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Abstract001

Logical reasoning is fundamental to intelli-002
gent systems. Large language models (LLMs)003
have demonstrated promise in natural lan-004
guage (NL) reasoning, especially with tech-005
niques like chain-of-thought (CoT) prompting.006
Neuro-symbolic methods like Logic-LM and007
LINC further enhance performance on chal-008
lenging datasets FOLIO and AR-LSAT by in-009
tegrating formalization with LLMs and sym-010
bolic solvers, and possibly refinement with011
LLMs. However, these methods still strug-012
gle with the accurate formalization of com-013
plex NL problems. In this paper, we intro-014
duce LTRAG, a framework to enhance aut-015
oformalization and self-refinement for logi-016
cal reasoning with Retrieval-Augmented Gen-017
eration (RAG), by building knowledge bases018
of thought-guided examples1. Experimental019
results on FOLIO and AR-LSAT show that020
LTRAG consistently outperforms Logic-LM021
and LINC across different models. On GPT-022
4 and AR-LSAT, it achieves an accuracy gain023
of 13% over Logic-LM.024

1 Introduction025

Logical reasoning is a fundamental aspect of hu-026

man intelligence and essential for complex tasks027

such as problem-solving and decision-making. Re-028

cently, logical reasoning over natural language029

(NL) exploiting large language models (LLMs)030

has received much attention. Many datasets have031

been proposed, including synthetic ProofWriter032

for rule reasoning (Tafjord et al., 2021), human-033

crafted FOLIO for complex first-order logic (FOL)034

reasoning (Han et al., 2024), and AR-LSAT ex-035

tracted from the LSAT exams (Zhong et al., 2021).036

Various methods have been explored, including037

prompting (Wei et al., 2022; Kojima et al., 2022),038

fine-tuning (Zelikman et al., 2022), and neuro-039

1https://anonymous.4open.science/r/
dataset-example-LTRAG/

symbolic methods based on search (Kazemi et al., 040

2023; Hao et al., 2023). 041

A recent endeavor for logical reasoning over NL 042

is neuro-symbolic methods based on autoformal- 043

ization, by combining translation with LLMs from 044

NLs to formal languages and rigorous reasoning 045

of symbolic solvers. Typical works are Logic-LM 046

(Pan et al., 2023) which introduces self-refinement 047

to use the symbolic solver’s error messages to re- 048

fine the formalization, and LINC (Olausson et al., 049

2023).On GPT-4, LINC achieves an accuracy of 050

98% on ProofWriter, and Logic-LM reaches 79% 051

on FOLIO. However, existing methods still face 052

significant challenges, since many difficult NL 053

problems are hard to formalize precisely in an au- 054

tomatic fashion. For example, with GPT-4, on 055

AR-LSAT, Logic-LM only achieves an accuracy 056

of 43%. In particular, these methods rely on a 057

fixed set of examples for autoformalization and 058

self-refinement, thus struggling with diverse and 059

complex inputs, limiting their generalizability. On 060

the other hand, Retrieval-Augmented Generation 061

(RAG) (Lewis et al., 2020) enhances generation by 062

dynamically retrieving relevant information from 063

an external knowledge base (KB). 064

In this paper, we propose a framework LTRAG 065

to enhance autoformalization and self-refinement 066

for logical reasoning with thought-guided RAG, 067

by building KBs of thought-guided examples for 068

formalization and refinement. Experimental re- 069

sults on FOLIO and AR-LSAT show LTRAG con- 070

sistently outperforms Logic-LM and LINC across 071

different models. Especially, LTRAG achieves an 072

accuracy gain of 8% over Logic-LM and LINC 073

on GPT-3.5-turbo and FOLIO, and 13% on GPT- 074

4 and AR-LSAT. 075

2 Related Work 076

Translating a NL into a formal language is chal- 077

lenging due to its fuzziness, ambiguity, and im- 078
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plicit information. Nguyen et al. (2022) pro-079

