
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Decoder-Hybrid-Decoder Architecture for Efficient Reasoning with Long
Generation

Anonymous Authors1

Abstract
Recent advances in language modeling have
demonstrated the effectiveness of State Space
Models (SSMs) for efficient sequence modeling.
While hybrid architectures such as Samba and
the decoder-decoder architecture, YOCO, have
shown promising performance gains over Trans-
formers, prior works have not investigated the effi-
ciency potential of representation sharing between
SSM layers. In this paper, we introduce the Gated
Memory Unit (GMU), a simple yet effective
mechanism for efficient memory sharing across
layers, and apply it to create a decoder-hybrid-
decoder architecture, SambaY, through integrat-
ing GMUs into the cross-decoder of YOCO. Sam-
baY significantly enhances decoding efficiency,
preserves linear pre-filling time complexity, and
boosts long-context performance, all while elim-
inating the need for explicit positional encod-
ing. Through extensive scaling experiments, we
demonstrate that our architecture exhibits a sig-
nificantly lower irreducible loss compared to a
strong YOCO baseline, indicating superior per-
formance scalability under large-scale compute
regimes. Our largest model enhanced with Dif-
ferential Attention, Phi4-mini-Flash-Reasoning,
achieves comparable performance to Phi4-mini-
Reasoning on reasoning tasks such as Math500,
AIME24, and GPQA Diamond, while delivering
up to 10× higher decoding throughput on 2K-
length prompts with 32K generation length under
the vLLM inference framework.

1. Introduction
State Space Models (SSMs) (Gu et al., 2021; 2022; Gu &
Dao, 2023; Dao & Gu, 2024), including linear attention

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

(Hua et al., 2022; Sun et al., 2023; Qin et al., 2022; Yang
et al., 2024; 2025) and modern Recurrent Neural Networks
(RNNs) (Beck et al., 2024; 2025; Peng et al., 2023; Gold-
stein et al., 2024) have recently shown promising results
for more efficient sequence modeling over Transformers
(Vaswani et al., 2017). While pure SSMs offer computa-
tional advantages with linear complexities, hybrid architec-
tures (Lieber et al., 2024; De et al., 2024; Ren et al., 2025;
Waleffe et al., 2024; Dong et al., 2025; MiniMax, 2025) com-
bining SSMs with self-attention can bridge the expressive-
ness gap of SSMs/RNNs to Transformers with a few atten-
tion layers (Wen et al., 2024). Notably, the decoder-decoder
architecture, YOCO (Sun et al., 2024), accelerates inference
by storing the Key-Value (KV) pairs from just one attention
layer and re-using them across all subsequent layers, a strat-
egy that has delivered substantial pre-filling performance
gains in practice. However, challenges remain; YOCO does
not mitigate the attention memory I/O cost for its cross-
attention layers during decoding. This limitation becomes
particularly pronounced for modern large language models
(LLMs) (OpenAI, 2024; DeepSeek-AI, 2025) that gener-
ate extensively long Chains-of-Thought (CoTs) (Wei et al.,
2022) for hard reasoning tasks.

In this paper, we investigate the potential of representation
sharing between SSM layers to enhance decoding efficiency.
We introduce the Gated Memory Unit (GMU), a versatile,
simple yet effective mechanism for efficient memory shar-
ing across layers. Applying GMUs to the cross-decoder
of YOCO, we create a novel decoder-hybrid-decoder archi-
tecture named SambaY that uses Samba (Ren et al., 2025)
for the self-decoder and replaces half of the cross-attention
layers with GMUs to share the inner representations of the
final SSM layers in the self-decoder. Since around 50%
of expensive cross-attention layers are replaced with cheap
element-wise gating, SambaY significantly improves decod-
ing efficiency and maintains a linear pre-filling time com-
plexity, all while removing the need for explicit positional
encoding such as RoPE (Su et al., 2021).

To enable a robust comparison of the scaling capabilities
across different architectures, we first design a principled
µP++ hyperparameter transfer scheme that accounts for both
depth and width scaling, as well as the application of weight
decay to vector-like parameters. We then conduct extensive

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Decoder-Hybrid-Decoder Architecture for Efficient Reasoning with Long Generation

experiments up to 3.4B parameters/600B tokens to verify
the scaling behaviors of both our µP++ scaling laws and
the SambaY architecture. Comparing to Samba+YOCO, an
architecture that naively combines Samba with YOCO, we
show that SambaY has significantly lower irreducible loss
(Hestness et al., 2017) on the validation set when scaling
with the training FLOPs, indicating a better scaling poten-
tial with large-scale computes. We also conduct extensive
experiments to verify the long-context retrieval capabilities
of our architecture. Our results reveal that SambaY achieves
superior performance on challenging long-context tasks like
Phonebook and RULER (Hsieh et al., 2024) benchmark,
even with a modest Sliding Window Attention (SWA) size
of 256. To further explore the capabilities of hybrid models
with a single set of full attention memory, we augment Sam-
baY with Differential Attention (Ye et al., 2024), resulting
in the Phi4-mini-Flash architecture. We pre-train our 3.8B-
parameter model Phi4-mini-Flash with 5T tokens from the
same Phi4-mini data corpus and further follow the recipe
as Phi4-mini-Reasoning (Xu et al., 2025) to produce our
reasoning model, Phi4-mini-Flash-Reasoning. Our model
achieves performance comparable to the strong Phi4-mini-
Reasoning baseline on challenging reasoning benchmarks
such as Math500, AIME24 and GPQA Diamond. Criti-
cally, Phi4-mini-Flash-Reasoning delivers up to 10× higher
decoding throughput on 2K-length prompts with 32K gener-
ation length under the vLLM (Kwon et al., 2023) inference
framework, showcasing its substantial and practical effi-
ciency gains for the LLM reasoning paradigm of generating
long Chain-of-Thoughts.

2. Decoder-Hybrid-Decoder Architecture
Inspired by the gating mechanism that broadly exists in
Gated Linear Units (Shazeer, 2020), Gated Attention Units
(Hua et al., 2022) and SSMs (Gu & Dao, 2023; Yang et al.,
2025), we first introduce our Gated Memory Unit (GMU)
that takes the current layer’s input representation and a pre-
vious layer’s memory state as the inputs and outputs the
gated representations with learnable projections. We then
explore a specific application of GMUs to YOCO which pro-
duces our decoder-hybrid-decoder architecture. A dedicated
related works section is included in Appendix G.

Gated Memory Unit (GMU). From an inter-layer per-
spective, we define "memory" as hidden representations
passed from preceding layers. Specifically, at a given layer
l, GMU operates on two inputs: the current layer’s input
hidden state, xl ∈ Rdm , and a memory state, ml′ ∈ Rdh ,
from a previous layer l′ (where l′ < l). The GMU then
produces an output yl ∈ Rdm through a gating mechanism
modulated by learnable projections. Formally, the GMU

GMU

Cross Attn

Cross Attn

GMU

SWA

Mamba

Full Attn

Mamba

Self-

Decoder

Cross-

Decoder

Output

State

KV

Cache Linear

SSM kernel

Linear

Linear

LinearLinear

Figure 1: Our decoder-hybrid-decoder architecture taking
Mamba as an exemplar SSM. Gated Memory Units (GMUs)
are interleaved with the cross-attention layers in the cross-
decoder to reduce the decoding computation complexity.
Following YOCO (Sun et al., 2024), the full attention layer
only calculates the KV cache during pre-filling, resulting a
linear computation complexity.

can be expressed as:

yl = ml′ ⊙ σ(W1xl)W2

where σ(·) is the SiLU (Elfwing et al., 2017) activation func-
tion, ⊙ denotes element-wise multiplication, and W1,W2 ∈
Rdh×dm are learnable weight matrices. Intuitively, this gat-
ing mechanism allows the current layer’s input xl to selec-
tively filter the information flowing from the memory ml′ ,
effectively acting as a dynamic fine-grained recalibration
of token mixing that occurred in previous layers based on
the current query context for each of the memory channels.
While in this work we primarily focus on gating memory
from SSM layers (where dh would correspond to the SSM
inner dimension), the concept is generalizable. For instance,
ml′ could be the intermediate output of a preceding atten-
tion layer, allowing GMUs to diversify the attention map
for each channel of the value vectors based on the input
representation of the current layer. Similarly, it could gate
intermediate outputs from MLP layers, enabling retrieval
from static, parametric memory. In both cases, GMUs save
parameters and computation compared to the vanilla atten-
tion or the MLP layers.

Model architecture. In Figure 1, we illustrate our Sam-
baY architecture, a decoder-hybrid-decoder architecture
with Samba (Ren et al., 2025) as the self-decoder. We apply
GMUs to the cross-decoder of YOCO to replace half of its
cross-attention layers. The GMUs share the representation

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Decoder-Hybrid-Decoder Architecture for Efficient Reasoning with Long Generation

from the last SSMs layers in the self-decoder so that the pre-
filling time complexity is still linear. Compared to YOCO,
our approach only requires caching an additional SSM ker-
nel output state m ∈ Rdh , dh = 2dm from the final Mamba
layer—an overhead that is negligible in size—alongside the
KV cache from the last full-attention layer during pre-filling.
During decoding, we reduce the memory I/O complexity
for half of the cross-attention layers from a linear cost of
O(dkvN) to a constant O(dh), where N is the sequence
length and dkv is the key-value dimension. This leads to
significant efficiency gains when N ≫ dh/dkv , a condition
that is easily met in practice since the ratio dh/dkv typically
does not exceed 128.

3. Experiments & Results
Motivated by the theoretical efficiency of our SambaY archi-
tecture, we aim to address the following research questions:
Does the architecture scale effectively? Does it compro-
mise long-context performance? Can it support reasoning
over long generations? Given that a neural architecture’s
performance is tightly coupled with its optimization and
initialization settings, we begin by establishing a generic
scaling setup to encourage a fair comparison of scaling be-
havior across different architectures.

3.1. Scaling Experiments on Open-Source Data

Architecture scaling setup. We use a simple linear rule
from the previous works on Transformer models (Kaplan
et al., 2020; Tian et al., 2024) for scaling the architec-
tural shape of our Transformer++ baseline, including model
width w, model depth d, number of attention query heads
hq and the MLP inner dimension wmlp, i.e.,

w = αd, α = α0 = 128,

hq = d, hkv = d/4, wmlp = 4w,

where the Transformer-specific aspect ratio α0 and the num-
ber of key-value heads hkv are computed based on the
Llama-3-8B architecture. We use SwiGLU (Shazeer, 2020)
for MLP and RoPE (Su et al., 2021) with the base frequency
of 10,000. The total number of non-embedding parameters
for the Transformer++ architecture can then be calculated
as,

Nattn(d) = 2.5dw2, Nmlp(d) = 12dw2,

N(d) = Nattn(d) +Nmlp(d) = 14.5dw2 = 237568d3.

Baseline Architectures. We consider several architec-
tural variants alongside our proposed SambaY architecture
and Transformer++, including Samba+YOCO (which uses
Samba as self-decoder for the original YOCO architecture),
TransformerLS (interleaving SWA with full attention using

a layer ratio of 3:1), and SambaY+DA (which uses Differen-
tial Attention (DA) (Ye et al., 2024) for all attention layers).
All hybrid architectures maintain consistent hyperparameter
settings with a 4× MLP inner dimension expansion ratio and
GQA (Ainslie et al., 2023) group size of 4 for self-attention
layers, matching our Transformer++ baseline. To ensure fair
comparison, we standardize the sliding window size to 128
for all architectures with SWA while conducting extensive
ablations on window size effects in Section 3.2. Following
the studies in recent hybrid models (Lieber et al., 2024; Ren
et al., 2025), we omit explicit positional encodings (NoPE)
for all hybrid SSMs architectures. Detailed configurations
for the implementation of DA are provided in Appendix E.

