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Abstract

We study online learning in constrained Markov decision processes (CMDPs) in
which rewards and constraints may be either stochastic or adversarial. In such
settings, Stradi et al. [2024a] proposed the first best-of-both-worlds algorithm
able to seamlessly handle stochastic and adversarial constraints, achieving optimal
regret and constraint violation bounds in both cases. This algorithm suffers from
two major drawbacks. First, it only works under full feedback, which severely
limits its applicability in practice. Moreover, it relies on optimizing over the space
of occupancy measures, which requires solving convex optimization problems,
an highly inefficient task. In this paper, we provide the first best-of-both-worlds
algorithm for CMDPs with bandit feedback. Specifically, when the constraints are
stochastic, the algorithm achieves Õ(

√
T ) regret and constraint violation, while,

when they are adversarial, it attains Õ(
√
T ) constraint violation and a tight fraction

of the optimal reward. Moreover, our algorithm is based on a policy optimization
approach, which is much more efficient than occupancy-measure-based methods.

1 Introduction

Markov decision processes (MDPs) [Puterman, 2014] have emerged as the most natural models for
such interactions, as they allow to capture the fundamental goal of learning an optimal (i.e., reward-
maximizing) action-selection policy for the agent. However, in most of the real-world applications,
the learner has to satisfy some additional requirements. For instance, in autonomous driving one
has to avoid crashing with other cars [Isele et al., 2018], in ad auctions one must not deplete the
allocated budget [He et al., 2021], while in recommendation systems offending items should not be
presented to the users [Singh et al., 2020]. In order to capture such requirements, constrained MDPs
(CMDPs) [Altman, 1999] have been introduced. These augment classical MDPs by adding costs that
the agent is constrained to keep below some given thresholds.

Over the last years, online learning problems in episodic CMDPs have received a growing attention
(see, e.g., [Efroni et al., 2020] for a seminal work in the field). These are problems in which the
learner repeatedly interacts with the CMDP environment over multiple episodes. In such settings, the
learner’s goal is to minimize the regret of not always selecting a best-in-hindsight policy that satisfies
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cost constraints, while at the same time ensuring that the cumulative violation of cost constraints does
not grow too fast over the episodes. Ideally, one would like that both the regret and the constraint
violation grow sublinearly in the number of episodes T . In online learning in episodic MDPs,
two different assumptions on how rewards and costs are determined at each episode are possible.
They can be selected either stochastically according to fixed (unknown) probability distributions or
adversarially, meaning that no statistical assumption is made. Very recently, Stradi et al. [2024a]
proposed the first best-of-both-worlds learning algorithm for online learning in episodic CMDPs.
Such an algorithm is able to seamlessly handle stochastic and adversarial constraints, achieving
optimal regret and violation bounds in both cases. However, it suffers from two major drawbacks.
First, it only works under full feedback, meaning that the learning agent needs to observe rewards
and costs defined over the whole environment after each episode. This is extremely unreasonable
in practice, where only some feedback along the realized trajectory is usually available. Moreover,
the algorithm works by optimizing over the space of occupancy measures, which requires solving a
convex problem at every episode, an highly inefficient task.

1.1 Original Contributions

We provide the first best-of-both-worlds algorithm for online learning in episodic CMDPs with bandit
feedback. This means that, after each episode, the algorithm only needs to observe the realized
rewards and costs along the trajectory traversed during that episode, as it is the case in most of
the real-world applications. Moreover, our algorithm is based on a primal-dual policy optimization
method, and, thus, it is arguably much more efficient than the one by Stradi et al. [2024a], it does not
require solving convex programs.

When the costs are stochastic, our algorithm attains Õ(
√
T ) regret and constraint violation, while,

when they are adversarial, it achieves Õ(
√
T ) violation and a fraction of the optimal reward. These

results match those of the full-feedback algorithm by Stradi et al. [2024a] and are provably tight. We
also analyze the performances of our algorithm with respect to a parameter ρ measuring by “how
much” Slater’s condition is satisfied. Specifically, if ρ is arbitrarily small, our algorithm can still
guarantee Õ(T 3/4) regret and violation in the stochastic setting.

Crucially, similarly to the algorithm by Stradi et al. [2024a], ours does not require any knowledge of
the Slater’s parameter ρ. In order to obtain this result, we show that the Lagrangian multipliers are
automatically bounded during the learning dynamics, by employing the no-interval-regret property
of our primal and dual regret minimizers. Indeed, we develop the first algorithm for unconstrained
MDPs with no-interval-regret, under bandit feedback. We believe that this result may also be of
independent interest.

Finally, differently from Stradi et al. [2024a], we show that our algorithm may achieve sublinear
regret and violation in the adversarial setting, by using a weaker baseline that has to satisfy the
constraints at every round. Specifically, when ρ is large enough our algorithm attains Õ(

√
T ) regret

and violation, while it still achieves Õ(T 3/4) regret and violation when ρ is arbitrarily small.

1.2 Related Works

In the following, we highlight the works that are mainly related to ours. Due to space constraints, we
refer to Appendix A for a complete discussion about related works.

Online learning in MDPs has been widely studied both under stochastic settings [Auer et al., 2008]
and adversarial ones [Neu et al., 2010]. In adversarial settings, two feedbacks are usually investigated.
In the full-feedback setting, the reward function (or loss) is entirely revealed at the end of the episode.
In this case, Rosenberg and Mansour [2019b] show that it is possible to achieve an optimal Õ(

√
T )

regret bound. In the more challenging bandit-feedback setting, with rewards revealed along the
traversed trajectory only, Jin et al. [2020] show that the optimal bound is still attainable.

As concerns MDPs with constraints, online learning has been studied mainly in the stochastic setting
(see Efroni et al. [2020] for a seminal work on the topic). As concerns adversarial settings, namely,
when the constraints are not assumed to be stochastic, there exists an impossibility result from Mannor
et al. [2009] that prevents from attaining sublinear regret and violation when the optimal solution is
computed with respect to a policy that satisfies the constraints on average. Thus, many works focused
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on achieving Õ(
√
T ) regret and violation for adversarial rewards and stochastic constraints [Qiu

et al., 2020] or non-stationary environments with bounded non-stationarity [Ding and Lavaei, 2023,
Wei et al., 2023, Stradi et al., 2024b].

Recently, Stradi et al. [2024a] showed the first best-of-both-worlds (with respect to the constraints)
algorithm for CMDPs. Precisely, the authors propose a primal-dual algorithm that optimizes over the
occupancy measure space, under full feedback. When the constraints are stochastic, the algorithm
achieves Õ(

√
T ) regret and violation, both in the case in which rewards are adversarial and the one

where they are stochastic. Contrariwise, in the adversarial setting, the algorithms attains Õ(
√
T )

violatios, and the no-α-regret property with α = ρ/(H+ρ), where ρ is a suitably-defined Slater’s
parameter. Notice that this result is in line with the best-of-both-worlds results in the single-state
online constrained settings, e.g., [Castiglioni et al., 2022b].

2 Problem Setting

2.1 Online Constrained Markov Decision Processes

An online episodic constrained MDPs (CMDPs) [Altman, 1999] is a tuple M :=

(X,A,P, {rt}Tt=1 , {Gt}
T
t=1). Specifically, T is the number of episodes, with t ∈ [T ] denoting

a specific episode. X,A are finite state and action spaces, respectively. P : X × A → ∆(X) is
the transition function. We denote by P (x′|x, a) the probability of going from state x ∈ X to state
x′ ∈ X by taking action a ∈ A. Notice that, w.l.o.g., in this work we consider loop-free CMDPs.
Formally, this means that X is partitioned into H layers X0, . . . , XH such that the first and the last
layers are singletons, i.e., X0 = {x0} and XH = {xH}, and that P (x′|x, a) > 0 only if x′ ∈ Xh+1

and x ∈ Xh for some h ∈ [0 .. H − 1]. Any episodic CMDP with horizon H that is not loop-free can
be cast into a loop-free one by suitably duplicating the state space H times. {rt}Tt=1 is a sequence
of vectors describing the rewards at each episode t ∈ [T ], namely rt ∈ [0, 1]|X×A|. We refer to the
reward of a specific state-action pair x ∈ X, a ∈ A for an episode t ∈ [T ] as rt(x, a). Rewards may
be either stochastic, in that case rt is a random variable distributed according to a distributionR for
every t ∈ [T ], or chosen by an adversary. {Gt}Tt=1 is a sequence of constraint matrices describing the
m constraint violations at each episode t ∈ [T ], namely Gt ∈ [−1, 1]|X×A|×m, where non-positive
violation values stand for satisfaction of the constraints. For i ∈ [m], we refer to the violation of
the i-th constraint for a specific state-action pair x ∈ X, a ∈ A at episode t ∈ [T ] as gt,i(x, a).
Constraint violations may be stochastic, in that case Gt is a random variable distributed according to
a probability distribution G for every t ∈ [T ], or chosen by an adversary.

Algorithm 1 Learner-Environment Interaction
1: for t = 1, . . . , T do
2: rt and Gt are chosen stochastically or adversarially
3: The learner chooses a policy πt : X ×A→ [0, 1]
4: The state is initialized to x0
5: for h = 0, . . . ,H − 1 do
6: The learner plays ah ∼ πt(·|xh)
7: The learner observes rt(xh, ah),gt,i(xh, ah)∀i ∈ [m]
8: The environment evolves to xh+1 ∼ P (·|xh, ah)
9: The learner observes xh+1

10: end for
11: end for

The learner chooses a policy π :
X → ∆(A) at each episode,
defining a probability distribu-
tion over actions at each state.
We denote by π(·|x) the proba-
bility distribution for a state x ∈
X , with π(a|x) being the prob-
ability of action a ∈ A. In Al-
gorithm 1 we provide the interac-
tion between the learner and the
environment in a CMDP. Further-
more, we assume that the learner
knows X and A, but they do not
know anything about P . Notice
that the interaction between the learner and the environment is with bandit feedback, namely, the
rewards and the constraint violations are revealed for the traversed trajectory only.

Occupancy Measures Given a transition function P and a policy π, the occupancy measure
qP,π ∈ [0, 1]|X×A×X| induced by P and π is such that, for all x ∈ Xh, a ∈ A, and x′ ∈ Xh+1 with
h ∈ [0 .. H − 1], it holds

qP,π(x, a, x′) = P {xh = x, ah = a, xh+1 = x′|P, π} .
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Moreover, we let qP,π(x, a) =
∑
x′∈Xh+1

qP,π(x, a, x′) and qP,π(x) =
∑
a∈A q

P,π(x, a). Then, the
set of valid occupancy measures can be characterized as follows [Rosenberg and Mansour, 2019b]. A
vector q ∈ [0, 1]|X×A×X| is a valid occupancy measure of an episodic loop-free MDP if and only if the
following three conditions hold: (i)

∑
x∈Xh

∑
a∈A

∑
x′∈Xh+1

q(x, a, x′) = 1∀h ∈ [0, . . . ,H − 1],
(ii)

∑
a∈A

∑
x′∈Xh+1

q(x, a, x′) =
∑
x′∈Xh−1

∑
a∈A q(x

′, a, x)∀h ∈ [1, . . . ,H−1],∀x ∈ Xh and
(iii) P q = P , where P is the transition function of the MDP and P q is the one induced by q.
Indeed, any valid occupancy measure q induces a transition function P q and a policy πq , defined as
P q(x′|x, a) := q(x,a,x′)

q(x,a) and πq(a|x) := q(x,a)
q(x) .

2.2 Offline CMDPs Baseline

In the following, we introduce the offline CMDP optimization problem, which is needed to define a
proper baseline to evaluate the performances of online learning algorithms. Specifically, we introduce
the following linear program parameterized by a reward vector r and a constraint matrix G:

OPTr,G :=

{
maxq∈∆(M) r⊤q

s.t. G⊤q ≤ 0,
(1)

where q ∈ [0, 1]|X×A| is an occupancy measure and ∆(M) is the set of valid occupancy measures.

Furthermore, we state the following well-known condition on the offline CMDP problem.
Condition 2.1 (Slater’s condition). Given a constraint matrix G, the Slater’s condition holds when
there is a strictly feasible solution q⋄ such that G⊤q⋄ < 0.

Notice that, in this work, we do not assume that the Slater’s condition holds. Indeed, our algorithm
still works when a strictly feasible solution does not exists. We refer to Section 2.4 for further details
on this. Finally, we define the Lagrangian function of Problem (1), as follows.
Definition 2.2 (Lagrangian function). Given a reward vector r and a constraint matrix G, the
Lagrangian function Lr,G : ∆(M)× Rm≥0 → R of Problem (1) is defined as Lr,G(q, λ) := r⊤q −
λ⊤(G⊤q).

2.3 Online Learning Problem

As it is standard in online learning [Cesa-Bianchi and Lugosi, 2006], we evaluate the performance of
learning algorithms by means of the notion of cumulative regret.
Definition 2.3 (Regret). We define the cumulative regret up to episode T as RT := T OPTr,G −∑T
t=1 r

⊤
t q

P,πt , where r := Er∼R[r] if the rewards are stochastic, while r := 1
T

∑T
t=1 rt if they are

adversarial, and G := EG∼G [G] if the constraints are stochastic, while G := 1
T

∑T
t=1Gt if they are

adversarial.

We refer to an optimal occupancy measure, i.e., a feasible one achieving value OPTr,G, as q∗. Thus,

we can rewrite the regret definition as RT =
∑T
t=1 r

⊤q∗ −
∑T
t=1 r

⊤
t q

P,πt . Notice that, in the
adversarial setting, the regret is computed with respect to an optimal feasible strategy in hindsight.
Indeed, an optimal solution is not required to satisfy the constraints at every episode t ∈ [T ].

Next, we define the performance measure related to constraints: the cumulative constraint violation.
Definition 2.4 (Constraint violation). The cumulative constraint violation up to episode T is defined
as VT := maxi∈[m]

∑T
t=1

[
G⊤
t q

P,πt
]
i
.

Learning algorithms perform properly when they are capable of keeping both the quantities defined
above sublinear in T , namely, RT = o(T ) and VT = o(T ).

For the sake of simplicity, in the rest of the paper, we will refer to qP,πt as qt, omitting the dependence
on transition unction P and policy π.

2.4 Feasibility

We introduce a problem-specific parameter of Problem (1), called ρ ∈ [0, H], which iden-
tifies by “how much” Slater’s condition is satisfied. Formally, when the constraints are se-
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Algorithm 2 PDB-PS
Require: State space X , action space A, number of episodes T , confidence parameter δ ∈ (0, 1)

1: π1(a|x)← 1
|A| ∀(x, a) ∈ X ×A

2: λ1 ← 0, Γ1 ← 1, Ξ1 ← 2
3: K ←

[
0, T 1/4

]m
, η ← 1

D ln(|A||X|2T2/δ)
√
T

4: for t = 1, . . . , T do
5: Play policy πt, observe trajectory {(xh, ah)}H−1

h=0 , rewards {rt(xh, ah)}H−1
h=0 and constraint

violations {gt,i(xh, ah)}H−1
h=0 for all i ∈ [m]

6: for h = 0, . . . ,H − 1 do
7: ℓt(xh, ah)←Γt+

∑m
i=1λt,igt,i(xh,ah)− rt(xh,ah)

8: end for
9: πt+1 ← Call FS-PODB.UPDATE({(xh, ah)}H−1

h=0 , {ℓt(xh, ah)}H−1
h=0 , Ξt)

10: λt+1 ← ΠK

[
λt + η

∑H−1
h=0 Gt[xh, ah]

]
11: Γt+1 ← 1 + ∥λt+1∥1
12: Ξt+1 ← max {Ξt, 2Γt}
13: end for

lected stochastically, namely, they are chosen from a fixed distribution, the parameter ρ is
defined as ρ := maxq∈∆(M) mini∈[m]−

[
G

⊤
q
]
i
. When the constraints are chosen adver-

sarially, namely, no statistical assumption is made, the parameter ρ is defined as ρ :=
maxq∈∆(M) mint∈[T ] mini∈[m]−

[
G⊤
t q
]
i
.