posed a method combining manually translating080

with deep learning. Yang et al. (2024) introduced081

LogicLLaMA, combining supervised fine-tuning082

and reinforcement learning with human feedback.083

Chen et al. (2023) developed a framework using084

LLMs for translation between NL and temporal085

logic using intermediate languages.086

Neuro-symbolic methods for logical reasoning087

based on autoformalization have recently gained088

much attention. Pan et al. (2023) proposed Logic-089

LM, including a Problem Formulator to formal-090

ize the problem, a Symbolic Reasoner, and a Self-091

Refiner module for error correction. Olausson092

et al. (2023) introduced LINC, which also com-093

bines autoformalization and symbolic solving, but094

uses majority voting to aggregate results from mul-095

tiple formalizations. Ye et al. (2023b) proposed096

SATLM, which leverages LLMs to formalize NL097

inputs into satisfiability (SAT) problems and uses a098

SAT solver for reasoning. Jiang et al. (2024) intro-099

duced LeanReasoner, which fine-tunes with data100

in the Lean theorem-proving environment, for-101

malizes problems into Lean theorems, and solves102

them with a tactic generator and proof search. Xu103

et al. (2024) proposed SymbCoT, which does aut-104

oformalization but reasons with CoT prompting105

based on both NL and FOL inputs.106

Lewis et al. (2020) proposed RAG, using doc-107

ument retrieval to improve output precision with108

external knowledge. Fan et al. (2024) showed109

RAG reduces hallucinations and improves genera-110

tion quality. Jiang et al. (2023) introduced FLARE,111

enabling efficient retrieval during generation.112

Example selection is key to in-context learning.113

Liu et al. (2022) used a sentence encoder to se-114

lect top-k similar examples for given problems,115

showing dynamic selection improves LLM perfor-116

mance. Levy et al. (2023) studied compositional117

generalization in semantic parsing, selecting di-118

verse examples via coverage and diversity based119

methods. Ye et al. (2023a) proposes CEIL, an ex-120

ample selection method using Determinantal Point121

Processes and contrastive learning.122

3 Framework123

The structure of LTRAG is depicted in Figure 1. It124

comprises four key components: a Retrieval Mod-125

ule, a Translator LLM, a Solver, and a Fixer LLM.126

The Translator LLM (similar to Logic-LM’s Prob-127

lem Formulator) converts NL problems into for-128

mal representations, while the Fixer LLM (akin 129

to Logic-LM’s Self-Refine) corrects translation er- 130

rors. The Retrieval Module, built upon FastGPT2, 131

dynamically retrieves similar examples from the 132

RAG KBs. These retrieved examples serve as 133

guiding references for both Translator and Fixer 134

LLMs, enhancing the accuracy of formalization 135

and error correction. The detailed method for con- 136

structing the KBs can be found in Section 4.2. 137

Once the problem is formalized, the Solver takes 138

over to perform logical reasoning. The Solver is 139

based on Microsoft’s Z3 solver 3 (de Moura and 140

Bjørner, 2008), and is capable of handling FOL 141

expressions (in FOLIO) and constraint satisfaction 142

problems (in AR-LSAT). If errors are detected, 143

they are reported to the Fixer LLM for another for- 144

malization, and the above process is repeated. 145

Here is an example (full version in Ap- 146

pendix A.1): One of the input premises is “There 147

are four seasons in a year: Spring, Summer, Fall, 148

and Winter". The full problem is used to retrieve 149

the translation KB, and both the problem and the 150

retrieved examples are provided to the Translator 151

LLM, resulting in an initial formalization: 152

∀x (Season(x) → (x = Spring ∨ 153

x = Summer ∨ x = Fall ∨ x = Winter)). 154

The solver will return an error, indicating that us- 155

ing “=" is not allowed. The error is used to retrieve 156

the fixer KB, and both the error and the retrieved 157

examples are provided to the Fixer LLM, resulting 158

in the final correct formalization: 159

∀x (Season(x) → (IsSpring(x) ∨ 160

IsSummer(x)∨IsFall(x)∨IsWinter(x))). 161

4 Experiments 162

4.1 Experimental Setup 163

We evaluate LTRAG on FOLIO and AR-LSAT, 164

comparing it against baselines such as Standard 165

prompting, CoT prompting (using 2 examples 166

on FOLIO and 1 on AR-LSAT), LINC, and 167

Logic-LM, across models including GPT-4o (Ope- 168

nAI, 2024), DeepSeek v2.5 (DeepSeek-AI, 2024), 169

Llama3.3-70b (Grattafiori et al., 2024), GPT-3.5- 170

turbo, and Gemma2-27b (Rivière et al., 2024). 171

On FOLIO, as our test set, we use the 182 ver- 172

ified samples retained by LINC after filtering out 173

the problematic ones from the original 204 sam- 174

ples. On AR-LSAT, as Logic-LM, we use the 231 175

samples from the dev set as our test set. 176

2https://github.com/labring/FastGPT
3https://github.com/Z3Prover/z3
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Figure 1: The framework of LTRAG.

