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Abstract
This paper proposes the use of “multicalibra-
tion” to yield interpretable and reliable confi-
dence scores for outputs generated by large lan-
guage models (LLMs). Multicalibration asks
for calibration not just marginally, but simulta-
neously across various intersecting groupings of
the data. We show how to form groupings for
prompt/completion pairs that are correlated with
the probability of correctness via two techniques:
clustering within an embedding space, and “self-
annotation” — querying the LLM by asking it
various yes-or-no questions about the prompt. We
also develop novel variants of multicalibration
algorithms that offer performance improvements
by reducing their tendency to overfit. Through
systematic benchmarking across various ques-
tion answering datasets and LLMs, we show how
our techniques can yield confidence scores that
provide substantial improvements in fine-grained
measures of both calibration and accuracy com-
pared to existing methods.

1. Introduction
Large language models (LLMs) have revolutionized text
generation, with applications ranging from code develop-
ment (Chen et al., 2021) to information retrieval (Zhu et al.,
2023). However, alongside their impressive capabilities,
LLMs possess a troubling tendency to fabricate informa-
tion, generating outputs that diverge from factual reality – a
phenomenon dubbed “hallucination” (Huang et al., 2023a).
These hallucinations pose significant challenges to the trust-
worthiness and ethical deployment of LLMs, demanding the
development of robust detection and mitigation strategies.

In this paper, we leverage recent “multicalibration” tech-
niques (Hébert-Johnson et al., 2018) to produce calibrated
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Figure 1. An application of multicalibration to question answering.
Answers are colored from red to green according to their multicali-
brated confidence scores of being a hallucination. Multicalibration
is performed using Algorithm 5.

probabilities indicating whether a generated response con-
stitutes a hallucination. Unlike conventional calibration
methods, multicalibrated probabilities are self-consistent
not just marginally (i.e. on average over all examples),
but also conditionally on various properties of the instance,
which allows them to serve as more refined risk measures.
Producing “risk scores” for hallucinations can provide an
interpretable measure of risk which can be exposed to the
user (e.g. through a coloring scheme, as in Figure 1) to
communicate the risk associated with the generated content.
Moreover, when those risk scores are calibrated, they are
not only interpretable but “trustworthy” in the sense that
they can be safely used as if they were true probabilities
(Noarov et al., 2023).

Our approach mirrors the robust assurances offered by con-
formal prediction, where multicalibration (of quantiles) has
been used to give group-conditional guarantees (Bastani
et al., 2022; Jung et al., 2022; Gibbs et al., 2023). Tradi-
tionally multicalibration has been used to give estimates
of uncertainty in tabular data settings that hold condition-
ally on various features that are explicitly present in the
data — often demographic attributes like sex or race. A
key challenge in applying these techniques to hallucination
detection in LLMs is a lack of such explicit features. An
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important part of our contribution is generating features that
are useful to multicalibrate with respect to — which we do
both through clustering prompt embeddings, and by having
the LLM itself annotate prompts with binary features via
the answers to yes-or-no questions.

We note that what in many contexts, what is and is not a
”hallucination“ can be open to interpretation, and does not
have sharp boundaries. In this study, we adopt an agnostic
stance toward its definition. Specifically, we refrain from
stipulating criteria for determining what constitutes ”good”
or ”bad” generated content. Instead, we assume access to a
modestly sized calibration dataset that has been annotated
with binary labels. For any criterion for what constitutes
a “good” vs. “bad” completion in a given context, such a
dataset could be produced by human evaluators. For our
work, we assume that this is given and do not take a stance
on what the criterion for establishing that a given completion
is “good” in a given context should be.

Our contributions are threefold: 1. We show how to ap-
ply multicalibration techniques in the context of halluci-
nation detection in LLMs; a primary challenge here is to
obtain reasonable “groups” with respect which to multi-
calibrate, which we do via prompt clustering and via self-
annotation of prompts. 2. We introduce novel variations
of multicalibration methods which yield substantial per-
formance enhancements. 3. We systematically evaluate
these techniques across diverse LLMs and question answer-
ing datasets, demonstrating their efficacy in calibration and
overall performance compared to existing baselines.

Additional Related Work Numerous recent surveys fo-
cus on hallucinations in LLMs (Chang et al., 2023; Huang
et al., 2023a; Ji et al., 2023; Rawte et al., 2023; Tonmoy
et al., 2024; Zhang et al., 2023b; Guerreiro et al., 2023).
The predominant focus of current research lies in binary
hallucination detection, specifically the capacity to discern
whether generated text exhibits signs of hallucination. Key
contributions in this domain include (Manakul et al., 2023;
Rebedea et al., 2023), which evaluate consistency, similarity,
and agreement among alternative generated responses. (Ka-
davath et al., 2022; Friel & Sanyal, 2023) directly engage
LLMs by posing inquiries about correctness or consistency
within a single answer.

More closely related is a smaller body of literature that
explores uncertainty quantification and confidence scoring
in this context (Xiao & Wang, 2021; Verma et al., 2023;
Varshney et al., 2023; Kalai & Vempala, 2023; Tian et al.,
2023; Zhao et al., 2023; Chen & Mueller, 2023; Duan et al.,
2023; Lin et al., 2023; Liu et al., 2023) and propose a
variety of approaches to reduce hallucination generation
ranging from updated beam search methods, fine-tuning,
human labelling, and epistemic neural networks. Several
recent papers use conformal prediction to derive sets of

prompt completions, offering marginal coverage guarantees
(e.g. for 90% of prompts, at least one completion in the set
should be “good”) (Quach et al., 2023; Kumar et al., 2023;
Deutschmann et al., 2023; Ren et al., 2023; Zecchin et al.,
2023). Among these, (Kumar et al., 2023) is closest to our
approach but requires ”group-specific” prompting strategies.
The remainder focus on improving the LLM’s decoding
strategy and/or predictive sets, which are less suited to bi-
nary classification settings (like hallucination detection),
where they are limited to {0}, {1}, and {0, 1}.

2. Background on (Multi)Calibration
Consider (X,Y ) ∼ D where X ∈ X indicates a
prompt/completion pair, Y indicates whether the comple-
tion is a hallucination given the prompt (Y = 0) or not
(Y = 1), and D represents the joint distribution over pairs
(X,Y ). Let f : X 7→ [0, 1] denote a score representing a
confidence that Y = 1 for the text X . See Section 4.1 for a
discussion about possible scores f(x).

Ideally, we would like to find a model f(x) such that

f(x) = PD(Y = 1|X = x), ∀ x ∈ X . (1)

However, there are two difficulties with this. First, this may
not be a coherent probabilistic notion: fixing x, the label
may be determined, and so the “probability” of Y = 1 may
be either 0 or 1. Moreover, it is generally impossible to
learn a function with this property without observing every
possible x, which is impossible for extremely large sets
X , as is the case for LLM prompt/completion pairs (Lei
& Wasserman, 2014). Calibration is a simple, tractable,
guarantee that corresponds to a significant coarsening of the
set of conditioning events in Equation 1, to the level sets of
the predictor f .

Definition 2.1 (Calibration). Given a data distribution D,
the bias of a model f at the p-th level set is defined as

∆p(f) := ED[Y − f(X)|f(X) = p]. (2)

Then, if ∆p(f) = 0 for all p ∈ [0, 1] such that PD(f(X) =
p) > 0, we say that f is calibrated w.r.t. D.

We observe that Definition 2.1 can be rewritten as

PD(Y = 1|f(X) = p) = p.

Informally, calibration is a minimal consistency condition:
it states that the conditional distribution on Y conditional
on the prediction that f(X) = p is indeed a Bernoulli
distribution with bias p. While a perfect model satisfying
(1) is calibrated, the converse is not necessarily true.

