r̂

kw
i , ŷkw

i), (xi, r̂
kl
i , ŷkl

i) |xi ∈
D̂t; kw, kl ∈ [1, K)}. Lastly, we can obtain the new model Mt by continually optimizing Mt−1

on D̂pairs
t . Inspired by Pang et al. (2024), we employ an enhanced DPO algorithm that combines

the standard DPO loss function and NLL loss function on winning solutions to ensure the training
stability, which is formulated as follows:

LDPO+NLL = LDPO(r̂
kw
i , ŷkw

i , r̂kl
i , ŷkl

i |xi) + αnll · LNLL(r̂
kw
i , ŷkw

i |xi)

= E D̂pairs
t

[
− log σ

(
f(r̂kw

i , ŷkw
i |xi)− f(r̂kl

i , ŷkl
i |xi)

)
− αnll ·

logMθ(r̂
kw
i , ŷkw

i |xi)

|r̂kw
i |+ |ŷkw

i |

]
, (2)

where σ is the sigmoid function, f(·|xi) = β log Mθ(·|xi)
Mt−1(·|xi)

, Mθ is the policy model initialized with
Mt−1, αnll and β are coefficients that are empirically set to 0.5 and 0.1, respectively. Finally, we
can obtain our next model Mt, which will be used to generate data for the subsequent iteration.

2.2 EMPIRICAL ANALYSES

Settings. We conduct preliminary experiments by fine-tuning Qwen2.5-1.5B/3B/7B instruct mod-
els (Yang et al., 2024) on a challenging medical reasoning dataset, i.e., MedQA (Jin et al., 2021).
Specifically, since the original MedQA training set does not contain any reasoning trajectories, we
prompt the proprietary DeepSeek-R1 to generate the seed reasoning data. By filtering out incorrect
solutions, we ultimately obtained a new training set containing 9.3K reasoning samples. From this

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

0.53

0.30

0.14
0.03

0.47

0.33

0.17

0.03

0.40

0.330.21
0.06

Level-1 Level-2

Level-3

Level-4

Level-1

Level-2

Level-3Level-4

Level-1

Level-2

Level-3

Level-4

Metric for data selection Qwen2.5-1.5B Qwen2.5-3B Qwen2.5-7B

39.04 1501
38.67

36.76

41.32

1305

1688

1331

Figure 2: Left: Distribution of the number of correct solutions in a single query. Middle: Distribution
of self-generated training samples with different difficulty levels, where level-1 means the simplest
and level-4 means the most difficult. Right: Performance comparison between tuned Qwen2.5-1.5B
models using different data selection methods. Here, all experiments are based on the MedQA task.

set, we randomly selected 1K as seed data S, while treating the remaining samples as unlabeled
data D (i.e., without using their reasoning trajectories). For the implementation of self-improvement
training, the number of iterations T is set to 1, and the total sampling times K is set to 10. Notably,
T = 1 means that we perform the self-improvement training for one iteration, i.e., from M0 to M1.

Findings. Through extensive analyses on the self-generated training samples, we found that there
are two major problems: data imbalance and overthinking. Specifically,

❶ Data Imbalance: Figure 2 (Left) illustrates the distribution of the number of correct solutions in a
query. As seen, there is a positive correlation between the number of correct solutions and model
capabilities, where stronger models (e.g., Qwen2.5-7B) can collect more accurate solutions for each
query. However, for the difficult queries that are proven to be more crucial for further training (Liu
et al., 2024), these models still struggle to collect sufficient correct solutions, thus leading to data
imbalance. Specifically, although for the powerful Qwen2.5-7B, there are more than 500 queries that
did not obtain any correct solutions. To have a close look, based on the number of correct solutions
in a query, we evenly split the queries into four levels, where level-1 refers to the simplest queries
obtaining the most correct solutions, and level-4 refers to the most difficult queries. Figure 2 (Middle)
shows the distribution of self-generated training samples at different levels, indicating that most
training samples are relatively simple, whereas challenging yet crucial samples are scarce.

❷ Overthinking: As a common issue in LRMs, overthinking usually leads to inefficient reasoning
and suboptimal performance (Chen et al., 2024d). The key to alleviating overthinking lies in
quantifying it via a fair and accurate metric. Motivated by the intuition that a high similarity
among intermediate reasoning steps often indicates redundant or repetitive thinking, we introduce a
reasoning diversity metric to measure the diversity of reasoning steps. As shown in Algorithm 1,
for each reasoning trajectory r̂ki , we first convert all intermediate reasoning steps [r̂ki,1, . . . , r̂

k
i,L] into

sentence embeddings using the BGE-m3 model (Chen et al., 2024b), and then calculate the cosine
distance between r̂ki,l and its nearest neighbor in the current subset. The reasoning steps with cosine
distance below the threshold τsim are regarded as repetitive and are filtered out. The τsim is empirically
set to 0.85 in our work. The metric ρ is defined as the ratio of unfiltered steps to all steps:

ρki =
|U(r̂ki)|

|[r̂ki,1, . . . , r̂ki,L]|
, ρki ∈ (0, 1] (3)

where U(·) denotes the set of unfiltered steps. To verify the effectiveness of this metric, we conduct
comparative experiments by using the solution with the highest and lowest ρki for each query as
self-training data, respectively. For reference, we also employ a random and a length-penalty method
as baselines, i.e., using a randomly selected solution and the shortest solution for self-training,
respectively. Figure 2 (Right) shows the comparative results of Qwen2.5-1.5B models on the MedQA
test set, using the average accuracy and number of output tokens as metrics. As seen, compared to
using random solutions, self-training on solutions with low ρ scores indeed results in more inference
overhead and lower accuracy, while using the solutions with high ρ scores can effectively alleviate this
problem. Notably, although self-training on shorter solutions is also beneficial to improve reasoning
efficiency, it would lead to performance degradation. These results suggest that self-training with
redundant and repetitive reasoning steps undermines the accuracy and conciseness of models’
reasoning, which is difficult to resolve effectively through length-penalty methods alone.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3 HARNESS SELF-IMPROVEMENT FOR BETTER AND FASTER REASONING

3.1 MOTIVATION AND INTUITION OF HSIR

To alleviate the above problems, we propose HSIR that harnesses self-improvement in LRMs via two
simple-yet-effective approaches. First, to address data imbalance, we build upon the insight (Yang
et al., 2025b; Dai et al., 2025) that failed solutions are not entirely incorrect but often contain valuable,
partially correct reasoning steps before deviating. Instead of discarding these outputs, we introduce
VeriExit, a novel trajectory recycling strategy. It efficiently salvages valid initial reasoning from
failed attempts to generate correct solutions for difficult queries. This approach provides a significant
efficiency gain over costly resampling from scratch. Second, to combat overthinking, our empirical
analysis in §2.2 validates that reasoning diversity is a potent signal, yet the preliminary metric (Eq. 3)
relies on costly external models. We propose a more elegant solution by harnessing the dense semantic
information already present in a model’s internal states. We introduce the Intrinsic Diversity (InDiv)
score, an efficient metric that measures diversity directly from the models’ hidden representations.
This makes InDiv an entirely intrinsic measure that eliminates external dependencies and can be
computed with minimal to zero overhead. Figure 3 illustrates the overview of our HSIR.

Generate

Verify
VeriExit

InDiv Scoring Filter

or SFT

DPO

Next iteration model

(a)Pipeline of HSIR

Unlabeled
dataset

Select

… …

…</think>(b) VeriExit Sampling

Sampling

…

(c) InDiv Scoring

Hidden embedding

SFT dataset

DPO dataset

Intrinsic Diversity
</think>

…
Exit

Merge

Sampling

Figure 3: (a) Pipeline of self-improvement training with HSIR. After generating candidate solutions
for each query, we first employ our (b) VeriExit sampling strategy to collect more accurate solutions
for difficult queries, and then quantify the overthinking of correct solutions via our (c) InDiv metric.
Lastly, the accurate, diverse, and concise solutions are selected for iterative SFT/DPO training.

3.2 IMPORTANT COMPONENTS OF HSIR

Verify-then-Exit Decoding Strategy. After obtaining the self-generated dataset D̂t, we select
the incorrect solutions from it to form a new set D̂wrong

t = {(xi, r̂
k
i , ŷ

k
i) |xi ∈ D; I(ŷki , yi) = 0}.

For each r̂ki ∈ D̂wrong
t , we verify the correctness of intermediate reasoning steps [r̂ki,1, . . . , r̂

k
i,L]

by determining whether the r̂ki,l (l ∈ [1, L]) arrives at the ground-truth answer yi1, e.g., explicitly
mentioning “answer is {yi}”. Once r̂ki,l arrives at yi, we truncate the subsequent reasoning steps
and insert the exit prompt “\n\n</think>\n<answer>\n” at the truncated position. That is,
we can obtain a new query “xi + [r̂ki,1, . . . , r̂

k
i,l] + \n\n</think>\n<answer>\n”, which is

then fed into Mt−1 to stop further reasoning and produce answers. Moreover, to ensure that Mt−1

can output the correct answers, we sample J times and collect the correct solutions D̂V eriExit
t =

{(xi, r̂
k
i,1...l, ŷ

k,j
i) | I(ŷk,ji , yi) = 1; k ∈ [1,K]; j ∈ [1, J]}. Notably, J < K, and such a sampling

process will not lead to much inference overhead, compared to resampling the complete reasoning
trajectories. Lastly, the D̂V eriExit

t is merged into the original correct solutions D̂correct
t . If the

total number of correct solutions for xi is larger than K, we randomly sample K ones to maintain
consistency between the training budgets of our method and vanilla self-improvement methods.

Intrinsic Diversity Score. To quantify overthinking, we leverage the LLMs’ internal states to
measure the semantic diversity of reasoning steps. Specifically, for each correct solution (xi, r̂

k
i , ŷ

k
i),

we obtain its hidden representation Hk
i ∈ Rd×m at the middle layer of Mt−1, where d is the

dimension of hidden states and m is the number of all tokens in the solution. We choose the middle

1There are several ways to achieve this, e.g., text-matching, NLI-based and prompt-based methods. For sim-
plicity and efficiency, we use the text-matching method by default. More analyses can be found in Appendix C.1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

layer as it encodes richer and more useful semantic information (Skean et al., 2025; Azaria & Mitchell,
2023; Liu et al., 2019). Inspired by the fact that eigenvalues of the covariance matrix can capture
the divergence and correlation between different embeddings (Chen et al., 2024a), we calculate the
eigenvalues of the cross-covariance for Hk

i to measure the diversity of intermediate reasoning steps:

Σk
i = Hk

i

⊤ · Jd ·Hk
i ; Eigk

i =
1

m
log det(Σk

i) =
1

m

m∑
u=1

log(λk
i,u), (4)

where Jd = Id − 1
d1d×d is the centering matrix, Id ∈ Rd is the identity matrix, 1d×d ∈ Rd×d is the

all-one matrix, det(·) means the determinant of matrix, and {λk
i,u}mu=1 denotes the singular values

of matrix Σk
i . Furthermore, considering that some important tokens with higher attention weights

might contribute more to the reasoning process, we enhance the above method via an attention-
aware weighting mechanism. In practice, following the implementation of Su et al. (2024), let
Attenk

i,u ∈ (0, 1) denote the normalized maximum self-attention weight for u-th token (u ∈ [1,m])
among all self-attention heads, we can obtain our final reasoning diversity metric, denoted as Intrinsic
Diversity score (InDiv in short) to distinguish it from Eq. 3, which is formulated as follows:

InDivk
i =

m∑
u=1

[
Attenk

i,u · log(λk
i,u)

]
;

m∑
u=1

Attenk
i,u = 1. (5)

When the reasoning steps are repetitive and have similar semantics, the hidden representations will
be highly correlated, and their semantic entropy and InDiv scores will be small (more analyses are in
Appendix C.2). After calculating the InDiv scores of all candidate correct solutions {(xi, r̂

k
i , ŷ

k
i)}Kk=1

for xi, we filter the undesired ones with lower scores. Specifically, inspired by DeepSeek-r1 (Guo
et al., 2025), we regularize the scores as InDiv

k

i =
InDivk

i −mean({InDiv1
i ,··· ,InDivK

i })
std({InDiv1

i ,··· ,InDivK
i }) and filter the

solutions with scores below the threshold τ . Finally, we can obtain more accurate, diverse, and
concise reasoning data for effective self-training. The pseudo-code of HSIR is shown in Algorithm 2.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Tasks and Datasets. We mainly assess the effectiveness of HSIR on both medical reasoning and
mathematical reasoning tasks, using the MedQA (Jin et al., 2021) and GSM8K (Cobbe et al., 2021)
datasets, respectively. For MedQA, we follow the settings in §2.2, and use 1K reasoning data distilled
from DeepSeek-R1 as the seed data S and the other 8.3K data as the unlabeled dataset D. Notably, the
impact of different seed data can be found in Appendix C.4. For GSM8K, we use the 6.9K reasoning
dataset released by CAMEL (Li et al., 2023). Similarly, 1K reasoning samples are randomly selected
to form S , while the remaining samples form D. More specifically, the reasoning template is similar
to that in DeepSeek-R1, i.e., the reasoning process and answer are enclosed with <think></think> and
<answer></answer> tags. Some training data examples are provided in Table 7 and 8. For evaluation,
we report the zero-shot results on the original test sets of MedQA and GSM8K using the average
accuracy and number of generated tokens as metrics. Since all models are evaluated on the same
hardware, the number of generated tokens can reflect the wall-clock inference latency.

