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Abstract

In this paper, we employ Singular Value Canon-
ical Correlation Analysis (SVCCA) to analyze
representations learnt in a multilingual end-to-
end speech translation model trained over 22
languages. SVCCA enables us to estimate rep-
resentational similarity across languages and
layers, enhancing our understanding of the
functionality of multilingual speech transla-
tion and its potential connection to multilingual
neural machine translation. The multilingual
speech translation model is trained on the CoV-
oST 2 dataset in all possible directions, and we
utilize LASER to extract parallel bitext data
for SVCCA analysis. We derive three major
findings from our analysis: (I) Linguistic simi-
larity loses its efficacy in multilingual speech
translation when the training data for a specific
language is limited. (II) Enhanced encoder rep-
resentations and well-aligned audio-text data
significantly improve translation quality, sur-
passing the bilingual counterparts when the
training data is not compromised. (III) The
encoder representations of multilingual speech
translation demonstrate superior performance
in predicting phonetic features in linguistic ty-
pology prediction. With these findings, we
propose that releasing the constraint of lim-
ited data for low-resource languages and sub-
sequently combining them with linguistically
related high-resource languages could offer a
more effective approach for multilingual end-
to-end speech translation.

1 Introduction

Recent years have witnessed the rapid development
of end-to-end (E2E) speech-to-text translation (ST)
(Berard et al., 2016; Weiss et al., 2017), which has
demonstrated remarkable performance and outper-
formed conventional cascaded systems (Ye et al.,
2021; Xu et al., 2021; Han et al., 2021; Ye et al.,
2022). The primary advantage of end-to-end ST
over cascaded ST is that the new architecture avoids
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error propagation and high latency during inference
(Sperber and Paulik, 2020).

Recent years have also witnessed that multi-
lingual neural machine translation (NMT) has at-
tracted growing attention (Aharoni et al., 2019; Ari-
vazhagan et al., 2019; Fan et al., 2021; Costa-jussà
et al., 2022). One crucial characteristic of multi-
lingual NMT is its knowledge transfer capability,
where knowledge learnt from high-resource lan-
guages is leveraged to improve translation quality
of low-resource languages. Inspired by the success
of multilingual NMT, methods used in multilingual
NMT have been adapted to multilingual end-to-end
speech translation. These include the combination
of pre-trained models and fine-tuning (Li et al.,
2021) and the incorporation of adapter modules
into the encoder/decoder layers (Le et al., 2021).
However, due to the limited availability of multi-
lingual ST training data, multilingual E2E ST has
been relatively understudied compared to bilingual
E2E ST. This not only makes insights and findings
into multilingual E2E ST rare, but also leaves many
related questions (e.g., in which way methods in
multilingual NMT can be successfully adapted to
multilingual E2E ST) unanswered. In this paper,
our key interest is an in-depth analysis into multi-
lingual E2E ST. We hope findings from the analysis
could shed light on its future development.

Previous studies on the interpretability of multi-
lingual pre-trained models (Choenni and Shutova,
2022; Chang et al., 2022a) or multilingual NMT
models (Kudugunta et al., 2019) have tried to
make the black-box of multilingual models more
interpretable by understanding the distribution of
language representations learnt by these models.
These works have provided valuable insights into
multilinguality and have advanced the development
of improved multilingual models. Singular Value
Canonical Correlation Analysis (SVCCA; Raghu
et al., 2017) is a commonly used approach for inves-
tigating the representation similarity. It enables us



to compare the representation similarity obtained
through the same data points across different mod-
els, layers and languages. SVCCA has been suc-
cessfully applied to understand the representation
of language models and multilingual NMT models.

In this paper, we conduct a comprehensive analy-
sis into a multilingual end-to-end speech translation
model trained on 22 languages, utilizing SVCCA
as a tool. The research questions we seek to answer
are as follows:

• Does multilingual E2E ST demonstrate prop-
erties similar to those of multilingual NMT?
Specifically, does it exhibit knowledge trans-
fer across languages, benefiting low-resource
languages while potentially affecting the per-
formance of high-resource languages?