Scaling transfer for hybrid architectures. Since differ-
ent token mixers have their own inner dimension expansion
ratio, it is hard to balance the number of parameters between
hybrid models and Transformers to make fair comparisons.
Previous works (DeepSeek-AI, 2024a; Ren et al., 2025;
Yang et al., 2025) often adjust the model depth to tie the
total number of parameters, but this could change the mem-
ory cache size significantly (e.g. adding two attention layers
in a 12-layer Transformer resulting in a 16.7% increase of
KV cache size), making unfair comparisons regarding the
inference time cost. We propose a simple solution that (1)
builds an iso-parametric equation with respect to the aspect
ratio via aligning the total number of non-embedding param-
eters to the Transformer baseline, (2) solves the equation to
obtain the specific aspect ratio (which is rounded up to an
even integer to guarantee the activation of Tensor Cores1)
for the hybrid architectures. We also fix the head dimension
to be α0 = 128, and set the inner dimension of the attention
layers to be wattn = α0d so that the number of key-value
heads hkv is a valid integer. Specifically, for SambaY, we
have

Nattn(d) = 2.5dw · wattn/4 + 2dw · wattn/4,

Nmamba(d) = 6dw2/4, Ngmu(d) = 4dw2/4,

N(d) = Nattn(d) +Nmamba(d) +Nmlp(d) +Ngmu(d)

= 144αd3 + 14.5α2d3 = 237568d3.

Solving for α, we get α1 ≈ 124. For Samba+YOCO, we
can similarly solve an iso-parametric equation to obtain
α2 ≈ 126, with more details in appendix A.

Hyperparameter scaling with µP++. To account for both
width and depth scaling of model architectures, we pro-
pose µP++ hyperparameter scaling laws that integrate µP
(Yang et al., 2022), Depth-µP (Yang et al., 2023), and apply

1https://developer.nvidia.com/blog/
optimizing-gpu-performance-tensor-cores/

3

https://developer.nvidia.com/blog/optimizing-gpu-performance-tensor-cores/
https://developer.nvidia.com/blog/optimizing-gpu-performance-tensor-cores/

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Decoder-Hybrid-Decoder Architecture for Efficient Reasoning with Long Generation

zero weight decay to vector-like or scalar-like parameters2

for training stability. Since we use the AdamW optimizer
(Loshchilov & Hutter, 2018), we apply batch-size-based
scaling with η ∝

√
B. The learning rate is further scaled

as η ∝ 1/
√
d following Depth-µP. For studying the FLOPs

scaling behavior across model architectures, we adopt the
Chinchilla scaling law (Hoffmann et al., 2022) to scale the
number of training tokens T linearly with the number of
model parameters. Formally, we have

η = η0

√
Bd0
B0d

, B = B0, T = T0
N(d)

N(d0)
,

where the base learning rate is set as η0 = 4 × 10−4 and
the base batch size B0 = 221 number of tokens. We also
explore scaling the batch size sub-linearly with respect to
the training tokens (McCandlish et al., 2018; Shuai et al.,
2024; Li et al., 2025) (more details in Appendix B), but
find that it harms the data scaling behavior of the models,
so we keep the batch size as a constant across scales. The
base model depth is set as d0 = 16 so that N(d0) ≈ 109

number of parameters. The base training tokens T0 is set
to 100B. We adopt µP to scale the output logits and the
learning rate of matrix-like parameters proportional to 1/w,
and the output projection of each layer is divided by

√
2d

following Depth-µP. The base attention logits multiplier is
set to 1/

√
α. We fix other hyper-parameters of the optimizer

with β1 = 0.9, β2 = 0.95, ϵ = 10−8 and a weight decay of
0.1. A linear learning rate schedule is applied with 1B warm-
up tokens increasing to the peak learning rate η, followed by
a linear decay to zero. We use LeCun uniform initialization
(i.e. PyTorch default initialization) (LeCun et al., 2012)
for the weight matrices following (Gu & Dao, 2023) and
(Ren et al., 2025), and tie the input and output embedding
matrices which are initialized from the normal distribution
N (0, 0.022).

Scaling experiment setups. A common concern with
SSMs is that they are not theoretically more expressive
than self-attention for in-context retrieval (Wen et al., 2024).
This raises the question of whether the better performance
of hybrid SSM models is owing to their fast convergence
from the recency bias, while Transformers could eventually
match their performance given more training tokens. With
the scaling laws we established in the previous paragraphs,
we can now examine this hypothesis systematically. We first
study the data scaling behavior across architectures. Specifi-
cally, we fix the model size at around 1B parameters with
the architecture parameterization of d = 16 and scale the
number of training tokens T from 100B to 600B. We also

2Following the definition in µP, parameters are vector-like
when exactly one dimension scales with model width (e.g., embed-
ding and unembedding layers), and scalar-like when no dimension
scales with width.

study the FLOPs scaling behaviors of the model architec-
tures with up to 3.4B parameters and 342B tokens through
varying the model depth d = {8, 12, 16, 20, 24}. We use
a 4K training sequence length and the SlimPajama (Sobol-
eva et al., 2023) dataset for all our scaling experiments and
measure the model performances on its validation set.

Comparison of scaling behaviors. To quantitatively com-
pare the scaling trajectories, we fit the validation loss L as
a function of compute (FLOPs), denoted as DFLOPs, to a
power law (Hestness et al., 2017; Hoffmann et al., 2022) of
the form:

L(DFLOPs) = A ·D−b
FLOPs + C

This model enables us to estimate the irreducible loss C
which represents the lower bound of achievable loss for a
given architecture or parameterization under infinite com-
pute, and the scaling exponent b that reflects the learning
efficiency with respect to compute. We fit the curves with
least squares and the LMA algorithm (LEVENBERG, 1944;
Marquardt, 1963). A similar power law model is employed
for data scaling experiments, where loss is modeled as a
function of the number of training tokens Dtokens.

In Figure 2, we present the results of both FLOPs scaling
and data scaling experiments, showing validation loss on the
SlimPajama dataset as a function of total training FLOPs or
number of training tokens. We show both the original data
points and the fitted power-law curves. The goodness of
fit for each curve is assessed using the R2 statistic and we
observe that all plots have a fitness score R2 ≥ 0.999, indi-
cating near-perfect fits. While larger values of the scaling
exponent b or the coefficient A indicate that a model may
converge more rapidly given a small-scale compute or data
budget, these parameters alone do not necessarily predict su-
perior performance at larger scales. Therefore, we primarily
emphasize the irreducible loss C obtained from scaling law
fitting as the principal metric for assessing an architecture’s
long-term scaling potential. As illustrated in Figure 2a, the
SambaY architecture exhibits the lowest irreducible loss
(C = 0.58) for FLOPs scaling, suggesting that it can attain
a superior validation loss compared to other architectures
when scaled further with substantially increased computa-
tional resources. We also observe that µP++ yields a lower
irreducible loss than Standard Parameterization (SP) under
both data and compute scaling, indicating more favorable
scaling potentials. More experimental details are included
in Appendix C.

Notably in Figure 2b, the Transformer++ model trained
with µP++ exhibits a substantial validation loss gap com-
pared to SambaY and SambaY+YOCO within the measured
range of training tokens. However, its fitted irreducible
loss (C = 1.82) is nearly identical to those of the hybrid
models, suggesting that with an infinite amount of data,
Transformer++ can eventually catch up—albeit with slower

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Decoder-Hybrid-Decoder Architecture for Efficient Reasoning with Long Generation

(a) Compute scaling comparisons (b) Data scaling comparisons

Figure 2: Validation Loss v.s. FLOPs (left) or Training Tokens (right) on the SlimPajama dataset. Besides the architecture
comparisons, we also compare our µP++ based scaling with the Standard Parametrization (SP).

Figure 3: Accuracy (with error bars) v.s. Sliding Window
Size on Phonebook with 32K evaluation length.

convergence. This aligns with our expectation, as there is no
theoretical expressiveness gap between Transformers and
our hybrid models when the number of parameters is held
constant. Interestingly, this convergence no longer holds
when both model size and data scale proportionally. As illus-
trated in Figure 2a, under the µP++ setting, Transformer++
exhibits the highest irreducible loss C = 0.64, indicating
that hybrid architectures could offer superior scalability un-
der limited data regimes.

3.2. Efficient Long Context Retrieval

Given the presence of full-attention layers, we aim to deter-
mine the minimal size of the sliding window attention re-
quired for our hybrid models to retain effective long-context
retrieval capabilities. Specifically, we pre-train 1.0B param-

eter models with µP++ and d = 16 using TransformerLS,
SambaY, SambaY+DA and Samba+YOCO architectures
respectively on the ProLong-64k (Gao et al., 2024) dataset
with 32K sequence length and 40B tokens, varying the win-
dow size of their Sliding Window Attention (SWA) in the
range {64, 128, . . . , 2048}. We align the number of pa-
rameters between different architectures through building
the iso-parametric equations as in Section 3.1. We adopt
variable-length training, where short documents are packed
together and self-attended within the same segment. We
evaluate the long-context retrieval capabilities of the mod-
els using a difficult Phonebook benchmark (Jelassi et al.,
2024) with a 32K context length (containing 1,850 name-
number pairs). We choose this benchmark because it is
a realistic multi-key-value retrieval task with minimal in-
structions, which minimizes the confounding influence of
instruction-following ability when evaluating long-context
retrieval performance. We use a RoPE base of 640K for
TransformerLS and Transformer++, following the lower
bounds proposed in (Xu et al., 2024). We also examine how
the training corpus and methods affect the long context per-
formance of these models, with more details in Appendix D.

As shown in Figure 3, surprisingly, larger SWA sizes do
not consistently provide better results. We speculate that
learned full attention involves both sliding window (local)
patterns and non-local patterns like global retrieval or at-
tention sinks. Using small to intermediate sliding window
sizes, where models like SambaY and SambaY+DA show
strong performance, could enable the model to focus on
local patterns more easily and possibly mitigate issues like
attention sinks (Gu et al., 2025). Moreover, shorter sliding
windows might facilitate faster convergence, a crucial factor

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Decoder-Hybrid-Decoder Architecture for Efficient Reasoning with Long Generation

Table 1: Retrieval accuracy on Needle-In-A-Haystack (NIAH) tasks with 32K context from the RULER (Hsieh et al., 2024)
long context benchmark. MK: Multi-Key, MQ: Multi-Query, MV: Mutli-Value, S: Single-needle. We use the best Sliding
Window Attention (SWA) size found on the Phonebook benchmark for each hybrid architecture. Best results are in bold,
second best underlined.

Model SWA MK-1 MK-2 MK-3 MQ MV S-1 S-2 S-3 Avg.

Transformer++ - 36.4 3.8 0.0 27.9 24.1 94.8 66.0 31.0 35.5
TransformerLS 256 42.8 6.0 0.0 29.8 27.5 91.8 49.6 23.4 33.9
Samba+YOCO 1024 49.0 28.0 2.6 12.8 18.3 100.0 63.2 23.6 37.2
SambaY 256 54.6 27.8 0.4 12.7 19.4 83.2 81.2 63.8 42.9
SambaY+DA 512 64.6 27.6 0.2 12.8 19.9 99.8 86.4 69.6 47.6

in long context training scenarios often characterized by lim-
ited high-quality data. The lower scores of TransformerLS
(orange line), which consistently underperforms the Sam-
baY variants and reaches a peak accuracy of only 0.602 at
an SWA of 256, could be indicative of Transformer-based
models requiring more substantial data for long-context
training.

Using the optimal sliding window size from the Phonebook
benchmark, we evaluate our architectures on both long-
context retrieval tasks (Table 1) and traditional downstream
benchmarks (Table 2). Across both contexts, hybrid mod-
els with SSMs consistently outperform pure Transformer
architectures. SambaY variants demonstrate notable ad-
vantages in long-context retrieval while maintaining strong
performance on short-context tasks, despite using much
smaller sliding window sizes than Samba+YOCO. The ad-
dition of DA further enhances multi-key and single-needle
retrieval capabilities, while TransformerLS shows specific
strengths in multi-query and multi-value scenarios. Overall,
these results suggest that GMUs facilitate efficient infor-
mation sharing across layers, enabling strong performance
with smaller SWA sizes and offering better balance between
computational efficiency and model capability.