Training Details. We conduct main experiments using Qwen2.5-1.5B/3B/7B instruct models.
To verify the generality of HSIR, we also evaluate it on another four instruct LLMs, including
Qwen3-1.7B (Yang et al., 2025a), Phi-3.5-mini (Abdin et al., 2024), Mistral-7B (Jiang
et al., 2023), and LLaMA3-8B (Dubey et al., 2024). During the implementation of HSIR, the
sampling times K and J are set to 10 and 5, respectively. The sampling temperature is 1.0, and the
maximum output length is 2,048. The filter threshold τ is set to -0.5. For the post-training of Qwen2.5
models, the self-improvement iteration T is set to 3, but for the other LLMs, it is set to 1 due to limited
computational resources. During inference, we use greedy decoding with a temperature of 0 for
reproducibility. The maximum output length for all models is set to 4,096. More dataset and training
details are shown in Appendix B, and the efficiency analysis of HSIR is shown in Appendix C.7.

Baselines. To verify the superiority of HSIR, we compare it with various training-based baselines:

• SFT-Initial: Standard fine-tuning Mbase on the seed data S to obtain the initial SFT model M0.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison between Qwen2.5 family models using different training
methods on MedQA and GSM8K. “|Train|” denotes the average number of training samples among
all models and tasks, while “Overall” denotes the average accuracy and number of output tokens.

Methods |Train| Qwen2.5-1.5B Qwen2.5-3B Qwen2.5-7B Overall
Avg. MedQA GSM8K MedQA GSM8K MedQA GSM8K Accuracy Tokens

SFT-Initial 1.0K 38.10 63.99 49.02 77.18 62.45 83.93 62.45 1,536
SFT-Oracle 8.1K 46.58 71.57 58.68 84.31 73.99 87.79 70.49↑8.04 1,392↓9.4%

(a) Iterative Self-improvement SFT Training
RFT 132.2K 42.42 71.19 54.60 83.55 64.89 87.87 67.42↑4.97 1292↓15.9%
ReGenesis 127.2K 44.46 66.26 50.67 79.91 62.22 89.99 65.59↑3.13 363
STaR

Iteration 1 5.7K 35.98 69.75 49.25 81.96 61.19 87.72 64.31↑1.86 1,379↓10.2%
Iteration 2 6.1K 37.78 70.96 50.82 81.27 61.04 88.48 65.06↑2.61 1,328↓13.5%
Iteration 3 6.4K 38.49 72.02 47.76 81.58 61.59 87.49 64.82↑2.37 1,288↓16.1%

ReSTEM

Iteration 1 44.7K 41.63 69.75 55.22 83.95 64.18 88.17 67.15↑4.70 1,268↓17.5%
Iteration 2 51.0K 42.81 74.45 56.25 85.13 65.28 90.22 69.02↑6.57 1,160↓24.5%
Iteration 3 53.6K 45.48 75.13 56.48 86.04 65.28 89.99 69.73↑7.28 1,114↓27.5%

HSIR-SFT (Ours)
Iteration 1 33.6K 45.33 71.72 55.70 86.13 67.32 88.78 69.16↑6.71 1,075↓30.0%
Iteration 2 36.6K 46.50 76.04 56.32 86.51 67.87 90.83 70.68↑8.23 950↓38.1%
Iteration 3 38.8K 46.58 76.88 57.58 86.81 68.74 91.36 71.33↑8.88 896↓41.7%

(b) Iterative Self-improvement DPO Training
IRPO

Iteration 1 22.7K 39.04 70.51 47.99 85.37 64.26 91.43 66.43↑3.98 1,359↓11.5%
Iteration 2 27.5K 41.08 75.51 49.33 86.66 63.24 91.95 67.96↑5.51 1,294↓15.7%
Iteration 3 20.5K 43.91 75.36 49.10 87.19 60.57 91.87 68.00↑5.55 1,271↓17.2%

HSIR-DPO (Ours)
Iteration 1 17.9K 48.31 75.36 55.77 87.04 67.32 91.36 70.86↑8.41 1,007↓34.4%
Iteration 2 23.6K 49.10 76.65 59.15 87.49 68.58 91.96 72.16↑9.70 921↓40.0%
Iteration 3 19.6K 50.90 78.09 60.64 87.53 70.46 92.49 73.35↑10.90 885↓42.4%

• SFT-Oracle: Standard fine-tuning Mbase on the combination of S and D with ground-truth
reasoning trajectories, which can be considered as the upper bound of SFT training.

• STaR (Zelikman et al., 2022): Sampling a solution (r̂i, ŷi) using greedy decoding for each query
xi ∈ D, where the correct solutions are used to iteratively fine-tune the models.

• ReSTEM (Singh et al., 2023): Extending STaR by sampling K solutions {(r̂ki , ŷki)}Kk=1 for each
query xi ∈ D, where all correct solutions are used for iterative self-improvement SFT training.

• RFT (Yuan et al., 2023): Similar to ReSTEM but not iterative. To maintain consistent training
budgets, we sample T ×K candidate solutions {(r̂ki , ŷki)}

T×K
k=1 for each query xi ∈ D.

• ReGenesis (Peng et al., 2025): Prompting Mbase to self-synthesize reasoning paths by converting
general reasoning guidelines into task-specific ones, which are used for once self-training. Since it
is not designed for long-CoT reasoning, we do not compare its reasoning efficiency.

• IRPO (Pang et al., 2024): Sampling K solutions for each query, where both correct and incorrect
solutions are paired to construct the preference data, allowing for iterative DPO training.

For all baselines, we keep a fixed data synthesis budget. Moreover, since our goal is to propose a
self-improvement training method, we do not compare HSIR with inference-time methods in the
main experiments. More comparisons with inference-time methods are shown in Appendix C.9.

4.2 MAIN RESULTS

HSIR outperforms the other baseline methods across all post-training settings. Table 1 reports
the comparative results (%) of Qwen2.5 family models. As seen, self-improvement training on the
relatively simple GSM8K task performs better against the challenging MedQA task, confirming
that self-improvement methods fall short in complex reasoning tasks. More specifically, during
SFT on MedQA, STaR struggles to enhance the LRMs’ reasoning performance, and even leads to
performance degradation, e.g., from 38.10% to 35.98% in Qwen2.5-1.5B. By sampling more diverse
solutions, RFT and ReSTEM alleviate this problem, indicating the importance of self-training with
diverse reasoning data. While in the DPO phase, the effectiveness of self-improvement is more

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison between the other models using different self-improvement SFT
methods on MedQA and GSM8K. Here, we perform the self-improvement training for one iteration.

Qwen3-1.7B Phi-3.5-mini Mistral-7B LLaMA3-8B Overall
Methods MedQA GSM8K MedQA GSM8K MedQA GSM8K MedQA GSM8K Accuracy Tokens

SFT-Initial 51.61 87.03 66.14 82.56 55.93 64.59 64.57 79.98 69.05 1,540
SFT-Oracle 55.77 87.72 74.07 87.95 70.15 79.08 73.76 86.73 76.90↑7.85 1,383↓10.2%
STaR 52.87 86.96 65.99 86.28 53.57 68.54 59.63 80.59 69.30↑0.25 1,442↓6.3%
ReSTEM 54.67 88.61 67.64 87.86 58.13 72.71 67.79 81.20 72.33↑3.28 1,365↓11.4%
HSIR-SFT 55.30 89.16 71.17 88.32 61.27 75.82 69.68 86.66 74.67↑5.62 1,195↓22.4%

dependent on the quality of self-generated data, as preference learning is more data-sensitive. By
selecting more diverse and concise self-generated data for training, our HSIR can effectively unleash
the reasoning cabilities of LRMs, thus achieving better performance against the other baselines.
For instance, our HSIR-DPO outperforms the vanilla iterative DPO method by a clear margin, i.e.,
bringing +5.35% average performance gains among all Qwen2.5 models after three iterations.

HSIR effectively improves the reasoning performance and efficiency of LRMs in both tasks.
In addition to the reasoning performance, we also evaluate the reasoning efficiency of LRMs by
measuring the number of output tokens. From Table 1, it can be seen that nearly all self-improvement
methods reduce the average output tokens. We conjecture that models can sometimes generate concise
reasoning paths, which helps guide the efficient reasoning of models. Nevertheless, as shown in our
preliminary analysis (§2.2), self-training with overthinking solutions would damage this effect and
lead to suboptimal reasoning efficiency. Owing to our InDiv metric, we can filter these overthinking
solutions and effectively improve reasoning efficiency by reducing up to 42.4% output tokens. These
results confirm the significance of alleviating overthinking and prove the effectiveness of HSIR.

HSIR brings consistent and significant performance gains among all model sizes and types.
Table 2 presents the results of other LRMs. Notably, due to limited computation resources, we only
perform the SFT training using STaR, ReSTEM , and our HSIR for one iteration. As seen, HSIR
continues to outperform the other baseline methods across all models. Specifically, in LLaMA3-8B,
compared to powerful ReSTEM , HSIR achieves +1.89% and +5.46% performance gains for MedQA
and GSM8K, respectively. Overall, HSIR brings +5.62% average performance gains and reduces
22.4% output tokens against the initial SFT models, showing its universality and superiority.

4.3 MORE ANALYSES

Table 3: Ablation study on VeriExit and InDiv.

Method MedQA GSM8K
Accuracy Tokens Accuracy Tokens

SFT-Initial 38.10 1,779 63.99 1,666
STaR 35.98 1,651 69.75 1,377
ReSTEM 41.63 1,424 69.75 1,382

HSIR-SFT (All) 45.33 1,064 71.72 1,181
(a) Analysis of sampling strategy (without data filtering)
-w/ Answer-driven 41.63 1,421 69.29 1,433
-w/ VeriExit (Ours) 44.46 1,293 70.74 1,361
(b) Analysis of overthinking metric (without extra sampling)
-w/ Length-driven 42.36 1,321 70.66 1,266
-w/ InDiv (Ours) 42.66 1,260 71.34 1,256

Ablation Study. In this part, we validate the
important components of HSIR, i.e., VeriExit
sampling strategy and InDiv metric. Firstly,
for the analysis of sampling strategy, we ignore
the overthinking metric and do not perform the
data filtering. To verify the effectiveness of Ver-
iExit, we compare it with “-w Answer-driven”
that uses the ground-truth answer to guide mod-
els’ reasoning for collecting more correct solu-
tions (Ding et al., 2025). Similarly, for the anal-
ysis of overthinking metric, we do not use extra
sampling methods, and compare our InDiv with
“-w Length-driven” that leverages the length of
solutions as the metric. In practice, the candidate solutions with len(r̂ki)−mean({len(r̂1i),··· ,len(r̂Ki)})

std({len(r̂1i),··· ,len(r̂Ki)}) > τlen

are filtered, where len(r̂ki) denotes the length of r̂ki and τlen is the length threshold set to 0.5 in this ex-
periment. Table 3 reports the results of Qwen2.5-1.5B models after one iteration of self-improvement
SFT training. Compared to the full HSIR, removing VeriExit or InDiv results in performance degra-
dation, indicating their effectiveness. Moreover, our proposed methods consistently perform better
than their counterparts. For instance, VeriExit outperforms the “-w Answer-driven” by 2.14% average
performance gains. These comparative results demonstrate the superiority of VeriExit and InDiv.

Expand to GRPO Training. In addition to SFT and DPO training, reinforcement learning from
verifiable rewards via the GRPO (Shao et al., 2024) algorithm is also a popular and effective way to

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

enhance LRMs’ reasoning performance. Instead of explicitly supervising the reasoning trajectory,
GRPO enables LRMs to learn from free exploration via outcome rewards, e.g., binary accuracy
reward. Although effective, GRPO training also suffers from the overthinking problem. To this end,
we propose to improve the GRPO by leveraging our InDiv score as an extra reward, and denote this
method as H-GRPO. The implementation details of H-GRPO can be found in Appendix A. Intuitively,
by encouraging LRMs to generate diverse and concise reasoning paths, H-GRPO can effectively
alleviate overthinking and result in better performance. It is noteworthy that the calculation of InDiv
scores is fast and would not lead to much training latency. We apply our H-GRPO to reinforce the
M0 models using the D dataset, and report the results of Qwen2.5 family models in Table 4.

Table 4: Performance comparison between Qwen2.5 models using different GRPO algorithms.

Methods Qwen2.5-1.5B Qwen2.5-3B Qwen2.5-7B Overall
MedQA GSM8K MedQA GSM8K MedQA GSM8K Accuracy Tokens

GRPO 46.34 73.08 57.03 82.49 66.46 89.61 69.17 974
+ Long2Short 46.50 72.63 58.21 82.26 66.14 91.13 69.48↑0.31 668↓31.4%
+ CosFn 47.96 71.72 55.22 82.93 63.71 89.31 68.48↓0.69 966↓0.9%

H-GRPO (Ours) 48.15 74.60 58.98 83.09 68.03 91.43 70.71↑1.54 710↓27.1%

For comparison, we also employ two widely-used baseline methods: Long2Short (Team et al.,
2025) and CosFn (Yang et al., 2025c), which address overthinking by using length-oriented reward
functions. As seen, compared to the vanilla GRPO, all improved methods achieve better reasoning
efficiency, indicating the validity of extra rewards. However, both length-oriented methods would
cause a decrease in reasoning accuracy, e.g., 1.53% average performance drops in Qwen2.5-7B on
MedQA. This indicates that overly emphasizing length reduction might hinder LRMs’ deep reasoning
and lead to suboptimal results. Conversely, by optimizing the intermediate reasoning process, our
H-GRPO can smoothly reduce repetitive and redundant thinking and thus achieve better performance.