Furthermore, we denote the occupancy measure q ∈ ∆(M) leading to the value of ρ by q◦. Intuitively,
ρ represents the “margin” by which the “most feasible” strictly feasible solution (i.e., q◦) satisfies
the constraints. Finally, we state the following condition on the parameter ρ, which will guide the
analyses of the performances of our algorithm.

Condition 2.5. It holds that ρ ≥ T− 1
8H
√
112m.

Remark 2.6. Notice that, it is standard in the literature of primal-dual methods to assume that ρ is
a constant independent of T and directly include in the regret bound the dependence on 1/ρ (see,
e.g, [Efroni et al., 2020, Liu et al., 2021, Wei et al., 2022, Müller et al., 2024]). Nevertheless, when ρ
is too small, this could result in suboptimal regret bounds. In this paper, we take a different approach
by providing bounds for any value of ρ, that is, whether Condition 2.5 holds or not.

3 A Policy Optimization Primal-Dual Approach

In this section, we provide the description of our algorithm. We resort to a primal-dual formulation of
the CMDP problem, and we employ different regret minimizers to optimize over the primal space
(namely, the policy space) and the dual one (that is, the Lagrangian variables space). Furthermore,
our primal algorithm is based on a policy optimization approach. Thus, the learning update is not
performed over the occupancy measure space, but state-by-state along the MDP structure. This allows
us to avoid solving a convex program at each episode (as it is the case in the algorithm by [Stradi
et al., 2024a]). As concerns the dual, we employ online gradient descent (OGD). We remark that our
algorithm does not require any knowledge of the Slater’s parameter ρ. Indeed, as we further discuss
in the rest of this work, we can show that the Lagrangian multipliers are automatically bounded given
specific no-regret properties of the primal and dual regret minimizers.

3.1 Meta-Algorithm

In Algorithm 2, we provide the pseudocode of primal-dual bandit policy search (PDB-PS).

Algorithm 2 initializes the policy uniformly over the space (see Line 1). Moreover, the Lagrangian
variables are initialized as the zero vector, the loss scaling factor to 1, the loss range to 2, and,
finally, the dual space is instantiated as

[
0, T 1/4

]m
(see Line 3). We underline that we force the dual

space to be bounded in
[
0, T 1/4

]m
only to deal with degenerate cases where Condition 2.5 does
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not hold. When Condition 2.5 holds, our algorithm guarantees that the Lagrangian variables are
automatically bounded during learning. Furthermore, the algorithm keeps track of the maximum loss
range observed by the primal algorithm Ξt, up to episode t ∈ [T ], since the primal regret minimizer
needs to dynamically update its belief on the loss range, in order to attain optimal regret bounds. The
algorithm plays policy πt and observes the bandit feedback as depicted in Algorithm 1 (see Line 5).
Given the observed feedback, PDB-PS builds a re-scaled Lagrangian loss for each layer h ∈ [H] as:

ℓt(xh, ah) := Γt +

m∑
i=1

λt,igt,i(xh, ah)− rt(xh, ah). (2)

Notice that the loss built in Equation (2) can been seen as the Lagrangian suffered by πt for state-
action pair (x, a), scaled by Γt to guarantee that the losses are always positive (see Line 7). This loss
is properly built to feed the primal policy optimization procedure. Moreover, we underline that the
feedback given to the primal algorithm encompasses the trajectory and the maximum loss range ob-
served, besides the loss built in Equation (2). Policy πt+1 is returned by the primal algorithm (Line 9).
We refer the reader to the next section for further discussion on the primal optimization algorithm.
Algorithm 2 updates the Lagrangian multipliers using an online gradient descent update with loss
−
∑H
h=0Gt[xh, ah] in the bounded dual space [0, T 1/4]m, λt+1 ← ΠK

[
λt + η

∑H−1
h=0 Gt[xh, ah]

]
,

where ΠK is the euclidean projection over the space K and Gt[xh, ah] is the m-dimensional vector
composed by the violations of any constraint for the state-action pair (xh, ah) (Line 10). Thus, the
current loss scaling factor is computed as Γt+1 ← 1 + ∥λt+1∥1 (Line 11). Finally, the maximum
observed loss range Ξt+1 is updated as Ξt+1 ← max {Ξt, 2Γt+1} , since the range of losses observed
by the primal depends on the Lagrangian multipliers (Line 12).

3.2 Primal Regret Minimizer

In Algorithm 3, we provide the pseudocode of fixed share policy optimization with dilated bonus
(FS-PODB.UPDATE), namely, the update performed by the primal regret minimizer employed by
Algorithm 2. Algorithm 3 builds on top of the state-of-the-art policy optimization algorithm for
adversarial MDPs (see [Luo et al., 2021]), equipping it with a fixed share update [Cesa-Bianchi et al.,
2012]. This modification allows us to achieve the no-interval regret property, which, to the best of
our knowledge, has never been shown for adversarial MDPs with bandit feedback. Thus, we believe
that the theoretical guarantees of Algorithm 3 are of independent interest.

Specifically, Algorithm 3 requires in input the trajectory traversed during the learner-environment
interaction, the incurred loss functions, and the maximum loss range observed for any t ∈ [T ].1
During the first episode, the algorithm initializes the estimated transitions space as the set of all
possible transition functions (Line 2). Thus, at each episode the algorithm defines a dynamic
learning rate ηt ∝ 1√

TΞt
(Line 4), where Ξt is the upper bound on the range of the loss functions

up to t. This is done to control the different scales of the loss, due to the Lagrangian multipliers
choice of the dual algorithm. Then, Algorithm 3 builds an optimistic estimator of the state-action
value function as Q̂t(x, a) :=

Lt,h

qt(x,a)+γ
It(x, a), where It(x, a) := I{xt,h = x, at,h = a} and

Lt,h :=
∑H−1
j=h ℓt(xj , aj) is the loss incurred by the algorithm at episode t starting from layer

h. Indeed, since qt(x, a) := maxP̂∈Pt
qP̂ ,πt(x, a),2 and γ is a positive quantity, Q̂t(x, a) results

in an optimistic estimator of the state-action value function (Line 5). The optimistic estimator is
employed to control the variance of the loss estimation and, thus, in order to achieve high-probability
results. Finally, notice that the state-action value function (as the estimated one) is commonly used in
policy optimization as it allows to optimize efficiently state-by-state. In addition to the estimated
state-action value function, Algorithm 3 defines a dilated bonus similar to the one introduced by Luo
et al. [2021], which is then incorporated in the final objective of the optimization update. The
bonus is defined as Bt(x, a) := bt(x) +

(
1 + 1

H

)
max
P̂∈Pt

Ex′∼P̂ (·|x,a)Ea∼πt(·|x′) [Bt(x
′, a′)] , where

the term bt(x) depends on the uncertainty on the transitions estimation and the range of the losses,

1While the input of Algorithm 3 may seem different from the standard bandit feedback received in adversarial
MDPs, this is not the case. Indeed, it is sufficient to set Ξt = 1 for all t ∈ [T ] to achieve the same guarantees
attained by Algorithm 3, in the Lagrangian formulation of CMDPs, in standard adversarial MDPs.

2As shown in [Jin et al., 2020], qt(x, a) can be computed efficiently by means of dynamic programming.
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Algorithm 3 FS-PODB.UPDATE

Require: Observed trajectory {(xh, ah)}H−1
h=0 , observed losses {ℓt(xh, ah)}H−1

h=0 , loss range upper
bound Ξt

1: if t = 1 then
2: P1 ← set of all possible transitions
3: end if
4: ηt ← 1

2HΞtC
√
T

, γ ← 1
C
√
T

, σ ← 1
T

5: For all h = 0, . . . ,H − 1 and (x, a) ∈ Xh ×A:

Lt,h ←
H−1∑
j=h

ℓt(xj , aj), Q̂t(x, a)←
Lt,h

qt(x, a) + γ
It(x, a),

where we let qt(x, a) := maxP̂∈Pt
qP̂ ,πt(x, a) and It(x, a) := I{xt,h = x, at,h = a}

6: For all (x, a) ∈ X ×A:

bt(x)← E
a∼πt(·|x)

3γHΞt+HΞt

(
qt(x, a)−qt(x, a)

)
qt(x, a) + γ



Bt(x, a)← bt(x) +

(
1 +

1

H

)
max
P̂∈Pt

Ex′∼P̂ (·|x,a)Ea∼πt(·|x′) [Bt(x
′, a′)]

where we let q
t
(x, a) := minP̂∈Pt

qP̂ ,πt(x, a), and Bt(xH , a) := 0 for all a ∈ A
7: For all (x, a) ∈ X ×A:

wt+1(a|x)← (1− σ)wt(a|x)e−ηt(Q̂t(x,a)−Bt(x,a))

+
σ

|A|
∑
a′∈A

wt(a
′|x)e−ηt(Q̂t(x,a

′)−Bt(x,a
′))

πt+1(a|x)←
wt+1(a|x)∑

a′∈A wt+1(a′|x)

8: Pt+1 ←TRANSITION.UPDATE({(xh, ah)}H−1
h=0 )

while the term
(
1 + 1

H

)
attributes more weight to the deeper layers, so as to incentivize exploration

(Line 6). The weights associated to any action are computed employing the so called fixed share
update [Cesa-Bianchi et al., 2012]; specifically, the weights are computed as the convex combination
between the uniform weight and the solution to optimization step ∝ wt(a|x)e−ηt(Q̂t(x,a)−Bt(x,a)).
The policy is simply computed as a normalization between weights (see Line 7). Notice that the
convex combination mentioned above is crucial to bound the regret for each interval (that is, to attain
the no-interval regret property). Indeed, it guarantees a lower bound for the value taken by the policy
in each available action at each episode, and, thus, for all intervals [t1, t2] ⊂ [T ], it allows to find a
nice upper bound for the Bregman divergence Dψ(π(·|a);πt1(·|a)), for all policies π. Finally, the
estimation of the transitions is updated given the trajectory traversed in the MDP (Line 8). This
estimation is standard in the literature. Thus, we refer to [Rosenberg and Mansour, 2019b] for further
discussion on the use of counters and epochs to estimate a superset of the transition space Pt.

3.3 No-Interval Regret Property

When the Slater’s parameter ρ is known, the only necessary requirement for the primal and the dual
regret minimizers is to be no-regret. Thus, it is sufficient to bound the Lagrangian space so that
∥λ∥1 ≤ O(H/ρ) to attain sublinear regret and violation. Nevertheless, knowing ρ is generally not
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possible in real-world scenarios. In order to relax the assumption on the knowledge of ρ, we require
our primal and dual regret minimizers to have the no-interval regret property.3.

First, we introduce the interval regret as follows.
Definition 3.1 (Interval regret). Given an interval of consecutive episodes [t1, . . . , t2] ⊆ [1, . . . , T ],
the interval regret with respect to a general occupancy q (and the associated policy π) and a sequence
of loss functions {ℓt}Tt=1 with ℓt : X ×A→ [0,K], with K > 0, is Rt1,t2(q) :=

∑t2
t=t1

ℓ⊤t (qt− q).

In the following, we omit the dependence on the general occupancy measure q when it is clear from
the context. Thus, given Definition 3.1, we are able to introduce the no-interval regret property, as
follows.
Definition 3.2 (No-interval regret property). An algorithm attains the no-interval regret property
when for any interval of consecutive episodes [t1, . . . , t2] ⊆ [1, . . . , T ] and with respect to any valid
occupancy q (and the associated policy π), it holds Rt1,t2 ≤ Õ(

√
T ).

Intuitively, the no-interval regret property guarantees a more stable learning dynamics over the
episodes.

When full feedback is available, as for the dual algorithm, it is sufficient to employ OGD-like updates
to attain the desired result. This is not the case when the feedback is bandit. Nevertheless, given that
we use a policy optimization procedure and the fixed share update, we build the first algorithm for
adversarial MDPs with no-interval-regret. We state the result in the following theorem.
Theorem 3.3. For any δ ∈ (0, 1), with probability at least 1−8δ, Algorithm FS-PODB attainsRt1,t2 ≤
Õ
(
Ξt1,t2

√
T + Ξt1,t2

t2−t1√
T

)
, where the regret can be computed with respect to any policy function

π : X → ∆(A).

As it is standard for online learning algorithms, Rt1,t2 scales as the loss range, as shown by the
dependence on Ξt1,t2 , that is, the maximum possible range of losses in the interval.

3.4 Bound on the Lagrangian Multipliers Dynamics

Next, we show that, given the no-interval regret property of the primal and the dual regret minimizers,
it is possible to show that the Lagrangian multipliers are automatically bounded during learning.
Notice that this bound is necessary since any adversarial regret minimizer needs the loss to be bounded
to achieve the no-regret property. Thus, since the rewards {rt}Tt=1 and the constraints {Gt}Tt=1 are
assumed to be bounded for all episodes, the problem of bounding the loss suffered by the primal
algorithm becomes the problem of bounding the Lagrangian multipliers {λt}Tt=1.
Theorem 3.4. Under Condition 2.5, for any δ ∈ (0, 1), with probability at least 1− 11δ, it holds:
∥λt∥1 ≤ Λ,∀t ∈ [T + 1], where Λ = 112mH2

ρ2 .

The general idea behind the proof is to compare, for every interval [t1, t2] ⊂ [T ], the upper bound to
−
∑t2
t=t1

ℓL,⊤t qt obtained through the regret of the dual algorithm with the lower bound to the same
quantity obtained through the primal interval regret, where we define the non-scaled Lagrangian loss
ℓLt as the vector composed by ℓLt (x, a) :=

∑m
i=1 λt,igt,i(x, a)− rt(x, a) for all (x, a) ∈ X ×A and

for all t ∈ [T ]. The resulting inequality leads, by contradiction, to the desired bound. In this sense, a
fundamental requirement for the proof is that the regret guarantees for both the primal and the dual
algorithm hold for all subsets of episodes.

4 Theoretical Analysis

In this section, we prove the best-of-both-world guarantees attained by Algorithm 2.

4.1 Stochastic Setting

We first study the performance of Algorithm 2 when the constraints are stochastic.
3What we require is generally known in the literature as the weak no-interval regret property. For the sake of

simplicity, in our work, we introduce only the weak property.
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In such a setting, our algorithm can handle two scenarios. In both of them, employing a primal-
dual analysis shows that both the regret and the violations are bounded with order Õ(

√
T ) times

the maximum value taken over all episodes of the Lagrangian multipliers, i.e. maxt∈[T ]∥λt∥1.
In the first scenario, Condition 2.5 holds and thus we can apply Theorem 3.4 to show that the
Lagrangian multipliers are bounded. In such a case, maxt∈[T ]∥λt∥1 can be easily bounded by Λ.
When Conditions 2.5 does not hold, we need to resort to the bound of Lagrangian multipliers derived
by the instantiation of OGD decision space, leading to Õ(T 3/4) regret and violations bounds.

Specifically, when Condition 2.5 holds, the Lagrangian multipliers are nicely bounded by Λ.
Theorem 4.1. Suppose that Condition 2.5 holds and the constraints are generated stochastically.
Then, for any δ ∈ (0, 1), Algorithm 2 attains RT ≤ Õ

(
Λ
√
T
)
, VT ≤ Õ

(
Λ
√
T
)
, with probability

at least 1 − 14δ when the rewards are stochastic, and with probability at least 1 − 13δ when the
rewards are adversarial.