We introduce the following standard measure of calibration
error (Globus-Harris et al., 2023).
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Definition 2.2 (Average squared calibration error). We de-
note the average squared calibration error (ASCE) of a
model f w.r.t. a distribution D by

ASCE(f) := EP [∆
2
P (f)]. (3)

The ASCE is computed by integrating the squared model
bias over all level sets. Note that if the model f is calibrated,
then ASCE(f) = 0. The ASCE is related to the well-
known expected calibration error (ECE) (Naeini et al., 2015),
with the difference that the ASCE compares Y against f ,
while the ECE compares accuracy against confidence (see
Appendix A). ASCE is a useful measure of calibration error
because it is directly related to a natural measure of accuracy:
mean squared error.

Definition 2.3 (Mean squared error). We denote the mean
squared error (MSE) of a model f w.r.t. a distribution D by

MSE(f) := ED
[
(Y − f(X))2

]
. (4)

The MSE is also known as Brier score (Brier, 1950). A bias-
variance decomposition clarifies its relation to the ASCE.

Proposition 2.4 (See, e.g. (Kohavi et al., 1996) ). We have

MSE(f) = ASCE(f) + EP [VarD(Y |f(X) = P )]. (5)

A proof is given in Appendix B for completeness. Propo-
sition 2.4 shows that the MSE can be decomposed as the
ASCE and the variance of the data given the model, respec-
tively measuring how calibrated the model is and how much
variation in the data the model can explain. As such, the
MSE is not a direct measure of calibration — when com-
paring two models, the model with lower squared error may
still be the less well calibrated model.

2.1. A Simple Calibration Strategy

Algorithm 1 Histogram Binning (HB)
1: for all p ∈ [ 1m ] do
2: Set

f̂(x) :=

{
f ′(x) + ∆p(f

′) if x ∈ Sp(f
′),

f ′(x) otherwise.
(6)

3: end for

Given a distribution D, a model f , and a threshold α > 0,
our goal is to produce a new model f̂ that is calibrated and
has reduced MSE compared to f — at least up to discretiza-
tion error α. Here α will control the number of level sets
we discretize f to, and hence the complexity of the model:
choosing smaller values of α will require more data to avoid
overfitting and vice versa. First, we introduce the notation
for the level sets which appear as conditioning events in (2):
Sp(f) := {f(x) = p}. Since it is infeasible to condition

on Sp(f) for all p ∈ [0, 1], we introduce the uniform grid
[ 1m ] := { i

m}mi=0, and define

f ′(x) := argmin
p∈[

1
m ]

|f(x)− p|, (7)

which rounds the model f to the grid [ 1m ]. Algorithm 1
rounds the model, then applies a constant shift in the bin
Sp(f

′), for each element p in the grid. Because ∆p(f̂) = 0
for all p ∈ [ 1m ], the following result holds.

Theorem 2.5 (See, e.g. (Roth, 2022)). Algorithm 1 satisfies
ASCE(f̂) = 0. Furthermore, set Bp := {x : |f(x)− p| ≤
1

2m}. If m > 1
α , then

MSE(f̂) < MSE(f)−
∑

p∈[
1
m ]

PD (Bp)∆
2
p(f

′) +
α2

4
+ α.

A proof is given in Appendix C for completeness. Theorem
2.5 shows that by replacing the level sets of the model (on
a refined enough grid) with the label mean of points condi-
tional on the level set not only guarantees calibration, but
improves the MSE of the model by its initial calibration
error (as measured by ASCE). This is a key property of
calibration and related guarantees: enforcing it is only accu-
racy enhancing. Furthermore, one can prove out-of-sample
generalization bounds that replace the joint distribution D
with the empirical distribution characterized by the available
data, and hence satisfy a non-asymptotic calibration guar-
antee — see e.g. (Roth, 2022). For simplicity, and because
the generalization bounds are standard, in our exposition
here we will focus on in-sample guarantees. As Algorithm 1
is closely related to histogram binning (Zadrozny & Elkan,
2001), we will refer to it with this name.

HB crucially uses the fact that the level sets Sp(f) defined
in Definition 2.1 are disjoint. In the following section, we
will define multicalibration (Hébert-Johnson et al., 2018),
a stronger calibration guarantee that imposes simultaneous
requirements on non-disjoint conditioning sets.

2.2. Towards Multicalibration

In this section, we argue that the promise made by calibra-
tion in Definition 2.1 is too weak for the kinds of language
model applications we have in mind because the perfor-
mance of a model is extremely heterogeneous across differ-
ent kinds of tasks that it can be used for. As an example,
consider two prompt/completion pairs x1 and x2, respec-
tively asking and answering a question about (1) the capital
cities of US states, and (2) citations to the academic litera-
ture for theorems in functional analysis. We would expect
that the probability of correctness differs substantially across
these examples — and yet calibration is a marginal guar-
antee that can average over both cases. It could, for exam-
ple, lead to confidence assessments that are systematically
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over-confident about academic citations and systematically
under-confident about state capitals. This is not in conflict
with even perfect calibration. It would be better to promise
that our confidence scores were calibrated conditionally on
(as fine-grained information as possible about) the prompt
used. These kinds of conditional calibration guarantees are
what multicalibration aims for.

We now formalize the concept of groups. A group function
g : X → {0, 1} can be thought of as an indicator function
for a group defined as a set of prompt/completion pairs:
g(x) = 1 if x is a member of the “group” and g(x) = 0
otherwise. The “group” induced by an indicator function g
is therefore {x ∈ X : g(x) = 1}. A set of groups G is cor-
respondingly identified by a set of group indicator functions.
Crucially, the groups in a collection G can be intersecting —
i.e. there can be multiple groups that contain the same exam-
ple x. This corresponds to a prompt/completion pair having
multiple non-mutually-exclusive attributes: for example, x
might simultaneously be “a question requiring high-school
level knowledge” and “a question about mathematics”.

2.2.1. GROUP-CONDITIONAL UNBIASEDNESS

Algorithm 2 Group-Conditional Unbiased Regression
1: Set

f̂(x) := f(x) +
∑
g∈G

λg g(x),

s.t. {λg}g∈G = argminMSE(f̂).
(8)

Before introducing multicalibration, let us first introduce a
simpler guarantee, and a simple strategy to obtain it. Cali-
bration (Definition 2.1) requires that a model f be unbiased
conditional on its own level sets. Given a collection of
groups G, we can instead ask a model to be unbiased condi-
tionally on each of the group indicator functions in G.

Definition 2.6 (Group-conditional unbiasedness). Given a
data distribution D and set of groups G, we say that a model
f is group-conditionally unbiased if

ED[Y − f(X)|g(X) = 1] = 0, ∀ g ∈ G. (9)

This condition is also known as “multi-accuracy” in the
algorithmic fairness literature (Hébert-Johnson et al., 2018;
Kim et al., 2019).

Since groups may be overlapping, we cannot proceed as in
Section 2.1 and independently unbias the predictions within
each group. Instead, we introduce Algorithm 2, initially
proposed by (Gopalan et al., 2022c), in which a model f̂
is fit by solving a linear regression problem over features
defined both by the original model f and the group indicator
functions in G. The following theorem is due to (Gopalan
et al., 2022c). We follow the presentation of (Roth, 2022).

Theorem 2.7. The model f̂ produced in (8) satisfies group-
conditional unbiasedness.

A proof is given in Appendix D for completeness. Once
again, with standard techniques one can prove generaliza-
tion bounds for this algorithm (see (Roth, 2022)) which
allows one to replace in-sample MSE with true distribu-
tional MSE; we elide these details for simplicity here. The
model produced in (8) is solving a linear regression prob-
lem (minimizing squared error over a set of linear models).
In Appendix D, we generalize this result to show that it
holds also when we replace MSE with a cross-entropy loss
— i.e. when solving logistic regression rather than linear
regression. We name the latter method Group-Conditional
Unbiased Logistic Regression (GCULR). A similar general-
ization is given by (Gopalan et al., 2023).

