

LTRAG: Enhancing autoformalization and self-refinement for logical
reasoning with Thought-Guided RAG

Anonymous ACL submission

Abstract

Logical reasoning is fundamental to intelli-
gent systems. Large language models (LLMs)
have demonstrated promise in natural lan-
guage (NL) reasoning, especially with tech-
niques like chain-of-thought (CoT) prompting.
Neuro-symbolic methods like Logic-LM and
LINC further enhance performance on chal-
lenging datasets FOLIO and AR-LSAT by in-
tegrating formalization with LLMs and sym-
bolic solvers, and possibly refinement with
LLMs. However, these methods still strug-
gle with the accurate formalization of com-
plex NL problems. In this paper, we intro-
duce LTRAG, a framework to enhance aut-
oformalization and self-refinement for logi-
cal reasoning with Retrieval-Augmented Gen-
eration (RAG), by building knowledge bases
of thought-guided examples'. Experimental
results on FOLIO and AR-LSAT show that
LTRAG consistently outperforms Logic-LM
and LINC across different models. On GPT-
4 and AR-LSAT, it achieves an accuracy gain
of 13% over Logic-LM.

1 Introduction

Logical reasoning is a fundamental aspect of hu-
man intelligence and essential for complex tasks
such as problem-solving and decision-making. Re-
cently, logical reasoning over natural language
(NL) exploiting large language models (LLMs)
has received much attention. Many datasets have
been proposed, including synthetic ProofWriter
for rule reasoning (Tafjord et al., 2021), human-
crafted FOLIO for complex first-order logic (FOL)
reasoning (Han et al., 2024), and AR-LSAT ex-
tracted from the LSAT exams (Zhong et al., 2021).
Various methods have been explored, including
prompting (Wei et al., 2022; Kojima et al., 2022),
fine-tuning (Zelikman et al., 2022), and neuro-

1https://anonymous.4open.science/r/
dataset-example-LTRAG/

symbolic methods based on search (Kazemi et al.,
2023; Hao et al., 2023).

A recent endeavor for logical reasoning over NL
is neuro-symbolic methods based on autoformal-
ization, by combining translation with LLMs from
NLs to formal languages and rigorous reasoning
of symbolic solvers. Typical works are Logic-LM
(Pan et al., 2023) which introduces self-refinement
to use the symbolic solver’s error messages to re-
fine the formalization, and LINC (Olausson et al.,
2023).0n GPT-4, LINC achieves an accuracy of
98% on ProofWriter, and Logic-LM reaches 79%
on FOLIO. However, existing methods still face
significant challenges, since many difficult NL
problems are hard to formalize precisely in an au-
tomatic fashion. For example, with GPT-4, on
AR-LSAT, Logic-LLM only achieves an accuracy
of 43%. In particular, these methods rely on a
fixed set of examples for autoformalization and
self-refinement, thus struggling with diverse and
complex inputs, limiting their generalizability. On
the other hand, Retrieval-Augmented Generation
(RAG) (Lewis et al., 2020) enhances generation by
dynamically retrieving relevant information from
an external knowledge base (KB).

In this paper, we propose a framework LTRAG
to enhance autoformalization and self-refinement
for logical reasoning with thought-guided RAG,
by building KBs of thought-guided examples for
formalization and refinement. Experimental re-
sults on FOLIO and AR-LSAT show LTRAG con-
sistently outperforms Logic-LM and LINC across
different models. Especially, LTRAG achieves an
accuracy gain of 8% over Logic-LM and LINC
on GPT-3.5-turbo and FOLIO, and 13% on GPT-
4 and AR-LSAT.

2 Related Work

Translating a NL into a formal language is chal-
lenging due to its fuzziness, ambiguity, and im-

https://anonymous.4open.science/r/dataset-example-LTRAG/
https://anonymous.4open.science/r/dataset-example-LTRAG/

plicit information. Nguyen et al. (2022) pro-
posed a method combining manually translating
with deep learning. Yang et al. (2024) introduced
LogicLLaMA, combining supervised fine-tuning
and reinforcement learning with human feedback.
Chen et al. (2023) developed a framework using
LLMs for translation between NL and temporal
logic using intermediate languages.

Neuro-symbolic methods for logical reasoning
based on autoformalization have recently gained
much attention. Pan et al. (2023) proposed Logic-
LM, including a Problem Formulator to formal-
ize the problem, a Symbolic Reasoner, and a Self-
Refiner module for error correction. Olausson
et al. (2023) introduced LINC, which also com-
bines autoformalization and symbolic solving, but
uses majority voting to aggregate results from mul-
tiple formalizations. Ye et al. (2023b) proposed
SATLM, which leverages LLMs to formalize NL
inputs into satisfiability (SAT) problems and uses a
SAT solver for reasoning. Jiang et al. (2024) intro-
duced LeanReasoner, which fine-tunes with data
in the Lean theorem-proving environment, for-
malizes problems into Lean theorems, and solves
them with a tactic generator and proof search. Xu
et al. (2024) proposed SymbCoT, which does aut-
oformalization but reasons with CoT prompting
based on both NL and FOL inputs.

Lewis et al. (2020) proposed RAG, using doc-
ument retrieval to improve output precision with
external knowledge. Fan et al. (2024) showed
RAG reduces hallucinations and improves genera-
tion quality. Jiang et al. (2023) introduced FLARE,
enabling efficient retrieval during generation.

Example selection is key to in-context learning.
Liu et al. (2022) used a sentence encoder to se-
lect top-k similar examples for given problems,
showing dynamic selection improves LLM perfor-
mance. Levy et al. (2023) studied compositional
generalization in semantic parsing, selecting di-
verse examples via coverage and diversity based
methods. Ye et al. (2023a) proposes CEIL, an ex-
ample selection method using Determinantal Point
Processes and contrastive learning.