3.3. Large-Scale Pre-training on High-quality
Proprietary Data

We apply our hybrid model architecture to pre-train a larger-
scale prototype model named Phi4-mini-Flash. It incorpo-
rates the SambaY architecture alongside Differential Atten-
tion (DA) (Ye et al., 2024) with an SWA size of 512 and
GQA of group size 2. Compared to the configuration de-
scribed in Section 3.1, this model uses a different aspect
ratio α = 80 and an attention head dimension of 64. It
is trained with standard parameterization rather than µP++
due to resource constraints during the scaling study. We pre-
train our model on 5T tokens from the data corpus used by
Phi4-mini (Microsoft et al., 2025) on 1K A100-80GB GPUs
for 14 days. During training, we encounter severe loss diver-

gence, which we mitigate by introducing label smoothing
of 0.1 and attention dropout of 0.05. The optimization setup
here is by no means optimal, as the primary goal of this
experiment is to evaluate the viability of our architecture at
larger scales. Phi4-mini-Flash uses a 200K token vocabu-
lary size consistent with Phi4-mini. Additional training and
architectural details are provided in Appendix E.

Table 3 demonstrates that Phi4-mini-Flash outperforms the
Phi4-mini baseline across a diverse range of tasks, with
notable improvements on knowledge-intensive benchmarks
like MMLU (4.6% absolute gain) and coding tasks such as
MBPP (4.5% absolute gain). The consistent performance
advantage, winning on 7 out of 8 benchmarks, is particu-
larly significant given that Phi4-mini-Flash achieves these
gains while maintaining substantially higher computational
efficiency during inference.

3.4. Efficient Reasoning with Long Generation

Our Phi4-mini-Flash-Reasoning model is continually
trained from the Phi4-mini-Flash model with the multi-
stage distillation recipe following Phi4-mini-Reasoning (Xu
et al., 2025). As shown in Table 4 and Figure 4, our rea-
soning model achieves performance comparable to Phi4-
mini-Reasoning after SFT on AIME24 (Art of Problem
Solving), Math500 (Hendrycks et al., 2021b), and GPQA
Diamond (Rein et al., 2023), while employing a significantly
more computationally efficient architecture, achieving up
to 10× higher throughput in long-generation scenarios and
4.9× speedup in long-context processing. We evaluate the
throughput of our vLLM implementation3 using random
weights to eliminate the influence of potentially shorter
generation lengths on speed measurements, ensuring a fair
comparison across different architectures. We use the same
hyperparameter configurations as Phi4-mini-Flash for the
YOCO and SambaY based baseline architectures. Notably,
our DA implementation relies on a naive four-pass FlashAt-

3We customize the official vLLM framework with the version
0.7.3 to support our Phi4-mini-Flash architecture.

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Decoder-Hybrid-Decoder Architecture for Efficient Reasoning with Long Generation

Table 2: Downstream short-context evaluation on language modeling and common-sense reasoning tasks in zero-shot for
1B-parameter models with the tuned sliding window size. The training speed is measured in MTPS (Million Tokens Per
Second) with 64 A100-80GB GPUs. Best results are in bold, second best underlined.

Model SWA Speed Wiki. LMB. ARC-c ARC-e Hella. PIQA Wino. Avg.
mtps ↑ ppl ↓ acc ↑ acc_n ↑ acc ↑ acc_n ↑ acc ↑ acc ↑ acc ↑

Transformer++ - 0.89 19.75 45.45 27.56 54.17 43.86 68.77 50.28 48.35
TransformerLS 256 1.46 18.49 48.77 28.84 57.11 45.85 69.21 53.67 50.57
Samba+YOCO 1024 0.99 16.73 50.53 28.50 60.02 48.85 71.55 52.57 52.00
SambaY 256 1.11 17.83 50.40 29.44 57.87 49.08 71.00 55.25 52.17
SambaY+DA 512 0.91 16.59 49.68 28.33 60.65 49.53 71.38 53.43 52.17

Table 3: Downstream evaluation performance of post-trained models. We use the completion split for BigCodeBench
evaluation. Bold indicates the best result per row.

Benchmark Metric Phi4-mini Phi4-mini-Flash

MMLU (Hendrycks et al., 2021a) 5-shot 67.3 71.9
MMLU-Pro (Wang et al., 2024) 0-shot, CoT 52.8 54.7
Arena Hard (Li et al., 2024) Win Rate 32.8 34.9
GSM8K (Cobbe et al., 2021) 0-shot, CoT 88.6 89.5
Qasper (Dasigi et al., 2021) F1 40.4 40.2
SummScreenFD (Chen et al., 2022) ROUGE-L 16.0 17.0
BigCodeBench (Zhuo et al., 2025) pass@1 43.0 44.5
MBPP (Austin et al., 2021) pass@1 65.3 69.8

(a) Prompt: 32000, Generation: 500 (b) Prompt: 2000, Generation: 32000

Figure 4: Throughput and latency of text generation with various architectures under the vLLM inference framework (using
one A100-80GB GPU and no Tensor Parallelism). A normal distribution with 30% variance was applied to prompt and
generation lengths with averages of 32000/2000 and 500/32000 respectively, following the setting in (Holmes et al., 2024).

tention setup, rather than the optimized custom kernel pro-
posed in the original DA paper, leaving significant room for
further speed optimization to catch up the efficiency of Sam-
baY. We provide case studies on the generalization of our
model’s reasoning ability beyond mathematical problems in
Appendix F.

4. Ablation Study
To systematically evaluate the design choices in our decoder-
hybrid-decoder architecture, we conduct comprehensive ab-
lation experiments. All ablation models are trained with
1.0B parameters on the ProLong-64K dataset with 40B to-
kens and 32K sequence length with variable length training,

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Decoder-Hybrid-Decoder Architecture for Efficient Reasoning with Long Generation

Table 4: Pass@1 performance of models on reasoning benchmarks measured with a maximum generation length of 32K.
We use the multi-stage distillation with Supervised Fine-Tuning (SFT), following the recipe in Phi4-mini-Reasoning.

Model AIME24 Math500 GPQA Diamond

Phi4-mini 10.0 71.8 36.9
Phi4-mini-Reasoning (SFT) 50.0 90.4 48.3
Phi4-mini-Flash-Reasoning (SFT) 46.7 90.4 48.5

Table 5: Downstream evaluation on Phonebook 32K (PB-32k), language modeling and common-sense reasoning tasks in
zero-shot for 1B-parameter models with a sliding window size of 128. We measure the training speed in MTPS (Million
Tokens Per Second) with 64 A100-80GB GPUs. The average accuracy does not include results from the PB-32K. Best
results in bold, second best underlined.

Model Speed Wiki. PB-32K LMB. ARC-c ARC-e Hella. PIQA Wino. Avg.
mtps ↑ ppl ↓ acc ↑ acc ↑ acc_n ↑ acc ↑ acc_n ↑ acc ↑ acc ↑ acc ↑

SambaY 1.10 16.89 76.56 50.22 28.58 59.18 49.07 70.84 55.09 52.16
SambaY-2 1.40 17.76 21.88 49.49 29.69 59.68 48.71 71.22 52.17 51.83
MambaY 0.94 17.29 12.50 50.24 28.84 59.64 48.27 71.44 52.80 51.87
MambaY-2 1.35 16.99 17.19 49.76 27.39 58.46 48.43 70.24 50.28 50.76
SambaY-A 1.11 18.12 58.59 49.85 30.29 59.60 48.41 71.33 54.06 52.26
SambaY-AA 1.25 17.03 46.88 49.93 28.50 59.05 48.69 72.25 53.91 52.06
SambaY-MLP 1.15 18.70 64.84 50.16 30.38 60.69 48.46 71.44 54.78 52.65

using a consistent SWA size of 128 as in the scaling experi-
ments. We leverage µP++ with depth d = 16 and construct
iso-parameter equations to maintain parameter count equiv-
alence across all variants. We examine several architectural
modifications of SambaY: (1) SambaY-2, which substitutes
Mamba with Mamba-2 in the self-decoder; (2) MambaY,
which employs only Mamba in the self-decoder without
SWA layers; (3) MambaY-2, which uses only Mamba-2 in
the self-decoder; (4) SambaY-A, which applies GMUs to
gate intermediate representations from the last full atten-
tion layer in the self-decoder rather than from Mamba; (5)
SambaY-AA, which entirely removes cross-attention in the
cross-decoder and instead uses GMU to gate the intermedi-
ate representations from the middle full attention layer; and
(6) SambaY-MLP, which uses GMUs to gate the intermedi-
ate representation from the linear projection branch of the
SwiGLU right following the full attention layer. We aim to
answer the following research questions given the ablation
results in Table 5.

Alternative architectures for self-decoder in SambaY?
We observe significant performance variations when testing
alternative architectures for the self-decoder. While Sam-
baY achieves impressive accuracy on the Phonebook bench-
mark, substituting Mamba with Mamba-2 in SambaY-2
causes a dramatic drop in performance. Similarly, MambaY,
which employs only Mamba without SWA layers, performs
poorly on long-context retrieval. MambaY-2 shows modest

improvement over MambaY but still significantly under-
performs SambaY. We suspect this is due to Mamba-2’s
coarse, scalar-valued forget gates, which may impair the
self-decoder’s ability to represent precise positional infor-
mation. Additionally, the poor performance of MambaY
highlights the critical role of SWA in enabling effective
long-context modeling, as the recency bias alone appears
insufficient for learning effective representations in self-
decoder for the cross-decoder to complete complex retrieval
tasks.

Is GMU effective for other memories besides SSMs? To
investigate whether GMUs can effectively gate representa-
tions from sources other than SSMs, we examine SambaY-
A and SambaY-AA, which gate attention output represen-
tations, and SambaY-MLP, which gates MLP intermedi-
ate representations. As shown in Table 5, these variants
achieve respectable performance on downstream tasks, with
SambaY-MLP even surpassing the original SambaY on av-
erage accuracy for short-context tasks. However, for the
long-context task, PB-32K, we observe a clear hierarchy:
SambaY > SambaY-MLP > SambaY-A > SambaY-AA. This
pattern indicates that GMUs remain effective with alterna-
tive memory sources, but their performance on retrieval
tasks depends significantly on the memory source’s inher-
ent characteristics. Gating attention/MLP representations
performs worse than the original SambaY on Phonebook
because they lack the recency bias that SSMs naturally pro-

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Decoder-Hybrid-Decoder Architecture for Efficient Reasoning with Long Generation

vide, which is particularly beneficial for retrieving compli-
cated information. SambaY-AA, which completely removes
cross-attention, shows further degradation, highlighting the
complementary value of having both cross-attention and
GMU-gated memories.

5. Conclusion
In this work, we introduced the Gated Memory Unit (GMU),
a simple yet effective mechanism for efficient memory shar-
ing across layers in sequence models. By integrating GMUs
into a decoder-hybrid-decoder architecture, SambaY, we
achieved significant improvements in both computational
efficiency and model performance. Our extensive scaling
experiments demonstrated that SambaY exhibits a lower
irreducible loss compared to strong baselines, indicating
superior scaling properties with increasing computational
resources. Our largest model, Phi4-mini-Flash-Reasoning,
matched the performance of Phi4-mini-Reasoning on chal-
lenging math reasoning benchmarks while delivering sub-
stantially higher decoding throughput on long-context gener-
ations. Given that our architecture still retains a full attention
layer with linear decoding complexity, future work could
explore dynamic sparse attention mechanisms to further
improve efficiency in extremely long sequence generation,
particularly in agentic application scenarios. Additionally,
adaptive selection of memory sharing strategies based on
task characteristics and computational constraints presents
a promising direction for enhancing flexibility and perfor-
mance.

References
Ainslie, J., Lee-Thorp, J., de Jong, M., Zemlyanskiy, Y., Lebr’on,

F., and Sanghai, S. K. Gqa: Training generalized multi-query
transformer models from multi-head checkpoints. Conference
on Empirical Methods in Natural Language Processing, 2023.
doi: 10.48550/arXiv.2305.13245. URL https://arxiv.
org/abs/2305.13245v3.

Alabdulmohsin, I. M., Neyshabur, B., and Zhai, X. Revisiting
neural scaling laws in language and vision. Advances in Neural
Information Processing Systems, 35:22300–22312, 2022.

Art of Problem Solving. Aime problems and solu-
tions. https://artofproblemsolving.com/wiki/
index.php/AIME_Problems_and_Solutions. Ac-
cessed: 2025-04-20.

Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski, H.,
Dohan, D., Jiang, E., Cai, C., Terry, M., Le, Q., and Sutton, C.
Program synthesis with large language models. arXiv preprint
arXiv: 2108.07732, 2021. URL https://arxiv.org/
abs/2108.07732v1.

Bahri, Y., Dyer, E., Kaplan, J., Lee, J., and Sharma, U. Explaining
neural scaling laws. Proceedings of the National Academy of
Sciences, 121(27):e2311878121, 2024.

Beck, M., Poppel, K., Spanring, M., Auer, A., Prudnikova, O.,
Kopp, M. K., Klambauer, G., Brandstetter, J., and Hochreiter, S.
xlstm: Extended long short-term memory. Neural Information
Processing Systems, 2024. URL https://arxiv.org/
abs/2405.04517v1.

Beck, M., Pöppel, K., Lippe, P., Kurle, R., Blies, P. M., Klambauer,
G., Böck, S., and Hochreiter, S. xlstm 7b: A recurrent llm for
fast and efficient inference. arXiv preprint arXiv: 2503.13427,
2025. URL https://arxiv.org/abs/2503.13427.

Bisk, Y., Zellers, R., Bras, R. L., Gao, J., and Choi, Y. PIQA: rea-
soning about physical commonsense in natural language. In The
Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI
2020, The Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI Sympo-
sium on Educational Advances in Artificial Intelligence, EAAI
2020, New York, NY, USA, February 7-12, 2020, pp. 7432–7439.
AAAI Press, 2020. doi: 10.1609/AAAI.V34I05.6239. URL
https://doi.org/10.1609/aaai.v34i05.6239.

Bjorck, J., Benhaim, A., Chaudhary, V., Wei, F., and Song,
X. Scaling optimal LR across token horizons. In The Thir-
teenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=
WYL4eFLcxG.

Brandon, W., Mishra, M., Nrusimha, A., Panda, R., and Kelly,
J. R. Reducing transformer key-value cache size with cross-
layer attention. arXiv preprint arXiv: 2405.12981, 2024. URL
https://arxiv.org/abs/2405.12981v1.

Chen, M., Chu, Z., Wiseman, S., and Gimpel, K. SummScreen:
A dataset for abstractive screenplay summarization. In Pro-
ceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 8602–
8615, Dublin, Ireland, May 2022. Association for Computa-
tional Linguistics. URL https://aclanthology.org/
2022.acl-long.589.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have solved ques-
tion answering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv: 1803.05457, 2018. URL https://arxiv.
org/abs/1803.05457v1.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H., Kaiser,
L., Plappert, M., Tworek, J., Hilton, J., Nakano, R., Hesse,
C., and Schulman, J. Training verifiers to solve math word
problems. arXiv preprint arXiv: 2110.14168, 2021. URL
https://arxiv.org/abs/2110.14168v2.

Dao, T. and Gu, A. Transformers are ssms: Generalized models
and efficient algorithms through structured state space duality.
In Forty-first International Conference on Machine Learning,
ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net,
2024. URL https://openreview.net/forum?id=
ztn8FCR1td.

Dasigi, P., Lo, K., Beltagy, I., Cohan, A., Smith, N. A., and
Gardner, M. A dataset of information-seeking questions and
answers anchored in research papers. In Proceedings of the
2021 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language
Technologies, pp. 4599–4610, Online, June 2021. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2021.
naacl-main.365. URL https://aclanthology.org/
2021.naacl-main.365.

9

https://arxiv.org/abs/2305.13245v3
https://arxiv.org/abs/2305.13245v3
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://arxiv.org/abs/2108.07732v1
https://arxiv.org/abs/2108.07732v1
https://arxiv.org/abs/2405.04517v1
https://arxiv.org/abs/2405.04517v1
https://arxiv.org/abs/2503.13427
https://doi.org/10.1609/aaai.v34i05.6239
https://openreview.net/forum?id=WYL4eFLcxG
https://openreview.net/forum?id=WYL4eFLcxG
https://arxiv.org/abs/2405.12981v1
https://aclanthology.org/2022.acl-long.589
https://aclanthology.org/2022.acl-long.589
https://arxiv.org/abs/1803.05457v1
https://arxiv.org/abs/1803.05457v1
https://arxiv.org/abs/2110.14168v2
https://openreview.net/forum?id=ztn8FCR1td
https://openreview.net/forum?id=ztn8FCR1td
https://aclanthology.org/2021.naacl-main.365
https://aclanthology.org/2021.naacl-main.365

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Decoder-Hybrid-Decoder Architecture for Efficient Reasoning with Long Generation

De, S., Smith, S. L., Fernando, A., Botev, A., Cristian-Muraru,
G., Gu, A., Haroun, R., Berrada, L., Chen, Y., Srinivasan, S.,
Desjardins, G., Doucet, A., Budden, D., Teh, Y. W., Pascanu,
R., Freitas, N. D., and Gulcehre, C. Griffin: Mixing gated
linear recurrences with local attention for efficient language
models. arXiv preprint arXiv: 2402.19427, 2024. URL https:
//arxiv.org/abs/2402.19427v1.

DeepSeek-AI. Deepseek-v2: A strong, economical, and ef-
ficient mixture-of-experts language model. arXiv preprint
arXiv: 2405.04434, 2024a. URL https://arxiv.org/
abs/2405.04434v1.

DeepSeek-AI. Deepseek-v3 technical report. arXiv preprint
arXiv: 2412.19437, 2024b. URL https://arxiv.org/
abs/2412.19437v1.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capabil-
ity in llms via reinforcement learning. arXiv preprint arXiv:
2501.12948, 2025. URL https://arxiv.org/abs/
2501.12948v1.

Dong, X., Fu, Y., Diao, S., Byeon, W., Chen, Z., Mahabalesh-
warkar, A., Liu, S.-Y., Keirsbilck, M. V., Chen, M.-H., Suhara,
Y., Lin, Y. C., Kautz, J., and Molchanov, P. Hymba: A
hybrid-head architecture for small language models. Interna-
tional Conference on Learning Representations, 2025. URL
https://arxiv.org/abs/2411.13676v1.

Duanmu, H., Yuan, Z., Li, X., Duan, J., Zhang, X., and Lin, D.
Skvq: Sliding-window key and value cache quantization for
large language models. arXiv preprint arXiv:2405.06219, 2024.

Elfwing, S., Uchibe, E., and Doya, K. Sigmoid-weighted linear
units for neural network function approximation in reinforce-
ment learning. Neural Networks, 2017. doi: 10.1016/j.neunet.
2017.12.012.

Gao, T., Wettig, A., Yen, H., and Chen, D. How to train
long-context language models (effectively). arXiv preprint
arXiv: 2410.02660, 2024. URL https://arxiv.org/
abs/2410.02660v1.

Goldstein, D., Obeid, F., Alcaide, E., Song, G., and Cheah, E.
Goldfinch: High performance rwkv/transformer hybrid with
linear pre-fill and extreme kv-cache compression. arXiv preprint
arXiv: 2407.12077, 2024. URL https://arxiv.org/
abs/2407.12077v1.

Gu, A. and Dao, T. Mamba: Linear-time sequence modeling with
selective state spaces. arXiv preprint arXiv:2312.00752, 2023.

Gu, A., Goel, K., and R’e, C. Efficiently modeling long sequences
with structured state spaces. International Conference On Learn-
ing Representations, 2021.

Gu, A., Gupta, A., Goel, K., and Ré, C. On the parameterization
and initialization of diagonal state space models. ARXIV.ORG,
2022. doi: 10.48550/arXiv.2206.11893.

Gu, X., Pang, T., Du, C., Liu, Q., Zhang, F., Du, C., Wang, Y.,
and Lin, M. When attention sink emerges in language mod-
els: An empirical view. In The Thirteenth International Con-
ference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=78Nn4QJTEN.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M.,
Song, D., and Steinhardt, J. Measuring massive multitask
language understanding. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event, Aus-
tria, May 3-7, 2021. OpenReview.net, 2021a. URL https:
//openreview.net/forum?id=d7KBjmI3GmQ.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart, S.,
Tang, E., Song, D., and Steinhardt, J. Measuring mathemat-
ical problem solving with the math dataset. arXiv preprint
arXiv:2103.03874, 2021b.

Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kia-
ninejad, H., Patwary, M. M. A., Yang, Y., and Zhou, Y. Deep
learning scaling is predictable, empirically. arXiv preprint
arXiv: 1712.00409, 2017. URL https://arxiv.org/
abs/1712.00409.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E., Cai,
T., Rutherford, E., de Las Casas, D., Hendricks, L. A., Welbl,
J., Clark, A., Hennigan, T., Noland, E., Millican, K., van den
Driessche, G., Damoc, B., Guy, A., Osindero, S., Simonyan,
K., Elsen, E., Rae, J. W., Vinyals, O., and Sifre, L. Training
compute-optimal large language models. ARXIV.ORG, 2022.
doi: 10.48550/arXiv.2203.15556. URL https://arxiv.
org/abs/2203.15556v1.

Holmes, C., Tanaka, M., Wyatt, M., Awan, A. A., Rasley,
J., Rajbhandari, S., Aminabadi, R. Y., Qin, H., Bakhtiari,
A., Kurilenko, L., and He, Y. Deepspeed-fastgen: High-
throughput text generation for llms via mii and deepspeed-
inference. arXiv preprint arXiv: 2401.08671, 2024. URL
https://arxiv.org/abs/2401.08671.

Hsieh, C.-P., Sun, S., Kriman, S., Acharya, S., Rekesh, D.,
Jia, F., and Ginsburg, B. Ruler: What’s the real context
size of your long-context language models? arXiv preprint
arXiv: 2404.06654, 2024. URL https://arxiv.org/
abs/2404.06654v1.

Hu, S., Tu, Y., Han, X., He, C., Cui, G., Long, X., Zheng, Z., Fang,
Y., Huang, Y., Zhao, W., Zhang, X., Thai, Z. L., Zhang, K.,
Wang, C., Yao, Y., Zhao, C., Zhou, J., Cai, J., Zhai, Z., Ding,
N., Jia, C., Zeng, G., Li, D., Liu, Z., and Sun, M. Minicpm:
Unveiling the potential of small language models with scalable
training strategies. arXiv preprint arXiv: 2404.06395, 2024.
URL https://arxiv.org/abs/2404.06395v1.

Hua, W., Dai, Z., Liu, H., and Le, Q. V. Transformer quality in
linear time. International Conference On Machine Learning,
2022.

Jelassi, S., Brandfonbrener, D., Kakade, S., and Malach, E. Repeat
after me: Transformers are better than state space models at
copying. International Conference on Machine Learning, 2024.
doi: 10.48550/arXiv.2402.01032. URL https://arxiv.
org/abs/2402.01032v1.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess,
B., Child, R., Gray, S., Radford, A., Wu, J., and Amodei,
D. Scaling laws for neural language models. arXiv preprint
arXiv: 2001.08361, 2020. URL https://arxiv.org/
abs/2001.08361v1.

Kitaev, N., Kaiser, Ł., and Levskaya, A. Reformer: The efficient
transformer. arXiv preprint arXiv:2001.04451, 2020.

10

https://arxiv.org/abs/2402.19427v1
https://arxiv.org/abs/2402.19427v1
https://arxiv.org/abs/2405.04434v1
https://arxiv.org/abs/2405.04434v1
https://arxiv.org/abs/2412.19437v1
https://arxiv.org/abs/2412.19437v1
https://arxiv.org/abs/2501.12948v1
https://arxiv.org/abs/2501.12948v1
https://arxiv.org/abs/2411.13676v1
https://arxiv.org/abs/2410.02660v1
https://arxiv.org/abs/2410.02660v1
https://arxiv.org/abs/2407.12077v1
https://arxiv.org/abs/2407.12077v1
https://openreview.net/forum?id=78Nn4QJTEN
https://openreview.net/forum?id=78Nn4QJTEN
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://arxiv.org/abs/1712.00409
https://arxiv.org/abs/1712.00409
https://arxiv.org/abs/2203.15556v1
https://arxiv.org/abs/2203.15556v1
https://arxiv.org/abs/2401.08671
https://arxiv.org/abs/2404.06654v1
https://arxiv.org/abs/2404.06654v1
https://arxiv.org/abs/2404.06395v1
https://arxiv.org/abs/2402.01032v1
https://arxiv.org/abs/2402.01032v1
https://arxiv.org/abs/2001.08361v1
https://arxiv.org/abs/2001.08361v1

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Decoder-Hybrid-Decoder Architecture for Efficient Reasoning with Long Generation

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu, C. H.,
Gonzalez, J. E., Zhang, H., and Stoica, I. Efficient memory
management for large language model serving with pagedatten-
tion. Symposium on Operating Systems Principles, 2023. doi:
10.1145/3600006.3613165. URL https://arxiv.org/
abs/2309.06180v1.