• What is the distribution of learnt representa-
tions like? Do languages from the same lan-
guage family tend to cluster together based on
their learnt sentence representations?

• Can multilingual E2E ST make linguistic ty-
pology predictions? Does it demonstrate su-
perior performance in predicting phonetics-
related features?

Answering these questions provides insights into
multilingual E2E ST. Our findings are as follows:

• The effectiveness of linguistic similarity di-
minishes when there is insufficient training
data for a specific language, which may be at-
tributed to the inadequacy of the training data
to support a language-specific sub-space.

• Enhanced encoder representations and aligned
audio-text data significantly enhance transla-
tion quality, surpassing the performance of
bilingual models when the training data is not
compromised.

• The encoder representations of multilingual
E2E ST exhibit superior performance in pre-
dicting phonetic features in linguistic typol-
ogy prediction.

Based on these observations, we conclude that,
for low-resource languages, increasing the amount
of parallel training data is more crucial than rely-
ing solely on the knowledge transfer ability of the
multilingual end-to-end speech translation model.
Additionally, building a high-quality language-
specific sub-space is crucial for low-resource trans-
lation quality.

2 Related Work

End-to-End ST End-to-end speech-to-text has
draw much attention recently due to its lower la-
tency and reduced error propagation compared to
traditional cascaded systems (Berard et al., 2016;
Weiss et al., 2017). Recent approaches in this
field have demonstrated remarkable performance
on speech-to-text translation (Vila et al., 2018;
Gangi et al., 2019; Zhang et al., 2020a; Wang
et al., 2020b,a; Zheng et al., 2021; Chen et al.,
2020; Dong et al., 2021; Zhang et al., 2022; Du
et al., 2022; Weller et al., 2022; Alastruey et al.,
2022; Lam et al., 2022; Lei et al., 2023). How-
ever, extending E2E ST to multilingual ST still
remains under explored. The first attempt is to de-
velop a multilingual end-to-end ST model based on
an LSTM encoder-decoder architecture (Inaguma
et al., 2019). Li et al. (2021) propose a combi-
nation of Wav2Vec 2.0 (Baevski et al., 2020) and
mBART (Liu et al., 2020a), fine-tuning only the
layer normalization and multi-head attention layers.
Le et al. (2021) insert an adapter layer on the top of
each transformer encoder and decoder layer, where
only the parameters of the inserted adapters are up-
dated during the fine-tuning stage. Both Di Gangi
et al. (2019) and Wang et al. (2021) introduce mul-
tilingual speech translation models as baselines
along with their proposed speech translation bench-
mark datasets. Efforts that focus on pre-training
for multilingual speech translation, such as XLS-
R (Babu et al., 2021), Maestro (Chen et al., 2022),
Mu2SLAM (Cheng et al., 2022), Whisper (Radford
et al., 2022) and Google USM (Zhang et al., 2023),
have been recently explored.

Multilinguality and Interpretability The
knowledge transfer capability is a crucial aspect
of multilingual NMT. It can boost the translation
performance of low-resource languages on the one
hand while potentially impacting the translation
quality of high-resource languages on the other
hand (Aharoni et al., 2019; Arivazhagan et al.,
2019). Previous approaches on multilingual NMT
have focused on designing efficient language-
specific modules (Bapna and Firat, 2019; Philip
et al., 2020; Zhang et al., 2020b; Zhu et al., 2021;
Zhang et al., 2021; Lin et al., 2021) or leveraging
linguistic similarity among languages (Sachan and
Neubig, 2018; Tan et al., 2019; Oncevay et al.,
2020; Sun and Xiong, 2022; Baziotis et al., 2022)
to strike a balance in this trade-off. Understanding