3 Framework

The structure of LTRAG is depicted in Figure 1. It
comprises four key components: a Retrieval Mod-
ule, a Translator LLM, a Solver, and a Fixer LLM.
The Translator LLM (similar to Logic-LM’s Prob-
lem Formulator) converts NL problems into for-

mal representations, while the Fixer LLM (akin
to Logic-LM’s Self-Refine) corrects translation er-
rors. The Retrieval Module, built upon FastGPT?,
dynamically retrieves similar examples from the
RAG KBs. These retrieved examples serve as
guiding references for both Translator and Fixer
LLMSs, enhancing the accuracy of formalization
and error correction. The detailed method for con-
structing the KBs can be found in Section 4.2.
Once the problem is formalized, the Solver takes
over to perform logical reasoning. The Solver is
based on Microsoft’s Z3 solver 3 (de Moura and
Bjgrner, 2008), and is capable of handling FOL
expressions (in FOLIO) and constraint satisfaction
problems (in AR-LSAT). If errors are detected,
they are reported to the Fixer LLM for another for-
malization, and the above process is repeated.

Here is an example (full version in Ap-
pendix A.1): One of the input premises is “There
are four seasons in a year: Spring, Summer, Fall,
and Winter". The full problem is used to retrieve
the translation KB, and both the problem and the
retrieved examples are provided to the Translator
LLM, resulting in an initial formalization:

Vz (Season(z) — (x = Spring V

x = Summer V x = Fall V x = Winter)).
The solver will return an error, indicating that us-
ing “="1is not allowed. The error is used to retrieve
the fixer KB, and both the error and the retrieved
examples are provided to the Fixer LLM, resulting
in the final correct formalization:

Va (Season(x) — (IsSpring(z) V

IsSummer(x)VIsFall(x)VIsWinter(z))).

4 Experiments

4.1 Experimental Setup

We evaluate LTRAG on FOLIO and AR-LSAT,
comparing it against baselines such as Standard
prompting, CoT prompting (using 2 examples
on FOLIO and 1 on AR-LSAT), LINC, and
Logic-LM, across models including GPT-40 (Ope-
nAl, 2024), DeepSeek v2.5 (DeepSeek-Al, 2024),
Llama3.3-70b (Grattafiori et al., 2024), GPT-3.5-
turbo, and Gemma2-27b (Riviere et al., 2024).

On FOLIO, as our test set, we use the 182 ver-
ified samples retained by LINC after filtering out
the problematic ones from the original 204 sam-
ples. On AR-LSAT, as Logic-LM, we use the 231
samples from the dev set as our test set.

2https: //github.com/labring/FastGPT
3https://github.com/Z3Prover/z3

https://github.com/labring/FastGPT
https://github.com/Z3Prover/z3

Translatsion KB

Error message

—>» Examples

’

Translator LLM

Fixer KB
a

—>

Examples

A T
Yes

Translation result

oo

Final result

Figure 1: The framework of LTRAG.

Note that AR-LSAT samples are single-choice
questions, and the solver may return multiple an-
swers. When no or multiple answers are obtained
after repeated repairs, Logic-LM returns an an-
swer using the CoT method, and we do the same.

4.2 Knowledge Base Construction

Our RAG KBs are semi-automatically constructed.
Roughly, the translation KBs are automatically
constructed from the training sets with programs
or LLMs, while the fixer KBs are constructed by
first manually fixing a small set of error cases and
then using it to guide LLMs to generate the rest.
Detailed examples are in Appendix A.2. In the fol-
lowing, we give details of our KB construction.

For FOLIO, the translation KB is built from the
training set, with the 122 samples where DeepSeek
fails to obtain the correct answer using the Trans-
lator LLM with an empty KB and the solver. Each
such sample is provided with the annotated for-
mulas and translation steps obtained with a pro-
gram as follows: first, extract all predicates and
constants from the problem; second, identify rel-
evant predicates and constants for each sentence;
and finally, translate the sentence into FOL. The
fixer KB is built from the training set, using sam-
ples where DeepSeek fails to obtain an executable
formalization. A subset is manually corrected for
high-quality references, while the rest are auto-
matically repaired as follows: for each such sam-
ple, using the annotated formulas and the manual
repair subset as context, let DeepSeek return the
thought process for repairing, and retain the sam-
ple if the solver returns the correct answer. The
fixer KB ends up with 57 samples.

For AR-LSAT, the translation KB is built as fol-
lows: first, we pick 1,500 samples from the train-

ing set; second, for each of these samples, we
use DeepSeek to formalize it with the RAG KB
of Logic-LM’s formalizations of the dev set; fi-
nally, we retain 538 executable samples. As to the
second step, we focus on defining the formaliza-
tion’s syntax and precautions in the prompts; due
to the length of AR-LSAT samples, we choose
not to let LLMs generate the thought process be-
cause long outputs confuse LLMs and easily gen-
erate unexecutable formalizations. The fixer KB
is built from the training set, using samples where
DeepSeek fails to obtain an executable formaliza-
tion or a unique answer. For each error type, one or
more samples are manually selected and corrected
with an analysis of the error. The rest samples are
semi-automatically repaired as follows: for each
such sample, using the manual repair subset, let
DeepSeek return the thought process for repairing
the formulation, which is manually checked for
correctness and decided for being retained or not.
The fixer KB ends up with 41 samples.

4.3 Results

The experimental results are summarized in Ta-
ble 1. To handle longer contexts, we use GPT-
40 (128K), a variant of GPT-4 (8K) used in prior
work, with minimal performance differences.

On FOLIO, LTRAG consistently outperforms
other methods across different models. For GPT-
4o, it achieves 80.77%, surpassing Logic-LM’s
78.92% and LINC’s 72.50%. For GPT-3.5-turbo,
LTRAG attains 70.88%, significantly outperform-
ing Logic-LM (61.27%) and LINC (62.60%).

On AR-LSAT, LTRAG also consistently im-
proves over the baseline methods. For GPT-4o,
it outperforms both Logic-LM and CoT by about
13%. LTRAG also enhances DeepSeek v2.5’s per-

Model FOLIO (Accuracy %) AR-LSAT (Accuracy %)
LTRAG | Standard | CoT | LINC | Logic-LM | LTRAG | Standard | CoT | Logic-LM
GPT-40 80.77 73.63 78.02 | 72.50 78.92 56.71 40.26 43.72 43.04
DeepSeek v2.5 | 78.57 74.73 76.37 - - 68.40 51.52 64.50 -
Llama3.3 78.57 72.53 71.43 - - 59.31 40.26 39.83 -
GPT-3.5-turbo 70.88 56.59 59.34 | 62.60 61.27 26.84 24.24 19.48 26.41
Gemma?2 79.67 59.89 62.09 - - 35.06 25.97 24.67 -

Table 1: Performance comparison on FOLIO and AR-LSAT. The data for Logic-LM and LINC comes from their
papers, and ‘-’ denotes that they did not experiment on the model. LINC did not experiment on AR-LSAT.

formance, achieving 68.40% compared to 51.52%
under Standard prompting. However, LTRAG
attains limited improvements on GPT-3.5-turbo,
with the performance gain being less than 3% com-
pared to Standard Prompting and Logic-LM.