When Condition 2.5 does not hold, we can still use the bound forced by Algorithm 2 on the dual
space. Therefore, the Lagrangian multipliers are bounded by mT 1/4, leading to the following result.
Theorem 4.2. Suppose that Condition 2.5 does not hold and the constraints are generated stochas-
tically. Then, for any δ ∈ (0, 1), Algorithm 2 attains RT ≤ Õ

(
T 3/4

)
, VT ≤ Õ

(
T 3/4

)
, with

probability at least 1− 11δ when the rewards are stochastic, and with probability at least 1− 10δ
when the rewards are adversarial.

4.2 Adversarial Setting

We then study the performance of Algorithm 2 when the constraints are adversarial.

Notice that, in such a setting, there exists an impossibility result from [Mannor et al., 2009] that
prevents any algorithm from attaining both sulinear regret and sublinear violations. Thus, best-of-
both-worlds algorithms in constrained settings focus on attaining sublinear violations and a fraction
of the optimal rewards (see e.g., [Castiglioni et al., 2022b, Stradi et al., 2024a]).4

In such a setting, we can show the following result.
Theorem 4.3. Suppose Condition 2.5 holds and the constraints are adversarial. Then, for any δ ∈
(0, 1), Algorithm 2 attains

∑T
t=1 r

⊤
t qt ≥ Ω

(
ρ

ρ+H · OPTr,G
)
, VT ≤ Õ

(
Λ
√
T
)
, with probability

at least 1 − 14δ when the rewards are stochastic, and with probability at least 1 − 13δ when the
rewards are adversarial.

4.2.1 A Weaker Baseline

In this section, we show that the impossibility result by Mannor et al. [2009] can be circumvented by
adopting a different baseline in the regret definition. Precisely, we compute the weaker baseline as
the solution to the following linear program:

OPTW :=

{
maxq∈∆(M) r⊤q

s.t. G⊤
t q ≤ 0 ∀t ∈ [T ].

Notice that, in the previous sections, we allow the optimal policy q∗ to satisfy the constraints on
average, i.e.,

∑T
t=1G

⊤
t q

∗ ≤ 0. In such a case, the set of feasible policies is much smaller than the
one associated with the weaker baseline, that is, when a feasible policy must satisfy the constraints at
each episode. Given the new baseline, we can rewrite the regret as RT := T OPTW −

∑T
t=1 r

⊤
t qt.

When the regret is computed w.r.t. the weaker baseline, we can recover the same theoretical results of
the stochastic setting. Precisely, when Condition 2.5 holds we have the following result.
Theorem 4.4. Suppose that Condition 2.5 holds and the constraints are generated adversarially.
Then, for any δ ∈ (0, 1), Algorithm 2 attains RT ≤ Õ

(
Λ
√
T
)
, VT ≤ Õ

(
Λ
√
T
)
, with probability

4Attaining the no-α-regret property, that is, being no-regret w.r.t. a fraction of the optimum, achieving a
competitive ratio, and guaranteeing a fraction of the optimal rewards are used as synonyms in the literature,
since any of the aforementioned guarantees can be derived by the others.
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at least 1 − 13δ when the rewards are stochastic, and with probability at least 1 − 12δ when the
rewards are adversarial.

We conclude the section by analyzing the scenario in which Condition 2.5 does not hold.

Theorem 4.5. Suppose that Condition 2.5 does not hold and the constraints are generated adversari-
ally. Then, for any δ ∈ (0, 1), Algorithm 2 attains RT ≤ Õ

(
T 3/4

)
, VT ≤ Õ

(
T 3/4

)
, with probability

at least 1 − 12δ when the rewards are stochastic, and with probability at least 1 − 11δ when the
rewards are adversarial.

Intuitively, Theorems 4.4 and 4.5 can be proved by the fact that playing the optimal policy guarantees
small violations independently on the episode the optimum is chosen. This is not the case for the
stronger baseline, since playing the optimum in some episodes may lead to arbitrarily large constraint
violations.

References
E. Altman. Constrained Markov Decision Processes. Chapman and Hall, 1999.

Peter Auer, Thomas Jaksch, and Ronald Ortner. Near-optimal regret bounds for reinforcement learn-
ing. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Informa-
tion Processing Systems, volume 21. Curran Associates, Inc., 2008. URL https://proceedings.
neurips.cc/paper/2008/file/e4a6222cdb5b34375400904f03d8e6a5-Paper.pdf.

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for rein-
forcement learning. In International Conference on Machine Learning, pages 263–272. PMLR,
2017.

Francesco Bacchiocchi, Francesco Emanuele Stradi, Matteo Papini, Alberto Maria Metelli, and
Nicola Gatti. Online adversarial mdps with off-policy feedback and known transitions. In Sixteenth
European Workshop on Reinforcement Learning, 2023.

Francesco Bacchiocchi, Francesco Emanuele Stradi, Matteo Castiglioni, Alberto Marchesi, and
Nicola Gatti. Markov persuasion processes: Learning to persuade from scratch. arXiv preprint
arXiv:2402.03077, 2024.

Qinbo Bai, Vaneet Aggarwal, and Ather Gattami. Provably efficient model-free algorithm for mdps
with peak constraints. arXiv preprint arXiv:2003.05555, 2020.

Matteo Castiglioni, Andrea Celli, and Christian Kroer. Online learning with knapsacks: the best of
both worlds. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and
Sivan Sabato, editors, Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pages 2767–2783. PMLR, 17–23 Jul
2022a. URL https://proceedings.mlr.press/v162/castiglioni22a.html.

Matteo Castiglioni, Andrea Celli, Alberto Marchesi, Giulia Romano, and Nicola Gatti. A unifying
framework for online optimization with long-term constraints. Advances in Neural Information
Processing Systems, 35:33589–33602, 2022b.

Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge university
press, 2006.

Nicolo Cesa-Bianchi, Pierre Gaillard, Gábor Lugosi, and Gilles Stoltz. Mirror descent meets fixed
share (and feels no regret). Advances in Neural Information Processing Systems, 25, 2012.

Dongsheng Ding, Xiaohan Wei, Zhuoran Yang, Zhaoran Wang, and Mihailo Jovanovic. Provably
efficient safe exploration via primal-dual policy optimization. In International conference on
artificial intelligence and statistics, pages 3304–3312. PMLR, 2021.

Yuhao Ding and Javad Lavaei. Provably efficient primal-dual reinforcement learning for cmdps with
non-stationary objectives and constraints. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pages 7396–7404, 2023.

10

https://proceedings.neurips.cc/paper/2008/file/e4a6222cdb5b34375400904f03d8e6a5-Paper.pdf
https://proceedings.neurips.cc/paper/2008/file/e4a6222cdb5b34375400904f03d8e6a5-Paper.pdf
https://proceedings.mlr.press/v162/castiglioni22a.html


Yonathan Efroni, Shie Mannor, and Matteo Pirotta. Exploration-exploitation in constrained mdps,
2020. URL https://arxiv.org/abs/2003.02189.

Eyal Even-Dar, Sham M Kakade, and Yishay Mansour. Online markov decision processes. Mathe-
matics of Operations Research, 34(3):726–736, 2009.

Gianmarco Genalti, Francesco Emanuele Stradi, Matteo Castiglioni, Alberto Marchesi, and Nicola
Gatti. Data-dependent regret bounds for constrained mabs. arXiv preprint arXiv:2505.20010,
2025.

Yue He, Xiujun Chen, Di Wu, Junwei Pan, Qing Tan, Chuan Yu, Jian Xu, and Xiaoqiang Zhu. A
unified solution to constrained bidding in online display advertising. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pages 2993–3001, 2021.

David Isele, Alireza Nakhaei, and Kikuo Fujimura. Safe reinforcement learning on autonomous
vehicles. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 1–6. IEEE, 2018.

Chi Jin, Tiancheng Jin, Haipeng Luo, Suvrit Sra, and Tiancheng Yu. Learning adversarial Markov
decision processes with bandit feedback and unknown transition. In Hal Daumé III and Aarti
Singh, editors, Proceedings of the 37th International Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research, pages 4860–4869. PMLR, 13–18 Jul 2020.
URL https://proceedings.mlr.press/v119/jin20c.html.

Nikolaos Liakopoulos, Apostolos Destounis, Georgios Paschos, Thrasyvoulos Spyropoulos, and
Panayotis Mertikopoulos. Cautious regret minimization: Online optimization with long-term
budget constraints. In International Conference on Machine Learning, pages 3944–3952. PMLR,
2019.

Tao Liu, Ruida Zhou, Dileep Kalathil, Panganamala Kumar, and Chao Tian. Learning policies
with zero or bounded constraint violation for constrained mdps. Advances in Neural Information
Processing Systems, 34:17183–17193, 2021.

Haipeng Luo, Chen-Yu Wei, and Chung-Wei Lee. Policy optimization in adversarial mdps: Improved
exploration via dilated bonuses. Advances in Neural Information Processing Systems, 34:22931–
22942, 2021.

Shie Mannor, John N. Tsitsiklis, and Jia Yuan Yu. Online learning with sample path constraints. Jour-
nal of Machine Learning Research, 10(20):569–590, 2009. URL http://jmlr.org/papers/
v10/mannor09a.html.

Davide Maran, Pierriccardo Olivieri, Francesco Emanuele Stradi, Giuseppe Urso, Nicola Gatti, and
Marcello Restelli. Online markov decision processes configuration with continuous decision space.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages 14315–14322,
2024.

Adrian Müller, Pragnya Alatur, Volkan Cevher, Giorgia Ramponi, and Niao He. Truly no-regret
learning in constrained mdps. In Forty-first International Conference on Machine Learning, 2024.

Gergely Neu, Andras Antos, András György, and Csaba Szepesvári. Online markov decision
processes under bandit feedback. Advances in Neural Information Processing Systems, 23, 2010.

Francesco Orabona. A modern introduction to online learning. CoRR, abs/1912.13213, 2019. URL
http://arxiv.org/abs/1912.13213.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Shuang Qiu, Xiaohan Wei, Zhuoran Yang, Jieping Ye, and Zhaoran Wang. Upper confidence
primal-dual reinforcement learning for cmdp with adversarial loss. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems,
volume 33, pages 15277–15287. Curran Associates, Inc., 2020. URL https://proceedings.
neurips.cc/paper/2020/file/ae95296e27d7f695f891cd26b4f37078-Paper.pdf.

11

https://arxiv.org/abs/2003.02189
https://proceedings.mlr.press/v119/jin20c.html
http://jmlr.org/papers/v10/mannor09a.html
http://jmlr.org/papers/v10/mannor09a.html
http://arxiv.org/abs/1912.13213
https://proceedings.neurips.cc/paper/2020/file/ae95296e27d7f695f891cd26b4f37078-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/ae95296e27d7f695f891cd26b4f37078-Paper.pdf


Aviv Rosenberg and Yishay Mansour. Online stochastic shortest path with bandit feedback and
unknown transition function. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019a. URL https://proceedings.neurips.cc/paper/2019/file/
a0872cc5b5ca4cc25076f3d868e1bdf8-Paper.pdf.

Aviv Rosenberg and Yishay Mansour. Online convex optimization in adversarial Markov decision
processes. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pages 5478–5486. PMLR, 09–15 Jun 2019b. URL https://proceedings.mlr.
press/v97/rosenberg19a.html.

Ashudeep Singh, Yoni Halpern, Nithum Thain, Konstantina Christakopoulou, E Chi, Jilin Chen, and
Alex Beutel. Building healthy recommendation sequences for everyone: A safe reinforcement
learning approach. In Proceedings of the FAccTRec Workshop, Online, pages 26–27, 2020.

Francesco Emanuele Stradi, Jacopo Germano, Gianmarco Genalti, Matteo Castiglioni, Alberto
Marchesi, and Nicola Gatti. Online learning in CMDPs: Handling stochastic and adversarial
constraints. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver,
Jonathan Scarlett, and Felix Berkenkamp, editors, Proceedings of the 41st International Conference
on Machine Learning, volume 235 of Proceedings of Machine Learning Research, pages 46692–
46721. PMLR, 21–27 Jul 2024a. URL https://proceedings.mlr.press/v235/stradi24a.
html.

Francesco Emanuele Stradi, Anna Lunghi, Matteo Castiglioni, Alberto Marchesi, and Nicola Gatti.
Learning constrained markov decision processes with non-stationary rewards and constraints,
2024b. URL https://arxiv.org/abs/2405.14372.

Francesco Emanuele Stradi, Matteo Castiglioni, Alberto Marchesi, and Nicola Gatti. Learning
adversarial mdps with stochastic hard constraints. In Forty-second International Conference on
Machine Learning, 2025a.

Francesco Emanuele Stradi, Matteo Castiglioni, Alberto Marchesi, and Nicola Gatti. Optimal strong
regret and violation in constrained mdps via policy optimization. In The Thirteenth International
Conference on Learning Representations, 2025b.

Francesco Emanuele Stradi, Matteo Castiglioni, Alberto Marchesi, Nicola Gatti, and Christian Kroer.
No-regret learning under adversarial resource constraints: A spending plan is all you need! arXiv
preprint arXiv:2506.13244, 2025c.

Honghao Wei, Xin Liu, and Lei Ying. Triple-q: A model-free algorithm for constrained reinforcement
learning with sublinear regret and zero constraint violation. In Gustau Camps-Valls, Francisco
J. R. Ruiz, and Isabel Valera, editors, Proceedings of The 25th International Conference on
Artificial Intelligence and Statistics, volume 151 of Proceedings of Machine Learning Research,
pages 3274–3307. PMLR, 28–30 Mar 2022. URL https://proceedings.mlr.press/v151/
wei22a.html.

Honghao Wei, Arnob Ghosh, Ness Shroff, Lei Ying, and Xingyu Zhou. Provably efficient model-free
algorithms for non-stationary cmdps. In International Conference on Artificial Intelligence and
Statistics, pages 6527–6570. PMLR, 2023.

Xiaohan Wei, Hao Yu, and Michael J. Neely. Online learning in weakly coupled markov decision
processes: A convergence time study. Proc. ACM Meas. Anal. Comput. Syst., 2(1), apr 2018. doi:
10.1145/3179415. URL https://doi.org/10.1145/3179415.

Liyuan Zheng and Lillian Ratliff. Constrained upper confidence reinforcement learning. In Alexan-
dre M. Bayen, Ali Jadbabaie, George Pappas, Pablo A. Parrilo, Benjamin Recht, Claire Tomlin,
and Melanie Zeilinger, editors, Proceedings of the 2nd Conference on Learning for Dynamics
and Control, volume 120 of Proceedings of Machine Learning Research, pages 620–629. PMLR,
10–11 Jun 2020. URL https://proceedings.mlr.press/v120/zheng20a.html.

12

https://proceedings.neurips.cc/paper/2019/file/a0872cc5b5ca4cc25076f3d868e1bdf8-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/a0872cc5b5ca4cc25076f3d868e1bdf8-Paper.pdf
https://proceedings.mlr.press/v97/rosenberg19a.html
https://proceedings.mlr.press/v97/rosenberg19a.html
https://proceedings.mlr.press/v235/stradi24a.html
https://proceedings.mlr.press/v235/stradi24a.html
https://arxiv.org/abs/2405.14372
https://proceedings.mlr.press/v151/wei22a.html
https://proceedings.mlr.press/v151/wei22a.html
https://doi.org/10.1145/3179415
https://proceedings.mlr.press/v120/zheng20a.html


Appendix

The Appendix is structured as follows:

• In Section A, we provide additional related works.