Note that AR-LSAT samples are single-choice177

questions, and the solver may return multiple an-178

swers. When no or multiple answers are obtained179

after repeated repairs, Logic-LM returns an an-180

swer using the CoT method, and we do the same.181

4.2 Knowledge Base Construction182

Our RAG KBs are semi-automatically constructed.183

Roughly, the translation KBs are automatically184

constructed from the training sets with programs185

or LLMs, while the fixer KBs are constructed by186

first manually fixing a small set of error cases and187

then using it to guide LLMs to generate the rest.188

Detailed examples are in Appendix A.2. In the fol-189

lowing, we give details of our KB construction.190

For FOLIO, the translation KB is built from the191

training set, with the 122 samples where DeepSeek192

fails to obtain the correct answer using the Trans-193

lator LLM with an empty KB and the solver. Each194

such sample is provided with the annotated for-195

mulas and translation steps obtained with a pro-196

gram as follows: first, extract all predicates and197

constants from the problem; second, identify rel-198

evant predicates and constants for each sentence;199

and finally, translate the sentence into FOL. The200

fixer KB is built from the training set, using sam-201

ples where DeepSeek fails to obtain an executable202

formalization. A subset is manually corrected for203

high-quality references, while the rest are auto-204

matically repaired as follows: for each such sam-205

ple, using the annotated formulas and the manual206

repair subset as context, let DeepSeek return the207

thought process for repairing, and retain the sam-208

ple if the solver returns the correct answer. The209

fixer KB ends up with 57 samples.210

For AR-LSAT, the translation KB is built as fol-211

lows: first, we pick 1,500 samples from the train-212

ing set; second, for each of these samples, we 213

use DeepSeek to formalize it with the RAG KB 214

of Logic-LM’s formalizations of the dev set; fi- 215

nally, we retain 538 executable samples. As to the 216

second step, we focus on defining the formaliza- 217

tion’s syntax and precautions in the prompts; due 218

to the length of AR-LSAT samples, we choose 219

not to let LLMs generate the thought process be- 220

cause long outputs confuse LLMs and easily gen- 221

erate unexecutable formalizations. The fixer KB 222

is built from the training set, using samples where 223

DeepSeek fails to obtain an executable formaliza- 224

tion or a unique answer. For each error type, one or 225

more samples are manually selected and corrected 226

with an analysis of the error. The rest samples are 227

semi-automatically repaired as follows: for each 228

such sample, using the manual repair subset, let 229

DeepSeek return the thought process for repairing 230

the formulation, which is manually checked for 231

correctness and decided for being retained or not. 232

The fixer KB ends up with 41 samples. 233

4.3 Results 234

The experimental results are summarized in Ta- 235

ble 1. To handle longer contexts, we use GPT- 236

4o (128K), a variant of GPT-4 (8K) used in prior 237

work, with minimal performance differences. 238

On FOLIO, LTRAG consistently outperforms 239

other methods across different models. For GPT- 240

4o, it achieves 80.77%, surpassing Logic-LM’s 241

78.92% and LINC’s 72.50%. For GPT-3.5-turbo, 242

LTRAG attains 70.88%, significantly outperform- 243

ing Logic-LM (61.27%) and LINC (62.60%). 244

On AR-LSAT, LTRAG also consistently im- 245

proves over the baseline methods. For GPT-4o, 246

it outperforms both Logic-LM and CoT by about 247

13%. LTRAG also enhances DeepSeek v2.5’s per- 248

3



Model FOLIO (Accuracy %) AR-LSAT (Accuracy %)
LTRAG Standard CoT LINC Logic-LM LTRAG Standard CoT Logic-LM

GPT-4o 80.77 73.63 78.02 72.50 78.92 56.71 40.26 43.72 43.04
DeepSeek v2.5 78.57 74.73 76.37 - - 68.40 51.52 64.50 -
Llama3.3 78.57 72.53 71.43 - - 59.31 40.26 39.83 -
GPT-3.5-turbo 70.88 56.59 59.34 62.60 61.27 26.84 24.24 19.48 26.41
Gemma2 79.67 59.89 62.09 - - 35.06 25.97 24.67 -

Table 1: Performance comparison on FOLIO and AR-LSAT. The data for Logic-LM and LINC comes from their
papers, and ‘-’ denotes that they did not experiment on the model. LINC did not experiment on AR-LSAT.

formance, achieving 68.40% compared to 51.52%249

under Standard prompting. However, LTRAG250

attains limited improvements on GPT-3.5-turbo,251

with the performance gain being less than 3% com-252

pared to Standard Prompting and Logic-LM.253

In Table 2, we analyze the executable rate and254

execution accuracy of LTRAG on AR-LSAT, in255

comparison to Logic-LM. In terms of executable256

rate, on both GPT-4o and GPT-3.5-turbo, LTRAG257

outperforms Logic-LM by about 30%, indicat-258

ing its superior ability to generate executable pro-259

grams. It is easy to notice that our execution accu-260

racy is lower compared to Logic-LM. A possible261

reason is that we get much more executable pro-262

grams, making the error rate in execution increase.263

Model Exe_rate Exe_accuracy
GPT-4o 69.26 50.00
GPT-4(Logic-LM) 39.8 58.8
GPT-3.5-turbo 54.11 19.20
GPT-3.5(Logic-LM) 21.8 60.3
DeepSeek v2.5 71.00 44.51
Llama3.3 66.67 52.60
Gemma2 45.02 36.54

Table 2: Executable rate (Exe_rate) and Execution Ac-
curacy (Exe_accuracy) on AR-LSAT.

4.4 Ablation Experiments264

In ablation studies, we investigate the effect of the265

Fixer LLM with different numbers of examples on266

different models. On FOLIO, the Fixer LLM im-267

proves accuracy by 2–5% for large models, while268

the improvement is 3–6% for small models. On269

AR-LSAT, the Fixer LLM improves accuracy by270

15–20% for large models, while the improvement271

is 2–8% for small models. Detailed results are in-272

cluded in Appendix A.3.273

4.5 Discussion274

We first analyze on FOLIO, why LTRAG achieves275

better improvements on small models than on276

large models. We think the thought-guided ex- 277

amples for the Translator LLM notably benefit 278

small models by mitigating their inherent limita- 279

tions. Large models produce fewer errors, and 280

small models have limited repair capabilities, lead- 281

ing to limited improvements by the Fixer LLM. 282

We then analyze on AR-LSAT, why LTRAG 283

achieves better improvements on large models 284

than on small models. AR-LSAT samples are 285

primarily constraint satisfaction problems, having 286

unique answers, making it difficult to provide a 287

systematic translation approach. The samples also 288

involve complex long-text constraints, thus lim- 289

iting the number of reference examples given to 290

the Fixer LLM. As a result, while both large and 291

small models face difficulties, large models can 292

make effective corrections with limited assistance, 293

whereas small models cannot. 294

5 Conclusion 295

In this paper, we propose the LTRAG framework 296

to enhance autoformalization and self-refinement 297

for logical reasoning with thought-guided RAG. 298

The translation KBs are automatically constructed, 299

and the fixer KBs are semi-automatically con- 300

structed where a small set of error cases are man- 301

ually fixed and used to guide LLMs to generate 302

more repairing examples. Empirical results on 303

the challenging datasets FOLIO and AR-LSAT 304

demonstrate that our approach significantly im- 305

proves refinement capabilities of large models and 306

formalization capabilities of small models. An out- 307

standing advantage of our work is to improve for- 308

malization with less computational resources than 309

approaches based on fine-tuning. Future work will 310

focus on more automated construction of thought- 311

guided RAG KBs, particularly for challenging 312

datasets. A possible approach is to utilize mod- 313

els pre-trained with iterative reasoning strategies 314

to generate the RAG examples. 315
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6 Limitations316