In Table 2, we analyze the executable rate and
execution accuracy of LTRAG on AR-LSAT, in
comparison to Logic-LM. In terms of executable
rate, on both GPT-40 and GPT-3.5-turbo, LTRAG
outperforms Logic-LM by about 30%, indicat-
ing its superior ability to generate executable pro-
grams. It is easy to notice that our execution accu-
racy is lower compared to Logic-LM. A possible
reason is that we get much more executable pro-
grams, making the error rate in execution increase.

Model Exe_rate | Exe_accuracy
GPT-40 69.26 50.00
GPT-4(Logic-LM) 39.8 58.8
GPT-3.5-turbo 54.11 19.20
GPT-3.5(Logic-LM) 21.8 60.3
DeepSeek v2.5 71.00 44.51
Llama3.3 66.67 52.60
Gemma?2 45.02 36.54

Table 2: Executable rate (Exe_rate) and Execution Ac-
curacy (Exe_accuracy) on AR-LSAT.

4.4 Ablation Experiments

In ablation studies, we investigate the effect of the
Fixer LLM with different numbers of examples on
different models. On FOLIO, the Fixer LLM im-
proves accuracy by 2-5% for large models, while
the improvement is 3—-6% for small models. On
AR-LSAT, the Fixer LLM improves accuracy by
15-20% for large models, while the improvement
is 2-8% for small models. Detailed results are in-
cluded in Appendix A.3.

4.5 Discussion

We first analyze on FOLIO, why LTRAG achieves
better improvements on small models than on

large models. We think the thought-guided ex-
amples for the Translator LLM notably benefit
small models by mitigating their inherent limita-
tions. Large models produce fewer errors, and
small models have limited repair capabilities, lead-
ing to limited improvements by the Fixer LLM.

We then analyze on AR-LSAT, why LTRAG
achieves better improvements on large models
than on small models. AR-LSAT samples are
primarily constraint satisfaction problems, having
unique answers, making it difficult to provide a
systematic translation approach. The samples also
involve complex long-text constraints, thus lim-
iting the number of reference examples given to
the Fixer LLM. As a result, while both large and
small models face difficulties, large models can
make effective corrections with limited assistance,
whereas small models cannot.

5 Conclusion

In this paper, we propose the LTRAG framework
to enhance autoformalization and self-refinement
for logical reasoning with thought-guided RAG.
The translation KBs are automatically constructed,
and the fixer KBs are semi-automatically con-
structed where a small set of error cases are man-
ually fixed and used to guide LLMs to generate
more repairing examples. Empirical results on
the challenging datasets FOLIO and AR-LSAT
demonstrate that our approach significantly im-
proves refinement capabilities of large models and
formalization capabilities of small models. An out-
standing advantage of our work is to improve for-
malization with less computational resources than
approaches based on fine-tuning. Future work will
focus on more automated construction of thought-
guided RAG KBs, particularly for challenging
datasets. A possible approach is to utilize mod-
els pre-trained with iterative reasoning strategies
to generate the RAG examples.

6 Limitations

Below, we outline some of the key challenges and
constraints associated with our framework:

Difficulty in Constructing Thought Processes
for Certain Tasks While structured reasoning
steps can be effectively constructed for datasets
like FOLIO with short context, other tasks such
as AR-LSAT present challenges. AR-LSAT prob-
lems often involve complex constraints and rela-
tionships that are harder to break down into a
thought process. This makes it difficult to provide
the same level of guidance for small models, limit-
ing their performance improvements.

Limited Impact of the Fixer LLM on Tasks
with Few Syntax Errors The Fixer LLM, which
corrects errors flagged by the Solver, shows lim-
ited improvement on tasks where syntax errors are
rare, such as FOLIO. This is particularly true for
large models like GPT-40, DeepSeek, and Llama,
which already produce fewer syntax errors due to
their advanced reasoning capabilities. As a re-
sult, the Fixer LLM’s contributions are marginal
in such cases, and the primary benefits of LTRAG
come from the structured formalization process.
Conversely, the Fixer LLM proves more effective
on complex tasks like AR-LSAT, where the error
types are more varied. Large models, with their
superior refinement capabilities, can leverage the
Fixer LLM to achieve significant improvements.
However, small models, that struggle with both
autoformalization and self-refinement, gain less
benefit from the Fixer LLM in these scenarios.

Limitations in the Fixer LLM on Semantic
Errors The Fixer LLM is primarily designed to
address surface-level syntax errors, such as incor-
rect predicate usage or invalid logical operators.
It is not capable of resolving deeper semantic er-
rors, where the logical formalization may be syn-
tactically correct but semantically flawed. On FO-
LIO, where the solver provides unique answers,
it’s hard to detect semantic errors, while AR-LSAT
provides extra feedback when the solver returns
multiple answers. This limitation highlights the
need for more advanced mechanisms that can han-
dle both syntactic and semantic errors.

Dependency on Knowledge Base Quality The
performance of LTRAG heavily relies on the qual-
ity and comprehensiveness of the KBs. In cases
where the KB lacks sufficient examples or con-
tains inaccuracies, the system’s abilities may be
compromised.

References

Yongchao Chen, Rujul Gandhi, Yang Zhang, and
Chuchu Fan. 2023. NL2TL: transforming natural
languages to temporal logics using large language
models. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2023, Singapore, December 6-10,
2023, pages 15880-15903. Association for Compu-
tational Linguistics.

Leonardo Mendonca de Moura and Nikolaj S. Bjgrner.
2008. Z3: an efficient SMT solver. In Tools and
Algorithms for the Construction and Analysis of Sys-
tems, 14th International Conference, TACAS 2008,
Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2008, Bu-
dapest, Hungary, March 29-April 6, 2008. Proceed-
ings, volume 4963 of Lecture Notes in Computer Sci-
ence, pages 337-340. Springer.

DeepSeek-Al 2024. Deepseek-v2: A strong, economi-
cal, and efficient mixture-of-experts language model.
Preprint, arXiv:2405.04434.