• In Section B, we provide additional notation employed in the rest of the appendix.

• In Section C, we provide the events dictionary.

• In Section D we provide the theoretical guarantees attained by Algorithm 3. Precisely, we
provide the complete version of the primal algorithm (see Algorithm 4), and analyze the
related performances.

• In Section E, we provide the theoretical guarantees attained by the dual algorithm.

• In Section F, we provide the analysis to bound the Lagrange multipliers during the learning
dynamic.

• In Section G, we provide the theoretical guarantees attained by Algorithm 2 when the
constraints are stochastic.

• In Section H, we provide the theoretical guarantees attained by Algorithm 2 when the
constraints are adversarial.

• In Section I we provide the theoretical guarantees attained by Algorithm 2 when the con-
straints are adversarial and the baseline is computed w.r.t. the policies that satisfy the
constraints at each episode.

• In Section J we provide technical lemmas employed in our work.

• In Section K, we provide auxiliary lemmas from existing works.

A Related Works

In this section we provide further discussions on the works closely related to ours. We first provide
some works in the field of unconstrained online MDPs (see [Auer et al., 2008, Even-Dar et al., 2009,
Neu et al., 2010, Bacchiocchi et al., 2023, Maran et al., 2024]). The setting studied in these works
generally differentiates the problem based on the nature of the losses (either stochastic or adversarial),
the knowledge of the transition probability, and the nature of the feedback. Usually two types of
feedback are considered: in the full-information feedback model, the entire loss function is observed
after the learner’s choice, while in the bandit feedback model, the learner only observes the loss due
to the chosen action.

Azar et al. [2017] study the problem of optimal exploration in episodic MDPs with unknown
transitions, stochastic losses and bandit feedback . The authors improve the previous result by Auer
et al. [2008] designing an algorithm whose upper bound on the regret match the lower bound for this
class, Õ(

√
T ). Rosenberg and Mansour [2019b] studies the setting of episodic MDPs with adversarial

losses, unknown transitions, and full information feedback. In this case the authors present an online
algorithm exploiting entropic regularization and providing a regret upper bound of Õ(

√
T ). The same

setting is investigated when the feedback is bandit by Rosenberg and Mansour [2019a] who attain
a regret upper bound of the order of Õ(T 3/4), which is improved by Jin et al. [2020] by providing
an algorithm that achieves in the same setting a regret upper bound of Õ(

√
T ). Finally, Luo et al.

[2021] provide an optimal policy optimization algorithm for adversarial MDPs with bandit feedback.

In case of constrained problem, an fundamental result is presented by Mannor et al. [2009], who show
that it is impossible to attain both sublinear regret and constraints violations when both the losses
and constraints are adversarial. To overcome such an impossibility result, Liakopoulos et al. [2019]
study a class of online learning problems with long-term budget constraints that can be chosen by
an adversary and they define a new notion of regret. The new learner’s regret metric introduces the
notion of a K-benchmark, i.e., a comparator that meets the problem’s allotted budget over any window
of length K. Castiglioni et al. [2022a,b] are the first to provide a best-of-both-worlds algorithm for
online learning problems with long-term constraints, being the constraints stochastic or chosen by an
adversary. Stradi et al. [2025c] extend the setting mentioned above to the case a spending plan on the
constraints is given in input to the learner.
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Constrained problems have been also studied in the context of CMDPs; however almost all previous
works focus on the setting where the constraints are chosen stochastically. Wei et al. [2018] study
the case of episodic CMDPs with known transition proabability, full-feedback, adversarial losses
and stochastic constraints. The algorithm presented by the authors attains an upper bound both for
constraints violation and for the regret of the order of Õ(

√
T ) . Zheng and Ratliff [2020] present, in

the setting of stochastic losses and constraints, where the transition probabilities are known and the
feedback is bandit, an upper bound on the regret of their algorithm of the order of Õ(T 3/4), while the
cumulative constraint violations is guaranteed to be below a threshold with a given probability. Bai
et al. [2020] provide the first algorithm to achieve sublinear regret when the transition probabilities
are unknown, assuming that the rewards are deterministic and the constraints are stochastic with
a particular structure. Efroni et al. [2020] study the case where transition probabilities, rewards,
and constraints are unknown and stochastic, while the feedback is bandit. The authors propose
two approaches to deal with the exploration-exploitation dilemma in episodic CMDPs guaranteeing
sublinear regret and constraint violations. Qiu et al. [2020] provide a primal-dual approach based on
optimism in the face of uncertainty. This work shows the effectiveness of such an approach when
dealing with episodic CMDPs with adversarial losses and stochastic constraints, achieving both
sublinear regret and constraint violation with full-information feedback. Liu et al. [2021] study the
case where the rewards and the constrained are stochastic with a sub-gaussian form, and it achieves
regret Õ(

√
T ) regret and zero violation when a strictly safe policy exists and it is known and a

bounded violation when the strictly safe policy exists but it not known a priori. Ding et al. [2021]
design a primal-dual policy optimization no-regret algorithm for CMDPs with stochastic rewards and
stochastic constraints. Wei et al. [2022] design a model-free, simulator-free reinforcement learning
algorithm for CMDPs that achieves regret of order Õ(T 4/5) with zero constraints violation, assuming
the number of episodes to be exponentially large in 1/ρ. Wei et al. [2023], Ding and Lavaei [2023]
and Stradi et al. [2024b] consider the case in which rewards and constraints are non-stationary,
assuming that their variation is bounded. Thus, their results are not applicable to general adversarial
settings. Müller et al. [2024] study the harder problem of bounding the constraints violation without
allowing cancellation between episodes. They were the first to prove a sublinear regret guarantee
without error cancellations for a primal-dual algorithm in the online setup. Stradi et al. [2025b]
attains optimal bounds in the same setting. However the whole analysis of both works is structured
considering the feasibility parameter ρ as a constant. Stradi et al. [2025a], in the setting with
adversarial losses, stochastic constraints and partial feedback, achieve sublinear regret and sublinear
positive constraints violations. Similar techniques have been employed in the context of constrained
MABs (see Genalti et al. [2025]) Stradi et al. [2024a] propose the first best-of-both-worlds algorithm
for CMDPs, assuming full feedback on the rewards and constraints. Bacchiocchi et al. [2024] study
CMDPs with partial observability on the constraints.

B Additional Notation

In the following section, we introduce some useful notation from policy optimization. First, we define
the value function V π(x; f), for policy π, state x and generic function f that assumes values for each
state x ∈ X and for each action a ∈ A. Formally,

V π(x; f) := E

 H∑
j=h(x)+1

f(xj , aj)|aj ∼ π(·|xj), xj ∼ P (·|xj−1, aj−1)

 ,
where h(x) is the layer h such that x ∈ Xh. Notice that the value function can be written using the
occupancy measure qπ,P generated by the policy π and the transition probability P as : V π(x0; f) =∑
x,a q

π,P (x, a)f(x, a). We introduce also a Q-function of a generic function f as:
Q(x, a; f) = f(x, a) + Ex′∼P (·|x,a) [V

π(x′; f)]

V π(x; f) = Ea∼π(·|x) [Qπ(x, a; f)]
V π(xH ; f) = 0

In addition we will use the notation Qt(x, a) to indicate the Q-function computed with respect to the
function ℓt, i.e. Q(x, a; ℓt) .
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C Dictionary

In the following, we provide the definition of different quantities which will be employed in the rest
of the appendix. This is done for the ease of presentation.

• Quantity EPt1,t2 :

EPt1,t2 = U1Ξt1,t2C
√
T + U2Ξt1,t2

(t2 − t1 + 1)

C
√
T

+ U3Ξt1,t2
1

C
√
T

+ U4Ξt1,t2
√
T ,

where:

– U1 = 6H2 ln
(
H|A|T 2

δ

)
– U2 = 9H|X||A|

– U3 = H
2 ln

(
HT 2

δ

)
– U4 = 30H2|X|2

√
2|A| ln

(
T |X|2|A|

δ

)
.

With probability at least 1− 4δ it holds RPt1,t2 ≤ E
P
t1,t2 , ∀t1, t2 ∈ [T ] : 1 ≤ t1 ≤ t2 ≤ T

by Theorem 3.3.

• Quantity ED(0):

ED(0) = D1
∥λt1∥22
η

+D2η(t2 − t1 + 1),

where:

– D1 = 1
2

– D2 = mH2

2 .

It holds RDt1,t2(0) ≤ E
D(0), ∀t1, t2 ∈ [T ] : 1 ≤ t1 ≤ t2 ≤ T by Theorem E.1.

• Quantity EGt1,t2 :

EGt1,t2 = B1

√
(t2 − t1 + 1),

where:

– B1 = 2H
√
ln
(
T 2

δ

)
.

Given a q ∈ ∆(M), with probability at least 1− δ it holds in case of stochastic constraints∑t2
t=t1

(G⊤
t q −G

⊤
q) ≤ EGt1,t2 , by Azuma-Hoeffding inequality.

• Quantity E It1,t2 :

E It1,t2 = F1

√
(t2 − t1 + 1),

where:

– F1 = H
√
2 ln

(
T 2

δ

)
.

With probability at least 1− δ it holds
∑t2
t=t1

∑
x,a(It(x, a)− qt(x, a)) ≤ E It1,t2 , and with

probability at least 1 − δ it holds
∑t2
t=t1

∑
x,a(qt(x, a) − It(x, a)) ≤ E It1,t2 , by Azuma-

Hoeffding inequality.

• Quantity C:
C = 252|X||A|H

• Quantity D:

D = 84672mH2|X|2|A|
= 336mH|X|C.
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Algorithm 4 FS-PODB
Require: X,A, σ = 1

T , C
1: P1 ← set of all possible transitions
2: π1(a|x) = 1

|A| ∀(x, a) ∈ X ×A
3: Ξ0 ← 1
4: γ ← 1

C
√
T

5: for t = 1, . . . , T do
6: Play πt, observe {(xh, ah)}H−1

h=0 , losses {ℓt(xh, ah)}H−1
h=0 and Ξt

7: ηt ← 1
2HΞtC

√
T

8: For all h = 0, . . . ,H − 1 and (x, a) ∈ Xh ×A:

Lt,h =

H−1∑
j=h

ℓt(xh, ah)

Q̂t(x, a) =
Lt,h

qt(x, a) + γ
It(x, a),

where qt(x, a) = max
P̂∈Pt

qP̂ ,πt(x, a) and It(x, a) = I{xt,h = x, at,h = a}.

9: For all (x, a) ∈ X ×A:

bt(x) = Ea∼πt(·|x)

3γHΞt +HΞt

(
qt(x, a)− qt(x, a)

)
qt(x, a) + γ


Bt(x, a) = bt(x) +

(
1 +

1

H

)
max
P̂∈Pt

Ex′∼P̂ (·|x,a)Ea∼πt(·|x′) [Bt(x
′, a′)]

where q
t
= min
P̂∈Pt

qP̂ ,πt(x, a), and Bt(xH , a) = 0 for all a.

10: For all (x, a) ∈ X ×A:

wt+1(a|x) = (1−σ)wt(a|x)e−ηt(Q̂t(x,a)−Bt(x,a))+
σ

|A|
∑
a′∈A

wt(a
′|x)e−ηt(Q̂t(x,a

′)−Bt(x,a
′)).

πt+1(a|x) =
wt+1(a|x)∑

a′∈A wt+1(a′|x)
.

11: Pt+1 ←TRANSITION.UPDATE({(xh, ah)}H−1
h=0 )

12: end for

D Omitted Proofs for The Primal Algorithm

In this section we study the guarantees attained by the primal procedure, namely Algorithm 4.
Theorem D.1. For any δ ∈ (0, 1), Algorithm 4 attains, with probability at least 1− 4δ and for all
[t1, . . . , t2] ⊂ [T ]:∑

x

q∗(x)

t2∑
t=t1

∑
a

(πt(a|x)− π∗(a|x)) (Qπt
t (x, a)−Bt(x, a))

= Ξt1,t2o(T ) +

t2∑
t=t1

V π
∗
(x0; bt) +

1

H

t2∑
t=t1

∑
x,a

q∗(x)πt(a|x)Bt(x, a),

for all t1, t2 ∈ [T ] s.t. 1 ≤ t1 ≤ t2 ≤ T and where Ξt1,t2 ≥ maxt∈[t1,...,t2] maxx,a ℓt(x, a).

Proof. In the rest of the proof, we will refer as L̄t to maxτ∈[t] maxh∈[H] Lτ,h and L̄t1,t2 to
maxτ∈[t1,...,t2] maxh∈[H] Lτ,h; therefore, by definition it holds L̄t ≤ HΞt for all t ∈ [T ].
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As a first step, we decompose
∑
x q

∗(x)
∑t2
t=t1

∑
a (πt(a|x)− π∗(a|x)) (Qπt

t (x, a)−Bt(x, a)) in
three different quantities:∑

x

q∗(x)

t2∑
t=t1

∑
a

(πt(a|x)− π∗(a|x)) (Qπt
t (x, a)−Bt(x, a))

=
∑
x

q∗(x)

t2∑
t=t1

∑
a

(πt(a|x)− π∗(a|x))
(
Q̂t(x, a)−Bt(x, a)

)
︸ ︷︷ ︸

1

+
∑
x

q∗(x)

t2∑
t=t1

∑
a

πt(a|x)
(
Qπt
t (x, a)− Q̂t(x, a)

)
︸ ︷︷ ︸

2

+
∑
x

q∗(x)

t2∑
t=t1

∑
a

π∗(a|x)
(
Q̂t(x, a)−Qπt

t (x, a)
)

︸ ︷︷ ︸
3

,

which we proceed to bound separately.

Bound on 1 . The quantity of interest can be bounded after noticing that Algorithm 4 employs a
slightly modified version of OMD. In fact, recalling the definition of πt, we can write:

πt+1(a|x) =
wt+1(a|x)∑
a′ wt+1(a′|x)

=
(1− σ)wt(a|x)e−ηt(Q̂t(x,a)−Bt(x,a)) + σ

|A|
∑
a′∈A wt(a

′|x)e−ηt(Q̂t(x,a
′)−Bt(x,a

′))∑
a′∈A wt(a

′|x)e−ηt(Q̂t(x,a′)−Bt(x,a′))

= (1− σ) πt(a|x)e−η(Q̂t(x,a)−Bt(x,a))∑
a′ πt(a

′|x)e−η(Q̂t(x,a′)−Bt(x,a′))
+ σ

1

|A|
.

From now on we will refer to πt(a|x)e−η(Q̂t(x,a)−Bt(x,a))∑
a′ πt(a′|x)e−η(Q̂t(x,a′)−Bt(x,a′)) as π̃t+1(x, a). Thus,

πt+1(a|x) = (1− σ)π̃t+1(x, a) +
σ

|A|
.