2.2.2. MULTICALIBRATION

In Section 2, we defined calibration by conditioning on
the level sets of the model. In Section 2.2.1, we defined
group-conditional unbiasedness by conditioning on a set of
groups. Multicalibration, introduced by (Hébert-Johnson
et al., 2018), is a stronger guarantee that asks for unbiased-
ness when simultaneously conditioning on both level sets
and groups. In order to rigorously define it, let us first
generalize the definition of ASCE.

Definition 2.8 (Group average squared calibration error).
Given a group function g, we denote the group average
squared calibration error (gASCE) of a model f w.r.t. a
distribution D by

gASCE(f, g) := EP

[
∆2

P,g(f)|g(X) = 1
]
, (10)

where ∆p,g(f) := ED[Y − f(X)|Sp,g(f)] and Sp,g(f) :=
{f(x) = p, g(x) = 1}.

Unlike the ASCE, in the gASCE we do not only condition
on the disjoint level sets {f(x) = p}, but also on the groups
{g(x) = 1}, which allows us to quantify the calibration
error independently for each group.

Definition 2.9 (Multicalibration). Given a data distribution
D and a set of groups G, a model f is α-approximately
multicalibrated w.r.t. D and G if and only if

gASCE(f, g) < α
PD(g(X)=1) , ∀ g ∈ G. (11)

This is an ℓ2 notion of multicalibration, as studied in
(Globus-Harris et al., 2023). One can also study error in
other metrics (e.g. ℓ∞ error as in (Hébert-Johnson et al.,
2018) or ℓ1 error as in (Gopalan et al., 2022b)).

Compared to the Definition 2.1 of calibration, multicalibra-
tion is a stronger guarantee, where standard calibration is
recovered by taking G = {X}. Because the groups may
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overlap, we cannot independently apply patches for all con-
ditioning sets. However, one can use a similar idea with
an iterative approach, which results in an algorithm that is
guaranteed to satisfy multicalibration in a finite number of
rounds, and decrease the MSE at every round.

Algorithm 3 Iterative Grouped Histogram Binning (IGHB)
1: Let m = ⌈ 1

α⌉, t = 0, f0 := f ′.
2: while maxg∈G PD(g(X) = 1) gASCE(f, g) > α do
3: Set

(pt, gt) = argmax
p∈[

1
m ], g∈G

PD (Sp,g(ft)) ∆
2
p,g(ft).

4: Set ht+1(x) :=

ft(x) + ∆pt,gt (ft) if x ∈ Spt,gt (ft),

ft(x) otherwise.
.

5: Set ft+1 := h′
t+1.

6: end while

IGHB (Algorithm 3) (a variant of which was first given by
(Hébert-Johnson et al., 2018)) starts by checking whether
α-approximate multicalibration is satisfied. If not, it finds
the conditioning event for which the gASCE is largest, and
patches the model on examples that trigger that event. It
iterates like this until convergence. The rounding operation
makes sure that the number of level sets do not increase
without bound, which guarantees that there is sufficient data
to evaluate the bias on each of the conditioning events.
Theorem 2.10. Algorithm 3 halts after T < 4

α2 rounds and
returns a model fT that is α-approximately multicalibrated.
Moreover, if the algorithm runs for T rounds, then

MSE(fT ) < MSE(f)− (T − 1)α
2

4 + α.

A proof can be found in (Roth, 2022) along with out-of-
sample generalization guarantees. As with HB, running
IGHB is only accuracy-improving.

3. Remedying overfitting
The multicalibration strategies outlined in 2.2.2 can build
complex models (because of iterative updates on intersect-
ing groups), and are known to be subject to overfitting in
practice (see e.g. (Globus-Harris et al., 2023)). One reason
for this is that the technique operates by iteratively esti-
mating the label mean on subsets of the data defined as
{f(x) = v, g(x) = 1}, which in-sample can contain very
few points and thus lead to inaccurate estimates of distribu-
tional quantities. Here, we provide practical improvements
to the IGHB algorithm that lead to better performance.

3.1. Bins as upper and lower sets

We make the following observation: rather than condition-
ing on the exact value of the model f(x) = p, we can

condition on f(x) ≤ p (roughly speaking conditioning on
values of its CDF rather than its density function), and the
definition of (exact) multicalibration remains unchanged.
Proposition 3.1. If ED[Y |f(X) = p] is a continuous
function of p, the definition of perfect multicalibration
(Definition 2.9 with α = 0) is unchanged if we replace
Sp,g by S≤

p,g := {f(x) ≤ p, g(x) = 1}.

A proof is in Appendix E. Proposition 3.1 suggests a defini-
tion of multicalibration that is defined on considerably larger
conditioning sets. By symmetry, the same results holds for
S≥
p,g := {f(x) ≥ p, g(x) = 1}. Thus “patching” sets S≥

p,g

or S≤
p,g within the IGHB algorithm when the model exhibits

bias on them moves the model closer to multicalibration,
and the same convergence analysis applies. Note that S≤

p,g

is larger for large p, and vice versa for S≥
p,g , hence one may

want to use one or the other bin according to the value of p.
Note that the per-bin calibration error in step 3 of Algorithm
3 is proportional to the size of the bin, implying that larger
bins are likely to be patched earlier than smaller bins. Up-
dates on large sets are less prone to overfitting because we
have many samples to use to estimate their label mean. It
follows that without invalidating Theorem 2.10, in order to
patch the model on a sequence of considerably larger bins
we can simply replace step 3 in Algorithm 3 with

(pt, gt, τt) = argmax
p∈[

1
m ], g∈G,τ∈{≤,≥}

PD
(
Sτ
p,g(ft)

)
(∆τ

p,g(ft))
2,

(12)
where ∆τ

p,g is defined as ∆p,g in Definition 2.2 but replacing
Sp,g with Sτ

p,g . To reiterate, what makes this approach work
is that (1), a model with no bias over the sets Sτ

p,g also has no
bias over the sets Sp,g and hence satisfies multicalibration,
and (2) the sets Sτ

p,g are larger and hence reduce overfit-
ting both because updating on larger sets moves the model
more quickly to convergence, and estimating distributional
parameters on larger sets leads to less error.

3.2. Linear Scaling

Algorithm 4 Linear Scaling (LS)
1: Set LS[f ](x) := expit(α∗ + β∗ logit f(x)),

with (α∗, β∗) = argmin
α,β

MSE(f̂). (13)

Since Algorithm 3 operates over conditioning events Sp,g

over which the current model takes constant value, it is rea-
sonable to apply constant patches in the bins that are inde-
pendent of the model value. However, when we start using
conditioning events Sτ

p,g like in (12), the model is no longer
constant subject to the conditioning events, and it is reason-
able to explore alternative updates that depend on the model
value. It is immediate to extend the patches in step 4 of Algo-
rithm 3 to linear patches of the form ht+1(x) = α+ βft(x)
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for x ∈ Spt,gt , without affecting the results of Theorem
2.10, so long as we choose α and β so as to minimize the
squared error of the model. In fact, if α = ∆pt,gt(ft) and
β = 1, we recover the patch in step 4. This works because
the analysis of Algorithm 3 involves showing that the MSE
of the model decreases at every step; by minimizing MSE
over a model class that can represent the patches used in
Step 4 of the algorithm, the analyzed convegence only be-
comes more rapid. In practice, to avoid clipping ft between
0 and 1, we make use of the logit and expit (a.k.a. sigmoid)
functions, which respectively map f to an unconstrained
domain, and then map a linear transformation of it between
0 and 1. Concretely, we replace step 4 in Algorithm 3 with

ht+1(x) :=

{
LS[ft](x) if x ∈ Sτt

pt,gt(ft)

ft(x) otherwise,
(14)

where LS[f ] is defined in (13). When applied as a stand-
alone calibration method over the whole input space X ,
Algorithm 4 is related to similar methods such as Platt scal-
ing (Platt et al., 1999) and temperature scaling (Guo et al.,
2017). Instead, we apply it to the conditioning events se-
lected in Algorithm 3 with the goal of multicalibration.