LeCun, Y. A., Bottou, L., Orr, G. B., and Müller, K.-
R. Efficient BackProp, pp. 9–48. Springer Berlin
Heidelberg, 2012. doi: 10.1007/978-3-642-35289-8_
3. URL http://link.springer.com/content/
pdf/10.1007/978-3-642-35289-8_3.

Lee, W., Lee, J., Seo, J., and Sim, J. InfiniGen: Efficient gen-
erative inference of large language models with dynamic KV
cache management. In 18th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI 24), pp. 155–
172, Santa Clara, CA, July 2024. USENIX Association. ISBN
978-1-939133-40-3. URL https://www.usenix.org/
conference/osdi24/presentation/lee.

LEVENBERG, K. A method for the solution of certain non-linear
problems in least squares. Quarterly of Applied Mathematics, 2
(2):164–168, 1944. ISSN 0033569X, 15524485. URL http:
//www.jstor.org/stable/43633451.

Li, H., Zheng, W., Hu, J., Wang, Q., Zhang, H., Wang, Z., Xuyang,
S., Fan, Y., Zhou, S., Zhang, X., and Jiang, D. Predictable scale:
Part i - optimal hyperparameter scaling law in large language
model pretraining. arXiv preprint arXiv: 2503.04715, 2025.
URL https://arxiv.org/abs/2503.04715.

Li, T., Chiang, W.-L., Frick, E., Dunlap, L., Wu, T., Zhu, B.,
Gonzalez, J. E., and Stoica, I. From crowdsourced data to high-
quality benchmarks: Arena-hard and benchbuilder pipeline.
arXiv preprint arXiv: 2406.11939, 2024. URL https://
arxiv.org/abs/2406.11939.

Lieber, O., Lenz, B., Bata, H., Cohen, G., Osin, J., Dalmedigos, I.,
Safahi, E., Meirom, S., Belinkov, Y., Shalev-Shwartz, S., Abend,
O., Alon, R., Asida, T., Bergman, A., Glozman, R., Gokhman,
M., Manevich, A., Ratner, N., Rozen, N., Shwartz, E., Zusman,
M., and Shoham, Y. Jamba: A hybrid transformer-mamba
language model. arXiv preprint arXiv: 2403.19887, 2024. URL
https://arxiv.org/abs/2403.19887v1.

Loshchilov, I. and Hutter, F. Decoupled weight decay regulariza-
tion. In International Conference on Learning Representations,
2018.

Malladi, S., Lyu, K., Panigrahi, A., and Arora, S. On the SDEs
and scaling rules for adaptive gradient algorithms. In Oh, A. H.,
Agarwal, A., Belgrave, D., and Cho, K. (eds.), Advances in
Neural Information Processing Systems, 2022. URL https:
//openreview.net/forum?id=F2mhzjHkQP.

Marquardt, D. W. An algorithm for least-squares estimation of
nonlinear parameters. Journal of the Society for Industrial and
Applied Mathematics, 11(2):431–441, 1963. ISSN 03684245.
URL http://www.jstor.org/stable/2098941.

McCandlish, S., Kaplan, J., Amodei, D., and Team, O. D.
An empirical model of large-batch training. arXiv preprint
arXiv: 1812.06162, 2018. URL https://arxiv.org/
abs/1812.06162v1.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer sentinel
mixture models. arXiv preprint arXiv:1609.07843, 2016.

Microsoft, Abouelenin, A., Ashfaq, A., Atkinson, A., Awadalla,
H., Bach, N., Bao, J., Benhaim, A., Cai, M., Chaudhary, V.,
Chen, C., Chen, D., Chen, D., Chen, J., Chen, W., Chen, Y.-
C., ling Chen, Y., Dai, Q., Dai, X., Fan, R., Gao, M., Gao,
M., Garg, A., Goswami, A., Hao, J., Hendy, A., Hu, Y., Jin,
X., Khademi, M., Kim, D., Kim, Y. J., Lee, G., Li, J., Li, Y.,
Liang, C., Lin, X., Lin, Z., Liu, M., Liu, Y., Lopez, G., Luo,
C., Madan, P., Mazalov, V., Mitra, A., Mousavi, A., Nguyen,
A., Pan, J., Perez-Becker, D., Platin, J., Portet, T., Qiu, K., Ren,
B., Ren, L., Roy, S., Shang, N., Shen, Y., Singhal, S., Som,
S., Song, X., Sych, T., Vaddamanu, P., Wang, S., Wang, Y.,
Wang, Z., Wu, H., Xu, H., Xu, W., Yang, Y., Yang, Z., Yu,
D., Zabir, I., Zhang, J., Zhang, L. L., Zhang, Y., and Zhou, X.
Phi-4-mini technical report: Compact yet powerful multimodal
language models via mixture-of-loras, 2025. URL https:
//arxiv.org/abs/2503.01743.

MiniMax. Minimax-01: Scaling foundation models with light-
ning attention. arXiv preprint arXiv: 2501.08313, 2025. URL
https://arxiv.org/abs/2501.08313v1.

OpenAI. Openai o1 system card. arXiv preprint arXiv:
2412.16720, 2024. URL https://arxiv.org/abs/
2412.16720.

Paperno, D., Kruszewski, G., Lazaridou, A., Pham, Q. N., Bernardi,
R., Pezzelle, S., Baroni, M., Boleda, G., and Fernández, R. The
lambada dataset: Word prediction requiring a broad discourse
context. Annual Meeting of the Association for Computational
Linguistics, 2016. doi: 10.18653/v1/P16-1144. URL https:
//arxiv.org/abs/1606.06031v1.

Peng, B., Alcaide, E., Anthony, Q. G., Albalak, A., Arcadinho,
S., Biderman, S., Cao, H., Cheng, X., Chung, M., Grella,
M., Kranthikiran, G., He, X., Hou, H., Kazienko, P., Ko-
coń, J., Kong, J., Koptyra, B., Lau, H., Mantri, K. S. I.,
Mom, F., Saito, A., Tang, X., Wang, B., Wind, J. S., Woz-
niak, S., Zhang, R., Zhang, Z., Zhao, Q., Zhou, P., Zhu, J.,
and Zhu, R. Rwkv: Reinventing rnns for the transformer
era. Conference on Empirical Methods in Natural Language
Processing, 2023. doi: 10.48550/arXiv.2305.13048. URL
https://arxiv.org/abs/2305.13048v1.

Qin, Z., Han, X., Sun, W., Li, D., Kong, L., Barnes, N., and
Zhong, Y. The devil in linear transformer. Conference on
Empirical Methods in Natural Language Processing, 2022. doi:
10.48550/arXiv.2210.10340. URL https://arxiv.org/
abs/2210.10340v1.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language models are unsupervised multi-
task learners. arXiv preprint, 2019. URL https://api.
semanticscholar.org/CorpusID:160025533.

Rein, D., Hou, B. L., Stickland, A. C., Petty, J., Pang, R. Y.,
Dirani, J., Michael, J., and Bowman, S. R. Gpqa: A
graduate-level google-proof q&a benchmark. arXiv preprint
arXiv: 2311.12022, 2023. URL https://arxiv.org/
abs/2311.12022v1.

Ren, L., Liu, Y., Lu, Y., Shen, Y., Liang, C., and Chen, W. Samba:
Simple hybrid state space models for efficient unlimited con-
text language modeling. In The Thirteenth International Con-
ference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=bIlnpVM4bc.

11

https://arxiv.org/abs/2309.06180v1
https://arxiv.org/abs/2309.06180v1
http://link.springer.com/content/pdf/10.1007/978-3-642-35289-8_3
http://link.springer.com/content/pdf/10.1007/978-3-642-35289-8_3
https://www.usenix.org/conference/osdi24/presentation/lee
https://www.usenix.org/conference/osdi24/presentation/lee
http://www.jstor.org/stable/43633451
http://www.jstor.org/stable/43633451
https://arxiv.org/abs/2503.04715
https://arxiv.org/abs/2406.11939
https://arxiv.org/abs/2406.11939
https://arxiv.org/abs/2403.19887v1
https://openreview.net/forum?id=F2mhzjHkQP
https://openreview.net/forum?id=F2mhzjHkQP
http://www.jstor.org/stable/2098941
https://arxiv.org/abs/1812.06162v1
https://arxiv.org/abs/1812.06162v1
https://arxiv.org/abs/2503.01743
https://arxiv.org/abs/2503.01743
https://arxiv.org/abs/2501.08313v1
https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/1606.06031v1
https://arxiv.org/abs/1606.06031v1
https://arxiv.org/abs/2305.13048v1
https://arxiv.org/abs/2210.10340v1
https://arxiv.org/abs/2210.10340v1
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://arxiv.org/abs/2311.12022v1
https://arxiv.org/abs/2311.12022v1
https://openreview.net/forum?id=bIlnpVM4bc
https://openreview.net/forum?id=bIlnpVM4bc

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Decoder-Hybrid-Decoder Architecture for Efficient Reasoning with Long Generation

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y. Wino-
grande: An adversarial winograd schema challenge at scale.
Communications of the ACM, 64(9):99–106, 2021. URL
https://arxiv.org/abs/1907.10641v2.

Shazeer, N. Fast transformer decoding: One write-head is all
you need. arXiv preprint arXiv: 1911.02150, 2019. URL
https://arxiv.org/abs/1911.02150v1.

Shazeer, N. Glu variants improve transformer. arXiv preprint
arXiv: 2002.05202, 2020. URL https://arxiv.org/
abs/2002.05202v1.

Shuai, X., Wang, Y., Wu, Y., Jiang, X., and Ren, X. Scaling law
for language models training considering batch size. arXiv
preprint arXiv: 2412.01505, 2024. URL https://arxiv.
org/abs/2412.01505.

Soboleva, D., Al-Khateeb, F., Myers, R., Steeves, J. R., Hest-
ness, J., and Dey, N. Slimpajama: A 627b token cleaned and
deduplicated version of redpajama, 2023.

Su, J., Lu, Y., Pan, S., Murtadha, A., Wen, B., and Liu, Y. Ro-
former: Enhanced transformer with rotary position embedding.
arXiv preprint arXiv: 2104.09864, 2021.

Sun, Y., Dong, L., Huang, S., Ma, S., Xia, Y., Xue, J., Wang, J.,
and Wei, F. Retentive network: A successor to transformer for
large language models. arXiv preprint arXiv:2307.08621, 2023.

Sun, Y., Dong, L., Zhu, Y., Huang, S., Wang, W., Ma, S., Zhang,
Q., Wang, J., and Wei, F. You only cache once: Decoder-
decoder architectures for language models. Neural Information
Processing Systems, 2024. doi: 10.48550/arXiv.2405.05254.
URL https://arxiv.org/abs/2405.05254v1.

Tian, K., Jiang, Y., Yuan, Z., Peng, B., and Wang, L. Visual
autoregressive modeling: Scalable image generation via next-
scale prediction. Neural Information Processing Systems, 2024.
doi: 10.48550/arXiv.2404.02905. URL https://arxiv.
org/abs/2404.02905v2.

Vaswani, A., Shazeer, N. M., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention is all
you need. NIPS, 2017.

Waleffe, R., Byeon, W., Riach, D., Norick, B., Korthikanti, V.,
Dao, T., Gu, A., Hatamizadeh, A., Singh, S., Narayanan, D.,
Kulshreshtha, G., Singh, V., Casper, J., Kautz, J., Shoeybi,
M., and Catanzaro, B. An empirical study of mamba-based
language models. arXiv preprint arXiv: 2406.07887, 2024.
URL https://arxiv.org/abs/2406.07887v1.