Calling ψ(·) the negative entropy function defined as ψ(π(·|x)) :=
∑
a π(a|x) ln (π(a|x)), by

standard analysis (e.g. Orabona [2019]), it holds:

π̃t+1(·|x) = argmin
π(·|x)∈∆(A)

∑
a

(
Q̂t(x, a)−Bt(x, a)

)
π(a|x) + 1

η
Dψ(π(·|x);πt(·|x)),

whereDψ is Bregman divergence w.r.t. the negative entropy function ψ(·). Thus, for all π(·|x) it holds

ηt
∑
a

(
Q̂t(x, a)−Bt(x, a)

)
(π(a|x)− π̃t+1(x, a)) + ⟨∇ψ(π̃t+1(·|x)) − ∇ψ(πt(·|x)), π(·|x) −

π̃t+1(·|x)⟩ ≥ 0. So, for all π(·|x) the following holds:

ηt⟨Q̂t(x, ·)−Bt(x, ·), πt(·|x)− π(·|x)⟩
= ηt⟨Q̂t(x, ·)−Bt(x, ·) +∇ψ(π̃t+1(·|x))−∇ψ(πt(·|x)), π̃t+1(·|x)− π(·|x)⟩

+ ηt⟨Q̂t(x, ·)−Bt(x, ·), πt(·|x)− π̃t+1(·|x)⟩
+ ⟨∇ψ(π̃t+1(·|x))−∇ψ(πt(·|x)), π(·|x)− π̃t+1(·|x)⟩

≤ ⟨ηt
(
Q̂t(x, ·)−Bt(x, ·)

)
, πt(·|x)− π̃t+1(·|x)⟩

+ ⟨∇ψ(π̃t+1(·|x))−∇ψ(πt(·|x)), π(·|x)− π̃t+1(·|x)⟩
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≤ Dψ(π(·|x);πt(·|x))−Dψ(π(·|x); π̃t+1(·|x))−Dψ(π̃t+1(·|x);πt(·|x))
+ ηt⟨Q̂t(x, ·)−Bt(x, ·), πt(·|x)− π̃t+1(·|x)⟩ (3)

= Dψ(π(·|x);πt(·|x))−Dψ(π(·|x); π̃t+1(·|x)) +
η2t
2

∑
a∈A

(
Q̂t(x, a)−Bt(x, a)

)2
πt(a|x), (4)

where Inequality (3) and Inequality (4) are based on the proofs of Lemma 6.6. and Lemma 6.9. in
Orabona [2019].

Additionally we can show that for all t ∈ [T ]: Dψ(π(·|x);πt(·|x))−Dψ(π(·|x); π̃t(·|x)) ≤ σ ln(|A|).
Indeed,

Dψ (π(·|x);πt(·|x))−Dψ (π(·|x); π̃t(·|x))

= Dψ

(
π(·|x); (1− σ)π̃t(·|x) + σπ

1
|A|

)
−Dψ (π(·|x); π̃t(·|x))

≤ σDψ

(
π(·|x);π

1
|A|

)
− σDψ (π(·|x); π̃t(·|x))

≤ σ ln(|A|),
where the last inequality holds since Dψ(π(·|x); π̃t(·|x)) ≥ 0 and

Dψ(π(·|x);π
1

|A| ) =
∑
a∈A

π(a|x) ln

(
π(a|x)
π

1
|A| (a|x)

)

≤
∑
a∈A

π(a|x) ln

(
1

π
1

|A| (a|x)

)
=
∑
a∈A

π(a|x) ln (|A|)

= ln(|A|).

Notice that with we refer as π
1

|A| to the vector strategy in [0, 1]|A| with all elements equal to 1
|A| .

Moreover we bound Dψ(π(·|x);πt1(·|x)), since πt1(a|x) = (1 − σ)π̃t1(a|x) + σ( 1
|A| ) ≥

σ
|A| , as

follows:

Dψ(π(·|x);πt1(·|x)) =
∑
a∈A

π(a|x) ln
(
π(a|x)
πt1(a|x)

)
≤
∑
a∈A

π(a|x) ln
(

1

πt1(a|x)

)
≤
∑
a∈A

π(a|x) ln
(
|A|
σ

)
= ln

(
|A|
σ

)
.

Putting everything together we have that:

1 =
∑
x

q∗(x)

t2∑
t=t1

∑
a

(πt(a|x)− π∗(a|x))
(
Q̂t(x, a)−Bt(x, a)

)
≤
∑
x

q∗(x)

(
Dψ(π(·|x);πt1(·|x))

ηt1
+

t2∑
t=t1+1

(
Dψ(π(·|x);πt(·|x))

ηt
− Dψ(π(·|x); π̃t(·|x))

ηt+1

))

+
∑
x

q∗(x)

t2∑
t=t1

ηt
2

(
Q̂t(x, a)−Bt(x, a)

)2
πt(a|x) (5a)

≤
∑
x

q∗(x)

(
Dψ(π(·|x);πt1(·|x))

ηt1
+

t2∑
t=t1+1

(
Dψ(π(·|x);πt(·|x))−Dψ(π(·|x); π̃t(·|x))

ηt

))
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+
∑
x

q∗(x)

t2∑
t=t1

ηt
2

(
Q̂t(x, a)−Bt(x, a)

)2
πt(a|x) (5b)

≤
ln
(

|A|
σ

)
ηt1

+ σ

t2∑
t=t1+1

ln(|A|)
ηt2

+
∑
x

q∗(x)

t2∑
t=t1

ηt
2

(
Q̂t(x, a)−Bt(x, a)

)2
πt(a|x) (5c)

≤
ln
(

|A|
σ

)
ηt1

+
σT ln(|A|)

ηt2
+
∑
x

q∗(x)

t2∑
t=t1

ηt
2

(
Q̂t(x, a)−Bt(x, a)

)2
πt(a|x)

=
ln (|A|T )
ηt1

+
ln(|A|)
ηt2

+
∑
x

q∗(x)

t2∑
t=t1

ηt
2

(
Q̂t(x, a)−Bt(x, a)

)2
πt(a|x),

where σ = 1
T , Inequality (5a) holds by Inequality (4) , Inequality (5b) holds since 1

ηt+1
≥ 1

ηt
for all

t ∈ [T ], and Inequality (5c) holds since ηt2 ≤ ηt for all t in [t1 + 1, . . . , t2]. Focusing now on the
last part of the right term, with probability at least 1− 2δ the following holds:∑

x

∑
a

q∗(x)

t2∑
t=t1

ηt
2

(
Q̂t(x, a)−Bt(x, a)

)2
πt(a|x)

≤
t2∑
t=t1

ηt
∑
x

∑
a

q∗(x)πt(a|x)Q̂t(x, a)2 +
t2∑
t=t1

ηt
∑
x

∑
a

q∗(x)πt(a|x)Bt(x, a)2 (6a)

=

t2∑
t=t1

ηt
∑
x

∑
a

q∗(x)πt(a|x)
L2
t,h

(qt(x, a) + γ)2
It(x, a) +

t2∑
t=t1

ηt
∑
x

∑
a

q∗(x)πt(a|x)Bt(x, a)2

(6b)

≤ L̄t1,t2
t2∑
t=t1

ηtL̄t
∑
x

∑
a

q∗(x)πt(a|x)
qt(x, a) + γ

It(x, a)
qt(x, a) + γ

+

t2∑
t=t1

ηt
∑
x

∑
a

q∗(x)πt(a|x)Bt(x, a)2

(6c)

≤ γ

2H
L̄t1,t2

t2∑
t=t1

∑
x

∑
a

q∗(x)πt(a|x)
qt(x, a) + γ

qt(x, a)

qt(x, a) + γ
+
γL̄t1,t2

2
ln

(
HT 2

δ

)

+

t2∑
t=t1

ηt
∑
x

∑
a

q∗(x)πt(a|x)Bt(x, a)2 (6d)

≤
t2∑
t=t1

∑
x

∑
a

q∗(x)πt(a|x)
γΞt1,t2

2(qt(x, a) + γ)
+
γL̄t1,t2

2
ln

(
HT 2

δ

)

+
1

2H

t2∑
t=t1

∑
x

∑
a

q∗(x)πt(a|x)Bt(x, a) (6e)

=

t2∑
t=t1

∑
x

∑
a

q∗(x)πt(a|x)
(

γΞt1,t2
2(qt(x, a) + γ)

+
Bt(x, a)

2H

)
+
γL̄t1,t2

2
ln

(
HT 2

δ

)
,

where Inequality (6a) holds since (a − b)2 ≤ 2a2 + 2b2, for all a, b ∈ R, Equality (6b) holds by
definition of Q̂(x, a), Inequality (6c) is motivated by the fact that Lt,h ≤ L̄t1,t2 by its definition,
Inequality (6d) holds with probability at least 1− δ by applying Lemma J.4 and taking αt(x, a) =
q∗(x)πt(a|x)
qt(x,a)+γ

since q∗(x)πt(a|x)
qt(x,a)+γ

≤ 1
γ and considering that by definition ηtΞt = γ

2H , and finally
Inequality (6e) holds since qt(x, a) ≥ qt(x, a), ∀(x, a) ∈ X × A,∀t ∈ [t1 . . . t2] with probability
at least 1− δ by Lemma K.2 and by Lemma J.1. Setting γ = 2ηtHΞt, we can conclude that, with
probability at least 1− 2δ, 1 is bounded as:

4HΞt1,t2 ln(|A|T )
γ

+γ
HΞt1,t2

2
ln

(
HT 2

δ

)
+

t2∑
t=t1

∑
x

∑
a

q∗(x)πt(a|x)
(

γΞt1,t2
2(qt(x, a) + γ)

+
Bt(x, a)

2H

)
.
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Bound on 2 . To bound 2 we employ the same approach as in [Luo et al., 2021]. First we define
Yt as Yt :=

∑
x

∑
a q

∗(x)πt(a|x)Q̂t(x, a), for all t ∈ [T ]. Now since
∑t2
t=t1

Yt is a martingale
sequence , we apply Freedman’s inequality. First notice that under the event P ∈ Pi(t) for all
t ∈ [T ]:

E[Y 2
t ] ≤ Et

(∑
x

∑
a

q∗(x)πt(a|x)Q̂t(x, a)

)2


≤ Et

[(∑
x

∑
a

q∗(x)πt(a|x)

)(∑
x

∑
a

q∗(x)πt(a|x)Q̂t(x, a)2
)]

= HEt

[∑
x

∑
a

q∗(x)πt(a|x)Q̂t(x, a)2
]

= H
∑
x

∑
a

q∗(x)πt(a|x)
L2
t,h

(qt(x, a) + γ)2
qt(x, a)

≤
∑
x

∑
a

q∗(x)πt(a|x)
HL̄2

t

qt(x, a) + γ
.

Thus, thanks to Lemma J.3, since |Yt| ≤ H supx′,a′ Q̂t(x, a) ≤ HL̄t

γ , with probability at least 1− δ
it holds simultaneously for all t1, t2 : 1 ≤ t1 ≤ t2 ≤ T :

t2∑
t=t1

(Et[Yt]− Yt) ≤
γ

HL̄t1,t2

t2∑
t=t1

∑
x

∑
a

q∗(x)πt(a|x)
HL̄2

t

qt(x, a) + γ
+
HL̄t1,t2

γ
log

(
T 2

δ

)
.

We notice also the following result with probability at least 1− δ for all t ∈ [T ]:∑
x

∑
a

q∗(x)πt(a|x)Qt(x, a)− E[Yt]

=
∑
x

∑
a

q∗(x)πt(a|x)Qt(x, a)− E

[∑
x

∑
a

q∗(x)πt(a|x)Q̂t(x, a)

]

=
∑
x

∑
a

q∗(x)πt(a|x)Qt(x, a)
(
1− qt(x, a)

qt(x, a) + γ

)
≤
∑
x

∑
a

q∗(x)πt(a|x)HΞt

(
qt(x, a)− qt(x, a) + γ

qt(x, a) + γ

)

≤
∑
x

∑
a

q∗(x)πt(a|x)HΞt

(
(qt(x, a)− qt(x, a)) + γ

qt(x, a) + γ

)
.

Finally we can bound 2 with probability at least 1− 2δ as follows.

2 =
∑
x

q∗(x)

t2∑
t=t1

∑
a

πt(a|x)
(
Qπt
t (x, a)− Q̂t(x, a)

)
=

t2∑
t=t1

(Et[Yt]− Yt) +
t2∑
t=t1

(∑
x

∑
a

q∗(x)πt(a|x)Qt(x, a)− E[Yt]

)

≤
t2∑
t=t1

∑
x

∑
a

q∗(x)πt(a|x)HΞt

(
(qt(x, a)− qt(x, a)) + 2γ

qt(x, a) + γ

)
+
HL̄t1,t2

γ
ln

(
T 2

δ

)
.

Bound on 3 . With probability at least 1− 2δ it holds:

3 =
∑
x

q∗(x)

t2∑
t=t1

∑
a

π∗(a|x)
(
Q̂t(x, a)−Qπt

t (x, a)
)
≤ H2Ξt1,t2

2γ
ln

(
HT 2

δ

)
,

by Corollary J.5.

20



Conclusion of the proof Finally we notice that, with probability at least 1 − 4δ, we have the
following result.∑
x

q∗(x)

t2∑
t=t1

∑
a

(πt(a|x)− π∗(a|x)) (Qπt
t (x, a)−Bt(x, a)) = 1 + 2 + 3

≤ γHΞt1,t2
2

ln

(
HT 2

δ

)
+

6H2Ξt1,t2
γ

ln

(
H|A|T 2

δ

)
+

t2∑
t=t1

∑
x,a

q∗(x)πt(a|x)

(
Ξt(3γH +H(qt(x, a)− qt(x, a)))

qt(x, a) + γ
+
Bt(x, a)

H

)
.

This concludes the proof.

Theorem 3.3. For any δ ∈ (0, 1), with probability at least 1−8δ, Algorithm FS-PODB attainsRt1,t2 ≤
Õ
(
Ξt1,t2

√
T + Ξt1,t2

t2−t1√
T

)
, where the regret can be computed with respect to any policy function

π : X → ∆(A).

Proof. By means of Theorem D.1 and by Lemma J.2 we have that with probability at least 1− 4δ:

RPt1,t2 ≤ γ
HΞt1,t2

2
ln

(
HT 2

δ

)
+

6H2Ξt1,t2
γ

ln

(
H|A|T 2

δ

)
+ 3

t2∑
t=t1

V̂ πt(x0; bt).

We can bound
∑T
t=1 V̂

πt(x0; bt), with probability at least 1− 4δ, as:

t2∑
t=t1

V̂ πt(x0; bt)

=

t2∑
t=t1

∑
x,a

qP̂t,πt(x, a)

(
HΞt(qt(x, a)− qt(x, a)) + 3HΞtγ

qt(x, a) + γ

)

≤
t2∑
t=t1

∑
x,a

HΞt

(
(qt(x, a)− qt(x, a)) + 3γ

)

≤
t2∑
t=t1

∑
x,a

HΞt(qt(x, a)− qt(x, a)) + 3Ξt1,t2γH(t2 − t1 + 1)|X||A|

≤ 4H2Ξt1,t2 |X|2
√
2T ln

(
H|X|
δ

)
+ 6Ξt1,t2H

2|X|2
√

2T |A| ln
(
T |X|2|A|

δ

)
+ 3Ξt1,t2γH|X||A|(t2 − t1 + 1),

where the second inequality holds under the event qP̂t,πt(x, a) ≤ q̄t(x, a) for all (x, a) ∈ X ×A and
for all t ∈ [T ] and the last inequality uses Lemma J.6. Thus, with probability at least 1− 8δ, it holds:

RPt1,t2

≤ γHΞt1,t2
2

ln

(
HT 2

δ

)
+

6H2Ξt1,t2
γ

ln

(
H|A|T 2

δ

)
+ 30Ξt1,t2H

2|X|2
√
2T |A| ln

(
T |X|2|A|

δ

)
+

+ 9Ξt1,t2γH|X||A|(t2 − t1 + 1)

≤ HΞt1,t2
2C
√
T

ln

(
HT 2

δ

)
+ 6H2Ξt1,t2C

√
T ln

(
H|A|T 2

δ

)
+ 30Ξt1,t2H

2|X|2
√
2T |A| ln

(
T |X|2|A|

δ

)
+ 9H|X||A|Ξt1,t2

(t2 − t1 + 1)

C
√
T

= U1Ξt1,t2C
√
T + U2Ξt1,t2

(t2 − t1 + 1)

C
√
T

+ U3Ξt1,t2
1

C
√
T

+ U4Ξt1,t2
√
T
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= EPt1,t2 ,

which concludes the proof.