Wengi Fan, Yujuan Ding, Liangbo Ning, Shijie Wang,
Hengyun Li, Dawei Yin, Tat-Seng Chua, and Qing
Li. 2024. A survey on rag meeting llms: Towards
retrieval-augmented large language models. In Pro-
ceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, KDD ’24,
pages 6491-6501, New York, NY, USA. Association
for Computing Machinery.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, and et al. 2024. The llama 3 herd of models.
Preprint, arXiv:2407.21783.

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhent-
ing Qi, Martin Riddell, Wenfei Zhou, James Coady,
David Peng, Yujie Qiao, Luke Benson, Lucy Sun,
Alexander Wardle-Solano, Hannah Szabd, Ekaterina
Zubova, Matthew Burtell, Jonathan Fan, Yixin Liu,
Brian Wong, Malcolm Sailor, Ansong Ni, Linyong
Nan, Jungo Kasai, Tao Yu, Rui Zhang, Alexander R.
Fabbri, Wojciech Kryscinski, Semih Yavuz, Ye Liu,
Xi Victoria Lin, Shafiq Joty, Yingbo Zhou, Caim-
ing Xiong, Rex Ying, Arman Cohan, and Dragomir
Radev. 2024. FOLIO: natural language reasoning
with first-order logic. In Proceedings of the 2024
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2024, Miami, FL, USA,
November 12-16, 2024, pages 22017-22031. Asso-
ciation for Computational Linguistics.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong,
Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. 2023.
Reasoning with language model is planning with
world model. In Proceedings of the 2023 Confer-
ence on Empirical Methods in Natural Language
Processing, EMNLP 2023, Singapore, December 6-
10, 2023, pages 8154-8173. Association for Compu-
tational Linguistics.

https://doi.org/10.18653/V1/2023.EMNLP-MAIN.985
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.985
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.985
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.985
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.985
https://doi.org/10.1007/978-3-540-78800-3_24
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://doi.org/10.1145/3637528.3671470
https://doi.org/10.1145/3637528.3671470
https://doi.org/10.1145/3637528.3671470
https://arxiv.org/abs/2407.21783
https://aclanthology.org/2024.emnlp-main.1229
https://aclanthology.org/2024.emnlp-main.1229
https://aclanthology.org/2024.emnlp-main.1229
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.507
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.507
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.507

Dongwei Jiang, Marcio Fonseca, and Shay B. Co-
hen. 2024. Leanreasoner: Boosting complex log-
ical reasoning with lean. In Proceedings of the
2024 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies (Volume 1: Long Pa-
pers), NAACL 2024, Mexico City, Mexico, June 16-
21, 2024, pages 7497-7510. Association for Compu-
tational Linguistics.

Zhengbao Jiang, Frank F. Xu, Luyu Gao, Zhiqing Sun,
Qian Liu, Jane Dwivedi-Yu, Yiming Yang, Jamie
Callan, and Graham Neubig. 2023. Active retrieval
augmented generation. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2023, Singapore, De-
cember 6-10, 2023, pages 7969-7992. Association
for Computational Linguistics.

Mehran Kazemi, Najoung Kim, Deepti Bhatia, Xin
Xu, and Deepak Ramachandran. 2023. LAMBADA:
backward chaining for automated reasoning in nat-
ural language. In Proceedings of the 6lst An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2023,
Toronto, Canada, July 9-14, 2023, pages 6547-6568.
Association for Computational Linguistics.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large
language models are zero-shot reasoners. In Ad-
vances in Neural Information Processing Systems
35: Annual Conference on Neural Information Pro-
cessing Systems 2022, NeurIPS 2022, New Orleans,
LA, USA, November 28 - December 9, 2022.

Itay Levy, Ben Bogin, and Jonathan Berant. 2023. Di-
verse demonstrations improve in-context composi-
tional generalization. In Proceedings of the 61st An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1401—
1422, Toronto, Canada. Association for Computa-
tional Linguistics.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Pik-
tus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Kiittler, Mike Lewis, Wen-tau Yih,
Tim Rocktischel, Sebastian Riedel, and Douwe
Kiela. 2020. Retrieval-augmented generation for
knowledge-intensive NLP tasks. In Advances in
Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Sys-
tems 2020, NeurIPS 2020, December 6-12, 2020,
virtual.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2022. What
makes good in-context examples for GPT-3? In
Proceedings of Deep Learning Inside Out (DeeLlIO
2022): The 3rd Workshop on Knowledge Extraction
and Integration for Deep Learning Architectures,
pages 100-114, Dublin, Ireland and Online. Asso-
ciation for Computational Linguistics.

Ha-Thanh Nguyen, Wachara Fungwacharakorn, Fumi-
hito Nishino, and Ken Satoh. 2022. A multi-step

approach in translating natural language into logi-
cal formula. In Legal Knowledge and Information
Systems - JURIX 2022: The Thirty-fifth Annual Con-
ference, Saarbriicken, Germany, 14-16 December
2022, volume 362 of Frontiers in Artificial Intelli-
gence and Applications, pages 103—112. IOS Press.

Theo Olausson, Alex Gu, Benjamin Lipkin, Cedegao E.
Zhang, Armando Solar-Lezama, Joshua B. Tenen-
baum, and Roger Levy. 2023. LINC: A neurosym-
bolic approach for logical reasoning by combining
language models with first-order logic provers. In
Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2023, Singapore, December 6-10, 2023, pages 5153—
5176. Association for Computational Linguistics.

OpenAl. 2024. Gpt-40 system card.
arXiv:2410.21276.

Preprint,

Liangming Pan, Alon Albalak, Xinyi Wang, and
William Wang. 2023. Logic-lm: Empowering large
language models with symbolic solvers for faithful
logical reasoning. In Findings of the Association for
Computational Linguistics: EMNLP 2023, Singa-
pore, December 6-10, 2023, pages 3806-3824. As-
sociation for Computational Linguistics.

Morgane Riviere, Shreya Pathak, Pier Giuseppe
Sessa, Cassidy Hardin, Surya Bhupatiraju, Léonard
Hussenot, Thomas Mesnard, Bobak Shahriari,
Alexandre Ramé, Johan Ferret, and et al. 2024.
Gemma 2: Improving open language models at a
practical size. CoRR, abs/2408.00118.