3.3. Early stopping

Algorithm 3 is an iterative algorithm that builds a model
whose complexity grows with the number of iterations it
runs for. Hence a natural heuristic for mitigating overfitting
is to implement an early stopping rule. To do so, we initially
partition the available data into calibration and validation
sets. We then halt the algorithm when the MSE on the
validation set ceases to decrease. The rationale of this is
supported by Theorem 2.10, which establishes that the MSE
must decrease on the calibration data in every round. A lack
of MSE reduction signifies potential overfitting, rendering
the MSE a meaningful loss function for early stopping.

Another intuitive criterion for early stopping is to assess
whether the probability mass of the conditioning event se-
lected by the algorithm for an update exceeds a specified
threshold. Recognizing that patches on small conditioning
events may potentially compromise the algorithm’s gener-
alization ability, we choose to halt the process whenever a
conditioning event of insufficient size is chosen for patching.

Algorithm 5 combines the strategies discussed in Section 3.

4. Application to Hallucination Detection
In this Section we apply the multicalibration techniques
developed in Sections 2.2 and 3 to the problem of hallu-
cination detection in LLMs. Our goal is to find a model
f(x) which produces (multi)calibrated confidence scores
for the probability that a prompt/completion pair x does
not correspond to a “hallucination”. As discussed, the key
problems to solve are what to choose as the “initial” scoring

Algorithm 5 Iterative Grouped Linear Binning (IGLB)
1: Let t = 0, f0 := f ′, ε > 0. Split D into Dcalib and Dval.
2: while True do
3: Set (pt, gt, τt) as in (12).
4: Break if PDcalib

(
Sτt
pt,gt(ft)

)
< ε.

5: Set ht+1(x) as in (14).
6: Break if MSEDval(ht+1) ≥ MSEDval(ft).
7: Set ft+1 := h′

t+1.
8: end while

model f(x) and to determine what the groups are for data
corresponding to context/completion pairs.

4.1. The Initial Scoring Model

Several methods to score hallucinations have been proposed
in the literature. While the better the initial scoring model
f(x), the better we can expect our final results to be, we
remark that our methodology can be applied on top of any
scoring method. In this paper, we study 3 different scoring
methods proposed in prior work to provide our initial score
function f(x), which we refine using multicalibration pro-
cedures. Note that all of the scoring functions described
below are heuristics and have no calibration guarantees on
their own; it is the multicalibration procedure that we use to
post-process them that will endow them with guarantees.

True/False softmax score. This method employs an LLM
to score the correctness of a generated answer for a specific
question by asking the model whether the answer is correct
and prompting it to respond with either True or False exclu-
sively. Let s(x) represent the softmax computed from the
logits of the next token to be generated, and sk(x) denote the
component corresponding to token k (Kadavath et al., 2022).
The confidence in the answer True, given the possible an-
swers True and False, is defined as f(x) := sTrue(x)

sTrue(x)+sFalse(x)
.

Inverse perplexity score. In this approach, we use an
LLM to compute the output logits for a generated answer
to a specific question. The function f(x) is then set as the
inverse perplexity of the generated answer, represented as
f(x) := exp

(
1

T−T0

∑T
t=T0+1 log p(xt|x:t−1)

)
, where x

is defined as the concatenation of question tokens x1:T0 and
answer tokens xT0+1:T (Jelinek et al., 1977).

Multiple-choice softmax score. This approach utilizes an
LLM to assess the confidence associated with each potential
answer by analyzing the output logits and outputs a score
by selecting the maximum confidence amongst the avail-
able choices (Kadavath et al., 2022). To elaborate, if s(x)
represents the softmax for the upcoming token generation,
and sAk

(x) signifies the component corresponding to the
k-th answer within the set of possible answers {Ak}Kk=1,
the score is defined as f(x) := maxk=1,...,K

sAk
(x)∑K

k′=1
sA

k′ (x)
.
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4.2. The Grouping Strategy

Multicalibration is a guarantee parameterized by groups, and
so it is important to identify “groups” of prompt/completion
pairs x that are correlated with the probability that the com-
pletion is a hallucination. When these groups effectively
capture features in the data that are associated with increased
likelihood of hallucination, their incorporation can lead to
substantial improvements in both the algorithm’s accuracy
and calibration. Multicalibration techniques do not require
that the groups are disjoint — the only requirement is that,
given a prompt/completion pair x, we are able to identify
at test time which groups x is a member of. This gives us
the freedom to define groups from arbitrary features of the
prompt, information about the user, etc. — so long as we
have the ability to determine this information in deployment.
Here we discuss two strategies for defining groups.

Clustering. A natural strategy is to find semantically
meaningful clusters of prompts within some embedding
space. The clustering can use information not only about
the prompt, but also about the completion and the scoring
model. To the extent that the identified clusters turn out to
correlate with the likelihood of hallucination, multicalibrat-
ing with respect to groups defined by the identified clusters
will improve the underlying scoring function. Off-the-shelf
text encoders and soft-clustering methods can be applied in
this setting (Devlin et al., 2018; Hastie et al., 2009).

Annotations. Another approach to forming groups involves
using the LLM to annotate prompt/completion pairs: i.e.
re-prompting the LLM with yes-or-no questions whose an-
swers will define the groups. For example, we can ask
“Does the following question require at least high school
level knowledge?”, “Does the following prompt have to do
with mathematics?”, “Is the following prompt ambiguous?”
etc. In general, since the groups need not be disjoint, any
collection of questions can be used to induce a collection
of groups. An LLM can annotate the generated text with
True/False assessments, indicating whether it exhibits a set
of predefined characteristics. A strength of this approach
is that it provides easily human interpretable groups, and
is easily extensible compared to clustering strategies. A
disadvantage is that it leads to higher computational cost
and latency at deployment time, and the quality of the anno-
tations may vary with the LLM.

5. Experiments
We conduct a comprehensive experimental comparison of
the methodologies introduced in Sections 2, 3, 4.1 and 4.2.

5.1. Setup

We conduct experiments on a range of question answering
datasets, namely BigBench (Ghazal et al., 2013), MMLU

gASCE uncalib. IGLB IGHB GCULR HB LS

Business 0.0645 0.0068 0.0189 0.0083 0.01 0.0083
Computer Sc. 0.0824 0.0254 0.035 0.0364 0.0241 0.0366
Engineering 0.1331 0.0523 0.0676 0.0564 0.0679 0.0562
Ethics 0.1775 0.0189 0.0754 0.0215 0.0703 0.0214
History 0.024 0.0195 0.0178 0.025 0.0239 0.0251
Law 0.1263 0.0085 0.0422 0.0096 0.0477 0.0096
Mathematics 0.1586 0.0231 0.0555 0.0254 0.0264 0.0252
Medicine 0.0623 0.0064 0.0198 0.0069 0.0547 0.007
Miscellaneous 0.0257 0.03 0.0204 0.0321 0.0349 0.0322
Philosophy 0.0704 0.0181 0.0312 0.0207 0.028 0.0208
Political Sc. 0.0793 0.0439 0.0425 0.0474 0.0223 0.0473
Psychology 0.0445 0.0118 0.0144 0.0119 0.0104 0.0119
Religion 0.0888 0.0643 0.0808 0.0674 0.033 0.0678
Science 0.0923 0.0056 0.0244 0.0076 0.0075 0.0076
Security 0.1492 0.0237 0.0845 0.0377 0.0329 0.0377
Social Sc. 0.0707 0.0127 0.0296 0.0203 0.0226 0.0204

Table 1. We report the gASCE for each of the true MMLU topics,
on average over different LLMs. An LLM annotation strategy is
used in multicalibration methods for grouping. All methods im-
prove the gASCE compared to before calibration. IGLB achieves
best results on most groups. In particular, it performs better than
GCULR on gASCE, since the first guarantees multicalibration,
while the second only group-conditional unbiasedness.