E Omitted Proofs for the Dual Algorithm

Theorem E.1. When employed by Algorithm 2, online projected gradient descent (OGD) attains:

RDt1,t2(λ) =

t2∑
t=t1

(λ− λt)⊤
H−1∑
h=0

Gt(xh, ah) ≤
∥λt1 − λ∥22

2η
+
η

2
(t2 − t1 + 1)mH2.

Proof. We proceed to prove the theorem following [Orabona, 2019]. Indeed, it holds:

RDt1,t2(λ) =

t2∑
t=t1

(λ− λt)⊤
H−1∑
h=0

Gt(xh, ah)

≤ ∥λt1 − λ∥
2
2

2η
+
η

2

t2∑
t=t1

∥
H−1∑
h=0

Gt(xh, ah)∥22

≤ ∥λt1 − λ∥
2
2

2η
+
η

2

t2∑
t=t1

m∑
i=1

(
H−1∑
h=0

Gt,i(xh, ah)

)2

≤ ∥λt1 − λ∥
2
2

2η
+
η

2

t2∑
t=t1

mH2

≤ ∥λt1 − λ∥
2
2

2η
+
η

2
(t2 − t1 + 1)mH2.

This concludes the proof.

Lemma E.2. When employed by Algorithm 2, online projected gradient descent (OGD) guarantees
for all t ∈ [T ]:

∥λt+1∥1 − ∥λt∥1 ≤ mHη.

Proof. It holds:

λt+1,i = min

{
max

{
0, λt,i + η

H−1∑
h=0

gt,i(xh, ah)

}
, T

1
4

}

≤ max

{
0, λt,i + η

H−1∑
h=0

gt,i(xh, ah)

}

≤ max

{
0, λt,i + η

H−1∑
h=0

1

}
= λt,i + ηH,

which concludes the proof when we take the sum over all i ∈ [m].

F Analysis on Lagrangian multipliers

Lemma F.1. The loss given to the primal algorithm at episode t ∈ [T ], which is defined as
ℓt(x, a) = Γt +

∑
i∈[m] λt,igt,i(x, a) − rt(x, a), is such that, considering the Lagrangian loss

function ℓLt (x, a) =
∑
i∈[m] λt,igt,i(x, a)− rt(x, a), it holds:

ℓ⊤t (qt − q∗) = ℓL,⊤t (qt − q∗),

and additionally, ℓt assume values in the bounded interval [0,Ξt].
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Proof. By simple computation, it holds:

ℓ⊤t (qt − q∗)− ℓ
L,⊤
t (qt − q∗)

=

(∑
x,a

Γt(qt(x, a)− q∗(x, a)) +
∑
i∈[m]

∑
x,a

λt,igt,i(x, a)(qt(x, a)− q∗(x, a))

−
∑
x,a

rt(x, a)(qt(x, a)− q∗(x, a))

)

−

∑
i∈[m]

∑
x,a

λt,igt,i(x, a)(qt(x, a)− q∗(x, a))−
∑
x,a

rt(x, a)(qt(x, a)− q∗(x, a))


=
∑
x,a

Γt(qt(x, a)− q∗(x, a))

= Γt(H −H)

= 0,

where the last steps hold since Γt is a constant and by the definition of valid occupancy measures.

In addition it holds:

ℓt(x, a) = Γt +
∑
i∈[m]

λt,igt,i(x, a)− rt(x, a) ≥ 1 + ∥λt∥1 −
∑
i∈[m]

λt,i − 1 = 0,

and similarly,

ℓt(x, a) = Γt +
∑
i∈[m]

λt,igt,i(x, a)− rt(x, a) ≤ Γt +
∑
i∈[m]

λt,i = 1 + 2∥λt∥ ≤ Ξt.

This concludes the proof.

Theorem 3.4. Under Condition 2.5, for any δ ∈ (0, 1), with probability at least 1− 11δ, it holds:
∥λt∥1 ≤ Λ,∀t ∈ [T + 1], where Λ = 112mH2

ρ2 .

Proof. Let M > 1 be a constant. By absurd suppose ∃t2 ∈ [T ] s.t.

∀t ≤ t2 ∥λt∥1 ≤
2HM

ρ2
∧ ∥λt2+1∥1 >

2HM

ρ2
(7)

and let t1 < t2 s.t.

∥λt1−1∥1 ≤
2H

ρ
∧ ∀t : t1 ≤ t ≤ t2 ∥λt∥1 ≥

2H

ρ
.

By construction 1 < 2H
ρ ≤ ∥λt∥1 ≤

2HM
ρ2 for all t1 ≤ t ≤ t2, and it holds if η ≤ 1

mH :

∥λt1∥1 ≤ ∥λt1−1∥1 +mηH ≤ 2H

ρ
+mηH ≤ 4H

ρ
. (8)

Notice also that by construction, calling λt1,t2 = maxt∈[t1,...t2]∥λt∥1, it holds:

1 < λt1,t2 ≤
2HM

ρ2
∧ 1 + λt1,t2 <

4HM

ρ2
. (9)

In the stochastic setting the following holds by Azuma-Hoeffding inequality with probability at least
1− δ:

t2∑
t=t1

−λ⊤t G⊤
t q

◦ ≥
t2∑
t=t1

−λ⊤t G
⊤
q◦ − λt1,t2EGt1,t2

≥ λt1,t2(t2 − t1 + 1)ρ− λt1,t2EGt1,t2
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≥ (t2 − t1 + 1)2H − λt1,t2EGt1,t2 ,

where EGt1,t2 = B1

√
(t2 − t1 + 1) = 2H

√
ln
(
T 2
/δ
)√

(t2 − t1 + 1). Instead, in the adversarial
setting, it holds:

t2∑
t=t1

−λ⊤t G⊤
t q

◦ ≥
t2∑
t=t1

m∑
i=1

−λt,i
[
G⊤
t q

◦]
i

≥ ρ
t2∑
t=t1

m∑
i=1

λt,i

= ρ

t2∑
t=t1

∥λt∥1

≥ (t2 − t1 + 1)2H.

Generalizing the result, it holds, both for the stochastic and the adversarial setting, the following
inequality with probability equal to 1 in the adversarial case and with probability at least 1− δ in the
stochastic case:

t2∑
t=t1

−λ⊤t G⊤
t q

◦ ≥ (t2 − t1 + 1)2H − λt1,t2EGt1,t2 .

Thank to this result we can find a lower bound for −
∑t2
t=t1

ℓL,⊤t qt with probability at least 1− 9δ
in the stochastic setting and with probability at least 1 − 8δ in the adversarial case, employing
Theorem 3.3 .

−
t2∑
t=t1

ℓL,⊤t qt =

t2∑
t=t1

(r⊤t q
◦ − λ⊤G⊤

t q
◦)−

t2∑
t=t1

ℓL,⊤t (qt − q◦)

≥
t2∑
t=t1

−λ⊤G⊤
t q

◦ −
t2∑
t=t1

ℓL,⊤t (qt − q◦) (10)

≥ 2H(t2 − t1 + 1)− λt1,t2EGt1,t2 − E
P
t1,t2 , (11)

where Inequality (10) holds since r⊤t q
◦ ≥ 0, for all t ∈ [T ], and Inequality (11) is derived using the

bound on the primal interval regret given by Theorem 3.3 and defined as EPt1,t2 and by Lemma F.1.
At the same time, it is possible to define also an upper bound for the same quantity −

∑t2
t=t1

ℓL,⊤t qt
with probability at least 1− 2δ:

−
t2∑
t=t1

ℓL,⊤t qt =

t2∑
t=t1

(r⊤t qt − λ⊤t G⊤
t qt)

≤
t2∑
t=t1

H −
t2∑
t=t1

λ⊤t (G
⊤
t qt −

H−1∑
h=0

Gt(xh, ah)) +

t2∑
t=t1

(0− λt)
H−1∑
h=0

Gt(xh, ah)

≤ H(t2 − t1 + 1) + λt1,t2

t2∑
t=t1

∑
x,a

Gt(x, a)(It(x, a)− qt(x, a)) + EDt1,t2(0)

≤ H(t2 − t1 + 1) + λt1,t2E It1,t2 + E
D
t1,t2(0),

where E I = F1

√
(t2 − t1 + 1) = H

√
2 ln

(
T 2
/δ
)√

(t2 − t1 + 1) and ED(0) = D1
∥λt1∥

2
2

η +

D2η(t2 − t1 + 1) = 1
2

∥λt1
∥2
2

η + mH2

2 η(t2 − t1 + 1). Thus, combining the two bounds we get
with probability at least 1 − 10δ in the adversarial case and 1 − 11δ in the stochastic case the
following bound,

2H(t2 − t1 + 1)− λt1,t2EGt1,t2 − E
P
t1,t2 ≤ H(t2 − t1 + 1) + λt1,t2E It1,t2 + E

D
t1,t2(0),

which can be reordered as

H(t2 − t1 + 1) ≤ λt1,t2EGt1,t2 + λt1,t2E It1,t2 + E
D
t1,t2(0) + E

P
t1,t2 .
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We recall here the definitions of the bounds EGt1,t2 , E
I
t1,t2 , E

D
t1,t2(0) and EPt1,t2 .

EGt1,t2 = B1

√
(t2 − t1 + 1),

where B1 = 2H
√

ln
(
T 2

δ

)
.

E It1,t2 = F1

√
(t2 − t1 + 1),

where F1 = H
√
2 ln

(
T 2

δ

)
.

EDt1,t2(0) = D1
∥λt1∥22
η

+D2η(t2 − t1 + 1),

where D1 = 1
2 , D2 = mH2

2 .

EPt1,t2 = U1Ξt1,t2C
√
T + U2Ξt1,t2

(t2 − t1 + 1)

C
√
T

+ U3Ξt1,t2
1

C
√
T

+ U4Ξt1,t2
√
T ,

where U1 = 6H2 ln
(
H|A|T 2

δ

)
, U2 = 9H|X||A|, U3 = H

2 ln
(
HT 2

δ

)
and U4 =

30H2|X|2
√
2|A| ln

(
T |X|2|A|

δ

)
.

Thus, we can write:

H(t2 − t1 + 1) ≤λt1,t2(F1 +B1)
√
(t2 − t1 + 1)︸ ︷︷ ︸

1

+U2Ξt1,t2
t2 − t1 + 1

C
√
T︸ ︷︷ ︸

2

+ U3Ξt1,t2
1

C
√
T︸ ︷︷ ︸

3

+U1Ξt1,t2C
√
T︸ ︷︷ ︸

4

+D2η(t2 − t1 + 1)︸ ︷︷ ︸
5

+D1
∥λt1∥22
η︸ ︷︷ ︸

6

+U4Ξt1,t2
√
T︸ ︷︷ ︸

7

.

To conclude the proof by absurd it is sufficient to prove that all 1 , 2 , 3 , 4 , 5 , 6 , 7 are smaller or
equal to H(t2−t1+1)

7 , with at least one being strictly smaller.

Prove 1 < H(t2−t1+1)
7 If η ≤ 1

14m(F1+B1)
√
T

, then 1 < H(t2−t1+1)
7 holds. Indeed:

H(t2 − t1 + 1)

7
>

HM

7ρ2mη
(12a)

≥ 2HM

ρ2
(F1 +B1)

√
T (12b)

≥ λt1,t2(F1 +B1)
√
T (12c)

≥ λt1,t2(F1 +B1)
√
t2 − t1 + 1,

where Inequality (12a) holds by Lemma K.1, Inequality (12b) is equivalent to condition η ≤
1

14m(F1+B1)
√
T

and Inequality (12c) is true by Assumption (7).

Prove 2 < H(t2−t1+1)
7 If C ≥ 56 MU2

ρ2
√
T

holds, then 2 < H(t2−t1+1)
7 also holds. Indeed:

H(t2 − t1 + 1)

7
≥ 2U2

(
4HM

ρ2

)
t2 − t1 + 1

C
√
T

(13a)

> U22(1 + λt1,t2)
t2 − t1 + 1

C
√
T

(13b)
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≥ U2Ξt1,t2
t2 − t1 + 1

C
√
T

, (13c)

where Inequality (13a) is equivalent to the condition C ≥ 56 MU2

ρ2
√
T

, Inequality (13b) holds by
Inequality (9) and Inequality (13c) is true since Ξt1,t2 ≤ 2(1 + λt1,t2).

Prove 3 < H(t2−t1+1)
7 If η ≤ C

√
T

56mU3
holds then also 3 < H(t2−t1+1)

7 holds. Indeed:

H(t2 − t1 + 1)

7
>

HM

7ρ2mη
(14a)

≥ U32
4HM

ρ2
1

C
√
T

(14b)

≥ U32(1 + λt1,t2)
1

C
√
T

(14c)

≥ U3Ξt1,t2
1

C
√
T
, (14d)

where Inequality (14a) hold by Lemma K.1, Inequality (14b) holds if condition η ≤ C
√
T

56mU3
holds, and

Inequality (14c) and Inequality (14d) follow the same reasoning as Inequality (13b) and Inequality
(13c).

Prove 4 < H(t2−t1+1)
7 If η ≤ 1

56mU1C
√
T

holds then also 4 < H(t2−t1+1)
7 holds. Indeed:

H(t2 − t1 + 1)

7
>

HM

7ρ2mη

≥ U12
4HM

ρ2
C
√
T (15)

≥ U12(1 + λt1,t2)C
√
T

≥ U1Ξt1,t2C
√
T ,

where Inequality (15) holds when condition η ≤ 1
56mU1C

√
T

also holds, and the rest of the inequalities
follow a similar reasoning to the one used to bound 3 .

Prove 5 ≤ H(t2−t1+1)
7 It is immediate to see that if η ≤ H

7D2
holds, then it holds also that:

5 = D2η(t2 − t1 + 1) ≤ H(t2 − t1 + 1)

7
.

Prove 6 < H(t2−t1+1)
7

If the condition M ≥ 112D1Hm is satisfied than the inequality 6 < H(t2−t1+1)
7 holds too. Indeed:

H(t2 − t1 + 1)

7
>

HM

7ρ2mη
(16a)

≥ D1
16H2

ρ2
1

η
(16b)

≥ D1
∥λt1∥21
η

(16c)

≥ D1
∥λt1∥22
η

,

where Inequality 16a holds by Lemma K.1, Inequality (16b) holds when the condition M ≥
112D1Hm is satisfied and Inequality (16c) holds by Inequality (8).
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Prove 7 < H(t2−t1+1)
7

If the condition η ≤ 1
56mU4

√
T

is satisfied then 7 < H(t2−t1+1)
7 also holds. In fact

H(t2 − t1 + 1)

7
>

HM

7ρ2mη
(17a)

≥ U42
4HM

ρ2

√
T (17b)

≥ U42(1 + λt1,t2)
√
T

≥ U4Ξt1,t2
√
T .

where Inequality (17a) holds by Lemma K.1 and inequality (17b) holds if condition η ≤ 1
56mU4

√
T

also holds.

Conclusion of the proof Thus, we have the following 3 conditions:

• First condition:

M ≥ 112D1Hm

= 112
1

2
Hm

= 56Hm.

• Second condition:

C ≥ 56
MU2

ρ2
√
T

= 56
M9H|X||A|

ρ2
√
T

.

• Third condition:

η ≤ min

{
1

14m(F1 +B1)
√
T
,
C
√
T

56mU3
,

1

56mU1C
√
T
,
H

7D2
,

1

56mU4

√
T

}
.