Oyvind Tafjord, Bhavana Dalvi, and Peter Clark. 2021.
Proofwriter: Generating implications, proofs, and
abductive statements over natural language. In Find-
ings of the Association for Computational Linguis-
tics: ACL/IJCNLP 2021, Online Event, August I-
6, 2021, volume ACL/IJCNLP 2021 of Findings of
ACL, pages 3621-3634. Association for Computa-
tional Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems
35: Annual Conference on Neural Information Pro-
cessing Systems 2022, NeurIPS 2022, New Orleans,
LA, USA, November 28 - December 9, 2022.

Jundong Xu, Hao Fei, Liangming Pan, Qian Liu, Mong-
Li Lee, and Wynne Hsu. 2024. Faithful logical rea-
soning via symbolic chain-of-thought. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), ACL 2024, Bangkok, Thailand, August 11-16,
2024, pages 13326—13365. Association for Compu-
tational Linguistics.

Yuan Yang, Siheng Xiong, Ali Payani, Ehsan Shareghi,
and Faramarz Fekri. 2024. Harnessing the power
of large language models for natural language to

https://doi.org/10.18653/V1/2024.NAACL-LONG.416
https://doi.org/10.18653/V1/2024.NAACL-LONG.416
https://doi.org/10.18653/V1/2024.NAACL-LONG.416
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.495
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.495
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.495
https://doi.org/10.18653/V1/2023.ACL-LONG.361
https://doi.org/10.18653/V1/2023.ACL-LONG.361
https://doi.org/10.18653/V1/2023.ACL-LONG.361
https://doi.org/10.18653/V1/2023.ACL-LONG.361
https://doi.org/10.18653/V1/2023.ACL-LONG.361
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
https://doi.org/10.18653/v1/2023.acl-long.78
https://doi.org/10.18653/v1/2023.acl-long.78
https://doi.org/10.18653/v1/2023.acl-long.78
https://doi.org/10.18653/v1/2023.acl-long.78
https://doi.org/10.18653/v1/2023.acl-long.78
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.3233/FAIA220453
https://doi.org/10.3233/FAIA220453
https://doi.org/10.3233/FAIA220453
https://doi.org/10.3233/FAIA220453
https://doi.org/10.3233/FAIA220453
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.313
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.313
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.313
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.313
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.313
https://arxiv.org/abs/2410.21276
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.248
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.248
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.248
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.248
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.248
https://doi.org/10.48550/ARXIV.2408.00118
https://doi.org/10.48550/ARXIV.2408.00118
https://doi.org/10.48550/ARXIV.2408.00118
https://doi.org/10.18653/V1/2021.FINDINGS-ACL.317
https://doi.org/10.18653/V1/2021.FINDINGS-ACL.317
https://doi.org/10.18653/V1/2021.FINDINGS-ACL.317
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.18653/V1/2024.ACL-LONG.720
https://doi.org/10.18653/V1/2024.ACL-LONG.720
https://doi.org/10.18653/V1/2024.ACL-LONG.720
https://doi.org/10.18653/v1/2024.acl-long.375
https://doi.org/10.18653/v1/2024.acl-long.375
https://doi.org/10.18653/v1/2024.acl-long.375
https://doi.org/10.18653/v1/2024.acl-long.375

first-order logic translation. In Proceedings of the
62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 6942-6959, Bangkok, Thailand. Association
for Computational Linguistics.

Jiacheng Ye, Zhiyong Wu, Jiangtao Feng, Tao Yu, and
Lingpeng Kong. 2023a. Compositional exemplars
for in-context learning. In International Conference
on Machine Learning, ICML 2023, 23-29 July 2023,
Honolulu, Hawaii, USA, volume 202 of Proceedings
of Machine Learning Research, pages 39818-39833.
PMLR.

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett.
2023b. Satlm: Satisfiability-aided language models
using declarative prompting. Advances in Neural In-
formation Processing Systems, 36:45548-45580.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D.
Goodman. 2022. Star: Bootstrapping reasoning
with reasoning. In Advances in Neural Information
Processing Systems 35: Annual Conference on Neu-
ral Information Processing Systems 2022, NeurlPS
2022, New Orleans, LA, USA, November 28 - De-
cember 9, 2022.

Wanjun Zhong, Siyuan Wang, Duyu Tang, Zenan Xu,
Daya Guo, Jiahai Wang, Jian Yin, Ming Zhou, and
Nan Duan. 2021. AR-LSAT: investigating analytical
reasoning of text. CoRR, abs/2104.06598.

A Appendix
A.1 An example of solving FOLIO problems

Premises:
1.[BG] There are four seasons in a
— year: Spring, Summer, Fall, and

— Winter.
2.Al1 students who want to have a long
<~ vacation love summer the most.
3.Emma's favorite season is summer.
4.Mia's favorite season is not the same
— as Emma's.
5.James wants to have a long vacation.

Conclusion:

James's favorite season is summer.

Listing 1: Problem

Premises:

1. Vz(Season(x) — (x = SpringV

x = Summer V z = Fall V © = Winter))
2. Vz(WantsLongV acation(x) —
FavoriteSeason(z, Summer))

3. FavoriteSeason(Emma, Summer)
4. —(FavoriteSeason(Mia, Emmma)A
FavoriteSeason(Emma, Mia))

5. WantsLongV acation(James)

Conclusion:
FavoriteSeason(James, Summer)

Listing 2: Translated Formulas

The solver will return an error, indicating that us-
ing “="is not allowed on premise 1. Instead, pred-

icates should be used to represent relationships.

Premises:

1. Vz(Season(x) — (IsSpring(z)V
IsSummer(z) V IsFall(xz) V IsWinter(zx)))
2. VYz(WantsLongV acation(z) —
FavoriteSeason(z, Summer))

3. FawvoriteSeason(Emma, Summer)

4. —(FavoriteSeason(Mia, Emma)A
FavoriteSeason(Emma, Mia))

5. WantsLongV acation(James)

Conclusion:
FavoriteSeason(James, Summer)

Listing 3: Fixed Formulas

A.2 Examples from the RAG KBs
A.2.1 FOLIO

Input:

Premises:

1.Al1l pets are animals.

2.Pets can be either a dog or a cat.

3.If a person has a pet, they care for
— that pet.

4.Dogs and Cats can be naughty.