Evaluation on more reasoning benchmarks. To verify the generality of our HSIR, we additionally
evaluate it on more reasoning tasks. Specifically, we use the AI2 Reasoning Challenge’s challenge set
(ARC) (Clark et al., 2018) for scientific reasoning, CommonsenseQA (CSQA) (Talmor et al., 2019)
for commonsense reasoning, and StrategyQA (StraQA) (Geva et al., 2021) for multi-hop reasoning.
Similar to the settings in §4, DeepSeek-R1 is used to collect the seed data for each task. All data
and training details are provided in Appendix B. Table 5 shows the comparative results of Qwen2.5
models. As seen, our HSIR-SFT consistently outperforms the other counterparts by a clear margin.
More specifically, compared to the base model, HSIR-SFT brings +5.41% average performance
gains and reduces 23.3% average inference tokens. These results can prove the generality of HSIR.

Table 5: Comparison results on more reasoning benchmarks. Notably, we perform the self-
improvement SFT training for one iteration in this experiment.

Method Qwen2.5-1.5B Qwen2.5-3B Qwen2.5-7B Overall
ARC StraQA CSQA ARC StraQA CSQA ARC StraQA CSQA Accuracy Tokens

SFT-Initial 68.33 59.10 60.03 79.91 66.67 71.91 86.43 72.05 73.63 70.90 1298
SFT-Oracle 69.38 60.84 74.20 80.66 69.29 79.69 87.55 74.38 82.47 75.38↑4.48 1223↓5.8%
STaR 68.58 61.28 62.74 81.20 68.85 73.05 87.98 71.76 74.86 72.26↑1.36 1232↓5.1%
ReSTEM 69.78 62.30 68.14 83.26 68.59 77.64 89.18 72.36 79.19 74.49↑3.59 1148↓11.6%
HSIR-SFT 72.45 64.63 72.48 83.92 69.59 78.54 89.87 73.65 81.65 76.31↑5.41 996↓23.3%

Model Generalization. Here, we further investigate the ability of self-improved LRMs to generalize
to out-of-distribution (OOD) tasks. Specifically, for models trained on MedQA, we evaluate their
performance on the Medbullets (4-option) (Chen et al., 2025) and MedXpertQA (Zuo et al., 2025).
While for models trained on GSM8K, we evaluate on the MATH (Hendrycks et al., 2021) and
AMC2023 (Mathematical Association of America, 2023). We illustrate the OOD results of Qwen2.5-
7B models using different self-training methods in Figure 4. From it, we can observe that: (1)
Compared to iterative SFT, self-improvement with iterative DPO training can generally result in
better OOD performance, similar to the finding of Wu et al. (2025). This is consistent with the
wisdom that DPO can improve OOD generalization (Kirk et al., 2024). (2) Both HSIR-SFT and
HSIR-DPO can achieve consistently better OOD results against the baseline methods. We attribute it
to the VeriExit sampling strategy in HSIR as it can collect more diverse solutions for generalized
self-training. These results confirm our motivation to mitigate the data imbalance problem.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

MedQA Medbullets

0 1 2 3

MedQA MedXpertQA GSM8K MATH GSM8K AMC2023

0 1 2 3 0 1 2 3 0 1 2 3

STaR ReSTEM IRPO HSIR-SFT HSIR-DPO

Figure 4: Comparison of OOD results between Qwen2.5-7B models trained with different iterative
self-improvement methods. The x-axis denotes the index of self-improvement training iteration.

5 RELATED WORK

Recently, post-training the LLMs with explicit reasoning paths via SFT or preference learning
algorithms has shown remarkable potential to unleash their reasoning capabilities (Li et al., 2025;
Plaat et al., 2024; Wen et al., 2025). However, these methods are highly dependent on extensive,
high-quality reasoning trajectories. Notably, although the RLVR paradigm can also enhance models’
reasoning performance without relying on reasoning trajectories (Guo et al., 2025), cold-start training
with these trajectories can improve training efficiency and yield higher performance (Yang et al.,
2025c). This also underscores the importance of explicit reasoning trajectories. Besides obtaining
these trajectories from human experts, a common alternative way is to distill them from a larger
proprietary model, which is still costly and time-consuming (Peng et al., 2025).

To address the above issue, recent literature introduces the “self-improvement” paradigm, where
models improve themselves using self-generated data without any external supervision (Zelikman
et al., 2022; Yuan et al., 2023; Huang et al., 2023; Gulcehre et al., 2023; Wang et al., 2024; Hosseini
et al., 2024; Wu et al., 2025; Huang et al., 2025a; Song et al., 2025). However, we reveal that
these self-improvement methods usually suffer from data imbalance and overthinking (§2.2). Some
prior studies also recognize these problems and attempt to address them by allocating more trials to
difficult queries (Tong et al., 2024; Ding et al., 2025; Koh et al., 2025) or designing length-oriented
reward functions to penalize too long solutions (Team et al., 2025; Munkhbat et al., 2025). For
instance, AdaSTaR (Koh et al., 2025) proposes an adaptive sampling strategy to ensure data balance
by prioritizing under-trained examples. While effective, it overlooks the reuse of prior failed solutions
and requires a larger inference budget. Moreover, current length-oriented methods may lead to
performance degradation due to excessive emphasis on length reduction (Dai et al., 2025).

Different from prior studies, we propose two simple-yet-effective approaches to address these
problems efficiently. Specifically, instead of solely allocating more trials to difficult queries, our
proposed VeriExit strategy attempts to reuse partial correct reasoning steps from previous failed
solutions to improve the sampling efficiency. Notably, this technology bears some resemblance
to prior early-exit decoding methods (Rahmath P et al., 2024; Yang et al., 2025b), but the idea of
reusing previous failed solutions for efficient data synthesis is innovative. To alleviate overthinking,
we introduce the InDiv score that leverages the internal state of LRMs as a signal to encourage
models’ diverse and concise reasoning, rather than simply using a length penalty. To the best of
our knowledge, our InDiv is one of the first works that use the internal states of LRMs to guide the
concise reasoning during self-improvement training.

6 CONCLUSION

In this paper, we reveal and address the limitations of self-improvement post-training in LRMs.
Through a series of preliminary analyses, we find that the self-improvement of LRMs usually
suffers from data imbalance and overthinking in the complex reasoning scenarios. To address these
limitations, we propose HSIR, which effectively harnesses self-improvement in LRMs via two
simple-yet-effective approaches: VeriExit sampling strategy and InDiv metric. Extensive results show
that HSIR consistently and significantly improves the reasoning performance and efficiency across all
model sizes and architectures. Moreover, we also expand our method to the RLVR training paradigm
and propose H-GRPO that improves the GRPO by leveraging the InDiv scores as an extra reward.
Comparative results with two widely-used GRPO algorithms prove the superiority of H-GRPO.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS AND REPRODUCIBILITY STATEMENTS

Ethics. We take ethical considerations very seriously and strictly adhere to the ICLR Ethics
Policy. This paper proposes a new self-improvement training framework to improve the reasoning
performance and efficiency of LRMs. It aims to unleash LRMs’ internal reasoning capabilities,
instead of encouraging them to learn privacy knowledge that may cause an ethical problem. Moreover,
all base models, training and evaluation datasets used in this paper are publicly available and have
been widely adopted by researchers. Thus, we believe that this research will not pose ethical issues.

Reproducibility. In this paper, we discuss the detailed experimental setup, such as training hyper-
parameters and statistical descriptions in Appendix B. More importantly, we have provided our code
and data in the Supplementary Material to help reproduce our experimental results.

REFERENCES

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen Bach,
Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3 technical report: A highly
capable language model locally on your phone. arXiv preprint arXiv:2412.08905, 2024.

Sina Alemohammad, Josue Casco-Rodriguez, Lorenzo Luzi, Ahmed Imtiaz Humayun, Hossein
Babaei, Daniel LeJeune, Ali Siahkoohi, and Richard Baraniuk. Self-consuming generative models
go mad. In The Twelfth International Conference on Learning Representations, 2024.

Amos Azaria and Tom Mitchell. The internal state of an llm knows when it’s lying. In Findings of
the Association for Computational Linguistics: EMNLP 2023, 2023.

Quentin Bertrand, Joey Bose, Alexandre Duplessis, Marco Jiralerspong, and Gauthier Gidel. On the
stability of iterative retraining of generative models on their own data. In The Twelfth International
Conference on Learning Representations, 2024.

Chao Chen, Kai Liu, Ze Chen, Yi Gu, Yue Wu, Mingyuan Tao, Zhihang Fu, and Jieping Ye. Inside:
Llms’ internal states retain the power of hallucination detection. In The Twelfth International
Conference on Learning Representations, 2024a.

Hanjie Chen, Zhouxiang Fang, Yash Singla, and Mark Dredze. Benchmarking large language models
on answering and explaining challenging medical questions. In Proceedings of the 2025 Conference
of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human
Language Technologies, 2025.

Jianlyu Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. M3-embedding:
Multi-linguality, multi-functionality, multi-granularity text embeddings through self-knowledge
distillation. In Findings of the Association for Computational Linguistics ACL 2024, 2024b.

Junying Chen, Zhenyang Cai, Ke Ji, Xidong Wang, Wanlong Liu, Rongsheng Wang, Jianye Hou,
and Benyou Wang. Huatuogpt-o1, towards medical complex reasoning with llms. arXiv preprint
arXiv:2412.18925, 2024c.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=? on the overthinking of
o1-like llms. arXiv preprint arXiv:2412.21187, 2024d.

Zeming Chen, Alejandro Hernández Cano, Angelika Romanou, Antoine Bonnet, Kyle Matoba,
Francesco Salvi, Matteo Pagliardini, Simin Fan, Andreas Köpf, Amirkeivan Mohtashami,
et al. Meditron-70b: Scaling medical pretraining for large language models. arXiv preprint
arXiv:2311.16079, 2023.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Muzhi Dai, Chenxu Yang, and Qingyi Si. S-grpo: Early exit via reinforcement learning in reasoning
models. arXiv preprint arXiv:2505.07686, 2025.

Yiwen Ding, Zhiheng Xi, Wei He, Lizhuoyuan Lizhuoyuan, Yitao Zhai, Shi Xiaowei, Xunliang Cai,
Tao Gui, Qi Zhang, and Xuan-Jing Huang. Mitigating tail narrowing in llm self-improvement via
socratic-guided sampling. In Proceedings of the 2025 Conference of the Nations of the Americas
Chapter of the Association for Computational Linguistics: Human Language Technologies, 2025.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints arXiv: 2407.21783, 2024.

Matthias Gerstgrasser, Rylan Schaeffer, Apratim Dey, Rafael Rafailov, Tomasz Korbak, Henry
Sleight, Rajashree Agrawal, John Hughes, Dhruv Bhandarkar Pai, Andrey Gromov, et al. Is model
collapse inevitable? breaking the curse of recursion by accumulating real and synthetic data. In
First Conference on Language Modeling, 2024.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. Did aristotle
use a laptop? a question answering benchmark with implicit reasoning strategies. Transactions of
the Association for Computational Linguistics, 9:346–361, 2021.

Luis Gonzalo Sanchez Giraldo, Murali Rao, and Jose C Principe. Measures of entropy from data
using infinitely divisible kernels. IEEE Transactions on Information Theory, 2014.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, et al. Reinforced self-training
(rest) for language modeling. arXiv preprint arXiv:2308.08998, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. In
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 2), 2021.

Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.

Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron Courville, Alessandro Sordoni, and Rishabh
Agarwal. V-star: Training verifiers for self-taught reasoners. In First Conference on Language
Modeling, 2024.

Audrey Huang, Adam Block, Dylan J Foster, Dhruv Rohatgi, Cyril Zhang, Max Simchowitz, Jor-
dan T Ash, and Akshay Krishnamurthy. Self-improvement in language models: The sharpening
mechanism. In The Thirteenth International Conference on Learning Representations, 2025a.

Jiaxin Huang, Shixiang Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei Han. Large
language models can self-improve. In Proceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing, 2023.

Zhongzhen Huang, Gui Geng, Shengyi Hua, Zhen Huang, Haoyang Zou, Shaoting Zhang, Pengfei
Liu, and Xiaofan Zhang. O1 replication journey–part 3: Inference-time scaling for medical
reasoning. arXiv preprint arXiv:2501.06458, 2025b.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. What
disease does this patient have? a large-scale open domain question answering dataset from medical
exams. Applied Sciences, 2021.

Robert Kirk, Ishita Mediratta, Christoforos Nalmpantis, Jelena Luketina, Eric Hambro, Edward
Grefenstette, and Roberta Raileanu. Understanding the effects of rlhf on llm generalisation and
diversity. In The Twelfth International Conference on Learning Representations, 2024.

Woosung Koh, Wonbeen Oh, Jaein Jang, MinHyung Lee, Hyeongjin Kim, Ah Yeon Kim, Joonkee
Kim, Junghyun Lee, Taehyeon Kim, and Se-Young Yun. Adastar: Adaptive data sampling for
training self-taught reasoners. In Thirty-Ninth Conference on Neural Information Processing
Systems, 2025.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem.
Camel: Communicative agents for "mind" exploration of large language model society. In Thirty-
seventh Conference on Neural Information Processing Systems, 2023.

Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao, Haotian
Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, et al. From system 1 to system 2: A survey of
reasoning large language models. arXiv preprint arXiv:2502.17419, 2025.

Nelson F Liu, Matt Gardner, Yonatan Belinkov, Matthew E Peters, and Noah A Smith. Linguistic
knowledge and transferability of contextual representations. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, 2019.