Below, we outline some of the key challenges and317

constraints associated with our framework:318

Difficulty in Constructing Thought Processes319

for Certain Tasks While structured reasoning320

steps can be effectively constructed for datasets321

like FOLIO with short context, other tasks such322

as AR-LSAT present challenges. AR-LSAT prob-323

lems often involve complex constraints and rela-324

tionships that are harder to break down into a325

thought process. This makes it difficult to provide326

the same level of guidance for small models, limit-327

ing their performance improvements.328

Limited Impact of the Fixer LLM on Tasks329

with Few Syntax Errors The Fixer LLM, which330

corrects errors flagged by the Solver, shows lim-331

ited improvement on tasks where syntax errors are332

rare, such as FOLIO. This is particularly true for333

large models like GPT-4o, DeepSeek, and Llama,334

which already produce fewer syntax errors due to335

their advanced reasoning capabilities. As a re-336

sult, the Fixer LLM’s contributions are marginal337

in such cases, and the primary benefits of LTRAG338

come from the structured formalization process.339

Conversely, the Fixer LLM proves more effective340

on complex tasks like AR-LSAT, where the error341

types are more varied. Large models, with their342

superior refinement capabilities, can leverage the343

Fixer LLM to achieve significant improvements.344

However, small models, that struggle with both345

autoformalization and self-refinement, gain less346

benefit from the Fixer LLM in these scenarios.347

Limitations in the Fixer LLM on Semantic348

Errors The Fixer LLM is primarily designed to349

address surface-level syntax errors, such as incor-350

rect predicate usage or invalid logical operators.351

It is not capable of resolving deeper semantic er-352

rors, where the logical formalization may be syn-353

tactically correct but semantically flawed. On FO-354

LIO, where the solver provides unique answers,355

it’s hard to detect semantic errors, while AR-LSAT356

provides extra feedback when the solver returns357

multiple answers. This limitation highlights the358

need for more advanced mechanisms that can han-359

dle both syntactic and semantic errors.360

Dependency on Knowledge Base Quality The361

performance of LTRAG heavily relies on the qual-362

ity and comprehensiveness of the KBs. In cases363

where the KB lacks sufficient examples or con-364

tains inaccuracies, the system’s abilities may be365

compromised.366
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A Appendix 567

A.1 An example of solving FOLIO problems 568

569
Premises: 570
1.[BG] There are four seasons in a 571

↪→ year: Spring , Summer , Fall , and 572
↪→ Winter. 573

2.All students who want to have a long 574
↪→ vacation love summer the most. 575

3.Emma 's favorite season is summer. 576
4.Mia 's favorite season is not the same 577

↪→ as Emma 's. 578
5.James wants to have a long vacation. 579

580
Conclusion: 581
James 's favorite season is summer. 582583

Listing 1: Problem

584
Premises: 585
1. ∀x(Season(x) → (x = Spring∨ 586
x = Summer ∨ x = Fall ∨ x = Winter)) 587
2. ∀x(WantsLongV acation(x) → 588
FavoriteSeason(x, Summer)) 589
3. FavoriteSeason(Emma, Summer) 590
4. ¬(FavoriteSeason(Mia,Emma)∧ 591
FavoriteSeason(Emma,Mia)) 592
5. WantsLongV acation(James) 593

594
Conclusion: 595
FavoriteSeason(James, Summer) 596597

Listing 2: Translated Formulas

The solver will return an error, indicating that us- 598

ing “=" is not allowed on premise 1. Instead, pred- 599

icates should be used to represent relationships. 600
601

Premises: 602
1. ∀x(Season(x) → (IsSpring(x)∨ 603
IsSummer(x) ∨ IsFall(x) ∨ IsWinter(x))) 604
2. ∀x(WantsLongV acation(x) → 605
FavoriteSeason(x, Summer)) 606
3. FavoriteSeason(Emma, Summer) 607
4. ¬(FavoriteSeason(Mia,Emma)∧ 608
FavoriteSeason(Emma,Mia)) 609
5. WantsLongV acation(James) 610

611
Conclusion: 612
FavoriteSeason(James, Summer) 613614

Listing 3: Fixed Formulas

A.2 Examples from the RAG KBs 615

A.2.1 FOLIO 616

617
Input: 618
Premises: 619
1.All pets are animals. 620
2.Pets can be either a dog or a cat. 621
3.If a person has a pet , they care for 622

↪→ that pet. 623
4.Dogs and Cats can be naughty. 624
5.Pets who are naughty are not liked as 625

↪→ much. 626
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6. Charlie has a naughty pet dog named627
↪→ Leo.628