the inner workings of multilingual models remains
an intriguing question (Conneau et al., 2020;
Rama et al., 2020; Liang et al., 2021). Singular
Value Canonical Correlation Analysis (SVCCA;
Raghu et al., 2017) has been used to quantify
the similarity between sets of representations
in various language-related models, including
language models (Saphra and Lopez, 2019), mul-
tilingual language models (Chang et al., 2022b),
multilingual NMT models (Kudugunta et al., 2019;
Oncevay et al., 2020) and end-to-end ASR models
(Ollerenshaw et al., 2022). Our paper is most
similar to the study conducted by Kudugunta et al.
(2019), as they utilize SVCCA to analyze the
distribution of languages in multilingual NMT
with sentence-level representations. They achieve
insights into language similarity, which facilitate
succeeding studies on multilingual NMT. Wang
et al. (2023) use t-SNE (Van der Maaten and
Hinton, 2008) to analyze the representations learnt
by Maestro (Chen et al., 2022), but their interest is
in the impact of alignment between speech and text
modality on speech translation, while we focus on
the multilinguality analysis in multilingual E2E
ST.

3 Empirical Anlysis Setup

3.1 Data and Model
We study multilingual end-to-end speech transla-
tion using the CoVoST 2 dataset 1 (Wang et al.,
2021), which is an English-centric dataset that
supports translation from English to 15 languages
(En→X) and translation from 21 languages to En-
glish (X→En). Among the X→En directions, only
4 languages have more than 100 hours of train-
ing data, while the remaining 17 languages have
limited training resource, with less than 50 hours
available. We categorize the languages in X→En
directions into high/mid/low-resource languages
according to the amount of training data available
for them. Specifically, the high-resource languages
include French, German, Spanish and Catalan, the
mid-resource languages contain Persian, Italian,
Russian, Portuguese, Chinese and Dutch, the re-
maining languages are considered as low-resource
languages.

In order to accurately calculate similarity be-
tween languages based on sentence-level represen-
tations, it is crucial to minimize the impact of dif-
ferent meanings of sentences, which may introduce

1https://github.com/facebookresearch/covost

confounding factors (Kudugunta et al., 2019). In
our study, we mitigate this issue by selecting a set
of semantically similar sentences for each pair of
languages. To accomplish that, we utilize LASER2

(Schwenk and Douze, 2017; Heffernan et al., 2022)
to mine parallel sentences for each pair of given
languages as evaluation datasets to measure simi-
larity across different languages. More details are
provided in Appendix A.

Analysis experiments are conducted on three
directions: En→X, X→En and X→X. We tok-
enize the translated texts using a jointly learnt un-
igram Sentencepiece model3 (Kudo and Richard-
son, 2018) with a vocabulary size of 10K for each
directions. As for the audio data, we extract 80-
dimensional log mel-scale filter bank features (win-
dows with 25ms size and 10ms shift).

To train the multilingual E2E ST models, we first
train separate multilingual ASR models for each
translation directions. We then use the trained mul-
tilingual ASR encoder to initialize the encoder of
the multilingual ST models. Following Arivazha-
gan et al. (2019), we use the temperature-based
sampling method during training X→En and X→X
models with a temperature value of T = 5 to alle-
viate the heavy imbalance between language pairs.

As for the bilingual ST models, we adopt the
settings used by Wang et al. (2021).

For evaluating, we report case-sensitive detok-
enized BLEU using SacreBLEU (Post, 2018) ex-
cept for English-Chinese and English-Japanese
where we use the tokenizer provided by Sacre-
BLEU (zh for Chinese and ja-mecab for Japanese).
All models are implemented with the Fairseq toolk-
its4 (Ott et al., 2019).

More details are provided in Appendix B.

3.2 SVCCA
We employ Singular Value Canonical Correlation
Analysis (SVCCA; Raghu et al., 2017) for our anal-
ysis. SVCCA is a method that allows us to compare
the correlation between two vector representations.
It is invariant to affine transformations and fast to
compute. To apply SVCCA, we consider a set
of data points containing N examples. The repre-
sentation of a layer can be regarded as the hidden
states of the layer of these N data points. Let
l1 ∈ RN×D1 and l2 ∈ RN×D2 denote the repre-
sentations of two layers, where D1 and D2 are the