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and Junxian He. What makes good data for
alignment? a comprehensive study of automatic data selection in instruction tuning. In The Twelfth
International Conference on Learning Representations, 2024.

Potsawee Manakul, Adian Liusie, and Mark Gales. Selfcheckgpt: Zero-resource black-box hallucina-
tion detection for generative large language models. In Proceedings of the 2023 conference on
empirical methods in natural language processing, pp. 9004–9017, 2023.

Mathematical Association of America. American mathematics competitions, 2023. URL https:
//maa-amc.org/amc/amc-competitions/.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, Nir Levine, Akihiro Matsukawa, and Hassan
Ghasemzadeh. Improved knowledge distillation via teacher assistant. In Proceedings of the AAAI
conference on artificial intelligence, 2020.

Tergel Munkhbat, Namgyu Ho, Seo Hyun Kim, Yongjin Yang, Yujin Kim, and Se-Young Yun.
Self-training elicits concise reasoning in large language models. In Findings of the Association for
Computational Linguistics: ACL 2025, 2025.

Richard Yuanzhe Pang, Weizhe Yuan, He He, Kyunghyun Cho, Sainbayar Sukhbaatar, and Jason
Weston. Iterative reasoning preference optimization. In Advances in Neural Information Processing
Systems, 2024.

Xiangyu Peng, Congying Xia, Xinyi Yang, Caiming Xiong, Chien-Sheng Wu, and Chen Xing.
Regenesis: Llms can grow into reasoning generalists via self-improvement. In The Thirteenth
International Conference on Learning Representations, 2025.

Aske Plaat, Annie Wong, Suzan Verberne, Joost Broekens, Niki van Stein, and Thomas Bäck.
Reasoning with large language models, a survey. arXiv e-prints arXiv:2407.11511, 2024.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. In Advances
in neural information processing systems, 2023.

Haseena Rahmath P, Vishal Srivastava, Kuldeep Chaurasia, Roberto G Pacheco, and Rodrigo S Couto.
Early-exit deep neural network-a comprehensive survey. ACM Computing Surveys, 57(3):1–37,
2024.

13

https://maa-amc.org/amc/amc-competitions/
https://maa-amc.org/amc/amc-competitions/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Xavier Garcia, Peter J
Liu, James Harrison, Jaehoon Lee, Kelvin Xu, et al. Beyond human data: Scaling self-training for
problem-solving with language models. Transactions on Machine Learning Research, 2023.

Oscar Skean, Jhoan Keider Hoyos Osorio, Austin J Brockmeier, and Luis Gonzalo Sanchez Giraldo.
Dime: Maximizing mutual information by a difference of matrix-based entropies. arXiv preprint
arXiv:2301.08164, 2023.

Oscar Skean, Md Rifat Arefin, Dan Zhao, Niket Nikul Patel, Jalal Naghiyev, Yann LeCun, and
Ravid Shwartz-Ziv. Layer by layer: Uncovering hidden representations in language models. In
Forty-second International Conference on Machine Learning, 2025.

Yuda Song, Hanlin Zhang, Carson Eisenach, Sham M Kakade, Dean Foster, and Udaya Ghai. Mind
the gap: Examining the self-improvement capabilities of large language models. In The Thirteenth
International Conference on Learning Representations, 2025.

Weihang Su, Yichen Tang, Qingyao Ai, Zhijing Wu, and Yiqun Liu. Dragin: Dynamic retrieval
augmented generation based on the real-time information needs of large language models. In
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics, 2024.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4149–4158, 2019.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Yuxuan Tong, Xiwen Zhang, Rui Wang, Ruidong Wu, and Junxian He. Dart-math: Difficulty-aware
rejection tuning for mathematical problem-solving. In Advances in Neural Information Processing
Systems, 2024.

Tianduo Wang, Shichen Li, and Wei Lu. Self-training with direct preference optimization improves
chain-of-thought reasoning. In Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics, 2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In International Conference on Learning Representations, 2023.

Liang Wen, Yunke Cai, Fenrui Xiao, Xin He, Qi An, Zhenyu Duan, Yimin Du, Junchen Liu, Tanglifu
Tanglifu, Xiaowei Lv, Haosheng Zou, Yongchao Deng, Shousheng Jia, and Xiangzheng Zhang.
Light-r1: Curriculum SFT, DPO and RL for long COT from scratch and beyond. In Proceedings
of the 63rd Annual Meeting of the Association for Computational Linguistics, 2025.

Ting Wu, Xuefeng Li, and Pengfei Liu. Progress or regress? self-improvement reversal in post-
training. In The Thirteenth International Conference on Learning Representations, 2025.

Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang, Yunke Zhang, Jingyi Wang, Xiaochong Lan,
Jiahui Gong, Tianjian Ouyang, Fanjin Meng, et al. Towards large reasoning models: A survey of
reinforced reasoning with large language models. arXiv preprint arXiv:2501.09686, 2025.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025a.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Chenxu Yang, Qingyi Si, Yongjie Duan, Zheliang Zhu, Chenyu Zhu, Qiaowei Li, Zheng Lin, Li Cao,
and Weiping Wang. Dynamic early exit in reasoning models. arXiv preprint arXiv:2504.15895,
2025b.

Shiming Yang, Yuxuan Tong, Xinyao Niu, Graham Neubig, and Xiang Yue. Demystifying long
chain-of-thought reasoning. In Forty-second International Conference on Machine Learning,
2025c.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at
scale. arXiv preprint arXiv:2503.14476, 2025.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Keming Lu, Chuanqi Tan, Chang Zhou,
and Jingren Zhou. Scaling relationship on learning mathematical reasoning with large language
models. arXiv e-prints arXiv: 2308.01825, 2023.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. In Advances in Neural Information Processing Systems, 2022.

Chen Zhang, Yang Yang, Jiahao Liu, Jingang Wang, Yunsen Xian, Benyou Wang, and Dawei Song.
Lifting the curse of capacity gap in distilling language models. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics, 2023.

Yuxin Zuo, Shang Qu, Yifei Li, Zhang-Ren Chen, Xuekai Zhu, Ermo Hua, Kaiyan Zhang, Ning Ding,
and Bowen Zhou. Medxpertqa: Benchmarking expert-level medical reasoning and understanding.
In Forty-second International Conference on Machine Learning, 2025.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 1 Reasoning Diversity Metric

1: Input: self-generated reasoning trajectory r̂ki = [r̂ki,1, . . . , r̂
k
i,L], similarity threshold τsim

2: Output: reasoning diversity score ρki
3: Initialize Empty Unfiltered Set U
4: for Each reasoning step r̂ki,l ∈ r̂ki do
5: Obtaining the sentence embedding emb(r̂ki,l) using the BGE-m3 model
6: // Cos(emb(r̂ki,l),U) denotes the cosine distance between emb(r̂ki,l) and its nearest neighbor in U
7: if Cos(emb(r̂ki,l),U) < τsim then
8: U ← U ∪ r̂ki,l
9: else

10: Continue
11: end if
12: end for
13: Return: ρki = |U|

|[r̂ki,1,...,r̂
k
i,L

]|

A IMPLEMENTATION OF H-GRPO

Background of GRPO and RLVR. Group Relative Policy Optimization (GRPO) (Shao et al.,
2024) is a popular RL algorithm, which is widely used in the current popular RLVR training paradigm.
Formally, let Mθref and Mθnew denote the reference model and current policy model, GRPO samples
a group of solutions {(r̃gi , ỹ

g
i)}Gg=1 for each query xi ∈ D, where G denotes the number of solutions

in a group. For ease of description, we simplify the solution (r̃gi , ỹ
g
i) as agi . Then, we can optimize

the Mθnew by maximizing the GRPO objective. Notably, inspired by Yu et al. (2025) who use a
token-level policy gradient loss to address the unhealthy increase in response length problem of the
vanilla GRPO method, we employ an improved token-level GRPO objective function as:
JGRPO(θ) = E[xi ∈ D, {agi }

G
g=1 ∼ Mθref(·|xi)]

1∑G
g=1 |a

g
i |

G∑
g=1

|ag
i |∑

o=1

(
min (zo(a

g
i |xi)Ag, clip (zo(a

g
i |xi), 1− ϵ, 1 + ϵ)Ag)− γDKL (Mθnew ||Mθref)

)
,

(6)

zo(a
g
i |xi) =

Mθnew(a
g
i,o|xi, a

g
i,<o)

Mθref(a
g
i,o|xi, a

g
i,<o)

, (7)

where ϵ and γ are hyper-parameters set to 0.2 and 0.04, respectively, DKL is a KL penalty term, and
Ag is the advantage computed as follows:

Ag =
Rg −mean({R1, R2, · · · , RG})

std({R1, R2, · · · , RG})
, (8)

where Rg denotes the outcome reward of g-th (g ∈ [1, G]) solution in the group. In the reasoning
tasks that contain clear and verifiable answers, e.g., mathematical reasoning, the reward Rg mainly
consists of two types of rewards:

• Accuracy reward Raccuracy: It evaluates whether the solution is correct, i.e., I(ỹgi , yi) = 1.

• Format reward Rformat: It evaluates whether the defined tags are present in the final solution,
i.e., ‘<think>’ and ‘</think>’, ‘<answer>’ and ‘</answer>’ tags.

Reward of H-GRPO. To alleviate the overthinking problem in the vanilla GRPO, we propose
H-GRPO, which improves the GRPO by leveraging our InDiv scores as an extra reward. Specifically,
for each solution in a group, we calculate its InDiv score as Eq. 5, and further normalize the score as:

RInDiv
g =

InDivg

max({InDiv1, · · · , InDivG})
, (9)

where max(·) denotes the maximum InDiv scores in a group. The final reward for H-GRPO is the
combination of all rewards:

Rall
g = Raccuracy

g +Rformat
g + ω ·RInDiv

g , (10)

where ω is a coefficient to control the weight of RInDiv
g , which is set to 0.2 in our experiments.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 2 Self-improvement Training with HSIR

1: Input: base modelMbase, seed data S = {(xi, ri, yi)}Ni=1, unlabeled dataset D = {(xi, yi)}Mi=1

2: Output: self-improved modelMT

3: Fine-tuneMbase on S to get initial reasoning modelM0

4: for t ∈ [1, T] do
5: # Self-generation
6: Obtain K solutions {(r̂ki , ŷk

i)}Kk=1 generated byMt−1 for each xi ∈ D
7: Verify the correctness of self-generated solutions, and split them into two groups:

D̂correct
t = {(xi, r̂

k
i , ŷ

k
i) |xi ∈ D; k ∈ [1, K]; I(ŷki , yi) = 1}

D̂wrong
t = {(xi, r̂

k
i , ŷ

k
i) |xi ∈ D; k ∈ [1, K]; I(ŷki , yi) = 0}

8:
9: # VeriExit sampling process

10: for Each sample (xi, r̂
k
i , ŷ

k
i) ∈ D̂wrong

t do
11: for Each reasoning step r̂ki,l ∈ [r̂ki,1, . . . , r̂

k
i,L] do

12: if r̂ki,l arrives at yi then
13: Obtain a new query “xi + [r̂ki,1, . . . , r̂

k
i,l] + \n\n</think>\n<answer>\n”

14: Feed the new query intoMt−1 to resample J answers {ŷk,j
i }

J
j=1

15: Break
16: else
17: Continue
18: end if
19: end for
20: end for
21: Build a new dataset D̂V eriExit

t = {(xi, r̂
k
i,1...l, ŷ

k,j
i) | I(ŷk,j

i , yi) = 1; k ∈ [1,K]; j ∈ [1, J]}
22: Merge D̂V eriExit

t into D̂correct
t to obtain the dataset with all correct solutions

23:
24: # Calculate the InDiv score
25: for Each query xi ∈ D̂correct

t do
26: Calculate the InDiv score InDivk

i for each correct solution (r̂ki , ŷ
k
i)

K
k=1 as Eq. 5

27: Get the regularized InDiv score InDiv
k
i =

InDivk
i −mean({InDiv1

i ,··· ,InDivK
i })

std({InDiv1
i ,··· ,InDivK

i }) for k-th solution

28: Update the dataset D̂correct
t by filtering the undesired solution with InDiv

k
i < τ

29: end for
30:
31: # SFT Training
32: Fine-tuneMbase with LSFT in Eq. 1 on the combination of S and D̂correct

t

33: # or DPO Training
34: Obtain a pairwise dataset D̂pairs

t = {(xi, r̂
kw
i , ŷkw

i), (xi, r̂
kl
i , ŷ

kl
i) |xi ∈ D̂t; kw, kl ∈ [1, K)},

where (r̂kw
i , ŷkw

i) ∼ D̂correct
t and (r̂

kl
i , ŷ

kl
i) ∼ D̂wrong

t

35: Continually trainMt−1 with LDPO+NLL in Eq. 2 on D̂pairs
t

36: end for

More analyses of Table 4. We present the results of Qwen2.5 models trained with different GRPO
methods in Table 4. Some readers may wonder why the output length of the tuned model significantly
decreases after GRPO training, compared to the initial SFT, i.e., from 1,540 to 987 average tokens.
We conjecture that there are two main reasons. On the one hand, the token-level loss function used in
the improved GRPO algorithm (Eq. 6) can effectively alleviate the abnormal increase in response
length (Yu et al., 2025). On the other hand, according to the public experimental record2 of ms-swift3,
during the GRPO training, the solution length initially decreases and then increases, indicating that
the model changed its reasoning manner. Since the GRPO training is computationally expensive,
we do not train the models for very long steps. That is, the training of our models may still be in
the stage of decreasing output length. Despite all this, our H-GRPO can further reduce the inference
overhead, while achieving better reasoning performance. These results can prove the superiority of
H-GRPO, and we believe that it has great potential to perform better after longer GRPO training.
Notably, the aim of this experiment is not to propose a new state-of-the-art GRPO method, but

2https://swift.readthedocs.io/en/latest/BestPractices/GRPO.html#grpo-training-experiment-record
3https://github.com/modelscope/ms-swift

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

rather to examine whether our proposed InDiv method can be incorporated into GRPO to effectively
mitigate the over-thinking problem and address the performance degradation induced by existing
length-oriented rewards. Therefore, we only compare our H-GRPO with two representative GRPO
algorithms that rely on length-oriented rewards. In future work, we plan to further investigate how
VeriExit and InDiv can be jointly incorporated into GRPO to achieve greater improvements in both
training efficiency and reasoning performance.