629
Conclusion:630
Leo is an animal.631
Output:632
We can get these predicates:633
Pet(x),Animal(x),Dog(x),Cat(x),HasPet(x),634
Cares(x,y),Naughty(x),Liked(x,y)635
We can get these constants:636
charlie ,leo637
Let 's translate one by one.638
Premises:639
1.Text:All pets are animals.640
Predicates:641
Animal(x),Pet(x)642
Fol: ∀x(Pet(x) → Animal(x))643
2.Text:Pets can be either a dog or a644

↪→ cat.645
Predicates:646
Cat(x),Pet(x),Dog(x)647
Fol: ∀x(Pet(x) → Dog(x)⊕ Cat(x))648
3.Text:If a person has a pet , they care649

↪→ for that pet.650
Predicates:651
Cares(x,y),HasPet(x)652
Fol: ∀x∀y(HasPet(x) → Cares(x, y))653
4.Text:Dogs and Cats can be naughty.654
Predicates:655
Cat(x),Naughty(x),Dog(x)656
Fol: ∃x((Cat(x) ∧Naughty(x))∨657
(Dog(x) ∧Naughty(x)))658
5.Text:Pets who are naughty are not659

↪→ liked as much.660
Predicates:661
Naughty(x),Pet(x),Liked(x,y)662
Fol: ∀x∀y(Pet(x) ∧Naughty(x) → ¬Liked(x, y))663
6.Text:Charlie has a naughty pet dog664

↪→ named Leo.665
Predicates:666
Pet(x),Naughty(x),HasPet(x),Dog(x)667
Constants:668
charlie ,leo669
Fol: HasPet(charlie) ∧ Pet(leo)670
∧Dog(leo) ∧Naughty(leo)671
Conclusion:672
Text:Leo is an animal.673
Predicates:674
Animal(x)675
Constants:676
leo677
Fol: Animal(leo)678679

Listing 4: An Example from the Translation KB for
FOLIO

680
Input:681
Premises:682
1.All commercial aircraft are produced683

↪→ by either Boeing or Airbus.684
origin: ∀x(CommercialAircraft(x)685
→ (ProducedByBoeing(x) ∨ ProducedByAirbus(x)))686
true answer: ∀x(CommercialAircraft(x)687
→ ProducedBy(x, boeing)⊕ ProducedBy(x, airbus))688
2.All American Airlines jets are689

↪→ commercial aircraft.690
origin: ∀x(AmericanAirlinesJet(x)691
→ CommercialAircraft(x))692
true answer: ∀x(AmericanAirlinesAircraft(x)693

→ CommercialAircraft(x)) 694
3. Airbus made more in revenue than 695

↪→ Boeing last year. 696
origin: ∃y(Revenue(airbus, y)∧ 697
∃z(Revenue(boeing, z) ∧ y > z)) 698
true answer: MoreinRevenue(airbus, boeing) 699

700
Conclusion: 701
There does not exist a United Airlines 702

↪→ plane produced by Boeing. 703
Error: 704
∃y(Revenue(airbus, y)∧ 705
∃z(Revenue(boeing, z) ∧ y > z)) error : 706

↪→ (" Illegal comparisons: Matched 707
↪→ 'y > z' from position 50 to 55. 708
↪→ You can 't use x > something , try 709
↪→ to use predicate(x, something) 710
↪→ to replace it.",) Invalid 711
↪→ symbols in `=<>` at position 52 712

713
Output: 714
Premises: 715

716
1. Original: 717

∀x(CommercialAircraft(x) 718
→ (ProducedByBoeing(x) 719
∨ProducedByAirbus(x))) 720
Explanation: The use of ∨ (logical 721

↪→ disjunction) is incorrect 722
↪→ here because it implies that 723
↪→ an aircraft can be produced 724
↪→ by both Boeing and Airbus , 725
↪→ which is not the case. We 726
↪→ should use ⊕ (logical 727
↪→ exclusive disjunction) to 728
↪→ indicate that an aircraft is 729
↪→ produced by either Boeing or 730
↪→ Airbus , but not both. 731

Corrected: 732
∀x(CommercialAircraft(x) 733
→ (ProducedByBoeing(x) 734
⊕ProducedByAirbus(x))) 735

736
2. Original: 737

∀x(AmericanAirlinesJet(x) 738
→ CommercialAircraft(x)) 739
Explanation: There is no need to 740

↪→ change. 741
742

3. Original: 743
∃y(Revenue(airbus, y) 744
∧∃z(Revenue(boeing, z) ∧ y > z)) 745
Explanation: The use of '>' (greater 746

↪→ than) is invalid according to 747
↪→ the grammar rules. We need to 748
↪→ replace it with a predicate 749
↪→ that represents the 750
↪→ relationship between the 751
↪→ revenues of Airbus and 752
↪→ Boeing. We can use a 753
↪→ predicate 754
↪→ MoreInRevenue(airbus, boeing) to 755
↪→ indicate that Airbus made 756
↪→ more revenue than Boeing. 757

Corrected: 758
MoreInRevenue(airbus, boeing) 759

760
Conclusion: 761

762
Original: 763
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¬∃x(UnitedAirlinesP lane(x)764
∧ProducedByBoeing(x))765
Explanation: There is no need to change.766

767
Final Corrected Formulas:768

769
Premises:770
1. ∀x(CommercialAircraft(x)771
→ (ProducedByBoeing(x)⊕ ProducedByAirbus(x)))772

↪→773
2. ∀x(AmericanAirlinesJet(x)774
→ CommercialAircraft(x))775
3. MoreInRevenue(airbus, boeing)776