Thus, we set M as M = 56Hm, and consequently, under Condition 2.5 we set C = 252|X||A|H
since

C = 252|X||A|H
≥ 252|X||A|

≥ 252|X||A|112mH
2

ρ2
1√
T

= 56
(56Hm)9H|X||A|

ρ2
√
T

= 56
9MH|X||A|

ρ2
√
T

.

Notice that the inequality is deduced directly by Condition 2.5. In fact if ρ ≥ T− 1
8H
√
112m then it

is also true that
112mH2

ρ2
≤ T 1

4 ≤
√
T .

As a final remark, we choose 252|X||A|H as value of C instead of the smaller value 252|X||A|,
which is useful for Lemma J.1. Finally we study the condition on η.

min

{
1

14m(F1 +B1)
√
T
,
C
√
T

56mU3
,

1

56mU1C
√
T
,
H

7D2
,

1

56mU4

√
T

}
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≥ min

{
1

14m

(
4H
√
ln
(
T 2

δ

))√
T

,
252|X||A|H

√
T

56m
(
H
2 ln

(
HT 2

δ

)) ,
1

56m
(
6H2 ln

(
H|A|T 2

δ

))
(252|X||A|H)

√
T
,

H

7
(
mH2

2

) ,
1

56m

(
30H2|X|2

√
2|A| ln

(
T |X|2|A|

δ

))√
T

}

≥ 1

84672mH2|X|2|A| ln
(

|A||X|2T 2

δ

)√
T
.

Thus, the proof is concluded taking η = 1

84672mH2|X|2|A| ln
(

|A||X|2T2

δ

)√
T

.

Lemma F.2. If Condition 2.5 holds, for all t ∈ [T ] and for each constraints i ∈ [m], it holds:

λt,i ≥ ηV̂t−1,i,

where V̂t,i :=
∑t
τ=1

∑
x,a gτ,i(x, a)Iτ (x, a).

Proof. First observe that with t = 1 we have that V̂t−1,i is the sum of zero elements and as such, it is
equal to zero. This means that for t = 1 the inequality λt,i ≥ ηV̂t−1,i is equivalent to

λt,i ≥ 0,

which is true by construction. We finish the proof by induction. Suppose λt,i ≥ ηV̂t−1,i is true for a
t ∈ [T ], we show that it also holds for t+ 1, indeed:

λt+1,i = max

{
λt,i + η

H−1∑
h=0

gt,i(xh, ah), 0

}
= max

{
λt,i + η

∑
x,a

gt,i(x, a)It(x, a), 0
}

≥ λt,i + η
∑
x,a

gt,i(x, a)It(x, a)

≥ ηV̂t−1,i + η
∑
x,a

gt,i(x, a)It(x, a)

= η

(
t−1∑
τ=1

gτ,i(x, a)Iτ (x, a) + gt,i(x, a)It(x, a)

)

= η

t∑
τ=1

gτ,i(x, a)It(x, a)

= ηV̂t,i.

This concludes the proof.

Lemma F.3. If Condition 2.5 holds, referring as i∗ to the element in [m] such that i∗ =

argmaxi∈[m]

∑T
t=1

[
G⊤
t q

P,πt
]
i

, then with probability at least 1− δ, it holds:

VT ≤ V̂T,i∗ + E I.

Proof. We observe with probability at least 1− δ:

VT =

T∑
t=1

[
G⊤
t q

P,πt
]
i∗
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=

T∑
t=1

∑
x,a

gt,i∗(x, a) (qt(x, a)− It(x, a)) +
T∑
t=1

∑
x,a

gt,i∗(x, a)It(x, a)

≤
T∑
t=1

∑
x,a

gt,i∗(x, a) (qt(x, a)− It(x, a)) + V̂T,i∗

≤ E I + VT,i∗ .

This concludes the proof.

Lemma F.4. When Condition 2.5 does not hold, with probability at least 1−10δ in case of stochastic
costs and 1− 9δ in case of adversarial costs it holds for all i ∈ [m]:

V̂T,i ≤
4T

1
4

η
.

Proof. Recall the definition of V̂t,i as V̂t,i =
∑t
τ=1

∑
x,a gt,i(x, a)It(x, a). We first focus on the

stochastic setting. Thus, with probability at least 1− δ, it holds:
T∑
t=1

r⊤t qt −
T∑
t=1

λ⊤t G
⊤
t qt =

T∑
t=1

r⊤t q
◦ −

T∑
t=1

λ⊤t G
⊤
t q

◦ +

T∑
t=1

ℓL,⊤t (q◦ − qt)

≥ −
T∑
t=1

λ⊤t G
⊤
q◦ − λ1,TEGT +

T∑
t=1

ℓL,⊤t (q◦ − qt)

≥ −mT 1
4 EGT +

T∑
t=1

ℓL,⊤t (q◦ − qt).

On the other hand, in case of adversarial constraints, it holds:
T∑
t=1

r⊤t qt −
T∑
t=1

λ⊤t G
⊤
t qt =

T∑
t=1

r⊤t q
◦ −

T∑
t=1

λ⊤t G
⊤
t q

◦ +

T∑
t=1

ℓLt
⊤(q◦ − qt)

≥
T∑
t=1

ℓL,⊤t (q◦ − qt).

Define a vector λ̃ ∈ [0, T
1
4 ]m as λ̃j = 0 if j ̸= i and λ̃j = T

1
4 if j = i. Simultaneously with

probability at least 1− δ it holds:
T∑
t=1

r⊤t qt −
T∑
t=1

λ⊤t G
⊤
t qt

≤
T∑
t=1

r⊤t qt −
T∑
t=1

λ̃⊤
∑
x,a

Gt(x, a)It(x, a) +
T∑
t=1

(λ̃− λt)⊤
∑
x,a

Gt(x, a)It(x, a) + λ1,TE I

≤
T∑
t=1

r⊤t qt −
T∑
t=1

λ̃⊤
∑
x,a

Gt(x, a)It(x, a) + EDT (λ̃) +mT
1
4 E I

≤ HT − T 1
4 V̂T,i + EDT (λ̃) +mT

1
4 E I,

where in the first equality we used the definition of E IT , in the first inequality we used the definition of
the dual space [0, T

1
4 ]m to bound λ1,T as mT

1
4 , and in the last inequality we used the definition of λ̃.

We can then compare the lower and the upper bound for
∑T
t=1 r

⊤
t qt −

∑T
t=1 λ

⊤
t G

⊤
t qt obtaining the

following inequality, which holds with probability at least 1− δ with adversarial constraints and with
probability at least 1− 2δ with stochastic constraints:

−mT 1
4 EGT +

T∑
t=1

ℓL,⊤t (q◦ − qt) ≤ HT − T
1
4 V̂T,i + EDT (λ̃) +mT

1
4 E I,
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from which we can write the following inequality that holds with probability at least 1 − 9δ with
adversarial constraints and 1− 10δ with stochastic constraints:

T
1
4 V̂T,i ≤ mT

1
4 (EGT + E IT ) + EPT + EDT (λ̃) +HT. (18)

We proceed now to bound each element of the right side of the inequality.
To bound EP we use the fact that Ξ1,T ≤ (1 + λ1,T ) ≤ (1 + mT

1
4 ) and the definition of η as

following:

EPT = Ξ1,T

(
U1C
√
T + U2

√
T

C
+ U3

1

C
√
T

)
+ U4

√
T

≤ 2(1 +mT
1
4 )
√
T

1512H3|X||A| ln
(
H|A|T 2

δ

)
+

9H|X||A|
252H|X||A|

+

H
2 ln

(
HT 2

δ

)
252H|X||A|


+
√
T30H2|X|2

√
2|A| ln

(
T |X|2|A|

δ

)

≤ T 1
4

√
T6056H3m|X||A| ln

(
H|A|T 2

δ

)
+
√
T30H2|X|2

√
2|A| ln

(
T |X|2|A|

δ

)
≤ T 1

4

√
T6116H2m|X|2|A| ln

(
|X|2|A|T 2

δ

)
≤ T

1
4

η

To bound EDT (λ̃) we use Theorem E.1, the fact that by its definition ∥λ̃∥22 =
(
T

1
4

)2
=
√
T , the

initialization of the dual λ1 = 0 and the definition of η in the following way:

EDT (λ̃) ≤ ∥λ1 − λ̃∥
2
2

2η
+
η

2
TmH2

=
∥λ̃∥22
2η

+
η

2
TmH2

=

√
T

2η
+
η

2
TmH2

≤
√
T

2η
+
mH2T

2

1

84672mH2|X|2|A| ln
(

|A||X|2T 2

δ

)√
T

≤
√
T

2η
+

√
T

2η
=

√
T

η

We proceed to simply bound also mT
1
4

(
EGT + E IT

)
through their definition:

mT
1
4

(
EGT + E IT

)
= mT

1
4

√
T

(
2H

√
ln

(
T 2

δ

)
+H

√
2 ln

(
T 2

δ

))

≤ T
1
4

η

Finally we bound HT as HT ≤
√
T
η .

Thus, Inequality (18) becomes

V̂T,i ≤
1

T
1
4

(
mT

1
4 (EGT + E IT ) + EPT + EDT (λ̃) +HT

)
≤ 4
√
T

T
1
4 η

=
4T

1
4

η
,

which concludes the proof.
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G Analysis with Stochastic Constraints

Theorem 4.1. Suppose that Condition 2.5 holds and the constraints are generated stochastically.
Then, for any δ ∈ (0, 1), Algorithm 2 attains RT ≤ Õ

(
Λ
√
T
)
, VT ≤ Õ

(
Λ
√
T
)
, with probability

at least 1 − 14δ when the rewards are stochastic, and with probability at least 1 − 13δ when the
rewards are adversarial.

Proof. With probability at least 1− 12δ it holds:

VT ≤ V̂T,i∗ + E I (19a)

≤ 1

η
λT+1,i∗ + E I (19b)

≤ 1

η
Λ + E I, (19c)

where Inequality (19a) holds by Lemma F.3, Inequality (19b) holds by Lemma F.2 and Inequality (19c)
holds by Theorem 3.4. Then, with probability at least 1− 12δ we observe that:

T∑
t=1

r⊤t q
∗ −

T∑
t=1

r⊤t q
P,πt ≤

T∑
t=1

(
r⊤t q

∗ − λ⊤t G⊤
t q

∗)− T∑
t=1

(
r⊤t qt − λ⊤t G⊤

t qt
)
+

T∑
t=1

λ⊤t G
⊤
t (q

∗ − qt)

≤ EP + ED(0) + λ1,TE I +
T∑
t=1

λ⊤t G
⊤
t q

∗ (20a)

= EP + ED(0) + λ1,TE I +
T∑
t=1

λ⊤t (Gt −G)⊤q∗ +
T∑
t=1

λ⊤t G
⊤
q∗

≤ EP + ED(0) + λ1,TE I + λ1,TEG (20b)

≤ EP + ED(0) + ΛE I + ΛEG, (20c)

where Inequality (20a) holds by Theorem 3.3 and by Theorem E.1, Inequality (20b) holds since in
the stochastic constraint case

∑T
t=1(Gt −G)⊤q∗ ≤ EG with probability at least 1− δ by definition

of EG, and finally Inequality (20c) holds by Theorem 3.4. Finally we observe that in the stochastic
case with probability at least 1− δ:(

T · OPTr,G −
T∑
t=1

r⊤t qt

)
−

T∑
t=1

r⊤t (q
∗ − qt) ≤ Er.

Thus, if the rewards are stochastic with probability at least 1− 14δ it holds:

RT ≤ EP + ED(0) + ΛE I + ΛEG + Er, VT ≤
1

η
Λ + E I

and if the rewards are adversarial with probability at least 1− 13δ it holds:

RT ≤ EP + ED(0) + ΛE I + ΛEG, VT ≤
1

η
Λ + E I

which concludes the proof.

Theorem 4.2. Suppose that Condition 2.5 does not hold and the constraints are generated stochas-
tically. Then, for any δ ∈ (0, 1), Algorithm 2 attains RT ≤ Õ

(
T 3/4

)
, VT ≤ Õ

(
T 3/4

)
, with

probability at least 1− 11δ when the rewards are stochastic, and with probability at least 1− 10δ
when the rewards are adversarial.

Proof. Similar to the proof of Lemma 4.1 it holds with probability at least 1− 10δ:

T∑
t=1

r⊤t q
∗ −

T∑
t=1

r⊤t q
P,πt ≤

T∑
t=1

(
r⊤t q

∗ − λ⊤t G⊤
t q

∗)− T∑
t=1

(
r⊤t qt − λ⊤t G⊤

t qt
)
+

T∑
t=1

λ⊤t G
⊤
t (q

∗ − qt)
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≤ EP + ED(0) + λ1,TE I +
T∑
t=1

λ⊤t G
⊤
t q

∗

= EP + ED(0) + λ1,TE I +
T∑
t=1

λ⊤t (Gt −G)⊤q∗ +
T∑
t=1

λ⊤t G
⊤
q∗

≤ EP + ED(0) + λ1,TE I + λ1,TEG,

therefore with probability at least 1 − 10δ following the reasoning of Lemma F.4 it holds with
adversarial rewards:

T∑
t=1

r⊤t qt ≥ T · OPTr,G −mT
1/4EG +mT

1/4E I − ED(0)− EP ,

and with stochastic rewards with probability ta least 1− 11δ:

T∑
t=1

r⊤t qt ≥ T · OPTr,G −mT
1/4EG +mT

1/4E I − ED(0)− EP − Er.

Applying Lemma F.4 to bound the constraints violation concludes the proof.

H Analysis with Adversarial Constraints

Theorem 4.3. Suppose Condition 2.5 holds and the constraints are adversarial. Then, for any δ ∈
(0, 1), Algorithm 2 attains

∑T
t=1 r

⊤
t qt ≥ Ω

(
ρ

ρ+H · OPTr,G
)
, VT ≤ Õ

(
Λ
√
T
)
, with probability

at least 1 − 14δ when the rewards are stochastic, and with probability at least 1 − 13δ when the
rewards are adversarial.

Proof. Thanks to Theorem 3.3 , Theorem E.1 and Theorem 3.4 with probability at least 1− 11δ it
holds for all q ∈ ∆(P ):

T∑
t=1

r⊤t q −
T∑
t=1

r⊤t qt

≤ −
T∑
t=1

ℓL,⊤t q +

T∑
t=1

ℓL,⊤t qt +

T∑
t=1

λ⊤t G
⊤
t q −

T∑
t=1

λ⊤t G
⊤
t qt

≤ EPT +

T∑
t=1

λ⊤t G
⊤
t q +

T∑
t=1

(0− λt)⊤
H−1∑
h=0

Gt(xh, ah) +

T∑
t=1

λ⊤t

(
H−1∑
h=0

Gt(xh, ah)−G⊤
t qt

)

≤ EPT + EDT (0) + λ1,TE I +
T∑
t=1

m∑
i=1

λt,ig
⊤
t,iq

≤ EPT + EDT (0) + λ1,TE I +
T∑
t=1

m∑
i=1

λt,ig
⊤
t,iq

≤ EPT + EDT (0) + ΛE I +
T∑
t=1

m∑
i=1

λt,ig
⊤
t,iq.

Consider now the occupancy measure q̃ = ρ
H+ρq

∗ + H
H+ρq

◦. For all i ∈ [m] and for all t ∈ [T ]:

g⊤t,iq̃ ≤
(

ρ

H + ρ
g⊤t,iq

∗ +
H

H + ρ
g⊤t,iq

◦
)

≤
(

Hρ

H + ρ
− Hρ

H + ρ

)
= 0,
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given that g⊤t,iq
∗ ≤ ∥q∗∥1 ≤ H , and g⊤t,iq

◦ ≤ −ρ by definition of q◦ and by definition of ρ.