B MORE EXPERIMENTAL DETAILS

B.1 DATASET DETAILS

In this work, we evaluate the trained models on several representative and challenging reasoning
benchmarks. Here, we introduce the descriptions of these tasks. Specifically,

• MedQA: MedQA (Jin et al., 2021) is a challenging medical question-answering task, which
consists of questions and corresponding 4-option or 5-option answers in the style of the US
Medical License Exam (USMLE). Since the original MedQA training set does not contain the
reasoning trajectories, we prompt the DeepSeek-R1 to generate the reasoning data. The prompt is
shown in Table 6, and Table 7 presents a case of distilled reasoning trajectories. For in-distribution
evaluation, we follow prior works (Chen et al., 2023) and use the 4-option MedQA with 1,273
samples as the test set.

• GSM8K: GSM8K (Cobbe et al., 2021) is a widely-used mathematical reasoning task, which
contains 8.5K high-quality grade school math word problems. Since the original GSM8K does
not contain any reasoning trajectories, we alternatively use the GSM8K version4 released by
CAMEL (Li et al., 2023). Notably, the dataset is also distilled from the DeepSeek-R1. Table 8
presents a case of distilled GSM8K training data. For in-distribution evaluation, we directly use
the original GSM8K with 1.32K test samples.

• Medbullets: Medbullets (Chen et al., 2025) comprises 308 difficult USMLE Step 2&3 style
medical questions collected from real-world conversations. Each question is paired with a case
description and multiple answer choices. In our work, we use the 4-option Medbullets as the OOD
test set of LRMs trained on MedQA.

• MATH: MATH (Hendrycks et al., 2021) comprises 500 problems spanning five core mathematical
domains: algebra, combinatorics, geometry, number theory, and precalculus. Each problem is
designed to test the multi-step and complex reasoning abilities of LRMs, requiring more than
simple calculation or knowledge recall. In our experiments, we use this challenging dataset to
evaluate the OOD performance of models trained on GSM8K.

• MedXpertQA: MedXpertQA (Zuo et al., 2025) contains 4,460 high-difficulty medical questions
spanning 17 specialties and 11 body systems. It includes two subsets, MedXpertQA Text for
text medical evaluation and MedXpertQA MM for multimodal medical evaluation. We use the
MedXpertQA Text as the OOD test set of LRMs trained on MedQA.

• AMC2023: AMC2023 (Mathematical Association of America, 2023) consists of 40 challenging
mathematical problems from American Mathematics Competitions, which is widely used to
evaluate the complex reasoning performance of LRMs. We use the public test set5 to evaluate the
OOD performance of models trained on GSM8K.

• ARC: AI2 Reasoning Challenge’s challenge set (ARC) (Clark et al., 2018) is a scientific reasoning
dataset that contains 1.12K multiple-choice science QA training samples and 1.17K test samples.
Similar to MedQA, we prompt the DeepSeek-R1 to generate the reasoning steps for the training
samples, and randomly select 500 samples as the seed data, using the remaining training samples
as unlabeled data. The trained models are evaluated on the ARC test set.

• CommonsenseQA: CommonsenseQA (CSQA) (Talmor et al., 2019) is a multiple-choice question-
answering dataset that requires diverse types of commonsense knowledge to predict the correct
answers. It contains 12,102 questions, each with one correct answer and four distractors. Similarly,
For the 9.74K training samples, we distill reasoning steps from DeepSeek-R1 and randomly select
1K samples as seed data. The trained models are evaluated on the 1.14K test samples.

4https://huggingface.co/datasets/camel-ai/gsm8k_distilled
5https://huggingface.co/datasets/zwhe99/amc23

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

• StrategyQA: StrategyQA (StraQA) (Geva et al., 2021) is an implicit multi-hop reasoning bench-
mark, which contains 1.6K training samples and 687 test samples. After distilling the reasoning
steps from DeepSeek-R1 for the training samples, we randomly select 500 training samples as the
seed data. The trained models are directly evaluated on the test samples.

B.2 TRAINING AND EVALUATION DETAILS

In the SFT phase, we fine-tune each model with a batch size of 8 and a peak learning rate of 1e-5,
except 2e-6 for 7B/8B models. In the DPO phase, the batch size is set to 16, and the peak learning rates
for smaller (1.5B/3B) models and larger(7B/8B) models are set to 1e-6 and 2e-7, respectively. In both
training settings, the warm-up ratio is 0.1, and the maximum tokenizer length is 2,048. All models
are trained with full parameter fine-tuning for 3 epochs. We use the popular LLaMA-Factory6 as
the training codebase.

For the RLVR training, we implement the GRPO with the open-r17 framework. The rollout size for
each query is set to 8, the learning rate is set to 1e-6, and the batch size is set to 14. Since the GRPO
training is time-consuming and costly, we only train the models for 300 steps. For the implementation
of our H-GRPO, the coefficient ω to control the weight of RInDiv is set to 0.2. All experiments are
conducted on 8 NVIDIA A800 (80GB) GPUs.

During evaluation, we sample the model responses by using the greedy decoding method, i.e.,
temperature set to 0 for reproducibility. The maximum output length is set 4,096. All models are
evaluated in a zero-shot manner. We extract the final answer from the model response according to
the given format. If no valid answer is extracted, the response is considered incorrect.

Table 6: Prompts used for distilling reasoning paths for MedQA from DeepSeek-R1.

System Prompt:
You are a helpful medical AI Assistant. Your task is to select one correct answer from
A to D for the medical question. Please respond in the following format: ‘##Explana-
tion:\n[explanation]\n\n##Answer:\n[option]’

User Prompt:
For the following medical question, select one correct answer from A to D.
Question: {Question}
Options:
A. {Option-A}
B. {Option-B}
C. {Option-C}
D. {Option-D}

Table 7: An example of seed data in MedQA distilled from DeepSeek-R1.

System Prompt:
You are a helpful medical AI Assistant that provides well-reasoned and detailed responses for
medical questions. You first think about the reasoning process as an internal monologue and
then provide the user with the concise and accurate answer. Respond in the following format:
<think>\n...\n</think>\n<answer>\n...\n</answer>

Instruction:
For the following medical question, select one correct answer from A to D.

6https://github.com/hiyouga/LLaMA-Factory
7https://github.com/huggingface/open-r1

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Question: A 55-year-old woman comes to the physician because of fevers for 2 weeks. She
works as a nurse and recently returned from a charity work trip to India, where she worked in a
medically-underserved rural community. A tuberculin skin test 3 months ago prior to her trip
showed an induration of 3 mm. Physical examination is unremarkable. An x-ray of the chest
shows right-sided hilar lymphadenopathy. A sputum culture shows acid-fast bacilli. Which of the
following immunologic processes most likely occurred first?
Options:
A. Formation of a nodular tubercle in the lung
B. Replication of bacteria within alveolar macrophages
C. Production of interferon-gamma by T-helper cells
D. Migration of T-helper cells to the lungs
Please respond in the following format: ‘##Explanation:\n[explanation]\n\n##Answer:\n[option]’

Output:
<think> #reasoning trajectory

Okay, let’s tackle this question step by step. The patient is a 55-year-old nurse who recently
returned from India and has symptoms of TB. Let’s break down the information given.
She had a tuberculin skin test (TST) three months ago with 3 mm induration, which is considered
negative (since the cutoff for healthcare workers is usually 10 mm). Now, she has a positive
sputum culture for acid-fast bacilli, which points to active tuberculosis. The chest X-ray shows
hilar lymphadenopathy, which is common in primary TB, especially in the right side.
The question is asking about the first immunologic process that occurred. The options are about
the sequence of immune responses when someone is infected with Mycobacterium tuberculosis.
So, the initial step when TB bacteria enter the body is inhalation. The bacilli reach the alveoli,
where they are taken up by alveolar macrophages. However, M. tuberculosis has mechanisms
to survive inside these macrophages. The bacteria can replicate within the macrophages until
the macrophages are overwhelmed and lyse, releasing more bacteria. This replication within
macrophages is an early step before the immune system starts to respond more effectively.
After that, the adaptive immune response kicks in. T-helper cells (CD4+ T cells) migrate to the site
of infection. These cells release cytokines like interferon-gamma, which activate macrophages
to become more effective at killing the bacteria. The activated macrophages form granulomas
(tubercles) to contain the infection. The formation of the granuloma is part of the body’s attempt
to wall off the infection.
So the sequence would be: bacteria enter macrophages and replicate (B), then T-cells migrate
(D), produce interferon-gamma (C), leading to granuloma formation (A).
The question asks which happened first. So the first step after exposure would be the replication
within macrophages. The TST was negative before her trip, suggesting she wasn’t previously
infected. Now she’s positive, so this is a new infection. The initial infection’s first immunologic
process is the bacteria replicating in macrophages before the immune response starts.
</think>
<answer> #answer
##Explanation:
The patient’s recent exposure and subsequent active tuberculosis indicate a new infection. The ini-
tial immunologic process begins when Mycobacterium tuberculosis is inhaled and phagocytosed
by alveolar macrophages. The bacteria survive and replicate within these macrophages (option
B), which occurs before the adaptive immune response. Subsequent steps include T-helper cell
migration to the lungs (D), interferon-gamma production (C), and granuloma formation (A). The
replication within macrophages is the earliest event in the immunologic cascade.
##Answer:
B
</answer>

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 8: An example of seed data in GSM8K distilled from DeepSeek-R1.

System Prompt:
You are a helpful AI Assistant that provides well-reasoned and detailed responses for the math
word problems. You first think about the reasoning process as an internal monologue and then
provide the user with the concise and accurate answer. The final answer should be provided in
the \boxed{}.

Instruction:
John starts at an elevation of 400 feet. He travels downward at a rate of 10 feet down per minute
for 5 minutes. What is his elevation now?

Output:
<think> #reasoning trajectory

Okay, so I need to figure out John’s elevation after he travels downward for 5 minutes at a rate of
10 feet per minute. Let me start by understanding the problem. John starts at 400 feet, and he’s
moving downward. Moving downward would decrease his elevation, right? So, he’s going from
higher elevation to lower.
First, I should note his starting point: 400 feet. Then, he’s going down at 10 feet per minute for 5
minutes. So, I think I can calculate the total distance he descended by multiplying the rate by the
time. That makes sense because if you go 10 feet every minute, then in 5 minutes, that’s 10 * 5 =
50 feet. Wait, yes, so he would have gone down 50 feet in total.
Since he’s moving downward, his new elevation will be the original elevation minus that descent.
So, subtracting 50 feet from 400 feet. Let me do that calculation: 400 - 50. That gives 350 feet.
Hmm, so his elevation after 5 minutes should be 350 feet.
Wait, let me check that again. Multiplication first: 10 feet per minute times 5 minutes is indeed
50 feet. Then subtract that from the starting elevation. Yeah, 400 minus 50 is 350. I think that’s
correct. Maybe I should visualize this. Imagine he’s on a hill at 400 feet. Each minute, he goes
down 10 feet, so after 1 minute, he’s at 390, then 380, 370, 360, 350 after 5 minutes. Each step is
10 feet lower. So yes, five steps would be 50 feet total.
Is there any chance I might have mixed up the direction? Like thinking he’s ascending? But the
problem clearly states he’s traveling downward. So subtracting is the right operation. Okay, I feel
confident that this is right. Let me just go through the steps again to confirm. Starting elevation
400. Rate: 10 ft/min downward. Time: 5 min. Total descent is rate * time = 10*5=50 ft. New
elevation: 400 - 50 = 350 ft. Yeah, that checks out. I think that’s the correct answer.
</think>
#answer

John starts at an elevation of **400 feet**.
To find his elevation after descending:
1. **Calculate total descent**: Rate = 10 feet/minute × 5 minutes = **50 feet**.
2. **Subtract the descent from the starting elevation**: 400 feet – 50 feet = **350 feet**.
Verification: Each minute, his elevation decreases by 10 feet:
- After 1 minute: 400 – 10 = 390 feet
- After 2 minutes: 390 – 10 = 380 feet
- Continuing this pattern for 5 minutes leads to **350 feet**.
Final Answer:
\boxed{350}

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

VeriExit
Vanilla

Number of output tokens

K
er

ne
l D

en
si

ty
 E

st
im

at
e

VeriExit
Vanilla

InDiv scores

12241050

5.29 5.38

#Verifiable successful solutions

Pr
op

or
tio

n
of

 Q
ue

ri
es

K
er

ne
l D

en
si

ty
 E

st
im

at
e

Figure 5: Left: Coverage of verifiable successful solutions. The x-axis denotes the number of
verifiable successful solutions in a query. Middle: Distribution of the number of output tokens
of correct self-generated solutions. Right: Distribution of InDiv scores of correct self-generated
solutions. In the middle and right sub-figures, we use the initial SFT Qwen2.5-1.5B models.