777
Conclusion:778
¬∃x(UnitedAirlinesP lane(x)779
∧ProducedByBoeing(x))780781

Listing 5: An Example from the Fixer KB for FOLIO

A.2.2 AR-LSAT782

783
Input:784
# Context:785
Charlie makes a soup by adding exactly786

↪→ six kinds of foodskale , lentils ,787
↪→ mushrooms , onions , tomatoes , and788
↪→ zucchinito a broth , one food at789
↪→ a time. No food is added more790
↪→ than once. The order in which791
↪→ Charlie adds the foods to the792
↪→ broth must be consistent with793
↪→ the following: If the mushrooms794
↪→ are added third , then the795
↪→ lentils are added last. If the796
↪→ zucchini is added first , then797
↪→ the lentils are added at some798
↪→ time before the onions. Neither799
↪→ the tomatoes nor the kale is800
↪→ added fifth. The mushrooms are801
↪→ added at some time before the802
↪→ tomatoes or the kale , but not803
↪→ before both.804

805
# Question:806
If the lentils are added last , then807

↪→ which one of the following must808
↪→ be true?809

810
# Options:811
A) At least one of the foods is added812

↪→ at some time before the zucchini.813
B) At least two of the foods are added814

↪→ at some time before the kale.815
C) The mushrooms are added third.816
D) The zucchini is added third.817
E) The tomatoes are added fourth.818

819
Output:820
# Declarations821
foods = EnumSort ([kale , lentils ,822

↪→ mushrooms , onions , tomatoes ,823
↪→ zucchini ])824

order = Function ([foods] -> [int])825
# Constraints826
ForAll ([f:foods], And(order(f) <= 6,827

↪→ order(f) >= 1)) ::: ** Implied828
↪→ Information **: The order is829
↪→ defined between 1 and 6.830

ForAll ([f1:foods , f2:foods], Implies(f1 831
↪→ != f2, order(f1) != order(f2))) 832
↪→ ::: ** Implied Information **: All 833
↪→ food items have different 834
↪→ positions. 835

Implies(order(mushrooms) == 3, 836
↪→ order(lentils) == 6) ::: If the 837
↪→ mushrooms are added third , then 838
↪→ the lentils are added last 839

Implies(order(zucchini) == 1, 840
↪→ order(lentils) < order(onions)) 841
↪→ ::: If the zucchini is added 842
↪→ first , then the lentils are 843
↪→ added at some time before the 844
↪→ onions 845

And(order(tomatoes) != 5, order(kale) 846
↪→ != 5) ::: Neither the tomatoes 847
↪→ nor the kale is added fifth 848

Exists ([f:foods], 849
↪→ And(Or(order(mushrooms) < 850
↪→ order(tomatoes), 851
↪→ order(mushrooms) < order(kale)), 852
↪→ Not(And(order(mushrooms) < 853
↪→ order(tomatoes), 854
↪→ order(mushrooms) < 855
↪→ order(kale))))) ::: The 856
↪→ mushrooms are added at some time 857
↪→ before the tomatoes or the kale , 858
↪→ but not before both 859

order(lentils) == 6 ::: If the lentils 860
↪→ are added last 861

# Options 862
is_valid(Exists ([f:foods], order(f) < 863

↪→ order(zucchini))) ::: (A) 864
is_valid(Count([f:foods], order(f) < 865

↪→ order(kale)) >= 2) ::: (B) 866
is_valid(order(mushrooms) == 3) ::: (C) 867
is_valid(order(zucchini) == 3) ::: (D) 868
is_valid(order(tomatoes) == 4) ::: (E) 869870

Listing 6: An Example from the Translation KB for
AR-LSAT

871
Input: 872
### Context: 873
Eight camp counselorsFran , George , 874

↪→ Henry , Joan , Kathy , Lewis , 875
↪→ Nathan , and Olgamust each be 876
↪→ assigned to supervise exactly 877
↪→ one of three activitiesswimming , 878
↪→ tennis , and volleyball. The 879
↪→ assignment of counselors must 880
↪→ conform to the following 881
↪→ conditions: Each activity is 882
↪→ supervised by at least two , but 883
↪→ not more than three , of the 884
↪→ eight counselors. Henry 885
↪→ supervises swimming. Neither 886
↪→ Kathy nor Olga supervises 887
↪→ tennis. Neither Kathy nor Nathan 888
↪→ supervises the same activity as 889
↪→ Joan. If George supervises 890
↪→ swimming , both Nathan and Olga 891
↪→ supervise volleyball. 892

### Question: 893
Which one of the following is a pair of 894

↪→ counselors who could be two of 895
↪→ three counselors assigned to 896
↪→ supervise swimming? 897