(Hendrycks et al., 2020), OpenBookQA (Mihaylov et al.,
2018), TruthfulQA (Lin et al., 2021), MathQA (Amini et al.,
2019), and TriviaQA (Joshi et al., 2017). These datasets
enable us to assess the methods across a heterogeneous col-
lection of queries over which the probability of hallucination
varies substantially. We assess the outcomes using several
state-of-the-art LLMs, namely StableBeluga-13B (Touvron
et al., 2023; Mukherjee et al., 2023), Flan-T5-base (Chung
et al., 2022), Bloomz-7b1 (Muennighoff et al., 2022), and
Mistral-7B-v0.1 (Jiang et al., 2023). The goal is to pro-
vide a comprehensive understanding of how these methods
perform across several datasets and LLMs.

Labeling the data. Details in Appendix F.

Scoring. Details in Appendix G.

Grouping. Details in Appendix H.

5.2. Results

We conduct a comparative analysis by comparing the initial
scoring functions (without any post-processing for calibra-
tion) against the same scoring functions post-processed for
calibration using several algorithms: Algorithm 1 (HB), Al-
gorithm 4 (LS), the logistic regression version of Algorithm
2 (GCULR), Algorithm 3 (IGHB), and Algorithm 5 (IGLB).
HB and LS aim for standard (marginal) calibration and do
not use any grouping strategy. GCULR produces a model
satisfying group-conditional unbiasedness but not neces-
sarily multicalibration. IGHB and IGLB produce multicali-
brated models. Compared to IGHB, IGLB implements all of
the modifications discussed in Section 3 to mitigate overfit-
ting. All experiments in this section employ the True/False
softmax score described in Section 4.1. For results using
other scoring methods, please refer to Appendix I.
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MSE BigBench MMLU OpenBookQA TruthfulQA MathQA TriviaQA

uncalib. 0.3242 (0.0201) 0.3045 (0.0315) 0.2608 (0.0037) 0.4762 (0.135) 0.3767 (0.0817) 0.2802 (0.029)
IGLB 0.2416 (0.0027) 0.2254 (0.0084) 0.236 (0.0091) 0.2016 (0.0437) 0.1727 (0.0047) 0.1974 (0.0308)
IGHB 0.2588 (0.0157) 0.2517 (0.0138) 0.2517 (0.0062) 0.3051 (0.0147) 0.1898 (0.0083) 0.2078 (0.0299)
GCULR 0.2432 (0.0028) 0.2239 (0.0083) 0.2354 (0.009) 0.2047 (0.0471) 0.1728 (0.0047) 0.1976 (0.0306)
HB 0.2444 (0.0018) 0.23 (0.009) 0.2357 (0.0094) 0.2043 (0.041) 0.1728 (0.0047) 0.2026 (0.0334)
LS 0.2459 (0.0024) 0.2281 (0.0093) 0.236 (0.0091) 0.2036 (0.0457) 0.1727 (0.0047) 0.2008 (0.031)

ACC. BigBench MMLU OpenBookQA TruthfulQA MathQA TriviaQA

uncalib. 0.4815 (0.0443) 0.4961 (0.0258) 0.5506 (0.037) 0.3333 (0.1219) 0.3131 (0.0975) 0.5766 (0.0372)
IGLB 0.5691 (0.0114) 0.634 (0.0325) 0.5933 (0.0356) 0.6871 (0.1158) 0.7779 (0.0085) 0.7023 (0.083)
IGHB 0.5462 (0.0142) 0.5858 (0.0047) 0.5711 (0.0476) 0.4843 (0.0655) 0.7421 (0.0162) 0.6781 (0.0899)
GCULR 0.5548 (0.0128) 0.6381 (0.0313) 0.5979 (0.0282) 0.6777 (0.128) 0.7779 (0.0085) 0.7037 (0.0812)
HB 0.5613 (0.0091) 0.6274 (0.0353) 0.5933 (0.0447) 0.6997 (0.1034) 0.7779 (0.0085) 0.6944 (0.0904)
LS 0.5582 (0.0169) 0.6299 (0.034) 0.5925 (0.0347) 0.6698 (0.1345) 0.7779 (0.0085) 0.6953 (0.0896)

Table 2. MSE and accuracy metrics are presented for all methods across various datasets, with results displayed as the mean and standard
deviation (in brackets) derived from the values produced by four LLMs. Our findings highlight the superiority of multicalibration methods,
specifically IGLB and GCULR, over alternative approaches across all datasets. In particular, IGLB demonstrates a significant performance
advantage over IGHB, emphasizing the effectiveness of the overfitting remedies proposed in Section 3.

uncalibrated IGLB IGHB GCULR HB LS
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softm
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Figure 2. Average scores against accuracies across various clusters, for each method, on MMLU for StableBeluga-13B. Colors represent
the groups, and the size of the points reflects their size. Multicalibration methods exhibit significantly superior alignment with the diagonal
compared to standard calibration methods. In agreement with the results in Table 2, IGLB and GCULR stand out as the top performers.

In Table 2, we present comprehensive statistics, including
the mean and standard deviation (in brackets) of MSE and
binary classification accuracy across the different LLMs.
These metrics are analyzed across all methods and datasets.
When evaluating binary classification accuracy, binary pre-
dictions are derived from the scoring function by applying a
threshold of 1

2 to the scores. This is the threshold that maxi-
mizes classification accuracy whenever the scoring function
is calibrated. The results presented here use the clustering
grouping strategy. For a discussion of the results with the
annotation grouping strategy, please refer to Appendix L.

Results show that IGLB and GCULR consistently out-
perform across all datasets, respectively leading on MSE and
accuracy. All of the models that are post-processed for cali-
bration out-perform the initial scoring function, sometimes
substantially. This underscores the importance of calibration
post-processing in enhancing detection capabilities.

The results also confirm that IGHB, in its original form, is
prone to overfitting. However, the modifications detailed in
Section 3 which are incorporated into IGLB, significantly
enhance performance. Further insights into the specific
effects of these changes are explored in Appendix J.

Standard calibration methods such as HB and LS perform
well compared to the initial scoring function, yet consis-
tently underperform IGLB and GCULR. It’s noteworthy
that HB achieves the best results only on OpenBookQA,
possibly because of the small dataset size which causes the
more complex models to overfit.

Figure 2 illustrates average confidence scores plotted against
the fraction of positive labels across various groups (each
corresponding to a different color in the plot), to evalu-
ate group-wise calibration. Once again we see IGLB and
GCULR standing out as the top performers (represented as
alignment with the diagonal). See also Appendix K.

Table 6 provides further evidence that IGLB outperforms
other methods on the gASCE evaluated using true MMLU
topics. More details about this experiment in Appendix L.

6. Conclusions
In this paper we introduce multicalibration to confidence
scoring for LLMs, and develop several new techniques for
both generating groups of prompts to multicalibrate with
respect to, as well as new multicalibration algorithms which
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have improved practical performance. We show that when
applied to existing scoring functions from the literature, our
methods substantially improve both the error and calibra-
tion of the scores. What we have presented is an extensible
framework, and so there is a clear pathway to improvement
via new grouping strategies that are both semantically mean-
ingful and correlated with LLM performance.