C MORE EXPERIMENTS AND ANALYSES

C.1 ANALYSIS OF VeriExit SAMPLING STRATEGY

Reliability of VeriExit. In HSIR, we propose VeriExit to efficiently collect more successful so-
lutions for difficult queries by reusing partial correct reasoning steps of previous failed solutions.
Here, to verify the reliability of this idea, we calculate the coverage of these verifiable successful
solutions, which contain intermediate reasoning steps that arrived at the correct answer. Figure 5
(Left) illustrates the coverage of these solutions in the most difficult queries of MedQA. Specifically,
we refer to the queries that did not obtain any correct solutions during the K-times (K = 10 in our
experiments) self-generation processes as the most difficult ones. The x-axis denotes the number
of verifiable successful solutions in a query, and the y-axis denotes the proportion of queries. As
seen, among all Qwen2.5 family models, nearly 70% of these most difficult queries have at least
one verifiable successful solution, and more than 10% of these queries have 4 or more verifiable
successful solutions. We believe that in the simpler queries, there is a larger proportion of previous
failed solutions that can be converted into verifiable successful solutions by VeriExit. These results
can demonstrate the reliability of our VeriExit Sampling Strategy.

Moreover, we compare the solutions resampled by VeriExit and the previous correct solutions. In
practice, we measure the length and InDiv scores of solutions on the difficult MedQA queries (obtain-
ing four correct solutions during the previous self-generation) generated by initial SFT Qwen2.5-1.5B
models, and visualize the distributions in Figure 5 (Middle and Right). As seen, compared to the
previous correct solutions generated by the vanilla sampling strategy, our VeriExit can sample shorter
and concise reasoning trajectories. We attribute it to the self-truncation and early-exit processes of
VeriExit, which can skip the redundant and repetitive reasoning steps. This can also explain why the
“-w/ VeriExit” method in Table 3 can improve reasoning efficiency against the ReSTEM .

More VeriExit variants. The core of our VeriExit is to determine whether the reasoning step
has reached the ground-truth answer. There are several methods to achieve this goal. Specifically,
the simplest approach is to directly match the text between the reasoning output and the ground-
truth answer. If the reasoning output explicitly mentions the answer, e.g., “answer is {yi}”, we
can assume that it arrives at the ground-truth answer. Beyond this simple heuristic, inspired by
SelfCheckGPT (Manakul et al., 2023), we can further use two more sophisticated approaches:
NLI-based and prompt-based. In the NLI-based VeriExit, we use an external Natural Language
Inference (NLI) model to judge the relationships between the reasoning output and answer. The NLI
model can determine whether the reasoning output entails the answer according to the similarity
of sentence representations, i.e., I(NLI(r̂ki,l, yi) = entailment). In practice, we use the powerful
DeBERTa-v3-large-mnli8 as the NLI model. In the prompt-based VeriExit, we query the
current Mt−1 to assess whether the reasoning output and answer convey the same meaning by using
the following prompt: “You are a semantic-equivalence classifier. Your only goal is to decide whether
the two input sentences convey the same meaning. Please direct output the answer following the

8https://huggingface.co/MoritzLaurer/DeBERTa-v3-large-mnli-fever-anli-ling-wanli

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Text-matching

N
L

I-
ba

se
d

Pr
om

pt
-b

as
ed

VeriExit MethodText-matching

55.70

0.007

56.48

58.05

1.449

3.506

Text-matching NLI-based Prompt-based

Figure 6: Left: Correlation between text-matching and NLI-based VeriExit methods. Middle:
Correlation between text-matching and prompt-based VeriExit methods. Right: Performance and
efficiency comparisons of HSIR-SFT variants equipped with different VeriExit methods. In the left
and middle sub-figures, the axises denote the number of verifiable successful solutions per query.
Qwen2.5-3B model is used in this experiment and all models are self-improved for one iteration.

format: ‘##Answer: [YES|NO|UNCLEAR]’”. Notably, for both methods, we convert the answer into
a full sentence using the template “the answer is yi” to ensure consistent semantic comparison.

To evaluate different VeriExit strategies, we measure the coverage of verifiable successful solutions
on the most difficult queries of MedQA using each strategy. Using the text-matching method as the
baseline, we illustrate the correlation between text-matching and NLI-based/prompt-based methods
in Figure 6 (Left) and (Middle), respectively. In this experiment, we use the Qwen2.5-3B as the base
model. The results show that text-matching VeriExit correlates well with both alternative methods,
with Pearson Correlation Coefficients exceeding 0.4 and p-values below 0.05, indicating that all
VeriExit variants produce largely consistent predictions. Further, we replace the VeriExit strategy in
the HSIR-SFT framework, and compare the performance and efficiency of HSIR-SFT variants in
Figure 6 (Right). The findings are as follows: 1) both NLI-based and prompt-based methods achieve
better reasoning performance, as they can more accurately identify the correct reasoning steps during
VeriExit; 2) although effective, these methods incur more additional inference overhead. Therefore,
for simplicity and efficiency, we use the text-matching method in our work by default.

C.2 ANALYSIS OF InDiv SCORE

Concise
Overthinking

Values of eigenvalues

K
er

ne
l D

en
sit

y
Es

tim
at

e
of

 E
ig

en
va

lu
es

Hidden representation of the concise solution Hidden representation of the overthinking solution

Figure 7: Left: Distribution of eigenvalues of hidden representation in the concise and overthinking
solutions. Middle: t-SNE visualizations of hidden representations in the concise solution. Right:
t-SNE visualizations of hidden representations in the overthinking solution. Here, we use the initial
SFT Qwen2.5-1.5B as the test model. The concise and overthinking solutions are from Table 15.

Correlation between InDiv scores and semantic entropy. Here, we investigate the correlation
between our InDiv scores and the semantic entropy of hidden representations H. First, we introduce
the Matrix-Based Entropy (Giraldo et al., 2014; Skean et al., 2023; 2025), which is a famous
information-theoretic quantity. For the cross-covariance matrix Σk

i = Hk
i
⊤ · Jd · Hk

i and its

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

eigenvalues {λk
i,u}mu=1, the matrix-based entropy of order α > 0 is:

Sk
α,i(H

k
i) =

1

1− α
log

[m∑
u=1

(
λk
i,u

Tr(Hk
i)

)α
]
, (11)

where Tr(·) denotes the trace operator obtained from the sum of α-power of each eigenvalues (Horn
& Johnson, 2012). When α → 1, the entropy Sk

α,i(H
k
i) corresponds to the Shannon’s entropy of

hidden representations. Intuitively, if the eigenvalues of H are in a uniform distribution, the entropy
will be higher, indicating that H contains more diverse features (Skean et al., 2025). Conversely,
if the eigenvalues collapse to a small area, the entropy will be smaller. To verify it, we compare
the distributions of eigenvalues between the concise and overthinking solutions identified by our
InDiv scores. Specifically, we directly use the solutions in Table 15, and illustrate their eigenvalue
distributions in Figure 7 (Left). It can be found that the eigenvalue distributions of the concise
solution are more uniform than those of the overthinking solution. To have a closer look, we directly
visualize the hidden representations of both solutions. Figure 7 (Middle) and (Right) show the t-SNE
results of the concise and overthinking solutions, respectively. We can observe that the distribution
of hidden representations of the concise solution is more diverse and uniform, while that of the
overthinking solution is more similar and concentrated. Overall, these results indicate that a higher
InDiv score usually refers to a higher semantic entropy of hidden representations, which effectively
proves why our InDiv score can help identify overthinking solutions.

43.43 43.91

45.33 45.19
44.23

Figure 8: Analysis of different layer depths for
calculating InDiv scores. Notably, we use the
Qwen2.5-1.5B (with a total of 28 layers) as the
test model. All models are trained for one self-
improvement iteration.

Impact of layer depth for calculating InDiv
scores. As mentioned in §3.2, we use the hid-
den representations from the middle layer of
Mt−1 to calculate the InDiv scores. Here, we
investigate the impact of different layer depths
by comparing the performance of Qwen2.5-1.5B
models trained with different HSIR-SFT con-
figurations on MedQA. Specifically, since the
Qwen2.5-1.5B contains 28 layers, we vary the
layer used for calculating InDiv scores across {5,
10, 15, 20, 25} and illustrate the comparative re-
sults in Figure 8. For reference, we also include
the results of SFT-Initial and ReSTEM methods.
All models are self-improved for one iteration.
As seen, HSIR-SFTwith varied layer depth can
consistently outperform the other baseline meth-
ods, indicating that HSIR is relatively robust
to the choice of layer. Moreover, when using
the middle layer (i.e., 15-th layer), HSIR-SFT
achieves the best performance. We conjecture that the middle layer encodes richer and more useful
semantic information (Skean et al., 2025; Azaria & Mitchell, 2023; Liu et al., 2019), thus resulting in
more accurate InDiv scores. Based on these observations, we choose to adopt the middle layer of
Mt−1 for calculating InDiv scores in this work.

Table 9: Analysis of important components in InDiv.
All models are self-improved for one iteration.

Method
Qwen2.5-1.5B Qwen2.5-3B

MedQA GSM8K MedQA GSM8K

SFT-Initial 38.10 63.99 49.02 77.18

HSIR-SFT 45.33 71.72 55.70 86.13
-w/o attention-aware 45.20 71.34 55.38 85.75
-w/o normalization 43.52 71.27 54.13 85.60

More ablation study in InDiv. There
are two important strategies in our InDiv:
attention-aware weighting mechanism and
InDiv normalization. The former is to ob-
tain more fine-grained intrinsic diversity,
while the latter is to regularize the InDiv
score for more flexible data filtering. To
evaluate their contributions, we compare
our full HSIR-SFT with two variants: 1)
“-w/o attention-aware”, which removes the
attention-aware weighting mechanism, i.e.,
Attenk

i,u = 1
m in Eq. 5; 2) “-w/o normal-

ization”, which directly uses the InDivk
i in Eq. 5 as the final score and filters the solutions with

lower scores within each query. Notably, The filtering ratio is adjusted to ensure that both variants

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

use approximately the same amount of training data as the original HSIR-SFT. Table 9 presents
the results, showing that removing either strategy leads to performance degradation. These findings
consistently demonstrate the effectiveness of both strategies.

C.3 PARAMETER ANALYSIS

Value of threshold 𝝉

A
cc

ur
ac

y
(%

)
Figure 9: Analysis of threshold τ . “Baseline”
means that we do not filter the overthinking solu-
tions, i.e., removing the InDiv in HSIR.

Effect of τ . The threshold τ , used to filter the
overthinking solutions, is an important hyperpa-
rameter in our HSIR. In this study, we analyze
its influence by evaluating the performance with
different τ values, spanning from -0.75 to 0.75.
Figure 9 illustrates the comparative results of
Qwen2.5-3B models trained with HSIR-SFT
on MedQA and GSM8K. For reference, we also
report the results without data filtering as the
baseline. As seen, compared to the baseline,
HSIR with suitable τ can generally achieve bet-
ter performance, showing the effectiveness of
using InDiv scores to filter overthinking solu-
tions. However, too large τ (i.e., 0.75) would
lead to performance degradation, as many help-
ful training samples might be ignored. HSIR
performs best with τ = −0.5, thus leaving as
our default experimental settings.

45.3345.16

43.36
42.66

42.11

43.75
43.28

Figure 10: Analysis of sampling count J . We use
the Qwen2.5-1.5B as the test model. All models
are trained for one self-improvement iteration.

Effect of J . The hyperparameter J , which
is used to control the sample count of recycled
solutions during VeriExit, is also important for
our HSIR. Here, to investigate its impact, we
evaluate our HSIR-SFT with different J values
ranging from 1 to 7. The comparative results
of Qwen2.5-1.5B on MedQA are illustrated in
Figure 10. For reference, we also include the
results of SFT-Initial and ReSTEM . All models
are self-improved for one iteration. From these
results, we find that: 1) When J is too small
(e.g., J = 1), our VeriExit struggles to sample
enough correct solutions, limiting the effective-
ness of HSIR-SFT. 2) When J is too large (e.g.,
J = 7), many sampled solutions share similar
prefix reasoning steps, reducing the diversity of
training data and leading to sub-optimal performance. 3) Across all J values, our HSIR-SFT con-
sistently outperforms the baseline methods, proving its robustness. Notably, in the case of J = 5,
HSIR-SFT achieves the best performance. Thus, we use it as the default setting in this work.

C.4 IMPACT OF SEED DATA

Seed data from QWQ-32B. As mentioned in §2.1, we first fine-tune the base model Mbase on the
seed dataset S to make it have basic long-CoT reasoning abilities. Intuitively, high-quality seed data
can improve the basic reasoning ability of LRMs and boost the effectiveness of self-improvement
training. To verify it, we replace the seed data used in our main experiments with that distilled from
QWQ-32B9. Taking the MedQA as an example, we fine-tune the Qwen2.5 family models on the
seed data distilled from QWQ-32B and self-generated pseudo-labeled data for one iteration, using
different self-improvement training methods. Table 10 reports the average accuracy and number of
output tokens of all tuned models, from which we find that: (1) Compared to the seed data distilled
from DeepSeek-R1, the seed data generated by QWQ-32B performs differently in different models.
For the smaller models (i.e., Qwen2.5-1.5B), the seed data from QWQ-32B brings more performance

9https://qwenlm.github.io/blog/qwq-32b-preview/

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

gains. Conversely, for the larger 7B model, it leads to worse results. We conjecture that there is a large
capacity gap between Qwen2.5-1.5B and DeepSeek-R1, while using a smaller QWQ-32B as a teacher
can achieve a smooth knowledge transfer (Mirzadeh et al., 2020; Zhang et al., 2023). However, for the
Qwen2.5-7B, a smaller teacher model might struggle to provide sufficient knowledge, thus leading
to suboptimal performance. (2) When using the seed data generated by QWQ-32B, our HSIR can
still outperform the other baseline methods and achieve better reasoning performance and efficiency.
These results demonstrate the universality and robustness of HSIR.