9



### Options:898
A) George and Nathan899
B) George and Olga900
C) Joan and Kathy901
D) Joan and Nathan902
E) Joan and Olga903
### Logic program904
```plaintext905
# Declarations906
counselors = EnumSort ([Fran , George ,907

↪→ Henry , Joan , Kathy , Lewis ,908
↪→ Nathan , Olga])909

activities = EnumSort ([swimming ,910
↪→ tennis , volleyball ])911

assigned = Function ([ counselors] ->912
↪→ [activities ])913

914
# Constraints915
ForAll ([a:activities],916

↪→ And(Count ([c:counselors],917
↪→ assigned(c) == a) >= 2,918
↪→ Count([c:counselors],919
↪→ assigned(c) == a) <= 3)) :::920
↪→ Each activity is supervised by921
↪→ at least two , but not more than922
↪→ three , of the eight counselors923

assigned(Henry) == swimming ::: Henry924
↪→ supervises swimming925

assigned(Kathy) != tennis ::: Neither926
↪→ Kathy nor Olga supervises tennis927

assigned(Olga) != tennis ::: Neither928
↪→ Kathy nor Olga supervises tennis929

assigned(Kathy) != assigned(Joan) :::930
↪→ Neither Kathy nor Nathan931
↪→ supervises the same activity as932
↪→ Joan933

assigned(Nathan) != assigned(Joan) :::934
↪→ Neither Kathy nor Nathan935
↪→ supervises the same activity as936
↪→ Joan937

Implies(assigned(George) == swimming ,938
↪→ And(assigned(Nathan) ==939
↪→ volleyball , assigned(Olga) ==940
↪→ volleyball)) ::: If George941
↪→ supervises swimming , both Nathan942
↪→ and Olga supervise volleyball943

944
# Options945
is_accurate_list ([ assigned(George) ==946

↪→ swimming , assigned(Nathan) ==947
↪→ swimming ]) ::: (A)948

is_accurate_list ([ assigned(George) ==949
↪→ swimming , assigned(Olga) ==950
↪→ swimming ]) ::: (B)951

is_accurate_list ([ assigned(Joan) ==952
↪→ swimming , assigned(Kathy) ==953
↪→ swimming ]) ::: (C)954

is_accurate_list ([ assigned(Joan) ==955
↪→ swimming , assigned(Nathan) ==956
↪→ swimming ]) ::: (D)957

is_accurate_list ([ assigned(Joan) ==958
↪→ swimming , assigned(Olga) ==959
↪→ swimming ]) ::: (E)960

```961
### Error962
No correct option problem. All options963

↪→ in this program are judged as964
↪→ incorrect , but this question is965
↪→ a single -choice question. It966
↪→ seems that some information has967

↪→ been overlooked , and the program 968
↪→ needs to be re-examined. 969

970
Output: 971
### Analysis 972
1. There is no statement that each 973

↪→ counselor can only be assigned 974
↪→ to one activity; this constraint 975
↪→ needs to be added. 976

2. The question asks which two people 977
↪→ can simultaneously be assigned 978
↪→ to swimming , so `is_sat ` should 979
↪→ be used. 980

The final program is modified as 981
↪→ follows: 982

```plaintext 983
# Declarations 984
counselors = EnumSort ([Fran , George , 985

↪→ Henry , Joan , Kathy , Lewis , 986
↪→ Nathan , Olga]) 987

activities = EnumSort ([swimming , 988
↪→ tennis , volleyball ]) 989

assigned = Function ([ counselors] -> 990
↪→ [activities ]) 991

992
# Constraints 993
ForAll ([a:activities], 994

↪→ And(Count([c:counselors], 995
↪→ assigned(c) == a) >= 2, 996
↪→ Count([c:counselors], 997
↪→ assigned(c) == a) <= 3)) ::: 998
↪→ Each activity is supervised by 999
↪→ at least two , but not more than 1000
↪→ three , of the eight counselors 1001

ForAll ([c:counselors], 1002
↪→ Count([a:activities], 1003
↪→ assigned(c) == a) == 1) ::: A 1004
↪→ person can only participate in 1005
↪→ one activity. 1006

assigned(Henry) == swimming ::: Henry 1007
↪→ supervises swimming 1008

assigned(Kathy) != tennis ::: Neither 1009
↪→ Kathy nor Olga supervises tennis 1010

assigned(Olga) != tennis ::: Neither 1011
↪→ Kathy nor Olga supervises tennis 1012

assigned(Kathy) != assigned(Joan) ::: 1013
↪→ Neither Kathy nor Nathan 1014
↪→ supervises the same activity as 1015
↪→ Joan 1016

assigned(Nathan) != assigned(Joan) ::: 1017
↪→ Neither Kathy nor Nathan 1018
↪→ supervises the same activity as 1019
↪→ Joan 1020

Implies(assigned(George) == swimming , 1021
↪→ And(assigned(Nathan) == 1022
↪→ volleyball , assigned(Olga) == 1023
↪→ volleyball)) ::: If George 1024
↪→ supervises swimming , both Nathan 1025
↪→ and Olga supervise volleyball 1026

1027
# Options 1028
is_sat(And(assigned(George) == 1029

↪→ swimming , assigned(Nathan) == 1030
↪→ swimming)) ::: (A) 1031

is_sat(And(assigned(George) == 1032
↪→ swimming , assigned(Olga) == 1033
↪→ swimming)) ::: (B) 1034

is_sat(And(assigned(Joan) == swimming , 1035
↪→ assigned(Kathy) == swimming)) 1036
↪→ ::: (C) 1037
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is_sat(And(assigned(Joan) == swimming ,1038
↪→ assigned(Nathan) == swimming))1039
↪→ ::: (D)1040

is_sat(And(assigned(Joan) == swimming ,1041
↪→ assigned(Olga) == swimming)) :::1042
↪→ (E)1043