Impact Statement
By calibrating the confidence associated with text generated
by LLMs, this paper contributes to enhance trustworthiness
in applications ranging from customer service interactions,
to content creation and educational platforms. Calibration
not only ensures more reliable and contextually appropriate
responses but also mitigates the risks associated with bi-
ased or inappropriate content, thereby aligning with ethical
considerations in AI development. The impact extends to
critical sectors such as healthcare and finance, where the
reliability of AI-generated information is of paramount im-
portance. Furthermore, the calibration process facilitates
model explainability, offering insights into decision-making
mechanisms and promoting transparency in AI systems. In
essence, the calibration of hallucination in LLMs is a pivotal
step toward fostering responsible, trustworthy, and ethically
sound AI technologies. It is important to note, however,
that calibration methods should be used only with an un-
derstanding of their limitations. In our case, the provable
calibration guarantees are designed to hold on prompts that
are distributed as those in our calibration set are, and do not
hold for adversarially generated prompts.
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Appendix

A. On the expected calibration error
In our notation, the expected calibration error (ECE) is defined as

ECE(f) :=
m∑
i=1

P(f(X) ∈ Bi)ED

[
|Accuracy(f)− Confidence(f)|

∣∣∣f(X) ∈ Bi

]
,

where Accuracy(f) is defined as P(Y = 1[f(X) ≥ 1
2 ]), Bi := [ i−1

m , i
m ], and Confidence denotes the probability of the

predicted label, that is
Confidence(f) := max{1− f(x), f(x)}.

B. Proof of Proposition 2.4
We have

MSE(f) = ED[(Y − f(X))2]

= EP [ED[(Y − P )2|f(X) = P ]]

= EP [ED[(Y − ED[Y |f(X) = P ] + ED[Y − P |f(X) = P ])2|f(X) = P ]]

= EP [VarD(Y |f(X) = P )] + EP [ED[Y − P |f(X) = P ]2]

= EP [VarD(Y |f(X) = P )] + ASCE(f).

C. Proof of Theorem 2.5
First, we show that ASCE(f̂) = 0. Notice that, by construction of f̂ , any element p in the image of f̂ must either belong to
[ 1m ] or it must be such that p = f̂(x) = f ′(x) + ∆p′(f ′), for some p′ ∈ [ 1m ]. In both cases, it is immediate to check that
∆p(f̂) = 0. It follows that

ASCE(f̂) = EP∈Im(f̂)[∆
2
P (f̂)] = 0.

We now prove the decrease in MSE. We have

MSE(f̂) = ED[(Y − f̂(X))2]

= ED[(Y − f ′(X) + f ′(X)− f̂(X))2]

= MSE(f ′)−
∑

p∈[
1
m ]

PD(Bp)∆
2
p(f

′).

Furthermore,

MSE(f ′) = ED[(Y − f ′(X))2]

= ED[(Y − f(X) + f(X)− f ′(X))2]

= MSE(f) +
∑

p∈[
1
m ]

PD(Bp)ED[(f(X)− f ′(X))2 + 2(Y − f(X))(f(X)− f ′(X))|Bp].

Notice that ED[(f(X)− f ′(X))2|Bp] <
1

4m2 = α2

4 . Furthermore,

ED [(Y − f(X))(f(X)− f ′(X))|Bp] ≤ ED
[
|Y − f(X)|

∣∣Bp

]
ED
[
|f(X)− f ′(X)|

∣∣Bp

]
< 1 · 1

m
= α.

It follows that MSE(f ′) < MSE(f) + α2

4 + α, which concludes the proof.
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D. Proof of Theorem 2.7
For each g ∈ G, we have

∂

∂λg
MSE(f̂) = 2ED[

∂

∂λg
f̂(X)(f̂(X)− Y )]

= 2ED[g(X)(f̂(X)− Y )]

= 2ED[f̂(X)− Y |g(X) = 1],

where the last line follows from g(X) ∈ {0, 1}. Then ∂
∂λg

MSE(f̂) = 0 if and only if ED[Y − f̂(X)|g(X) = 1] = 0, hence

the model f̂ parametrized by the {λg}g∈G that minimizes the MSE must also satisfy group-conditional unbiasedness.

The result also holds for the cross-entropy loss

CrossEntropy(f̂) := ED[Y log f̂(X) + (1− Y ) log(1− f̂(X))].

Indeed, ∣∣∣∣ ∂

∂λg
CrossEntropy(f̂)

∣∣∣∣ =
∣∣∣∣∣ED

[
∂

∂λg
f̂(X)

(
Y

f̂(X)
− 1− Y

1− f̂(X)

)]∣∣∣∣∣
=

∣∣∣∣∣ED

[
Y − f̂(X)

f̂(X)(1− f̂(X))

∣∣∣g(X) = 1

]∣∣∣∣∣
≥ 4

∣∣∣ED[Y − f̂(X)|g(X) = 1]
∣∣∣ .

Hence a model f̂ parametrized by the {λg}g∈G that minimizes the cross-entropy loss must also satisfy group-conditional
unbiasedness.

E. Proof of Proposition 3.1
We want to show that the following two conditions are equivalent:

ED[Y − f(X)|f(X) = p] = 0 ∀ p ∈ [0, 1] 1

ED[Y − f(X)|f(X) ≤ p] = 0 ∀ p ∈ [0, 1] 2

First, notice that

ED[Y − f(X)|f(X) ≤ p] =

∫ p

0
ED[Y − f(X)|f(X) = v] pf(X)(v) dv

P(f(X) ≤ p)
.

It follows that if 1 holds, then 2 must hold, since the expression within the integral above is 0. Vice versa, if 2 holds,
then we must have ∫ p2

p1

ED[Y − f(X)|f(X) = v] pf(X)(v) dv = 0 ∀ p1, p2 ∈ [0, 1].

Because ED[Y − f(X)|f(X) = v] is continuous in v by assumption, it follows that if there existed p∗ ∈ [0, 1] such that
ED[Y − f(X)|f(X) = p∗] ̸= 0, then there would exist a small enough interval [p∗1, p

∗
2] ∋ p∗ where the function does not

change its sign. Hence the integral above over this interval would not be zero, which would contradict 2 .

F. Labeling the data
To calibrate a scoring function, we need a calibration dataset which consists of a collection of questions, answers, and
binary labels for each answer corresponding to whether or not the answer is “correct” or not. While BigBench, MMLU,
OpenBookQA, TruthfulQA, and MathQA conveniently contain questions, multiple answers per question, and binary labels
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for each answer indicating correctness, TriviaQA poses a challenge by providing only a set of correct answers for each
question. To overcome this limitation, we construct labelled data for TriviaQA as follows. For each TriviaQA question, we
prompt an LLM to generate four different answers. Subsequently, binary labels are assigned to these generated answers
based on word overlap with the answer key provided in the dataset. After this processing, TriviaQA becomes a multiple
choice question answering problem, where the multiple choice options depend on the LLM under study. The data is then
randomly split into calibration and testing sets, with an 80/20 split.

G. Scoring
For each LLM and dataset, we experiment with each of the three initial scoring models outlined in Section 4.1. Given that
our datasets consist of multiple answers per question, we select the answer with the highest score and use this score as the
output of the initial model f .

H. Grouping setup
To form groups, we follow the methods described in Section 4.2. For the clustering approach, text embeddings were obtained
using UAE-Large-V1 (Li & Li, 2023), reduction to 20-dimensional embeddings was performed using UMAP (McInnes
et al., 2018), and a Gaussian mixture model was fitted on both the embeddings and one of the types of LLM scores for
the most likely answer. The Bayesian Information Criterion was used to select the number of groups. We also evaluated
alternative dimensionality reduction techniques such as t-SNE (Van der Maaten & Hinton, 2008) and PCA, as well as the
use of other text encoders, obtaining conclusions similar to those described in the paper. Our methodology aligns with
clustering approaches in the blindspot discovery literature (Eyuboglu et al., 2022; Johnson et al., 2023), where clustering
ensures that items in each group are semantically related and exhibit comparable classification accuracy.