T∑
t=1

r⊤t q̃ =

T∑
t=1

(
ρ

H + ρ
r⊤t q

∗ +
H

H + ρ
r⊤t q

◦
)

≥ ρ

H + ρ

T∑
t=1

r⊤t q
∗,

since r⊤t q
◦ ≥ 0. Notice also that with adversarial rewards

∑T
t=1 r

⊤
t q

∗ = T · OPTr,G, while with

stochastic rewards with probability at least 1−δ it holds
∑T
t=1 r

⊤
t q

∗ ≥ T ·OPTr,G−Er, by definition
of Er and OPTr,G for stochastic rewards. By reordering the terms we get that with probability at
least 1− 11δ

T∑
t=1

r⊤t qt ≥
ρ

H + ρ

T∑
t=1

r⊤t q
∗ − EPT − EDT (0)− ΛE I,

we can proceed to bound the regret in both cases: adversarial rewards and stochastic rewards.

With probability at least 1− 11δ with adversarial rewards it holds:

RT =

T∑
t=1

r⊤t q
∗ −

T∑
t=1

r⊤t qt

≤
T∑
t=1

r⊤t q
∗ −

(
ρ

H + ρ

T∑
t=1

r⊤t q
∗ − EPT − EDT (0)− ΛE I

)

≤ H

H + ρ

T∑
t=1

r⊤t q
∗ + EPT + EDT (0) + ΛE I

≤ H

H + ρ
T · OPTr,G + EPT + EDT (0) + ΛE I.

With stochastic rewards it holds with probability at least 1− 11δ:

T∑
t=1

r⊤t qt ≥
ρ

H + ρ

T∑
t=1

r⊤t q
∗ − EPT − EDT (0)− ΛE I,

and with probability at least 1− 12δ:

T∑
t=1

r⊤t qt ≥
ρ

H + ρ
T · OPTr,G − E

P
T − EDT (0)− ΛE I − Er.

To conclude the proof we observe that following the analogous reasoning to Theorem 4.1 in case of
adversarial constraints it also holds with probability at least 1− 12δ:

VT ≤
1

η
Λ + E I.

I Analysis with respect to The Weaker Baseline

In this section we will study the guarantees of Algorithm 2 when the regret is computed with respect
to a policy q∗ that respect the constraints at each episode, i.e. g⊤t q

∗ ≤ 0 for all i ∈ [m], for all
t ∈ [T ].
Theorem 4.4. Suppose that Condition 2.5 holds and the constraints are generated adversarially.
Then, for any δ ∈ (0, 1), Algorithm 2 attains RT ≤ Õ

(
Λ
√
T
)
, VT ≤ Õ

(
Λ
√
T
)
, with probability

at least 1 − 13δ when the rewards are stochastic, and with probability at least 1 − 12δ when the
rewards are adversarial.
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Proof. The violation can be bounded as in Theorem 4.1. Also similarly to Theorem 4.1 it holds with
probability 1− 12δ

T∑
t=1

r⊤t q
∗ −

T∑
t=1

r⊤t qt ≤ −
T∑
t=1

ℓL,⊤t q∗ +

T∑
t=1

ℓL,⊤t qt +

T∑
t=1

λ⊤t G
⊤
t q

∗ −
T∑
t=1

λ⊤t G
⊤
t qt

≤ EPT +

T∑
t=1

(0− λt)⊤
H−1∑
h=0

Gt(xh, ah) +

T∑
t=1

λ⊤t

(
H−1∑
h=0

Gt(xh, ah)−G⊤
t qt

)
≤ EPT + EDT (0) + λ1,TE I

≤ EPT + EDT (0) + ΛE I.

Finally with stochastic rewards with probability at least 1− δ:

T · OPTr,G −
T∑
t=1

r⊤t q
∗ ≤ Er.

Therefore, with adversarial rewards it holds with probability at least 1− 12δ:

RT ≤ EP + ED(0) + ΛE I, VT ≤
1

η
Λ + E I,

and with stochastic rewards it holds with probability at least 1− 13δ:

RT ≤ EP + ED(0) + ΛE I + Er, VT ≤
1

η
Λ + E I,

which concludes the proof.

Theorem 4.5. Suppose that Condition 2.5 does not hold and the constraints are generated adversari-
ally. Then, for any δ ∈ (0, 1), Algorithm 2 attains RT ≤ Õ

(
T 3/4

)
, VT ≤ Õ

(
T 3/4

)
, with probability

at least 1 − 12δ when the rewards are stochastic, and with probability at least 1 − 11δ when the
rewards are adversarial.

Proof. The violation can be bounded thanks to Lemma F.2, as in Theorem 4.2. To bound the regret,
notice that it holds with probability 1− 9δ:

T∑
t=1

r⊤t q
∗ −

T∑
t=1

r⊤t qt ≤ −
T∑
t=1

ℓL,⊤t q∗ +

T∑
t=1

ℓL,⊤t qt +

T∑
t=1

λ⊤t G
⊤
t q

∗ −
T∑
t=1

λ⊤t G
⊤
t qt

≤ EPT +

T∑
t=1

(0− λt)⊤
H−1∑
h=0

Gt(xh, ah) +

T∑
t=1

λ⊤t

(
H−1∑
h=0

Gt(xh, ah)−G⊤
t qt

)
≤ EPT + EDT (0) + λ1,TE I

≤ EPT + EDT (0) +mT
1/4E I.

Finally with stochastic rewards with probability at least 1− δ:

T · OPTr,G −
T∑
t=1

r⊤t q
∗ ≤ Er.

Therefore, with adversarial rewards it holds with probability at least 1− 11δ:

RT ≤ EP + ED(0) +mT
1/4E I, VT ≤

4T 1/4

η
,

and with stochastic rewards it holds with probability at least 1− 12δ:

RT ≤ EP + ED(0) +mT
1/4E I + Er, VT ≤

4T 1/4

η
,

which concludes the proof.
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J Auxiliary Lemmas

Lemma J.1 (Adapted from [Luo et al., 2021] Lemma C.4).

ηtQ̂t(x, a) ≤
1

2
∧ ηtBt(x, a) ≤

1

2H
.

Proof. Recall γ = 2ηtHΞt. Thus, it holds:

ηtQ̂t(x, a) ≤
ηtHΞt
γ

=
ηtHΞt
2ηtHΞt

=
1

2

and

ηtbt(x, a) =
3ηtHΞtγ + ηtΞtH(qt(x, a)− qt(x, a))

qt(x, a) + γ
≤ 3ηtΞtH + ηtHΞt = 2γ.

Finally,

ηtBt(x, a) ≤ H
(
1 +

1

H

)H
ηt sup
x′,a′

bt(x
′, a′)

≤ 3H2γ

= 6Hγ

=
6H

C
√
T

=
6H

252|X||A|H
√
T

≤ 1

42H

≤ 1

2H
.

This concludes the poof.

Lemma J.2 (Adapted from [Luo et al., 2021], Lemma B.1). If the following inequality holds:∑
x

q∗(x)

t2∑
t=t1

∑
a

(πt(a|x)− π∗(a|x)) (Qπt
t (x, a)−Bt(x, a))

≤ o(T ) +
t2∑
t=t1

V π
∗
(x0; bt) +

1

H

t2∑
t=t1

∑
x,a

q∗(x)πt(a|x)Bt(x, a), (21)

with Bt defined as

Bt(x, a) = bt(x, a)+

(
1 +

1

H

)
Ex′∼P (·|x,a)Ea′∼πt(·|x′) [Bt(x

′, a′)] ∀t ∈ [T ],∀x ∈ X,∀a ∈ A,

(22)
then it holds that:

Rt1,t2 ≤ o(T ) + 3

t2∑
t=t1

V̂ πt(x0; bt).

Proof. The proof is analogous to the one proposed by [Luo et al., 2021], Lemma B.1, since the proof
is episode based and then the sum over t is taken.

Lemma J.3 (Adapted from [Luo et al., 2021], Lemma A.1). Let F0, . . . ,FT be a filtration and
X1, . . . , XT be real random variables such that Xt is Ft-measurable, E[Xt|Ft] = 0, |Xt| ≤ b for
all t ∈ [T ] and

∑t2
t=t1

E[X2
t |Ft] ≤ Vt1,t2 for some fixed Vt1,t2 > 0 and b > 0 for every t1, t2 ∈ [T ]

such that 1 ≤ t1 ≤ t2 ≤ T . Then with probability at least 1 − δ it holds simultaneously for all
[t1, . . . , t2] ⊂ [T ]:

t2∑
t=t1

Xt ≤
Vt1,t2
b

+ b log

(
T 2

δ

)
.
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Proof. For all δ′ ∈ (0, 1) by Lemma A.1 [Luo et al., 2021] it holds:

P

(
t2∑
t=t1

Xt ≥
Vt1,t2
b

+ b log

(
1

δ′

))
≤ δ′.

It is sufficient to consider the intersection of all events for all possible intervals [t1, . . . , t2], that are
less than T 2.

P

(⋂
t1,t2

{ t2∑
t=t1

Xt ≥
Vt1,t2
b

+ b log

(
1

δ′

)})
≤ T 2δ′.

To conclude the proof we take δ as T 2δ′.

Consider a loss function ft(x, a) ∈ [0, Z], for all t ∈ [T ], (x, a) ∈ X × A, with Z > 0. Define

another function f̃t ∈ [0, Z]|X×A|. If we define the estimator f̂t(x, a) = f̃t(x,a)It(x,a)
qt(x,a)+γ

where

E[f̃t(x, a)] = ft(x, a), we can state the following result.
Lemma J.4 (Adapted from [Jin et al., 2020]). For every sequence of functions α1, . . . αT such that
αt ∈ [0, 2γZ ]|X×A| is Ft measurable for all t ∈ [T ], we have with probability at least 1 − δ that
simultaneously for all t1, t2 ∈ [T ] such that 1 ≤ t1 ≤ t2 ≤ T it holds:

t2∑
t=t1

∑
x,a

αt(x, a)

(
f̂t(x, a)−

qt(x, a)

qt(x, a)
ft(x, a)

)
≤ H ln

(
HT 2

δ

)
.

Proof.

ℓ̂t(x, a) =
f̃t(x, a)It(x, a)
qt(x, a) + γ

≤ f̃t(x, a)It(x, a)

qt(x, a) +
f̃t(x,a)
Z γ

=
It(x, a)Z

2γ

2γ f̃t(x,a)Z

qt(x, a) + γ f̃t(x,a)Z

=
It(x, a)Z

2γ

2γ f̃t(x,a)
Zqt(x,a)

1 + γ f̃t(x,a)
Zqt(x,a)

≤ Z

2γ
ln

(
1 + 2γ

It(x, a)f̃t(x, a)
Zqt(x, a)

)
.

For each layer h ∈ [H] we define Ŝt,h :=
∑
x∈Xh,a∈A αt(x, a)f̂t(x, a) and St,h :=∑

x∈Xh,a∈A αt(x, a)
qt(x,a)
qt(x,a)

ft(x, a).

Et[exp(Ŝt,h)] = E

exp
 ∑
x∈Xh,a∈A

αt(x, a)f̂t(x, a)


≤ E

exp
 ∑
x∈Xh,a∈A

αt(x, a)
Z

2γ
ln

(
1 + 2γ

It(x, a)f̃t(x, a)
Zqt(x, a)

)
≤ E

 ∏
x∈Xh,a∈A

(
1 + αt(x, a)

It(x, a)f̃t(x, a)
qt(x, a)

)
≤ 1 +

∑
x∈Xh,a∈A

αt(x, a)
qt(x, a)ft(x, a)

qt(x, a)
= 1 + St,h
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≤ exp(St,h)

For each interval [t1, . . . , t2] ⊂ [T ] it holds:

P

[
t2∑
t=t1

(Ŝt,h − St,h) ≥ ln

(
H

δ′

)]
≤ δ′

H
.

Taking the intersection event for all intervals [t1, . . . , t2] ⊂ [T ]:

P

[ ⋂
t1,t2

{ t2∑
t=t1

(Ŝt,h − St,h) ≥ ln

(
H

δ′

)}]
≤ T 2 δ

′

H
.

δ = T 2δ′,

and

P

[ ⋂
t1,t2

{ t2∑
t=t1

(Ŝt,h − St,h) ≥ ln

(
HT 2

δ

)}]
≤ δ

H
.

Finally we take the sum over h ∈ [H]:

P

[
t2∑
t=t1

∑
x,a

αt(x, a)

(
f̂t(x, a)−

qt(x, a)

ut(x, a)
ft(x, a)

)
≤ H ln

(
HT 2

δ

)]
≤ δ.

This concludes the proof.

Corollary J.5. Given δ ∈ (0, 1), it holds with probability at least 1 − 2δ simultaneously for all
t1, t2 ∈ [T ] such that 1 ≤ t1 ≤ t2 ≤ T :

t2∑
t=t1

∑
x,a

(
f̂t(x, a)− ft(x, a)

)
≤ ZH

2γ
ln

(
HT 2

δ

)
.

Lemma J.6. Let {πt}Tt=1 policies, then for any collection of transition P xt ∈ Pi(t) with probability
at least 1− 2δ,

T∑
t=1

∥qP,πt − qP
x
t ,πt∥1 ≤ 2H|X|2

√
2T ln

(
H|X|
δ

)
+ 3H|X|2

√
2T |A| ln

(
T |X|2|A|

δ

)
.

Proof. It holds:

T∑
t=1

∥qP,πt − qP
x
t ,πt∥1 =

T∑
t=1

∑
x,a

|qP,πt(x, a)− qP
x
t ,πt(x, a)|

≤
T∑
t=1

∑
x,a

∑
x′

|qP,πt(x′, a)− qP
x
t ,πt(x′, a)|

=
∑
x

T∑
t=1

∑
x′,a

|qP,πt(x′, a)− qP
x
t ,πt(x′, a)|

≤
∑
x

(
2H|X|

√
2T ln

(
H|X|
δ

)
+ 3H|X|

√
2T |A| ln

(
T |X|2|A|

δ

))

≤ |X|

(
2H|X|

√
2T ln

(
|X|H
δ

)
+ 3H|X|

√
2T |A| ln

(
T |X|2|A|

δ

))
,

by Lemma K.3, taking the union bound over X
(
δ′ = δ

|X|

)
. This concludes the proof.
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K Auxiliary Lemmas From Existing Works

Lemma K.1 (Stradi et al. [2024a] Lemma D.2). For η ≤ 1
mH and M

ρ > 4, if ∥λt2+1∥1 > 2HM
ρ2 and

∥λt1∥1 ≤ 4H
ρ it holds:

(t2 − t1 + 1) >
M

ρ2mη

Lemma K.2 (Rosenberg and Mansour [2019b]). For any δ ∈ (0, 1)

∥P (·|x, a)− P i(·|x, a)∥1 ≤

√√√√2|Xh(x)+1| ln
(
T |X||A|

δ

)
max{1, Ni(x, a)}

,

simultaneously for all (x, a) ∈ X ×A and for all epochs with probability at least 1− δ.

Lemma K.3 (Rosenberg and Mansour [2019b]). Let {πt}Tt=1 policies and let {Pt}Tt=1 transition
functions such that qPt,πt ∈ ∆(Pi(t)) for every t ∈ [T ]. Then with probability at least 1− 2δ,

T∑
t=1

∥qP,πt − qPt,πt∥1 ≤ 2H|X|

√
2T ln

(
H

δ

)
+ 3H|X|

√
2T |A| ln

(
T |X||A|

δ

)
.
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