2https://github.com/facebookresearch/LASER
3https://github.com/google/sentencepiece
4https://github.com/facebookresearch/fairseq
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LANGs Hours Bi ST (X→En) X→En X→X (X→En) Bi ST (En→X) En→X X→X (En→X)

fr 264 26.47 26.67 27.99 - - -
de 184 17.69 18.06 20.14 16.03 19.42 17.99
ca 136 19.28 23.04 24.33 21.64 25.06 23.71
es 113 23.13 27.46 29.10 - - -
fa 49 3.83 3.27 3.17 12.78 16.50 15.69
it 44 11.19 20.30 20.87 - - -
ru 18 14.77 17.39 15.97 - - -
pt 10 6.13 10.16 8.23 - - -
zh 10 5.68 6.37 7.41 23.67 29.63 28.53
nl 7 3.04 3.65 5.32 - - -
tr 4 3.51 3.57 3.42 10.09 12.50 11.31
et 3 0.47 0.95 0.89 12.93 15.81 14.31

mn 3 0.22 0.36 0.20 9.43 11.78 10.84
ar 2 4.31 2.29 1.08 12.22 14.14 12.94
cy 2 2.56 2.82 2.74 23.88 26.32 25.19
lv 2 2.51 1.93 1.03 13.10 15.42 14.03
sl 2 2.97 3.39 1.76 15.97 18.92 16.97
sv 2 3.24 1.38 1.14 21.77 25.07 23.58
ta 2 0.31 0.09 0.12 10.92 13.63 12.73
id 1 2.39 0.87 0.24 20.24 23.55 23.14
ja 1 1.70 1.36 0.24 20.73 25.23 24.17

avg - 7.40 10.33 10.23 16.36 19.53 18.34

Table 1: Analysis results on the CoVoST 2 dataset. We compare results of multilingual end-to-end speech translation
trained on three different translation directions. Hours denote the total number of hours of training audio data for
the language on the source side. Bi ST is the bilingual end-to-end speech translation model.

dimensions of the layers corresponding to l1 and
l2, respectively. SVCCA proceeds as follows:

1. Perform Singular Value Decomposition
(SVD) on l1 and l2 to get sub-spaces l′1 ⊂ l1,
l′2 ⊂ l2 which comprise of the most impor-
tant directions of the original l1 and l2, where
l′1 ∈ RN×D′

1 , l′2 ∈ RN×D′
2 . We retain enough

dimensions to keep 99% of the variance in the
data.

2. Use Canonical Correlation Analysis (CCA)
to project l′1 and l′2 onto a shared sub-
space, i.e., computing l̃1 = WXl′1, l̃2 =
WY l

′
2 to maximize the correlations corrs =

{ρ1, · · · , ρmin(D′
1,D

′
2)
} between the new sub-

spaces.

We follow Raghu et al. (2017) to use the mean of
the correlations:

ρ̄ =
1

min(D′
1, D

′
2)

∑
i

ρi (1)

Following Kudugunta et al. (2019), we adopt
the sequence-based SVCCA which involves per-
forming SVCCA on the output of the layer and
averaging the results over sequence time-steps.
This sequence-based SVCCA can compare the un-
aligned sequences across different languages in a
more suitable way than the original token-level
strategy.

4 Main Results

We present the analysis results on the CoVoST 2
dataset in Table 1. Surprisingly, the multilingual
E2E ST model exhibits a distinct pattern compared
to the multilingual NMT model. In the X→En
translation direction, which includes high/mid/low-
resource source languages, the multilingual ST
model does not demonstrate the same knowledge
transfer ability observed in the multilingual NMT
model. In general, the low-resource languages do
not benefit from the high-resource languages and
continue to exhibit low translation quality, even
when the low-resource language is linguistically
related to a high-resource language. For instance,
Swedish (sv), which is from the Germanic language
branch of Indo-European language family, shares
linguistic similarities to German (de) and Dutch
(nl), both of which are Germanic languages and
considered high/mid-resource languages. However,
Swedish does not benefit from German and still
exhibits poor translation quality.

However, on the other hand, all of the high-
resource languages gain significant improvements
in translation quality, even surpassing the perfor-
mance of the corresponding bilingual ST mod-
els. This phenomenon is particularly evident in
the En→X translation direction, where all the lan-
guages can be considered high-resource. The mul-



tilingual system outperforms the bilingual systems
by an average BLEU of 3.17. Similarly, in the
X→En translation direction, the high-resource lan-
guages (French, German, Catalan, and Spanish)
also demonstrate improved performance with an
average BLEU of 23.81, compared to the average
BLEU of 21.64 achieved by the bilingual systems.