Table 10: Performance comparison of the seed data distilled from different LRMs. We evaluate
the Qwen2.5 models fine-tuned with different self-improvement SFT methods for one iteration.

Methods |Train| Qwen2.5-1.5B Qwen2.5-3B Qwen2.5-7B Overall
Avg. MedQA Tokens MedQA Tokens MedQA Tokens Accuracy Tokens

Seed data distilled from DeepSeek-R1
SFT-Initial 1.0K 38.10 1,779 49.02 1,644 62.45 1,428 49.86 1,617

Seed data distilled from QWQ-32B
SFT-Initial 1.0K 40.22 1,677 50.04 1,569 61.12 1,607 50.46 1,618
SFT-Oracle 8.0K 43.99 1,781 60.25 1,451 69.13 1,419 57.79↑7.33 1,550↓4.2%
STaR 4.9K 39.35 1,576 49.25 1,500 61.82 1,541 50.14↓0.32 1,539↓4.9%
ReSTEM 37.9K 44.38 1,431 54.77 1,307 65.43 1,401 54.86↑4.40 1,380↓14.7%
HSIR-SFT 29.6K 46.58 1,167 55.70 1,192 66.93 1,266 56.40↑5.94 1,208↓25.3%

Table 11: Analysis of different seed data. We report
the MedQA results of Qwen2.5-3B trained with differ-
ent self-improvement SFT methods for one iteration.

Method Source of seed data
DeepSeek QWQ Qwen2.5-1.5B Self-distilled

SFT-Initial 49.02 50.04 42.50 48.70
STaR 49.25 49.25 43.36 47.53
ReSTEM 55.22 54.77 47.18 49.80
HSIR-SFT 55.70 55.70 48.00 50.17

Is the seed data from a frontier model
necessary? In the above experiments, we
empirically find that initial LRMs trained
with high-quality seed data can effectively
self-improve via our HSIR. Here, we con-
duct more in-depth experiments to investi-
gate whether the seed data distilled from
a frontier model is necessary. Specifically,
we focus on two types of seed data: 1) low-
quality seed data, which is distilled from a
smaller and weaker LRM; 2) self-distilled
seed data, which is generated by the model
itself via an in-context learning approach. Using the Qwen2.5-3B as the testbed, we obtain low-quality
seed data from the SFT-Initial Qwen2.5-1.5B. For the self-distilled seed data, we randomly select
three examples distilled from DeepSeek-R1 as few-shot demonstrations and use them to guide the
base Qwen2.5-3B for generating the seed data. Notably, for all methods, we use the same queries xi

and sample a correct solution for each query, ensuring the same number of training samples across
seed data types. Qwen2.5-3B model is first fine-tuned on different seed data, and then self-improved
with various SFT approaches for one iteration. Table 11 presents the comparative results of different
Qwen2.5-3B models on MedQA. From it, we observe that: 1) the quality of seed data is critical, as
initial SFT on low-quality seed data significantly degrades performance; 2) across all seed data types,
our HSIR consistently brings performance gains, further validating its effectiveness. In general,
while it is feasible for an LLM to self-distill seed data and subsequently self-improve using HSIR,
leveraging more high-quality seed data from stronger frontier models allows HSIR to realize its full
potential and achieve better performance.

C.5 WHEN GROUND-TRUTH ANSWER ARE UNAVAILABLE

Following many prior studies (Zelikman et al., 2022; Yuan et al., 2023; Wang et al., 2024; Pang et al.,
2024), we assume that the ground-truth answers of unlabeled dataset D are available in this work.
Some readers may wonder how our HSIR performs when ground-truth answers are unavailable in
some scenarios. Actually, in this setting, we can follow Huang et al. (2023) and use the majority-voting
answer among multiple candidate solutions as a pseudo answer, i.e., ỹi = argmaxŷj

i

∑K
k=1 I(ŷ

j
i =

ŷki). Here, the ỹi is denoted as the self-consistency pseudo label. Although the ỹi may be incorrect,
we can still apply our HSIR to improve the LRMs as described in §3. To verify its effectiveness, we
evaluate it on several Qwen2.5 models and report the results in Table 12. For reference, we use the

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

ReSTEM as the baseline method, and also include the results based on ground-truth answers. As
seen, using the self-consistency pseudo labels indeed yields slightly sub-optimal results compared to
ground-truth answers. Nevertheless, our HSIR-SFT method still achieves substantial improvements,
with an average gain of +6.14%, proving that HSIR remains effective even in unlabeled scenarios.

Table 12: Performance comparison of Qwen2.5 models on MedQA and GSM8K benchmarks.
Notably, “SC →” refer to using the majority-voting answer among multiple candidate solutions of
SFT-Initial models as the pseudo labels of D. All models are self-improved for one iteration.

Methods Qwen2.5-1.5B Qwen2.5-3B Qwen2.5-7B Overall
MedQA GSM8K MedQA GSM8K MedQA GSM8K Accuracy Tokens

SFT-Initial 38.10 63.99 49.02 77.18 62.45 83.93 62.45 1,536

Using ground-truth answers
ReSTEM 41.63 69.75 55.22 83.95 64.18 88.17 67.15↑4.70 1,268↓17.5%
HSIR-SFT 45.33 71.72 55.70 86.13 67.32 88.78 69.16↑6.71 1,075↓30.0%

Using self-consistency pseudo labels
SC → ReSTEM 40.46 70.36 51.69 83.70 64.57 87.04 66.30↑3.85 1,322↓13.9%
SC → HSIR-SFT 44.78 71.72 54.99 84.69 65.91 89.46 68.59↓6.14 1,108↓27.8%

C.6 RESULTS IN HIGH-RESOURCE SCENARIOS

Table 13: Results in high-resource scenarios. The
SFT-Oracle is used as the initial M0, which is trained
with self-improvement methods for one iteration.

Method Qwen2.5-1.5B Qwen2.5-3B
MedQA Tokens MedQA Tokens

SFT-Oracle 46.58 1,678 58.68 1,448

Using SFT-Oracle as the initial model M0

ReSTEM 47.21↑0.63 1,423↓15.2% 61.81↑3.13 1,243↓14.2%
HSIR-SFT 50.90↑4.32 1,156↓31.1% 63.71↑5.03 1,116↓22.9%
IRPO 46.35↓0.23 1,683↑0.3% 59.46↑0.78 1,585↑9.5%
HSIR-DPO 53.49↑6.91 1,047↓37.6% 66.61↑7.93 1,116↓22.9%

In our work, we assume that only a small
amount of seed data is available. Some
readers may wonder whether our HSIR
method remains effective in high-resource
scenarios, where sufficient seed data is pro-
vided. To verify it, we use all training
samples distilled from DeepSeek-R1 as
the seed data to initially fine-tune the base
model, i.e., using the SFT-Oracle in Table 1
as the M0. Table 13 presents the results of
Qwen2.5-1.5B and Qwen2.5-3B models on
MedQA. For reference, we also report the
results of ReSTEM and IRPO as baselines.
All models are self-improved for one iteration. From these results, we find that both HSIS-SFT and
HSIS-DPO methods can effectively improve the performance and inference efficiency of SFT-Oracle
models. Specifically, with the help of HSIS-DPO, Qwen2.5-3B model achieves +7.93% performance
gain on MedQA. These findings demonstrate that our HSIS has great potential to enhance the
self-improvement capabilities of fully-trained and powerful LRMs.

C.7 EFFICIENCY OF HSIR

Some readers may be concerned about the efficiency of our HSIR method, as it requires additional
forward passes of LRMs. Actually, during the VeriExit sampling phase, we only sample the final
answer without regenerating intermediate reasoning trajectories, making it much faster than simply
allocating more trials to failed queries. In our preliminary experiments, we found that the VeriExit
sampling can be completed in an average of one hour on 8 NVIDIA A800 (80GB) GPUs, which
is about 1/4 of the time required for generating full reasoning trajectories. On the other hand, to
obtain the InDiv scores, the query and its solution are fed into the model in a teacher-forcing manner,
requiring only a single forward pass and introducing minimal latency. In practice, during HSIR-SFT
and HSIR-DPO training, obtaining hidden states for each token introduces some computational
overhead, but this can be completed in about half an hour on 8 NVIDIA A800 (80GB) GPUs.
Moreover, during the H-GRPO training, we can reuse the hidden representation obtained by the
reference model without extra forward passes. The actual computation of the InDiv score itself is
lightweight, involving only simple vector operations that take a few seconds. More importantly,
owing to the data filtering process of HSIR, the training budget can be significantly reduced, e.g.,
from 53.6K to 38.8K during fine-tuning Qwen2.5-1.5B at the last iteration. In general, the inference
latency of HSIR is tolerable against its performance gains.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

C.8 MORE SELF-IMPROVEMENT ITERATIONS

45.33
 28.7K

46.50
 29.6K

46.58
 31.6K

46.82
 33.8K

46.90
 34.9K

41.63
 32.6K

42.81
 40.8K

45.48
 44.5K

46.23
 47.6K

46.05
 48.9K

35.98
 4.1K

37.78
 4.9K

38.49
 5.4K

39.83
 6.8K

39.12
 7.0K

Figure 11: Results of Qwen2.5-1.5B models
training for more self-improvement iterations.
Here, we report both test accuracy and the number
of training samples on MedQA.

Due to limited computation resources, we set
the maximum self-improvement iterations T to
3 in the main experiments. Here, to further in-
vestigate whether additional iterations can im-
prove performance, we extended the maximum
training iterations T from 3 to 5, and compare
the MedQA accuracy of Qwen2.5-1.5B mod-
els trained with different self-improvement SFT
training methods across the iterations. Figure 11
illustrates the comparative results, from which
we observe that: 1) With the increase of self-
improvement training iterations, both STaR and
ReSTEM exhibit a trend where performance ini-
tially improves but then declines, which is sim-
ilar to the findings of Ding et al. (2025). This
may be due to overfitting on easy-to-learn sam-
ples. Conversely, by mitigating the data imbal-
ance problem, our HSIR can collect more chal-
lenging samples and achieve continuous perfor-
mance improvements. 2) As self-improvement training progresses, the performance gains of HSIR
tend to be smaller, indicating the existence of an upper-bound for self-improvement training.

C.9 COMPATIBILITY WITH SELF-CONSISTENCY

+11.39

+12.25

+9.74

Figure 12: Performance comparison between
with and without the self-consistency method.
Notably, we report the results of HSIR-SFT after
three self-improvement iterations.

The goal of our work is to propose a self-
improvement training framework that unlocks
the internal long-CoT reasoning capabilities of
LRMs, rather than to optimize inference. There-
fore, in the main experiments, we do not com-
pare HSIR with inference-time methods, such
as Self-Consistency (SC) (Wang et al., 2023).
Nevertheless, given that SC is widely used to en-
hance LRM reasoning performance, we include
it in this experiment. Specifically, during infer-
ence, we sample five solutions from the model
and select the majority-vote answer as the pre-
diction. Figure 12 shows the comparative results
of Qwen2.5 models on MedQA, where “-w/ SC”
means using the SC method. As seen, increasing
the test-time compute through SC improves the
reasoning performance of SFT-Initial models ef-
fectively. However, it still underperforms our
HSIR-SFT method, even if HSIR-SFT only samples a single solution during inference. More
encouragingly, combining the HSIR-SFT and SC methods consistently yields further performance
improvements. For instance, for the Qwen2.5-3B model, with the help of SC, HSIR-SFT achieves a
12.25% performance gain over the SFT-Initial model. These results prove the compatibility of our
HSIR with inference-time SC method.

C.10 CASE STUDY

To have a closer look, we provide some cases in this part. Specifically, Table 14 shows the comparison
of self-generated solutions between before and after using our VeriExit sampling strategy. We show
the self-generated results of Qwen2.5-1.5B on the MedQA task. As seen, in the previous failed
solutions, the model indeed arrived at the correct answer during intermediate reasoning steps, yet
ultimately failed to produce the accurate outcome due to reasoning deviation. Conversely, by using
our verify-then-exit strategy, we can convert it into a collect solution. Table 15 shows the comparison
of InDiv scores between concise and overthinking self-generated solutions. Obviously, InDiv scores

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

can reflect the redundancy and repetitiveness of reasoning steps generated by Qwen2.5-1.5B on the
MedQA task. We observe that the overthinking solution indeed obtains a much lower InDiv score.
These case studies support the intuition and soundness of our proposed methods.

Table 16 and Table 17 show the comparison of reasoning results of Qwen2.5-7B models before
and after training using HSIR on MedQA and GSM8K test sets, respectively. It can be found that,
with the help of HSIR, the model can reason more accurately and concisely, thus resulting in better
performance. These case studies prove the effectiveness of HSIR.

Table 14: An example of converting the failed solution into the correct one via the VeriExit
strategy. In this case from MedQA, the ground-truth answer is “D”. As seen, the failed solution
arrived at the correct answer during intermediate reasoning steps (highlighted in green), but diverted
into an incorrect one due to overly backtracking (highlighted in red).