```10441045

Listing 7: An Example from the Fixer KB for AR-
LSAT

A.3 Ablation Studies1046

We tested the performance of each model at vari-1047

ous temperatures from 0.1 to 0.3. Due to the lim-1048

ited space, for the translation process, we show the1049

results of each model at the optimal temperature;1050

for the repair process, we show the results where1051

the input is the optimal temperature and the num-1052

ber of examples of the translation process.1053

A.3.1 Ablation Studies on FOLIO1054

In this section, we analyze the translation stage re-1055

sults under two evaluation settings: Exact Match1056

and Error as Unknown. In the Exact Match set-1057

ting, an output is considered correct only if the pre-1058

dicted formula strictly matches the ground truth1059

label. In contrast, in the Error as Unknown set-1060

ting, formulas that contain errors are treated as1061

"Unknown", which may allow some outputs to be1062

counted as correct by chance.1063

Tables 3 and 4 show that varying the number of1064

in-context examples leads to stable performance1065

across models. In some cases, increasing the num-1066

ber of examples slightly improves accuracy, while1067

in others it introduces noise, suggesting that an op-1068

timal example count exists for each model.1069

Table 3: Pre-Fix Accuracy on FOLIO (Translation
Stage) – Exact Match

Model Ex#=1 Ex#=2 Ex#=3
DeepSeek v2.5 76.92 75.27 75.82
GPT-4o 74.73 74.73 75.82
Llama3.3 74.18 73.08 74.18
GPT-3.5-turbo 60.99 64.29 63.74
Gemma2 73.08 76.37 75.27

Table 4: Pre-Fix Accuracy on FOLIO (Translation
Stage) – Error as Unknown

Model Ex#=1 Ex#=2 Ex#=3
DeepSeek v2.5 78.57 78.02 78.57
GPT-4o 75.82 77.47 78.02
Llama3.3 75.82 75.82 78.02
GPT-3.5-turbo 65.38 68.68 68.13
Gemma2 75.27 78.57 78.02

Next, we present the results after applying the 1070

Fixer LLM. For each model, the best result from 1071

the table 4 is chosen as the baseline for the fix 1072

stage. Comparing the best results from the transla- 1073

tion stage with post-fix results (Tables 5 and 6), the 1074

Fixer LLM significantly boosts the exact match ac- 1075

curacy. This improvement indicates that the mod- 1076

ule effectively corrects superficial syntax and for- 1077

matting errors, reducing the incidence of chance- 1078

correct answers ("lucky guesses"). In contrast, the 1079

improvement in the "Error as Unknown" setting 1080

is relatively minor, suggesting that the Fixer LLM 1081

primarily enhances the strict correctness of the out- 1082

puts. 1083

Table 5: Post-Fix Accuracy on FOLIO (After Applying
Fixer LLM) – Exact Match

Model Ex#=1 Ex#=2 Ex#=3
DeepSeek v2.5 78.57 78.02 78.02
GPT-4o 80.77 80.77 80.77
Llama3.3 78.02 78.02 78.02
GPT-3.5-turbo 69.78 70.33 69.78
Gemma2 78.57 79.12 78.02

Table 6: Post-Fix Accuracy on FOLIO (After Applying
Fixer LLM) – Error as Unknown

Model Ex#=1 Ex#=2 Ex#=3
DeepSeek v2.5 78.57 78.57 78.57
GPT-4o 80.77 80.77 80.77
Llama3.3 78.57 78.57 78.57
GPT-3.5-turbo 70.88 70.88 70.88
Gemma2 79.67 79.67 79.67

A.3.2 Ablation Studies on AR-LSAT 1084

To present the results more intuitively, we use 1085

a slightly different statistical method than in the 1086

main text, focusing solely on the proportion of 1087

problems correctly solved by the Solver. (Alter- 1088

natively, this value can be considered as Exe_rate 1089

* Exe_accuracy.) 1090

Table 7 shows the best results of each model 1091

at different example counts during the Translation 1092

Stage. Table 8 shows the results of each model 1093

after applying the Fixer LLM. 1094

Table 7: Model Performance on Different Example
Numbers (Translation Stage)

Model Ex#=3 Ex#=5 Ex#=7
DeepSeek v2.5 12.12 16.02 13.85
GPT-4o 19.48 15.58 16.02
Llama-3.3 16.02 16.88 14.72
GPT-3.5-turbo 6.06 8.23 6.06
Gemma-2 5.19 7.79 3.03
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Table 8: Model Performance (After applying of the
Fixer LLM)

Model Performance
DeepSeek v2.5 31.60
GPT-4o 34.63
Llama-3.3 35.06
GPT-3.5-turbo 10.39
Gemma-2 16.45

In Table 7, we observe that before the appli-1095

cation of the Fixer LLM, large models such as1096

DeepSeek, GPT-4o, and Llama3.3 achieved their1097

highest accuracy at around 17%, with GPT-4o per-1098

forming best at 19.5%. In contrast, small models1099

like GPT-3.5-turbo and Gemma-2 reached a maxi-1100

mum accuracy of only 8.23%. We then applied the1101

Fixer LLM based on the best performance results1102

for each model during the Translation Stage. As1103

shown in Table 8, the accuracy improvement for1104

DeepSeek, Llama3.3, and GPT-4o exceeded 15%,1105

nearly doubling their original performance. How-1106

ever, for GPT-3.5-turbo and Gemma-2, the im-1107

provements were below 10%, with GPT-3.5 show-1108

ing only a modest 2% increase.1109

This further supports our conclusion. For large1110

models, the Fixer LLM has a more significant ef-1111

fect on reasoning tasks involving long texts, where1112

it is difficult to focus on details for inference.1113
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