Wang, X. and Aitchison, L. How to set adamw’s weight de-
cay as you scale model and dataset size. arXiv preprint
arXiv: 2405.13698, 2024. URL https://arxiv.org/
abs/2405.13698.

Wang, Y., Ma, X., Zhang, G., Ni, Y., Chandra, A., Guo, S., Ren,
W., Arulraj, A., He, X., Jiang, Z., Li, T., Ku, M., Wang, K.,
Zhuang, A., Fan, R., Yue, X., and Chen, W. Mmlu-pro: A
more robust and challenging multi-task language understanding
benchmark. arXiv preprint arXiv: 2406.01574, 2024. URL
https://arxiv.org/abs/2406.01574v4.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Chi, E., Xia, F.,
Le, Q., and Zhou, D. Chain-of-thought prompting elicits reason-
ing in large language models. Neural Information Processing
Systems, 2022. URL https://arxiv.org/abs/2201.
11903v6.

Wen, K., Dang, X., and Lyu, K. Rnns are not transformers (yet):
The key bottleneck on in-context retrieval. arXiv preprint
arXiv: 2402.18510, 2024. URL https://arxiv.org/
abs/2402.18510v1.

Wortsman, M., Liu, P. J., Xiao, L., Everett, K. E., Alemi, A. A.,
Adlam, B., Co-Reyes, J. D., Gur, I., Kumar, A., Novak, R.,
Pennington, J., Sohl-Dickstein, J., Xu, K., Lee, J., Gilmer, J.,
and Kornblith, S. Small-scale proxies for large-scale trans-
former training instabilities. In The Twelfth International Con-
ference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=d8w0pmvXbZ.

Wu, H. and Tu, K. Layer-condensed kv cache for efficient infer-
ence of large language models. In Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pp. 11175–11188, 2024.

Wu, J., Wang, Z., Zhang, L., Lai, Y., He, Y., and Zhou, D. Scope:
Optimizing key-value cache compression in long-context gener-
ation. arXiv preprint arXiv:2412.13649, 2024.

Xu, H., Peng, B., Awadalla, H., Chen, D., Chen, Y.-C., Gao, M.,
Kim, Y. J., Li, Y., Ren, L., Shen, Y., Wang, S., Xu, W., Gao,
J., and Chen, W. Phi-4-mini-reasoning: Exploring the limits
of small reasoning language models in math. arXiv preprint
arXiv: 2504.21233, 2025. URL https://arxiv.org/
abs/2504.21233.

Xu, M., Men, X., Wang, B., Zhang, Q., Lin, H., Han, X., and
Chen, W. Base of rope bounds context length. In Globersons,
A., Mackey, L., Belgrave, D., Fan, A., Paquet, U., Tomczak,
J. M., and Zhang, C. (eds.), Advances in Neural Information
Processing Systems 38: Annual Conference on Neural Informa-
tion Processing Systems 2024, NeurIPS 2024, Vancouver, BC,
Canada, December 10 - 15, 2024, 2024.

Yan, Y., Chen, J., Qi, W., Bhendawade, N., Gong, Y., Duan, N., and
Zhang, R. El-attention: Memory efficient lossless attention for
generation. In International Conference on Machine Learning,
pp. 11648–11658. PMLR, 2021.

Yang, G., Hu, E. J., Babuschkin, I., Sidor, S., Liu, X., Farhi, D.,
Ryder, N., Pachocki, J., Chen, W., and Gao, J. Tensor programs
v: Tuning large neural networks via zero-shot hyperparameter
transfer. arXiv preprint arXiv: 2203.03466, 2022. URL https:
//arxiv.org/abs/2203.03466v2.

Yang, G., Yu, D., Zhu, C., and Hayou, S. Tensor programs vi:
Feature learning in infinite-depth neural networks. Interna-
tional Conference on Learning Representations, 2023. doi:
10.48550/arXiv.2310.02244. URL https://arxiv.org/
abs/2310.02244v5.

Yang, S., Wang, B., Zhang, Y., Shen, Y., and Kim, Y. Paral-
lelizing linear transformers with the delta rule over sequence
length. Neural Information Processing Systems, 2024. doi:
10.48550/arXiv.2406.06484. URL https://arxiv.org/
abs/2406.06484v1.

12

https://arxiv.org/abs/1907.10641v2
https://arxiv.org/abs/1911.02150v1
https://arxiv.org/abs/2002.05202v1
https://arxiv.org/abs/2002.05202v1
https://arxiv.org/abs/2412.01505
https://arxiv.org/abs/2412.01505
https://arxiv.org/abs/2405.05254v1
https://arxiv.org/abs/2404.02905v2
https://arxiv.org/abs/2404.02905v2
https://arxiv.org/abs/2406.07887v1
https://arxiv.org/abs/2405.13698
https://arxiv.org/abs/2405.13698
https://arxiv.org/abs/2406.01574v4
https://arxiv.org/abs/2201.11903v6
https://arxiv.org/abs/2201.11903v6
https://arxiv.org/abs/2402.18510v1
https://arxiv.org/abs/2402.18510v1
https://openreview.net/forum?id=d8w0pmvXbZ
https://openreview.net/forum?id=d8w0pmvXbZ
https://arxiv.org/abs/2504.21233
https://arxiv.org/abs/2504.21233
https://arxiv.org/abs/2203.03466v2
https://arxiv.org/abs/2203.03466v2
https://arxiv.org/abs/2310.02244v5
https://arxiv.org/abs/2310.02244v5
https://arxiv.org/abs/2406.06484v1
https://arxiv.org/abs/2406.06484v1

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Decoder-Hybrid-Decoder Architecture for Efficient Reasoning with Long Generation

Yang, S., Kautz, J., and Hatamizadeh, A. Gated delta networks: Im-
proving mamba2 with delta rule. In The Thirteenth International
Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=r8H7xhYPwz.

Ye, T., Dong, L., Xia, Y., Sun, Y., Zhu, Y., Huang, G., and Wei,
F. Differential transformer. arXiv preprint arXiv:2410.05258,
2024.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi, Y.
Hellaswag: Can a machine really finish your sentence? Annual
Meeting of the Association for Computational Linguistics, 2019.
doi: 10.18653/v1/P19-1472. URL https://arxiv.org/
abs/1905.07830v1.

Zhang, B. and Sennrich, R. Root mean square layer normal-
ization. Neural Information Processing Systems, 2019. doi:
10.5167/UZH-177483. URL https://arxiv.org/abs/
1910.07467v1.

Zhuo, T. Y., Vu, M. C., Chim, J., Hu, H., Yu, W., Widyasari,
R., Yusuf, I. N. B., Zhan, H., He, J., Paul, I., Brunner, S.,
Gong, C., Hoang, J., Zebaze, A. R., Hong, X., Li, W., Kad-
dour, J., Xu, M., Zhang, Z., Yadav, P., and et al. Bigcodebench:
Benchmarking code generation with diverse function calls and
complex instructions. In The Thirteenth International Con-
ference on Learning Representations, ICLR 2025, Singapore,
April 24-28, 2025. OpenReview.net, 2025. URL https:
//openreview.net/forum?id=YrycTjllL0.

13

https://openreview.net/forum?id=r8H7xhYPwz
https://openreview.net/forum?id=r8H7xhYPwz
https://arxiv.org/abs/1905.07830v1
https://arxiv.org/abs/1905.07830v1
https://arxiv.org/abs/1910.07467v1
https://arxiv.org/abs/1910.07467v1
https://openreview.net/forum?id=YrycTjllL0
https://openreview.net/forum?id=YrycTjllL0

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Decoder-Hybrid-Decoder Architecture for Efficient Reasoning with Long Generation

A. Additional Aspect Ratio Calculations
Based on the Samba+YOCO architecture, we can derive the
iso-parametric equation through calculating the number of
non-embedding parameters as follows.

Nattn(d) = 2.5dw · wattn/4 + 2dw · wattn/2,

Nmamba(d) = 6dw2/4,

N(d) = Nattn(d) +Nmamba(d) +Nmlp(d)

= 208αd3 + 13.5α2d3 = 237568d3.

Solving for α, we get α2 ≈ 126. For the SambaY+DA
architecture, the aspect ratio is not changed because the
number of extra parameters introduced by DA is negligible.
For MambaY, we have

Nattn(d) = 2dw · wattn/4, Nmamba(d) = 6dw2/2,

Ngmu(d) = 4dw2/4,

N(d) = Nattn(d) +Nmamba(d) +Nmlp(d) +Ngmu(d)

= 64αd3 + 16α2d3 = 237568d3.

Solving for α, we get α3 ≈ 120. For SambaY-MLP, we
have

Nattn(d) = 2.5dw · wattn/4 + 2dw · wattn/4,

Nmamba(d) = 6dw2/4, Ngmu(d) = 8dw2/4,

N(d) = Nattn(d) +Nmamba(d) +Nmlp(d) +Ngmu(d)

= 144αd3 + 15.5α2d3 = 237568d3.

Solving for α, we get α4 ≈ 120. For SambaY-Attn, we
have

Nattn(d) = 2.5dw · wattn/4 + 2dw · wattn/4,

Nmamba(d) = 6dw2/4, Ngmu(d) = 2dw · wattn/4,

N(d) = Nattn(d) +Nmamba(d) +Nmlp(d) +Ngmu(d)

= 208αd3 + 13.5α2d3 = 237568d3.

Solving for α, we get α5 ≈ 126, which is the same as
Samba+YOCO. For SambaY-Attn-All, we similarly have

Nattn(d) = 2.5dw · wattn/4, Nmamba(d) = 6dw2/4,

Ngmu(d) = 2dw · wattn/2,

N(d) = Nattn(d) +Nmamba(d) +Nmlp(d) +Ngmu(d)

= 208αd3 + 13.5α2d3 = 237568d3.

Solving for α, we get α6 ≈ 126.

B. Ablation Study on Hyper-parameter
Scaling Laws

We conduct a comprehensive ablation study of our µP++
scaling laws to validate their scaling behavior. All exper-
iments are performed using Transformer++ trained with
a 4K sequence length on the SlimPajama dataset. To en-
sure that the linear learning rate scheduler fully decays to
zero, we train six models at different training token budgets:
{100B, 200B, . . . , 600B} for each of the scaling curves. We
examine the scaling performance under both tied and untied
embedding setups. For the untied setting, we follow RWKV
(Peng et al., 2023) by applying normal initialization with
zero mean and standard deviation of 10−4. The unembed-
ding layer is initialized to zero, following the zero-out trick
proposed in µP (Yang et al., 2022). We first explore batch
size scaling with respect to training token size, following
(Shuai et al., 2024; Li et al., 2025), i.e.

B = B0

√
T

T0
.

As in Figure 5a, µP++ (Batch Scaling) shows both worse
learning efficiency and irreducible loss than µP++. Gener-
ally, we think the batch size mainly affects parallelism and
the computation efficiency as long as the batch size is not
too large, and the worse scaling behavior can be because (1)
when scaling up, the batch size can surpass the critical batch
size (McCandlish et al., 2018), which leads to worse model
performance, (2) other optimizer hyper-parameters are not
adjusted accordingly with batch size as in (Malladi et al.,
2022) and we leave it for future works to study the large
batch size training with µP++. We also try using Normal
Initialization with 0.02 standard deviation for the weight
matrices, and scale the variance with respect to 1/d. How-
ever, µP++ (Normal Init.) shows worse scaling than µP++,
indicating that it is better to adjust the initialization scal-
ing based on each matrix’ dimension as adopted by LeCun
initialization, rather than a global factor related to model
width. We explore integrating the empirical scaling law of
the learning rate η scaling with respect to training tokens T
(Bjorck et al., 2025) to µP++, i.e.,

η = η0

√
Bd0
B0d

(
T0

T

) 1
3

,

and adjust weight decay to maintain the same regulariza-
tion effect across different training tokens with the setup of
Independent Weight Decay (Wortsman et al., 2024), i.e.,

λ = λ0
η0
η
,

where λ is the weight decay in AdamW (Loshchilov &
Hutter, 2018) and λ0 = 0.1. We denote this scaling law as

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Decoder-Hybrid-Decoder Architecture for Efficient Reasoning with Long Generation

(a) Tied Embedding (b) Untied Embedding

Figure 5: Validation Loss v.s. Training Tokens on the SlimPajama dataset for Transformer++ trained with tied (left) or
untied (right) embedding layers.