Previous Failed Solution:
<think>
Okay, let’s try to work through this question.
. . .
So, if the options include allopurinol (option C), then that’s the answer. But the options given
here are D. Xanthine oxidase inhibitor. Wait, but xanthine oxidase inhibitors are allopurinol and
other drugs like febuxostat. So, allopurinol is a xanthine oxidase inhibitor. So, if the answer is C,
then allopurinol. But the question is asking for the long-term treatment. So, if the options don’t
include allopurinol, then perhaps the answer is D. Wait, I think the answer is C. Allopurinol. So,
the correct answer would be C.
. . .
##Answer:
C
</answer>

New Solution Generated by VeriExit:
<think>
Okay, let’s try to work through this question.
. . .
So, if the options include allopurinol (option C), then that’s the answer. But the options given
here are D. Xanthine oxidase inhibitor. Wait, but xanthine oxidase inhibitors are allopurinol and
other drugs like febuxostat. So, allopurinol is a xanthine oxidase inhibitor. So, if the answer is C,
then allopurinol. But the question is asking for the long-term treatment. So, if the options don’t
include allopurinol, then perhaps the answer is D.
</think> (verify then exit)
<answer>
. . .
##Answer:
D
</answer>

Table 15: Comparison of InDiv scores between concise and overthinking solutions in a single
query. Here, we use the case of MedQA. Compared to the concise solution, the overthinking solution
contains more repetitive reasoning steps (highlighted in orange).

Concise Solution:
<think>
Okay, let’s try to figure this out. So the question is about malnutrition in children and which
amino acid is needed for them. The symptoms described are Kwashiorkor, which is protein
deficiency. The options are A. Alanine, B. Tyrosine, C. Arginine, D. Methionine.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

First, I remember that kwashiorkor is typically due to inadequate protein intake. The main issue
is the lack of essential amino acids, especially the ones that the body can’t make on its own.
The nine essential amino acids are tryptophan, threonine, histidine, lysine, isoleucine, leucine,
methionine, phenylalanine, and valine.
Looking at the options, Methionine (D) is one of those essential amino acids. Alanine (A) is a
non-essential one, so maybe not needed here. Tyrosine (B) is an amino that’s non-essential and
involved in protein synthesis but not for this presentation. Arginine (C) is also a non-essential
one and more associated with metabolic pathways like making creatine or proteins, not really for
this symptom. So the answer should be D. Methionine.
</think>
. . .
</answer>
InDiv Score: 5.99

Overthinking Solution:
<think>
Okay, let’s tackle this question.
. . .
So the answer would be D. Methionine. Wait, but I thought Tyrosine is an essential amino acid . . .
So perhaps the answer is D. Methionine, because in some cases, the body uses up all the available
EAA’s . . .
So the answer is D. Methionine. Because in kwashiorkor, without proper nutrition, the body
cannot utilize other amino acids. So supplementing with Methionine would help . . .
Therefore, the correct answer is D. Methionine. Because even if the diet has methionine, the
body can’t utilize it. . . .
Alternatively, maybe the answer is Tyrosine. But I think not. So the answer is D.
</think>
. . .
</answer>
InDiv Score: 5.01

Table 16: Comparison of MedQA reasoning results of Qwen2.5-7B models before and after
training using HSIR. The ground-truth answer of this case is “D”.

Instruction:
For the following medical question, select one correct answer from A to D.
Question: A 25-year-old African American man presents to his primary care provider for routine
blood work. He is a well-known case of sickle cell disease treated with hydroxyurea and tramadol
as needed for pain. He does not smoke or drink alcohol. The patient asks if his disease can
adversely affect his kidneys because his friend was recently diagnosed with end-stage renal
failure. Which of the following is a renal complication of sickle cell disease?
Options:
A. Membranous glomerulonephritis
B. Proximal renal tubular acidosis
C. Impaired urine diluting ability
D. Impaired urine concentration ability

Output of SFT-Intial Model:
<think>
Okay, let’s tackle this question. So, the patient is a 25-year-old African American man with sickle
cell disease. He’s on hydroxyurea and tramadol for pain. His friend has end-stage renal failure,
and he’s asking if his disease can affect his kidneys. The question is about a renal complication
of sickle cell disease. The options are A to D.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

First, I need to recall the common renal complications associated with sickle cell disease. Sickle
cell disease can lead to various kidney issues. Let me think. The kidneys are affected because of
the hemolytic anemia and the high levels of hemoglobin S, which can cause microangiopathic
hemolysis.
Membranous glomerulonephritis (option A) is a type of nephrotic syndrome. I remember that
in sickle cell disease, membranous nephropathy is a known complication. It’s an immune
complex-mediated process, leading to proteinuria and nephrotic syndrome. So that’s a possibility.
Proximal renal tubular acidosis (option B) is a genetic disorder where the kidneys can’t excrete
acids properly. But I don’t think that’s linked to sickle cell. PRSA is more about a defect in the
renal tubules’ ability to handle acid, which isn’t directly related to sickle cell’s hemolysis.
Impaired urine diluting ability (option C) would be nephrogenic diabetes insipidus. That’s when
the kidneys can’t concentrate urine due to a defect in response to ADH. Again, not directly linked
to sickle cell. Maybe from other causes like certain drugs or genetic disorders.
Impaired urine concentration ability (option D) is nephrogenic diabetes insipidus as well. So this
is the same as option C. So D is not the right answer here.
So the options are between A and C. Wait, the question is about a renal complication. Sickle cell
can cause various issues. Let me think again. The patient’s friend had end-stage renal failure,
which could be due to chronic kidney disease from sickle cell. The options given are specific
conditions.
Membranous glomerulonephritis (A) is a type of glomerular disease leading to nephrotic syn-
drome. In sickle cell, membranous nephropathy is a recognized complication, often presenting
with nephrotic syndrome. So A is a possible answer.
Impaired urine diluting ability (C) would be nephrogenic DI, which is unrelated. So the correct
answer here is A. Membranous glomerulonephritis. </think>
<answer>
. . .
##Answer:
A
</answer>

Output of HSIR-DPO Model:
<think>
Okay, let’s tackle this question. So, the patient is a 25-year-old African American man with sickle
cell disease. He’s on hydroxyurea and tramadol for pain. His friend had end-stage renal failure,
and the patient wants to know if his disease can affect his kidneys. The options are about different
renal complications.
First, I need to recall the common renal issues associated with sickle cell disease. Sickle cell
disease can cause various complications, including kidney problems. I remember that sickle cell
can lead to different glomerular diseases. For example, sickle cell nephropathy, which is a type
of glomerulonephritis. But looking at the options, option A is membranous glomerulonephritis. I
think that’s more commonly associated with conditions like lupus or hepatitis B, but maybe I’m
mixing up. Alternatively, maybe it’s a rare complication.
Wait, another possibility is that sickle cell can cause tubular issues. The options include proximal
renal tubular acidosis (option B). I know that sickle cell can lead to Fanconi syndrome, which is a
form of proximal tubular dysfunction. Fanconi syndrome includes glucosuria, aminoaciduria, etc.
But option B is specifically proximal RTA, which is a different condition. Proximal RTA is when
the proximal tubule can’t reabsorb properly, leading to loss of nutrients and acidosis. But I’m not
sure if that’s directly linked to sickle cell.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Alternatively, the question might be pointing towards glomerular issues. The options include
impaired urine diluting ability (option C) and impaired concentration ability (option D). I remem-
ber that in sickle cell disease, there’s a condition called hypernephrosis, which is an increase in
kidney size due to fluid overload. This can lead to dilutional hyponatremia because the kidneys
can’t concentrate urine properly. So, impaired concentration ability (option D) would be the issue
here. But wait, the options are C and D as separate. Wait, impaired urine diluting ability—so the
kidneys can’t excrete concentrated urine. Impaired concentration ability would be the opposite,
right? So in sickle cell, the kidneys might have trouble concentrating urine, leading to dilutional
hyponatremia. So option D would be the correct answer here.
But wait, another thought: sickle cell can cause glomerulonephritis leading to proteinuria,
hematuria, etc. But the options don’t mention that. The options given are specific. So, if the
question is about a renal complication, maybe the answer is D.
</think>
<answer>
. . .
##Answer:
D
</answer>

Table 17: Comparison of GSM8K reasoning results of Qwen2.5-7B models before and after
training using HSIR. The ground-truth answer of this case is “20”.

Instruction:
Toby is reading a book that is 45 pages long. It averages 200 words a page. Toby can read at a
rate of 300 words per minute. He has to be at the airport in 60 minutes and plans to leave as soon
as he finishes the book. It takes 10 minutes to get to the airport. How many minutes early will
Toby be?

Output of SFT-Intial Model:
<think>
Okay, let’s see. So the problem is about Toby reading a book and figuring out how early he’ll be
at the airport. Hmm. Let me start by understanding each part step by step.
First, the book is 45 pages long. Each page averages 200 words. So, to find the total number of
words in the book, I need to multiply the number of pages by the average words per page. That
would be 45 pages times 200 words per page. Let me calculate that. 45 times 200... 45 times 200
is 9,000 words. So the book has 9,000 words in total.
Next, Toby’s reading rate is 300 words per minute. So, to find out how long it takes him to read
the entire book, I need to divide the total number of words by his reading rate. That’s 9,000
words divided by 300 words per minute. Let me do that division. 9,000 divided by 300. Hmm,
300 times 30 is 9,000. So that’s 30 minutes. So Toby will take 30 minutes to read the book.
But wait, he has to be at the airport in 60 minutes, and it takes him 10 minutes to get there. So
the total time he needs to leave his house is 60 minutes (time to be at the airport) plus 10 minutes
(travel time) which is 70 minutes. But he only needs 30 minutes to read the book. So if he starts
reading now, he’ll finish in 30 minutes. Then he has 70 - 30 = 40 minutes left before he needs to
leave. Therefore, he’ll be 40 minutes early.
Wait, but let me check again to make sure I didn’t miss anything. Let me recap: Total words in
the book: 45 pages * 200 words/page = 9,000 words. Reading time: 9,000 words / 300 words per
minute = 30 minutes. Time needed to get to the airport: 10 minutes. Total time before he needs
to leave: 60 minutes.
So time he has after finishing reading: 60 + 10 - 30 = 40 minutes. Therefore, he’s 40 minutes
early. That seems right. I don’t think I made any mistakes here. The key steps were calculating
the total words, then the reading time, and then subtracting that from the total time he has before
he needs to leave. Yeah, that makes sense.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

</think>
. . .
Final Answer: \boxed{40}

Output of HSIR-DPO Model:
<think>
Okay, let’s see. Toby has a 45-page book to read. Each page averages 200 words. He reads at
300 words per minute. He has 60 minutes before he needs to be at the airport, and it takes him 10
minutes to get there. The question is how many minutes early he’ll be if he reads the whole book
and leaves right after. Hmm, let me break this down step by step.
First, I need to figure out how many words are in the entire book. Since there are 45 pages and
each page has 200 words, I can multiply those two numbers. So 45 pages times 200 words per
page. Let me calculate that. 45 times 200... 45 times 200 is 9,000 words. So the book has 9,000
words total.
Next, Toby reads at a rate of 300 words per minute. To find out how long it takes him to read the
entire book, I need to divide the total number of words by his reading rate. That’s 9,000 words
divided by 300 words per minute. Let me do that division. 9,000 ÷ 300. Hmm, 300 times 30 is
9,000. So that’s 30 minutes. So reading the book takes him 30 minutes.
But he has to get to the airport, which takes 10 minutes. So the total time from when he starts
reading until he leaves for the airport is the time reading plus the time to get there. That’s 30
minutes + 10 minutes = 40 minutes. Wait, but he has 60 minutes before he needs to be at the
airport. So if he finishes reading and leaves 40 minutes later, he’ll have 60 - 40 = 20 minutes left.
That means he’ll be 20 minutes early.
Let me just verify each step again. Pages times words per page: 45*200=9000. Reading time:
9000/300=30. Time to airport:10. Total time:30+10=40. Time left:60-40=20. Yep, that checks
out. So the answer is 20 minutes early.
</think>
. . .
Final Answer: \boxed{20}

D LLM USAGE

During the paper writing, we used the proprietary LLMs as general-purpose assistants to polish some
sentences. We did not prompt them to generate research ideas or search for related works, thus
avoiding the risk of introducing false information. In the experiments, we instructed the DeepSeek-R1
to obtain the intermediate reasoning trajectories for the unlabeled MedQA training set. The detailed
prompt is shown in Table 6. The way of distilling reasoning trajectories from proprietary LLMs is
common in the community, and we believe that this behavior does not violate the policies.

33

	Introduction
	Rethinking Self-improvement Training in LRMs
	Preliminaries
	Empirical Analyses

	Harness Self-improvement for Better and Faster Reasoning
	Motivation and Intuition of HSIR
	Important Components of HSIR

	Experiments
	Experimental Setup
	Main Results
	More Analyses

	Related Work
	Conclusion
	Implementation of H-GRPO
	More Experimental Details
	Dataset Details
	Training and Evaluation Details

	More Experiments and Analyses
	Analysis of VeriExit Sampling Strategy
	Analysis of InDiv Score
	Parameter Analysis
	Impact of Seed Data
	blueWhen Ground-truth Answer are Unavailable
	blueResults in High-resource Scenarios
	Efficiency of HSIR
	blueMore Self-improvement Iterations
	blueCompatibility with Self-consistency
	Case Study

	LLM Usage