For the method that relies on annotations, our goal was to design a comprehensive taxonomy that would cover the wide range
of questions appearing in the datasets. Thus, we gave StableBeluga2 questions from the different datasets and instructed it
to create a classification system with groups that intersect, and then further group related categories into areas. The resulting
groups for all datasets are reported in Tables 3. For MMLU, where the topic of each question is already provided, we asked
the LLM to create a simplified classification system with fewer and non-disjoint categories based on the existing taxonomy.
We also instructed it to align the original categories with the new ones and manually refined this mapping. The categories
created for MMLU include those reported in Section L. To obtain the annotations, we asked the model “You are an AI
designed to categorize questions accurately. The possible categories are as follows: <all possible categories>. Which of
these categories does the question <question from dataset> fall into?”. We then picked the most likely categories according
to the confidence scores produced by the LLM.

I. Results with other scoring methods
In this section, we present results similar to those in Table 2, employing the inverse perplexity and multi-choice scoring
methods introduced in Section 4.1. Across all datasets, the findings consistently validate the earlier observations, indicating
that IGLB and GCULR perform generally better than other methods.

J. Ablation study
In this section, we examine in isolation the impacts resulting from the modifications proposed in Section 3. Specifically, we
conduct a comparative analysis between IGHB and IGLB against two distinct variants:

• IGHBτ : This variant mirrors IGHB but leverages lower and upper sets Sτ
p,g for bins, as expounded upon in Section 3.1.

• IGHBLS: This variant employs the linear scaling patching strategy discussed in Section 3.2 instead of the constant
shift patch in Algorithm 3.

The results in Table 5 consistently reveal that IGLB, encompassing all the proposed changes to address overfitting in Section
3, consistently outperforms its variants, which either lack or only partially incorporate the proposed alterations. The lower
and upper-level binning scheme, as introduced in Section 3.1, emerges as the primary driver of improvement, with IGHBτ

achieving nearly comparable results to IGLB. Conversely, the implementation of linear scaling in IGHBLS, without the
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Category Area
Humanities Subject-Based Knowledge
Social Sciences Subject-Based Knowledge
Natural Sciences Subject-Based Knowledge
Formal Sciences Subject-Based Knowledge
Professional Knowledge Subject-Based Knowledge
Basic Arithmetic Mathematical Reasoning
Algebra Mathematical Reasoning
Geometry Mathematical Reasoning
Advanced Mathematics Mathematical Reasoning
Statistical and Probabilistic Reasoning Mathematical Reasoning
Problem Solving Logical and Critical Thinking
Inferential Reasoning Logical and Critical Thinking
Analytical Reasoning Logical and Critical Thinking
Common Misconceptions Factual Accuracy and Misconceptions
Fact-Checking Factual Accuracy and Misconceptions
Controversial and Sensitive Topics Factual Accuracy and Misconceptions
Cultural Literacy General Knowledge and Trivia
Historical Facts General Knowledge and Trivia
Scientific Facts General Knowledge and Trivia
Real-World Application Applied Knowledge
Hypothetical Scenarios Applied Knowledge
Cross-Disciplinary Questions Interdisciplinary
Integrative Reasoning Interdisciplinary

Table 3. LLM-generated taxonomy of questions appearing in the datasets described in Section 5.1.

alteration to the bins, results in poorer performance than IGHB alone. This observation is unsurprising, as within standard
level set bins, the model remains almost constant, and linear scaling patches merely amplify the risk of overfitting.

K. Scatter plots
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Figure 3. The average scores against the accuracy across various clusters, for each calibration method, and for inverse perplexity and
multiple-choice softmax scores on MMLU and StableBeluga-13B. Conclusions are similar to those derived for Figure 2.

Figure 3 provides insights analogous to Figure 2, but using inverse perplexity and multiple-choice softmax scores. All
calibration methods provide post-processed scores that align significantly better with the diagonal than the intial scores
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Inverse perplexity score

MSE BigBench MMLU OpenBookQA TruthfulQA MathQA TriviaQA

uncalib. 0.3506 (0.0104) 0.2746 (0.0133) 0.3506 (0.1042) 0.22 (0.0288) 0.2268 (0.0179) 0.2294 (0.058)
IGLB 0.2441 (0.0033) 0.2183 (0.0155) 0.2229 (0.0417) 0.1857 (0.0232) 0.1991 (0.0223) 0.1863 (0.0352)
IGHB 0.2593 (0.0083) 0.2287 (0.0219) 0.2339 (0.0447) 0.2039 (0.0331) 0.2062 (0.0218) 0.1847 (0.0307)
GCULR 0.2439 (0.0045) 0.2181 (0.0152) 0.2224 (0.0403) 0.1844 (0.0249) 0.2001 (0.0234) 0.1795 (0.0307)
HB 0.2456 (0.0024) 0.2212 (0.0174) 0.2213 (0.0409) 0.1912 (0.0262) 0.1995 (0.0226) 0.1876 (0.0338)
LS 0.2473 (0.0016) 0.223 (0.0161) 0.2226 (0.0418) 0.1898 (0.0207) 0.2004 (0.0236) 0.1917 (0.0351)

ACC. BigBench MMLU OpenBookQA TruthfulQA MathQA TriviaQA

uncalib. 0.5278 (0.0315) 0.6495 (0.0573) 0.6156 (0.1184) 0.6997 (0.0888) 0.7087 (0.0448) 0.7016 (0.0589)
IGLB 0.5516 (0.0152) 0.659 (0.0499) 0.6232 (0.1162) 0.7453 (0.0506) 0.719 (0.0498) 0.7178 (0.0714)
IGHB 0.5334 (0.0234) 0.6495 (0.0573) 0.6156 (0.1184) 0.706 (0.081) 0.7087 (0.0448) 0.7312 (0.0606)
GCULR 0.5487 (0.0173) 0.6573 (0.0509) 0.6225 (0.115) 0.7453 (0.0506) 0.7148 (0.0543) 0.7502 (0.0707)
HB 0.5511 (0.0129) 0.6497 (0.0586) 0.6221 (0.1142) 0.7437 (0.0494) 0.7177 (0.0511) 0.7132 (0.0729)
LS 0.5493 (0.0151) 0.6489 (0.0576) 0.6214 (0.1175) 0.7453 (0.0506) 0.7138 (0.0553) 0.7111 (0.074)

Multiple-choice softmax score

MSE BigBench MMLU OpenBookQA TruthfulQA MathQA TriviaQA

uncalib. 0.2885 (0.0144) 0.2476 (0.0333) 0.2203 (0.0418) 0.2713 (0.0343) 0.1998 (0.0189) 0.2359 (0.0279)
IGLB 0.238 (0.0016) 0.2068 (0.0089) 0.1985 (0.0308) 0.2058 (0.0259) 0.1728 (0.0042) 0.1778 (0.0416)
IGHB 0.2513 (0.0028) 0.2249 (0.0226) 0.2175 (0.0417) 0.2661 (0.0361) 0.1827 (0.0124) 0.2088 (0.0373)
GCULR 0.238 (0.0016) 0.2053 (0.0107) 0.1986 (0.0306) 0.2043 (0.0245) 0.1729 (0.0041) 0.1777 (0.0416)
HB 0.2407 (0.0019) 0.2083 (0.01) 0.2 (0.0305) 0.2044 (0.0255) 0.173 (0.0045) 0.1809 (0.0415)
LS 0.242 (0.0018) 0.2076 (0.0096) 0.1984 (0.0308) 0.2041 (0.0244) 0.1728 (0.0044) 0.1807 (0.0413)

ACC. BigBench MMLU OpenBookQA TruthfulQA MathQA TriviaQA

uncalib. 0.5176 (0.034) 0.5929 (0.0587) 0.6435 (0.0801) 0.555 (0.0684) 0.7339 (0.0516) 0.6536 (0.0602)
IGLB 0.5769 (0.0102) 0.6821 (0.0148) 0.6837 (0.0597) 0.6824 (0.0702) 0.7762 (0.009) 0.7389 (0.0891)
IGHB 0.5594 (0.0044) 0.655 (0.0219) 0.6525 (0.0735) 0.5566 (0.0693) 0.7501 (0.028) 0.6796 (0.0598)
GCULR 0.5774 (0.0057) 0.6859 (0.0155) 0.688 (0.0564) 0.6824 (0.0719) 0.7762 (0.009) 0.7396 (0.0884)
HB 0.5738 (0.0143) 0.6791 (0.0177) 0.685 (0.0578) 0.695 (0.0675) 0.7762 (0.009) 0.7363 (0.0917)
LS 0.5736 (0.0138) 0.6797 (0.0165) 0.6843 (0.0585) 0.6855 (0.0669) 0.776 (0.0093) 0.7355 (0.0924)

Table 4. Comparable outcomes to those presented in Table 2 are reported, utilizing the inverse perplexity and multiple-choice scoring
methods detailed in Section 4.1. The overall findings reinforce that IGLB and GCULR consistently outperform other methods across all
datasets.