µP++ (LR scaling + Indep. WD). As in Figure 5b, while the
irreducible loss is comparable, we observe a worse learning
efficiency with smaller b compared to µP++. We think
that future work is needed to have an empirical study of
the learning rate scaling with respect to dataset size under
µP++, instead of transferring the empirical law directly
to our theoretical laws. We also explore using the WSD
(Hu et al., 2024) learning rate scheduler for µP++, where
we set the final decay period to be 2/7 of the total period
following (DeepSeek-AI, 2024b). Unfortunately, it depicts
worse scaling behavior than µP++ with a linear learning rate
schedule, as shown in Figure 5b.

C. Additional Details on Scaling Comparisons
All models are trained with 4K sequence length for draw-
ing the scaling curves. For Standard Parameterization (SP),
we don’t apply any µP++ scaling laws, and since LeCun
initialization already scales its initialization variance with
respect to 1/din as proposed in µP, where din is the fan-in
dimension of the weight matrix, we use normal initialization
with a standard deviation of 0.02 for weight matrices to rule
out this confounding effect. We divide the initialization stan-
dard deviation of the output projection of each layer by

√
2d,

following (Radford et al., 2019; Gu & Dao, 2023; Ren et al.,
2025). The detailed architecture and optimization setups for
each of the scales are shown in Table 6. Following (Gu &
Dao, 2023; Yang et al., 2024; Ren et al., 2025; Yang et al.,
2025), our downstream evaluations are conducted on the
following benchmarks: Wikitext (Merity et al., 2016), LAM-
BADA (LMB) (Paperno et al., 2016), Arc-Easy/Challenge
(ARC-e/ARC-c) (Clark et al., 2018), HellaSwag (Hella.)
(Zellers et al., 2019), WinoGrande (Wino.) (Sakaguchi et al.,
2021) and PIQA (Bisk et al., 2020), where we measure char-

acter normalized accuracy (acc_n) for Arc-Challenge and
HellaSwag.

D. Additional Long-context Retrieval
Experiments

Figure 6 illustrates how different model architectures per-
form on the Phonebook long-context task as the sliding
window size increases, using either SlimPajama or ProLong-
64K for pre-training with 32K sequence length and with-
out variable-length training. Specifically, we concatenate
the data samples with EOS tokens as separation to form
32K length training sequences. On SlimPajama, overall
accuracy is modest, with SambaY+DA showing some ini-
tial promise at smaller window sizes (peaking at 128) be-
fore declining, while Samba+YOCO performs best at a
moderate window size of 512. Transformer-based models
generally struggle to achieve competitive accuracy across
window sizes. Notably, reducing RoPE base from 640K
to 10k for TransformerLS significantly harms the perfor-
mance across window sizes. Switching to the ProLong-
64K dataset leads to a notable performance boost across
all architectures compared to SlimPajama, even without
variable-length training. Notably, SambaY+DA achieves
competitive accuracy using a smaller sliding window (512),
matching the performance of Samba+YOCO at larger win-
dow sizes. While Samba+YOCO continues to benefit from
increasing window sizes, reaching peak accuracy at 2048,
SambaY+DA demonstrates greater efficiency by achieving
strong results with smaller sliding window size. Given that
variable-length training on ProLong-64K generally yields
even better results as in Figure 3, these fixed-length train-
ing results serve as an important ablation. They highlight
that while ProLong-64K benefits long-context performance,

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Decoder-Hybrid-Decoder Architecture for Efficient Reasoning with Long Generation

Table 6: Architecture details for the model configurations explored in this work. TransformerLS adopts the same architecture
as Transformer++, with Sliding Window Attention (SWA) applied to all attention layers except every fourth layer, which uses
full attention. MLP Size denotes the intermediate dimension of the MLP, i.e., the input dimension of the output projection.
Phi4-mini and Phi4-mini-Flash are trained with a batch size of 8M tokens, using a linear learning rate schedule with 3,000
warm-up steps. The product of the head dimension and the number of query heads is not necessarily equal to the model
width. Variants enhanced with Differential Attention adopt the same architectural configurations as their respective baselines.
All models use tied embeddings. The 3.8B-parameter SambaY and Samba+YOCO models are randomly initialized for
benchmarking under the vLLM inference framework.

Architecture Depth Model Query KV Head MLP Non-Embed Params Learning Training
d Width Heads Heads Dim Size Params (M) (M) Rate Tokens (B)

Transformer++ 8 1024 8 2 128 4096 121.6 154.4 5.66e-04 12.5
12 1536 12 3 128 6144 410.5 459.7 4.62e-04 42.2
16 2048 16 4 128 8192 973.1 1038.6 4.00e-04 100.0
20 2560 20 5 128 10240 1900.5 1982.5 3.58e-04 195.3
24 3072 24 6 128 12288 3284.1 3382.4 3.27e-04 337.5

SambaY 8 992 8 2 128 3968 123.3 155.0 5.66e-04 12.7
12 1488 12 3 128 5952 416.1 463.7 4.62e-04 42.8
16 1984 16 4 128 7936 986.3 1049.8 4.00e-04 101.4
20 2480 20 5 128 9920 1926.5 2005.8 3.58e-04 198.0
24 2976 24 6 128 11904 3328.9 3424.2 3.27e-04 342.1

Samba+YOCO 8 1008 8 2 128 4032 123.2 155.4 5.66e-04 12.7
12 1512 12 3 128 6048 415.6 464.0 4.62e-04 42.7
16 2016 16 4 128 8064 985.2 1049.7 4.00e-04 101.2
20 2520 20 5 128 10080 1924.3 2004.9 3.58e-04 197.8
24 3024 24 6 128 12096 3325.1 3421.9 3.27e-04 341.7

MambaY 16 1920 16 4 128 7680 975.2 1036.6 4.00e-04 40.0
MambaY-2 16 1920 16 4 128 7680 975.2 1036.6 4.00e-04 40.0
SambaY-2 16 1984 16 4 128 7936 986.3 1049.8 4.00e-04 40.0
SambaY-A 16 2016 16 4 128 8064 985.2 1049.7 4.00e-04 40.0
SambaY-AA 16 2016 16 4 128 8064 985.2 1049.7 4.00e-04 40.0
SambaY-MLP 16 1920 16 4 128 7680 985.0 1046.4 4.00e-04 40.0

Phi4-mini 32 3072 24 8 128 8192 3221.2 3835.8 5.00e-04 5000
Pih4-mini-Flash 32 2560 40 20 64 10240 3329.2 3841.4 5.00e-04 5000
SambaY 32 2560 40 20 64 10240 3329.2 3841.4 - -
Samba+YOCO 32 2560 40 20 64 10240 3224.4 3736.5 - -

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Decoder-Hybrid-Decoder Architecture for Efficient Reasoning with Long Generation

(a) SlimPajama (b) ProLong-64K

Figure 6: Accuracy (with error bars) v.s. Sliding Window Size on Phonebook with 32K evaluation length using 40B training
tokens from SlimPajama (left) or ProLong-64K (right). As an ablation to Figure 3, variable-length training is not applied for
both setting.

the full potential, especially for models sensitive to sliding
window size (e.g. TransformerLS), can be further unlocked
by training methodologies that explicitly account for vary-
ing sequence lengths of each data sample. The varying
optimal sliding window sizes and performance trajectories
underscore that both the pre-training dataset and the train-
ing methodology significantly influence how effectively the
training context length can be utilized for long-context pre-
training.

E. More Details on Architecture and
Large-scale Pre-training

We provide a comprehensive summarization of our architec-
tures and large-scale pre-training setting in Table 6. In our
architectures, Differential Attention uses a depth-dependent
initialization factor, λinit = 0.8− 0.6 exp(−0.3× l), where
l is the depth index. For each attention head, it employs
two sets of learnable parameters, (λq1, λk1) and (λq2, λk2),
each of dimension equal to the head dimension and ini-
tialized with a normal distribution of zero mean and 0.1
standard deviation. RMSNorm (Zhang & Sennrich, 2019)
with learnable element-wise affine parameters is adopted
for attention output normalization.

F. Additional Details on Reasoning Results
Following Phi4-mini-Reasoning (Xu et al., 2025), the eval-
uation is conducted with a temperature setting of 0.6, a
top-p value of 0.95, and a maximum sequence length of
32,768 tokens. Each task involves 3 runs, and the average
performance across these trials is reported.

We conduct case studies for Phi4-mini-Flash-Reasoning in
Example 1 and Example 2 for both mathematical reasoning
and daily-life reasoning. Notably, while our model is only
trained on distillation data with math problems, we can see
our model exhibits advanced reasoning techniques such as
double checking (e.g. “Alternatively, maybe I can complete
the square instead.”, “Let’s break it down:”), reflection (e.g.

“I should also check if there was a mistake in the problem
statement.”, “Wait, maybe I’m miscounting.”), and back-
tracking (e.g. “So factoring doesn’t seem straightforward
here. Maybe I need to use the quadratic formula instead.”,

“So between B and Y, there are three ’r’s.”) in both cases. Sur-
prisingly, in Example 2, our model will even guess the user
intention (e.g. “But wait, maybe the user intended "straw-
berry" which has two ’r’s. But the question specifically says
"strawberrry", so I have to go with that.”) to finally provide
the correct answer.

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Decoder-Hybrid-Decoder Architecture for Efficient Reasoning with Long Generation

Example 1: Mathematical Reasoning (Part 1)

Query: solve xˆ2+3x+4=1

Model’s reasoning process:

Think

Okay, so I need to solve the equation x squared plus three x plus four equals one. Let me write that down first to make
sure I have it right: x² + 3x + 4 = 1. Hmm, alright. The first thing I remember is that to solve a quadratic equation, it’s
usually best to get everything on one side so that the other side is zero. That way, I can factor it or use the quadratic
formula if needed. Let me try subtracting 1 from both sides to move that 1 over. So, subtracting 1 from both sides gives
me x² + 3x + 4 - 1 = 0. Simplifying that, 4 minus 1 is 3, so the equation becomes x² + 3x + 3 = 0.
Now, I need to check if this quadratic can be factored easily. Let me see. The standard form is ax² + bx + c, so here a is 1,
b is 3, and c is 3. To factor it, I need two numbers that multiply to 3 (since a is 1, it’s just c) and add up to 3. Let me
think... The factors of 3 are 1 and 3. But 1 + 3 is 4, which is more than 3. There’s also negative numbers, but since both
the product and the sum are positive, both numbers need to be positive. But 1 and 3 add to 4, which isn’t 3. So factoring
doesn’t seem straightforward here. Maybe I need to use the quadratic formula instead.
The quadratic formula is x equals negative b plus or minus the square root of b squared minus four a c all over 2a. Let me
plug in the values. Here, a is 1, b is 3, and c is 3. So substituting those in, we get x = [-3 ±

√
(3² - 4*1*3)] / (2*1). Let me

compute the discriminant first, which is the part under the square root: 3 squared is 9, and 4 times 1 times 3 is 12. So 9
minus 12 is -3. Wait, the discriminant is negative. That means there are no real solutions, only complex ones.
But the problem didn’t specify whether they want real solutions or if complex solutions are acceptable. Since it’s a math
problem, unless specified, sometimes they expect complex solutions. Let me proceed. So the square root of -3 can be
written as i

√
3, where i is the imaginary unit. Therefore, the solutions would be x = [-3 ± i

√
3]/2.