From these comparisons, we can draw the fol-
lowing conclusions: (I) Improved audio represen-
tations enhance the information encoding capabil-
ity of the encoder component, resulting in better
translation quality for high/mid-resource languages.
In the X→En direction, the multilingual training
audio data enhances the encoder’s ability by pro-
viding a more suitable encoding space, thereby
boosting the performance for high-resource lan-
guages. (II) The introduction of well-aligned audio-
text data also benefits speech translation quality. In
the En→X direction, although the total amount of
audio data remains the same as in the bilingual set-
ting, aligning this data with multilingual text helps
the model learn better alignment between audio and
text. This phenomenon has been extensively stud-
ied in the context of end-to-end bilingual speech
translation, where it is referred to as the modality
gap (Liu et al., 2020b; Han et al., 2021; Ye et al.,
2022; Fang et al., 2022). (III) The performance of
low-resource languages is still limited by the avail-
ability of aligned audio-text data. This scarcity of
data hampers the model’s ability to capture the nu-
ances and specific characteristics of low-resource
languages, leading to lower translation quality com-
pared to high/mid-resource languages.

For the X→X model trained on all translation
directions, it still surpasses bilingual systems for all
high-resource languages. However, it falls behind
the En→X model when translating from English
to other languages. We conjecture that this perfor-
mance gap is due to the limited model capacity,
where related parameters are affected by interfer-
ence from mid- and low-resource languages in the
X→En direction. Interestingly, the performance
on the high-resource languages in the X→En di-
rection outperforms the model trained only in the
X→En direction. This behavior is reminiscent of
the behavior observed in multilingual NMT models,
where the performance of high-resource languages
is normally sacrificed to benefit low-resource lan-
guages. In this case, the high-resource languages
correspond to the languages in the En→X direction,
while the low-resource languages are the languages

in the X→En direction, which have sufficient train-
ing data. However, the languages in the X→En
direction with only few hours of audio data still
achieve low translation quality.

These results provide support for the observation
that the multilingual ST model exhibits a different
pattern compared to the multilingual NMT model.
The multilingual ST model leverages better audio
representations and alignments between audios and
texts to achieve improved translation quality for
languages that have sufficient parallel training data.
However, the linguistic aspect loses its effective-
ness in the multilingual ST model, as low-resource
languages are constrained by the limited amount of
training data and do not benefit from their linguisti-
cally related high-resource languages. This finding
aligns with what we observe in Section 5.1. Over-
all, the amount of parallel training data is more
crucial than the linguistic relatedness of languages
for the performance of the multilingual ST model.

5 Language Similarity

To thoroughly examine the impact of language sim-
ilarity on the multilingual E2E ST model trained in
the X→X direction, we conducted SVCCA analy-
sis on our LASER-mined evaluation datasets with
semantically similar sentences, as mentioned in
Section 3.1. It’s worth noting that the LASER-
mined evaluation datasets are created specifically
for the X→En direction, as the CoVoST 2 dataset
already provides a multi-way-parallel test set for
the En→X direction, where the English audio re-
mains the same across all languages. The SVCCA
scores are computed based on layer-wise hidden
states of the encoder in the X→En direction and
the decoder in the En→X direction. This analy-
sis allows us to examine the similarity between
languages across different layers of the model.

In the upcoming sections, our discussion will
center around language similarity from multiple
perspectives. We consider language family as an
important factor for analysis, e.g., Indo-European,
which encompasses a significant portion of the lan-
guages in our dataset. We also examine language
branch, like Romance and Germanic. Addition-
ally, the amount of available training data for each
language is taken into account during our analysis.
Finally, we delve into patterns related to the writ-
ing systems of languages on the decoder side for
translation generation. By exploring these aspects,



(a) Encoder layer 0 (b) Encoder layer 11

Figure 1: SVCCA scores between the representations (encoder layer 0 and encoder layer 11) of X→En language
pairs (i.e., pairs of X), which is calculated on our LASER-mined evaluation datasets. Red cells indicate that the two
languages are more related to each other (higher SVCCA scores) and blue cells indicate that the two languages are
less related (lower SVCCA scores). Best viewed in color.

we aim to gain insights into how linguistic factors,
training data availability, and written script charac-
teristics influence the performance of multilingual
E2E ST.