5.Pets who are naughty are not liked as
— much.

https://doi.org/10.18653/v1/2024.acl-long.375
https://proceedings.mlr.press/v202/ye23c.html
https://proceedings.mlr.press/v202/ye23c.html
https://proceedings.mlr.press/v202/ye23c.html
http://papers.nips.cc/paper_files/paper/2022/hash/639a9a172c044fbb64175b5fad42e9a5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/639a9a172c044fbb64175b5fad42e9a5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/639a9a172c044fbb64175b5fad42e9a5-Abstract-Conference.html
https://arxiv.org/abs/2104.06598
https://arxiv.org/abs/2104.06598
https://arxiv.org/abs/2104.06598

6.Charlie has a naughty pet dog named
— Leo.

Conclusion:

Leo is an animal.

OQutput:

We can get these predicates:

Pet(x),Animal (x),Dog(x),Cat(x),HasPet(x),

Cares(x,y),Naughty(x),Liked(x,y)

We can get these constants:

charlie,leo

Let's translate one by one.

Premises:

1.Text:All pets are animals.

Predicates:

Animal (x),Pet(x)

Fol: Vz(Pet(xz) — Animal(z))

2.Text:Pets can be either a dog or a
— cat.

Predicates:

Cat(x),Pet(x),Dog(x)

Fol: Vz(Pet(x) — Dog(z) ® Cat(x))

3.Text:If a person has a pet,
— for that pet.

Predicates:

Cares(x,y),HasPet (x)

Fol: VaVy(HasPet(z) — Cares(z,y))

4.Text:Dogs and Cats can be naughty.

Predicates:

Cat(x),Naughty(x),Dog(x)

Fol: Jz((Cat(z) A Naughty(z))V

(Dog(x) A Naughty(z)))

5.Text:Pets who are naughty are not
— liked as much.

Predicates:

Naughty (x),Pet(x),Liked(x,y)

Fol: VaVy(Pet(xz) A Naughty(z) — —Liked(z,y))

6.Text:Charlie has a naughty pet dog
<~ named Leo.

Predicates:

Pet (x),Naughty(x),HasPet(x),Dog(x)

Constants:

charlie,leo

Fol: HasPet(charlie) A Pet(leo)

ADog(leo) A Naughty(leo)

Conclusion:

Text:Leo is an animal.

Predicates:

Animal (x)

Constants:

leo

Fol: Animal(leo)

they care

Listing 4: An Example from the Translation KB for
FOLIO

Input:
Premises:
1.A11 commercial aircraft are produced
— by either Boeing or Airbus.
origin: Vz(Commercial Aircraft(zx)
— (ProducedByBoeing(x) V Produced By Airbus(x)))
true answer: Vz(Commercial Aircraft(x)
— ProducedBy(z, boeing) ® ProducedBy(z, airbus))
2.Al1 American Airlines jets are
< commercial aircraft.
origin: Vz(AmericanAirlinesJet(x)
— Commercial Aircraft(x))
true answer: Vz(AmericanAirlinesAircraft(x)

— Commercial Aircra ft(z))
3.Airbus made more in revenue than
> Boeing last year.
origin: Jy(Revenue(airbus,y)A
Jz(Revenue(boeing, z) Ny > z))
true answer: MoreinRevenue(airbus,boeing)

Conclusion:

There does not exist a United Airlines
<~ plane produced by Boeing.

Error:

Jy(Revenue(airbus, y)A

3z(Revenue(boeing, z) Ny > z)) error

— ("Illegal comparisons: Matched
— 'y > z' from position 50 to 55.
— You can't use x > something, try
— to use predicate(x, something)
— to replace it."”,) Invalid
<~ symbols in “=<>° at position 52

OQutput:

Premises:

1. Original:

Vz(Commercial Aircraft(x)

— (Produced ByBoeing(x)

V Produced By Airbus(x)))

Explanation: The use of V (logical
disjunction) is incorrect
here because it implies that
an aircraft can be produced
by both Boeing and Airbus,
which is not the case. We
should use @& (logical
exclusive disjunction) to
indicate that an aircraft is
produced by either Boeing or
Airbus, but not both.
Corrected:

Vz(Commercial Aircraft(x)

— (Produced ByBoeing(z)

@ Produced By Airbus(x)))

TELLLLLLT!

2. Original:
Va(AmericanAirlinesJet(z)
— Commercial Aircra ft(z))
Explanation: There is no need to
<~ change.

3. Original:

Jy(Revenue(airbus, y)

AJz(Revenue(boeing, z) Ny > z))

Explanation: The use of '>' (greater
than) is invalid according to
the grammar rules. We need to
replace it with a predicate
that represents the
relationship between the
revenues of Airbus and
Boeing. We can use a
predicate
MorelInRevenue(airbus, boeing) to
indicate that Airbus made
more revenue than Boeing.
Corrected:
MorelInRevenue(airbus, boeing)

PELLLLLLLLSL

Conclusion:

Original:

—3z(UnitedAirlinesPlane(x)
AProduced ByBoeing(x))
Explanation: There is no need to change.

Final Corrected Formulas:

Premises:

1. Vz(Commercial Aircraft(x)

— (ProducedByBoeing(z) & Produced ByAirbus(z)))
(%

2. Vaz(AmericanAirlinesJet(x)

— Commercial Aircraft(z))

3. MorelnRevenue(airbus, boeing)

Conclusion:
—3Jz(UnitedAirlinesPlane(z)
AProduced By Boeing(z))

Listing 5: An Example from the Fixer KB for FOLIO

A.2.2 AR-LSAT

Input:

Context:

Charlie makes a soup by adding exactly
six kinds of foodskale, lentils,
mushrooms, onions, tomatoes, and
zucchinito a broth, one food at
a time. No food is added more
than once. The order in which
Charlie adds the foods to the
broth must be consistent with
the following: If the mushrooms
are added third, then the
lentils are added last. If the
zucchini is added first, then
the lentils are added at some
time before the onions. Neither
the tomatoes nor the kale is
added fifth. The mushrooms are
added at some time before the
tomatoes or the kale, but not
before both.

R R SRR

Question:

If the lentils are added last, then
<~ which one of the following must
— be true?

Options:

A) At least one of the foods is added
— at some time before the zucchini.

B) At least two of the foods are added
— at some time before the kale.

C) The mushrooms are added third.

D) The zucchini is added third.

E) The tomatoes are added fourth.