Let me double-check my steps to make sure I didn’t make a mistake. Starting with the original equation: x² + 3x + 4 = 1.
Subtract 1: x² + 3x + 3 = 0. Check. Then discriminant: b² - 4ac = 9 - 12 = -3. Correct. So the roots are complex: (-3 ±
i
√

3)/2.
Alternatively, maybe I can complete the square instead. Let me try that method to verify. Starting with x² + 3x + 3 = 0.
Move the constant term to the other side: x² + 3x = -3. To complete the square, take half of the coefficient of x, which is
3/2, square it to get (9/4). Add that to both sides: x² + 3x + 9/4 = -3 + 9/4. The left side becomes (x + 3/2)². The right
side: -3 is -12/4, so -12/4 + 9/4 is -3/4. So (x + 3/2)² = -3/4. Taking the square root of both sides gives x + 3/2 = ±

√
(-3/4)

= ±i
√

(3)/2. Subtract 3/2 from both sides: x = -3/2 ± i
√

3/2. Which is the same as (-3 ± i
√

3)/2. So that matches the
quadratic formula result.
Therefore, the solutions are complex numbers: (-3 + i

√
3)/2 and (-3 - i

√
3)/2. Since the original equation is a quadratic,

there are two solutions, and they are complex conjugates of each other.
I should also check if there was a mistake in the problem statement. The original equation was x² + 3x + 4 = 1. If I plug
the solutions back into the equation, they should satisfy it. Let me test one of them. Let’s take x = [-3 + i

√
3]/2. Plugging

into x² + 3x + 4. First, compute x²:
x = (-3 + i

√
3)/2. So x squared is [(-3 + i

√
3)/2]2. Let’s compute that. First, square the numerator: (-3 + i

√
3)². That’s

(-3)2 + 2*(-3)*(i
√

3) + (i
√

3)2. Which is 9 - 6i
√

3 + (i²*(
√

3)2). Since i² is -1, that term becomes -1*3 = -3. So 9 - 6i
√

3
-3 = 6 - 6i

√
3. Then divide by 2²=4. So x² = (6 - 6i

√
3)/4 = (3 - 3i

√
3)/2.

Now compute 3x: 3*[(-3 + i
√

3)/2] = (-9 + 3i
√

3)/2.
Adding x² + 3x + 4: (3 - 3i

√
3)/2 + (-9 + 3i

√
3)/2 + 4. Combine the fractions: [3 - 3i

√
3 -9 + 3i

√
3]/2 + 4. The imaginary

parts cancel out: (3 -9)/2 +4 = (-6)/2 +4 = -3 +4 = 1. Which matches the right-hand side of the equation. So that works.
Similarly, the other root would also satisfy the equation.
Therefore, the solutions are correct. So the answer is x equals (-3 plus or minus i

√
3) over 2.

I think that’s all. The key steps were moving 1 to the left to set the equation to zero, recognizing that the quadratic
doesn’t factor nicely, computing the discriminant, finding it’s negative, and then proceeding with the quadratic formula or
completing the square to find the complex solutions. Then verifying by plugging back in. So the final answer should be
the two complex numbers.

Model’s Response:

To be continued...

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Decoder-Hybrid-Decoder Architecture for Efficient Reasoning with Long Generation

Example 1: Mathematical Reasoning (Part 2)

Model’s Response (continued):
To solve the equation x2 + 3x+ 4 = 1:
1. **Rearrange the equation** to standard quadratic form:

x2 + 3x+ 4− 1 = 0 =⇒ x2 + 3x+ 3 = 0

2. **Identify coefficients**: a = 1, b = 3, c = 3.
3. **Compute the discriminant**:

∆ = b2 − 4ac = 32 − 4(1)(3) = 9− 12 = −3

Since the discriminant is negative, the solutions are complex.
4. **Apply the quadratic formula**:

x =
−b±

√
∆

2a
=

−3±
√
−3

2
=

−3± i
√
3

2

5. **Verify by completing the square**:

x2 + 3x = −3 =⇒
(
x+

3

2

)2

= −3

4

Taking square roots:

x+
3

2
= ± i

√
3

2
=⇒ x = −3

2
± i

√
3

2

This confirms the solutions.
Solutions:

x =
−3 + i

√
3

2
and x =

−3− i
√
3

2

x =
−3± i

√
3

2

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Decoder-Hybrid-Decoder Architecture for Efficient Reasoning with Long Generation

Example 2: Letter Counting in Misspelled Words

Query: how many r’s in "strawberrry"?

Model’s reasoning process:

Think

Okay, let’s see. The question is asking how many ’r’s are in the word "strawberrry". Alright, first I need to look at the
word carefully. Let me write it out: S-T-R-A-W-B-E-R-R-Y. Wait, the original word is "strawberrry". So, the spelling has
three ’r’s in a row, right? Let me count them one by one.
Starting from the beginning: S (1), T (2), R (3), A (4), W (5), B (6), E (7), R (8), R (9), Y (10). Hmm, so between the B
and Y, there are three ’r’s. Let me check again. The word is spelled as S-T-R-A-W-B-E-R-R-R-Y. So yes, after the B and
E, there are three ’r’s. So that’s three ’r’s in a row. Wait, but when I count the letters, let me make sure I’m not missing
any. Let’s break it down:
S T R A W B E R R R Y Wait, so actually, there are four ’r’s? Wait, no. Wait, the original word is "strawberrry". Let me
count the letters in "strawberrry". Let’s spell it out: S-T-R-A-W-B-E-R-R-R-Y. Let’s count each letter:
S T R A W B E R R R Y So that’s 11 letters total. Now, the ’r’s are at positions 3, 8, 9, 10. So that’s four ’r’s? Wait,
but the word is written as "strawberrry". So maybe the user intended three ’r’s? Wait, but when I look at the spelling,
"strawberry" normally has two ’r’s. But here it’s "strawberrry" with three ’r’s. Wait, maybe the correct spelling is
"strawberry" with two ’r’s. But the user wrote "strawberrry" with three ’r’s. So in that case, the answer would be three
’r’s. Wait, but when I count the letters in "strawberrry", let’s see: S-T-R-A-W-B-E-R-R-R-Y. So that’s three ’r’s in a row.
So total ’r’s would be three. Wait, but when I count the letters, positions 3, 8, 9, 10. Wait, that’s four ’r’s. Wait, maybe
I’m miscounting. Let me write the word out:
S (1), T (2), R (3), A (4), W (5), B (6), E (7), R (8), R (9), R (10), Y (11). So positions 3,8,9,10 are ’r’s. That’s four
’r’s. Wait, but the word is "strawberrry". Let me check the spelling again. The user wrote "strawberrry". So between B
and Y, there are three ’r’s. So the word is spelled as S-T-R-A-W-B-E-R-R-R-Y. So that’s three ’r’s after the B and E. So
total ’r’s: the first ’r’ is at position 3, then three more at positions 8,9,10. Wait, that’s four ’r’s in total. Wait, but maybe
the user made a typo. Let me confirm. The word is "strawberrry". So "straw" + "berrry". So "straw" is S-T-R-A-W,
then "berrry" would be B-E-R-R-R-Y. So in "berrry", there are three ’r’s. So total in the whole word: the first ’r’ in
"straw", then three ’r’s in "berrry". So total of four ’r’s. Wait, but the original word is "strawberrry". Let me check
again. S-T-R-A-W-B-E-R-R-R-Y. So yes, four ’r’s. But maybe the user intended "strawberry" with two ’r’s, but wrote
"strawberrry" by mistake. But the question is as given, so I should answer based on the exact spelling provided. So in
"strawberrry", how many ’r’s? Let’s count each occurrence:
Looking at each letter:
s, t, r, a, w, b, e, r, r, r, y.
So the ’r’s are the third letter, then the eighth, ninth, and tenth letters. That’s four ’r’s. Wait, but maybe I’m miscounting.
Let me list them:
S T R A W B E R R R Y Yes, so positions 3,8,9,10. That’s four ’r’s. So the answer should be 4. But wait, maybe the
user intended "strawberry" which has two ’r’s. But the question specifically says "strawberrry", so I have to go with that.
Therefore, the number of ’r’s is 4. Wait, but let me check once more. Let’s spell it out: S-T-R-A-W-B-E-R-R-R-Y. So
after B and E, there are three ’r’s. So that’s three ’r’s in the middle, plus the initial ’r’ in "straw". So total of four. Yes. So
the answer is 4.

Model’s Response:
The word "strawberrry" is spelled as S-T-R-A-W-B-E-R-R-R-Y. Breaking it down:
Letters: S, T, R, A, W, B, E, R, R, R, Y ’r’s: The third letter is ’r’, followed by three more ’r’s later in the word. Total
number of ’r’s: 4.
4

20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Decoder-Hybrid-Decoder Architecture for Efficient Reasoning with Long Generation

G. Related Works
KV Cache Sharing. Efficient inference in transformer-
based models has been significantly advanced through tech-
niques that reduce memory consumption, particularly con-
cerning key-value (KV) caching. Traditional approaches
like Multi-Query Attention (MQA) (Shazeer, 2019) and
Grouped-Query Attention (GQA) (Ainslie et al., 2023) have
enabled multiple query heads to share a single key/value
head within the same layer, effectively reducing the number
of distinct key/value heads with minimal impact on accu-
racy. Apart from YOCO (Sun et al., 2024), Cross-Layer
Attention (CLA) (Brandon et al., 2024) extends KV sharing
across adjacent layers, achieving up to two times reduc-
tion in KV cache size while maintaining performance. Our
work focuses on representation sharing across SSM layers
through directly sharing the output from the SSM kernel to
avoid materializing recurrent states, thereby preserving the
parallel training efficiency of SSM layers.

Efficient Long Generation. Efficient long-sequence gen-
eration in transformer models has been a focus of recent
research on LLM efficiency, primarily due to the substantial
memory demands associated with key-value (KV) caching
during inference with long CoTs (Kitaev et al., 2020; Wu
et al., 2024; Yan et al., 2021; Duanmu et al., 2024). To
address these challenges, several techniques have been pro-
posed to optimize memory usage without compromising
model performance. One notable approach is the Layer-
Condensed KV Cache (LCKV) (Wu & Tu, 2024), which
computes and caches KV pairs for only a subset of layers,
significantly reducing memory consumption and improv-
ing inference throughput. Another advancement is Infini-
Gen (Lee et al., 2024), a dynamic KV cache management
framework that selectively prefetches essential KV cache en-
tries, thereby mitigating fetch overhead from host memory
in offloading-based LLM serving systems. These methods
collectively contribute to more efficient long-sequence gen-
eration by optimizing KV cache usage, and are orthogonal to
our works, as we can also apply these techniques to improve
the memory I/O efficiency of our full attention layer.

Neural Scaling Laws. Understanding how model per-
formance scales with size and data is crucial for efficient
large-scale training. Empirical studies have shown that trans-
former models exhibit predictable scaling behaviors, where
performance improves with increased model parameters
and training data (Hestness et al., 2017; Kaplan et al., 2020;
Bahri et al., 2024; Alabdulmohsin et al., 2022; Hoffmann
et al., 2022). Numerous works have also investigated scal-
ing laws for hyper-parameters, based on either empirical
studies (Bjorck et al., 2025; Wortsman et al., 2024) or the-
oretical analyses (Malladi et al., 2022; Yang et al., 2022;
2023; Wang & Aitchison, 2024). In this work, we focus on

theoretical hyper-parameter scaling laws since they are not
over-tuned for the Transformer architectures, so they could
provide fairer comparisons for the emerging architectures.

H. Limitation
We validate our model’s reasoning capability using
distillation-based Supervised Fine-Tuning (SFT), but Re-
inforcement Learning (RL) remains under-explored in the
context of hybrid architectures. Due to resource constraints,
we do not perform an exhaustive hyperparameter search for
each architecture. Instead, we adopt a generic optimization
setup based on Transformer++ for learning rate, weight de-
cay, warm-up schedule, batch size, AdamW betas, epsilon,
and other parameters. It is likely that aggressive tuning of
these optimization settings could yield improved results. We
leave a more comprehensive study of the interplay between
optimization setups and architecture designs for future work.
Lastly, our architecture still includes a full-attention layer,
which leads to linear computational complexity during de-
coding. This underscores future research direction on de-
signing models for extremely long sequence generation that
can maintain constant decoding complexity while effectively
leverage long-context memory.

21

	Introduction
	Decoder-Hybrid-Decoder Architecture
	Experiments & Results
	Scaling Experiments on Open-Source Data
	Efficient Long Context Retrieval
	Large-Scale Pre-training on High-quality Proprietary Data
	Efficient Reasoning with Long Generation

	Ablation Study
	Conclusion
	Additional Aspect Ratio Calculations
	Ablation Study on Hyper-parameter Scaling Laws
	Additional Details on Scaling Comparisons
	Additional Long-context Retrieval Experiments
	More Details on Architecture and Large-scale Pre-training
	Additional Details on Reasoning Results
	Related Works
	Limitation