MSE BigBench MMLU OpenBookQA TruthfulQA MathQA TriviaQA

IGLB 0.2416 (0.0027) 0.2254 (0.0084) 0.236 (0.0091) 0.2016 (0.0437) 0.1727 (0.0047) 0.1974 (0.0308)
IGHBτ 0.2428 (0.0024) 0.2269 (0.0096) 0.2372 (0.0083) 0.2043 (0.0451) 0.173 (0.0049) 0.1977 (0.0305)
IGHBLS 0.2521 (0.0101) 0.2597 (0.0206) 0.2583 (0.0051) 0.3421 (0.0424) 0.2 (0.0219) 0.2243 (0.017)
IGHB 0.2588 (0.0157) 0.2517 (0.0138) 0.2517 (0.0062) 0.3051 (0.0147) 0.1898 (0.0083) 0.2078 (0.0299)

ACC. BigBench MMLU OpenBookQA TruthfulQA MathQA TriviaQA

IGLB 0.5691 (0.0114) 0.634 (0.0325) 0.5933 (0.0356) 0.6871 (0.1158) 0.7779 (0.0085) 0.7023 (0.083)
IGHBτ 0.5592 (0.013) 0.6346 (0.0347) 0.5841 (0.0296) 0.6698 (0.1335) 0.7779 (0.0085) 0.7026 (0.0827)
IGHBLS 0.5524 (0.0093) 0.5497 (0.025) 0.5519 (0.0404) 0.4733 (0.0502) 0.7398 (0.0272) 0.6498 (0.0614)
IGHB 0.5462 (0.0142) 0.5858 (0.0047) 0.5711 (0.0476) 0.4843 (0.0655) 0.7421 (0.0162) 0.6781 (0.0899)

Table 5. The results consistently demonstrate that IGLB outperforms its variants in the majority of cases. The principal contributor to
these improvements is the lower and upper-level binning scheme implemented in IGHBτ .

before post-processing. Also in this case, multicalibration methods tend to perform better than methods such as HB and LS,
which only satisfy calibration.
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gASCE uncalib. IGLB IGHB GCULR HB LS

Business 0.0645 (0.0291) 0.0068 (0.0069) 0.0189 (0.0133) 0.0083 (0.0056) 0.01 (0.0048) 0.0083 (0.0056)
Computer Sc. 0.0824 (0.0396) 0.0254 (0.0139) 0.035 (0.0113) 0.0364 (0.0066) 0.0241 (0.0127) 0.0366 (0.0066)
Engineering 0.1331 (0.0213) 0.0523 (0.0394) 0.0676 (0.0323) 0.0564 (0.0072) 0.0679 (0.0434) 0.0562 (0.0072)
Ethics 0.1775 (0.0865) 0.0189 (0.0104) 0.0754 (0.0716) 0.0215 (0.009) 0.0703 (0.0899) 0.0214 (0.0088)
History 0.024 (0.0128) 0.0195 (0.0087) 0.0178 (0.0047) 0.025 (0.0074) 0.0239 (0.0121) 0.0251 (0.0073)
Law 0.1263 (0.0381) 0.0085 (0.0042) 0.0422 (0.0254) 0.0096 (0.003) 0.0477 (0.0713) 0.0096 (0.0032)
Mathematics 0.1586 (0.0852) 0.0231 (0.0137) 0.0555 (0.0119) 0.0254 (0.0122) 0.0264 (0.0132) 0.0252 (0.0121)
Medicine 0.0623 (0.0266) 0.0064 (0.0039) 0.0198 (0.0122) 0.0069 (0.0028) 0.0547 (0.0654) 0.007 (0.0029)
Miscellaneous 0.0257 (0.0091) 0.03 (0.0269) 0.0204 (0.0067) 0.0321 (0.0225) 0.0349 (0.0257) 0.0322 (0.0225)
Philosophy 0.0704 (0.0285) 0.0181 (0.0117) 0.0312 (0.0066) 0.0207 (0.0074) 0.028 (0.0076) 0.0208 (0.0071)
Political Sc. 0.0793 (0.0268) 0.0439 (0.0288) 0.0425 (0.0082) 0.0474 (0.0229) 0.0223 (0.0152) 0.0473 (0.0228)
Psychology 0.0445 (0.0229) 0.0118 (0.0071) 0.0144 (0.0032) 0.0119 (0.0051) 0.0104 (0.0053) 0.0119 (0.0051)
Religion 0.0888 (0.04) 0.0643 (0.0337) 0.0808 (0.0225) 0.0674 (0.0314) 0.033 (0.0195) 0.0678 (0.0316)
Science 0.0923 (0.049) 0.0056 (0.003) 0.0244 (0.0098) 0.0076 (0.0015) 0.0075 (0.0026) 0.0076 (0.0014)
Security 0.1492 (0.0526) 0.0237 (0.0183) 0.0845 (0.0388) 0.0377 (0.0164) 0.0329 (0.0329) 0.0377 (0.0163)
Social Sc. 0.0707 (0.0326) 0.0127 (0.0083) 0.0296 (0.0214) 0.0203 (0.0109) 0.0226 (0.0087) 0.0204 (0.0108)

Table 6. We report the gASCE obtained by each method for each of the true MMLU topics, with True/False softmax scores. An LLM
annotation strategy is used in multicalibration methods for grouping. All methods improve the gASCE compared to before calibration. In
particular, IGLB achieves best results almost most groups. It is meaningful to notice that, as expected from the theory, IGLB achieves
better results than GCULR on gASCE, since the first guarantees multicalibration, while the second only group-conditional unbiasedness.

L. Results with annotations
The MMLU dataset is organized by different “topics” (e.g. “Engineering”, “Science”, etc — see Table 6). The quality of a
model’s responses can differ substantially by topic. Here we use the LLM to attempt to annotate each prompt by topic, and
then use these self-annotations as groups in our multicalibration methods. Note that the self-annotations may differ from
the “true” groupings in the MMLU dataset because of errors in the LLM annotations or ambiguities. We can nevertheless
evaluate the calibration error of each of the methods we experiment with on the true topic groupings within the MMLU
dataset. In Table 6, we present the mean (for standard deviation, see Appendix L) of the gASCE for each true topic of
MMLU. Similar to Table 2, these values are computed across the mentioned LLMs.

We see that all methods offer improvements in calibration error compared to the uncalibrated raw scores. However, we
see that the multicalibration methods which make explicit use of the self-annotated group labels substantially out-perform
methods that aim for only marginal calibration. Notably, IGLB consistently achieves the lowest calibration error across
nearly all groups. It is noteworthy that, while GCULR demonstrated superior accuracy in Table 2, its performance on
the gASCE metric is not as impressive. This outcome aligns with theoretical expectations, as GCULR guarantees low
group-conditional bias but does not guarantee calibration within each group, which is what we are measuring here.
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