OQutput:

Declarations

foods = EnumSort ([kale, lentils,
— mushrooms, onions, tomatoes,

— zucchinil)
order = Function([foods] -> [int])
Constraints

ForAll ([f:foods], And(order(f) <= 6,

— order(f) >= 1)) *xImplied
— Information*x*: The order is
— defined between 1 and 6.

ForAll ([f1:foods, f2:foods], Implies(f1
— != f2, order(f1) != order(f2)))
5 ::: **xImplied Informationx*x: All

— food items have different
<> positions.

Implies(order(mushrooms) == 3,
<~ order(lentils) == 6) If the
— mushrooms are added third, then

<~ the lentils are added last
Implies(order(zucchini) == 1,
order(lentils) < order(onions))

If the zucchini is added
first, then the lentils are
added at some time before the
onions
And(order (tomatoes) != 5, order(kale)
1= 5) Neither the tomatoes

— nor the kale is added fifth
Exists([f:foods],

USSR

!

<~ And (Or (order (mushrooms) <
<~ order(tomatoes),
— order(mushrooms) < order(kale)),
<~ Not (And(order (mushrooms) <
— order(tomatoes),
— order (mushrooms) <
— order(kale))))) ::: The
<~ mushrooms are added at some time
> before the tomatoes or the kale,
— but not before both
order(lentils) == 6 If the lentils
— are added last
Options
is_valid(Exists([f:foods], order(f) <
<~ order(zucchini))) ::: (A)
is_valid(Count ([f:foods], order(f) <
— order(kale)) >= 2) ::: (B)
is_valid(order (mushrooms) == 3) ::: (C)
is_valid(order (zucchini) == 3) ::: (D)
is_valid(order (tomatoes) == 4) ::: (E)

Listing 6: An Example from the Translation KB for
AR-LSAT

Input:
Context:
Eight camp counselorsFran, George,
Henry, Joan, Kathy, Lewis,
Nathan, and Olgamust each be
assigned to supervise exactly
one of three activitiesswimming,
tennis, and volleyball. The
assignment of counselors must
conform to the following
conditions: Each activity is
supervised by at least two, but
not more than three, of the
eight counselors. Henry
supervises swimming. Neither
Kathy nor Olga supervises
tennis. Neither Kathy nor Nathan
supervises the same activity as
Joan. If George supervises
swimming, both Nathan and Olga
supervise volleyball.
Question:
Which one of the following is a pair of
— counselors who could be two of
— three counselors assigned to
— supervise swimming?

TELLLLILLLLLLLLLLS

Options:

A) George and Nathan
B) George and Olga
C) Joan and Kathy

D) Joan and Nathan
E) Joan and Olga

Logic program

" plaintext

Declarations

counselors = EnumSort([Fran, George,
— Henry, Joan, Kathy, Lewis,
— Nathan, 0lgal)

activities = EnumSort([swimming,
— tennis, volleyballl)

assigned = Function([counselors] ->

— [activities])

Constraints

ForAll ([a:activities],

And(Count ([c:counselors],
assigned(c) == a) >= 2,

Count ([c:counselors],
assigned(c) == a) <= 3))

Each activity is supervised by
at least two, but not more than
three, of the eight counselors

USSR

assigned(Henry) == swimming Henry
<~ supervises swimming
assigned(Kathy) != tennis Neither

—» Kathy nor Olga supervises tennis
assigned(Olga) != tennis Neither

—» Kathy nor Olga supervises tennis
assigned(Kathy) != assigned(Joan)

—» Neither Kathy nor Nathan

— supervises the same activity as

— Joan
assigned(Nathan) != assigned(Joan)

<~ Neither Kathy nor Nathan

— supervises the same activity as

— Joan
Implies(assigned(George) == swimming,
And(assigned(Nathan) ==
volleyball, assigned(0Olga) ==
volleyball)) If George
supervises swimming, both Nathan
and Olga supervise volleyball

U

Options
is_accurate_list([assigned(George) ==
<~ swimming, assigned(Nathan) ==
— swimmingl) (A)
is_accurate_list([assigned(George) ==
— swimming, assigned(Olga) ==
— swimmingl]) (B)
is_accurate_list([assigned(Joan)
— swimming, assigned(Kathy) ==
— swimmingl))
is_accurate_list([assigned(Joan) ==
— swimming, assigned(Nathan) ==
— swimmingl) (D)
is_accurate_list([assigned(Joan) ==
— swimming, assigned(Olga) ==
— swimmingl) (E)
Error
No correct option problem. All options
<~ in this program are judged as
<~ incorrect, but this question is
<~ a single-choice question. It
— seems that some information has

10

> been overlooked, and the program
— needs to be re-examined.

OQutput:
Analysis
1. There is no statement that each
<~ counselor can only be assigned
to one activity; this constraint
needs to be added.
he question asks which two people
can simultaneously be assigned
to swimming, so “is_sat™ should
— be used.
The final program is modified as
— follows:

—
—

N
—

—
—

T plaintext

Declarations

counselors = EnumSort([Fran, George,
— Henry, Joan, Kathy, Lewis,
— Nathan, Olgal)

activities = EnumSort([swimming,
— tennis, volleyballl)

assigned = Function([counselors] ->

— [activities])

Constraints
ForAll([a:activities],
And(Count ([c:counselors],
assigned(c) == a) >= 2,
Count([c:counselors],
assigned(c) == a) <= 3))
Each activity is supervised by
at least two, but not more than
three, of the eight counselors
ForAll([c:counselors],
<~ Count([a:activities],
— assigned(c) == a) == 1) ::: A
<~ person can only participate in
<~ one activity.

AU

assigned(Henry) == swimming Henry
<~ supervises swimming
assigned(Kathy) != tennis Neither

— Kathy nor 0Olga supervises tennis
assigned(0lga) != tennis Neither

— Kathy nor Olga supervises tennis
assigned(Kathy) != assigned(Joan)

— Neither Kathy nor Nathan

<> supervises the same activity as

— Joan
assigned(Nathan) != assigned(Joan)

— Neither Kathy nor Nathan

<~ supervises the same activity as

— Joan
Implies(assigned(George) == swimming,
And(assigned(Nathan) ==
volleyball, assigned(0Olga) ==
volleyball)) If George
supervises swimming, both Nathan
and Olga supervise volleyball

U

Options
is_sat(And(assigned(George) ==
<~ swimming, assigned(Nathan) ==
— swimming)) (A)
is_sat(And(assigned(George) ==
— swimming, assigned(Olga) ==
— swimming)) (B)
is_sat(And(assigned(Joan) == swimming,
— assigned(Kathy) == swimming))
— ::: (C)

is_sat(And(assigned(Joan) == swimming,
— assigned(Nathan) == swimming))
— (D)

is_sat(And(assigned(Joan)
> assigned(0lga)
= (E)

== swimming,
swimming))

Next, we present the results after applying the
Fixer LLM. For each model, the best result from
the table 4 is chosen as the baseline for the fix
stage. Comparing the best results from the transla-
tion stage with post-fix results (Tables 5 and 6), the
Fixer LLM significantly boosts the exact match ac-

Listing 7: An Example from the Fixer KB for AR-
LSAT

A.3 Ablation Studies

We tested the performance of each model at vari-
ous temperatures from 0.1 to 0.3. Due to the lim-
ited space, for the translation process, we show the
results of each model at the optimal temperature;
for the repair process, we show the results where
the input is the optimal temperature and the num-
ber of examples of the translation process.

A.3.1 Ablation Studies on FOLIO

In this section, we analyze the translation stage re-
sults under two evaluation settings: Exact Match
and Error as Unknown. In the Exact Match set-
ting, an output is considered correct only if the pre-
dicted formula strictly matches the ground truth
label. In contrast, in the Error as Unknown set-
ting, formulas that contain errors are treated as
"Unknown", which may allow some outputs to be
counted as correct by chance.

Tables 3 and 4 show that varying the number of
in-context examples leads to stable performance
across models. In some cases, increasing the num-
ber of examples slightly improves accuracy, while
in others it introduces noise, suggesting that an op-
timal example count exists for each model.

Table 3: Pre-Fix Accuracy on FOLIO (Translation
Stage) — Exact Match

Model Ex#=1 | Ex#=2 | Ex#=3
DeepSeek v2.5 | 76.92 75.27 75.82
GPT-40 74.73 74.73 75.82
Llama3.3 74.18 73.08 74.18
GPT-3.5-turbo 60.99 64.29 63.74
Gemma2 73.08 76.37 75.27

Table 4: Pre-Fix Accuracy on FOLIO (Translation
Stage) — Error as Unknown

Model Ex#=1 | Ex#=2 | Ex#=3
DeepSeek v2.5 | 78.57 78.02 78.57
GPT-40 75.82 | 7147 | 78.02
Llama3.3 75.82 | 75.82 | 78.02
GPT-3.5-turbo | 6538 | 68.68 | 68.13
Gemma?2 7527 | 7857 | 78.02

curacy. This improvement indicates that the mod-
ule effectively corrects superficial syntax and for-
matting errors, reducing the incidence of chance-
correct answers ("lucky guesses"). In contrast, the
improvement in the "Error as Unknown" setting
is relatively minor, suggesting that the Fixer LLM
primarily enhances the strict correctness of the out-
puts.

Table 5: Post-Fix Accuracy on FOLIO (After Applying
Fixer LLM) — Exact Match

Model Ex#=1 | Ex#=2 | Ex#=3
DeepSeek v2.5 | 78.57 78.02 78.02
GPT-40 80.77 | 80.77 | 80.77
Llama3.3 78.02 | 78.02 | 78.02
GPT-3.5-turbo | 69.78 | 70.33 | 69.78
Gemma?2 78.57 | 79.12 | 78.02

Table 6: Post-Fix Accuracy on FOLIO (After Applying
Fixer LLM) — Error as Unknown

Model Ex#=1 | Ex#=2 | Ex#=3
DeepSeek v2.5 | 78.57 78.57 78.57
GPT-40 80.77 80.77 80.77
Llama3.3 78.57 78.57 78.57
GPT-3.5-turbo 70.88 70.88 70.88
Gemma2 79.67 79.67 79.67

A.3.2 Ablation Studies on AR-LSAT

To present the results more intuitively, we use
a slightly different statistical method than in the
main text, focusing solely on the proportion of
problems correctly solved by the Solver. (Alter-
natively, this value can be considered as Exe_rate
* Exe_accuracy.)

Table 7 shows the best results of each model
at different example counts during the Translation
Stage. Table 8 shows the results of each model
after applying the Fixer LLM.

Table 7: Model Performance on Different Example
Numbers (Translation Stage)

Model Ex#=3 | Ex#=5 | Ex#=7
DeepSeek v2.5 | 12.12 16.02 13.85
GPT-40 19.48 15.58 16.02
Llama-3.3 16.02 16.88 14.72
GPT-3.5-turbo 6.06 8.23 6.06
Gemma-2 5.19 7.79 3.03

11

Table 8: Model Performance (After applying of the
Fixer LLM)

Model Performance
DeepSeek v2.5 31.60
GPT-40 34.63
Llama-3.3 35.06
GPT-3.5-turbo 10.39
Gemma-2 16.45

In Table 7, we observe that before the appli-
cation of the Fixer LLM, large models such as
DeepSeek, GPT-40, and Llama3.3 achieved their
highest accuracy at around 17%, with GPT-40 per-
forming best at 19.5%. In contrast, small models
like GPT-3.5-turbo and Gemma-2 reached a maxi-
mum accuracy of only 8.23%. We then applied the
Fixer LLM based on the best performance results
for each model during the Translation Stage. As
shown in Table 8, the accuracy improvement for
DeepSeek, Llama3.3, and GPT-40 exceeded 15%,
nearly doubling their original performance. How-
ever, for GPT-3.5-turbo and Gemma-2, the im-
provements were below 10%, with GPT-3.5 show-
ing only a modest 2% increase.

This further supports our conclusion. For large
models, the Fixer LLM has a more significant ef-
fect on reasoning tasks involving long texts, where
it is difficult to focus on details for inference.

12

	Introduction
	Related Work
	Framework
	Experiments
	Experimental Setup
	Knowledge Base Construction
	Results
	Ablation Experiments
	Discussion

	Conclusion
	Limitations
	Appendix
	An example of solving FOLIO problems
	Examples from the RAG KBs
	FOLIO
	AR-LSAT

	Ablation Studies
	Ablation Studies on FOLIO
	Ablation Studies on AR-LSAT