5.1 SVCCA Scores of the Source Languages
in X→En Translation

We first visualize SVCCA scores of language pairs
in Figure 1. We only demonstrate the results of
the first encoder layer (encoder layer 0 in Figure
1(a)) and the last encoder layer (encoder layer 11 in
Figure 1(b)) to show a comparison between them,
the results of other layers are provided in Appendix
D.1.

From the comparison between the results of en-
coder layer 0 and encoder layer 11, we observe
a decrease in the mean SVCCA scores (0.89 Vs.
0.86) for each pair of languages. This decrease sug-
gests that languages tend to utilize their language-
specific parameters as layers go deep. In the first
layer (layer 0), languages exhibit more general rep-
resentations, as evidenced by the relatively close
SVCCA scores of different language pairs. How-
ever, as we go deep to the final layer (layer 11),
we observe a clear tendency for SVCCA scores to
converge in terms of language branches. Specifi-
cally, the Romance languages demonstrate higher
SVCCA scores among themselves compared to
languages from other language branches, indicat-
ing a stronger similarity in their representations.

Figure 2: Representations of encoder layer 11 projected
onto a linear sub-space with three LDA axes. The pro-
jection on the top right corner visualizes the sub-space
with LDA axis 0 and 1. The projection on the bottom
right corner visualizes the sub-space with LDA axis 1
and 2. Red/blue/yellow-colored items are high/mid/low-
resource languages, respectively.

Similarly, the Germanic languages exhibit a sim-
ilar pattern, with higher SVCCA scores observed
within this language branch.

We observe an interesting phenomenon among
the mid-resource languages (Persian, Italian, Rus-
sian, Portuguese and Dutch) that are all from the
Indo-European language family. In Figure 1(b),
we can see that Portuguese, Italian, Russian and
Dutch exhibit higher SVCCA scores with other
languages in the Indo-European language family.
These languages also demonstrate better transla-
tion quality in the multilingual ST model compared



Figure 3: Representations of encoder layer 11 projected
onto a linear sub-space with three LDA axes, exclusively
comprising mid-resource languages. The projection on
the top right corner visualizes the sub-space with LDA
axis 0 and 1. The projection on the bottom right corner
visualizes the sub-space with LDA axis 1 and 2.

to their bilingual counterparts. However, Persian
is not similar to other languages, as indicated by
lower SVCCA scores across all languages in the
Indo-European language family. This low similar-
ity leads to poor translation quality in the multilin-
gual ST model, despite that Persian has 49 hours
of training data available.

In the case of low-resource languages, we have
observed that they tend to exhibit higher SVCCA
scores with most languages, indicating similarity
in their representations. However, despite this simi-
larity, these low-resource languages still suffer low
translation quality in the multilingual ST model.

In order to thoroughly examine multilingual ST
for low-resource languages, we utilize the linear
discriminant analysis (LDA) to explicitly identify
language-specific sub-spaces, as described in previ-
ous works (Liang et al., 2021; Chang et al., 2022b).
The results are visualized in Figure 2. It can be ob-
served from Figure 2 that high- and mid-resource
languages exhibit distinct language-specific sub-
spaces along different LDA axes, whereas low-
resource languages remain within a common sub-
space without a prominent language-specific dis-
tribution. Due to the lack of sufficient training
data, low-resource languages are unable to develop
their own language-specific sub-spaces within the
encoder. Instead, they mainly locate on a shared
sub-space that is common to all languages. The ab-
sence of language-specific sub-spaces undermines
translation performance for these low-resource lan-
guages. This finding aligns with the findings of
previous studies on multilingualility with a fair-
ness lens (Wu and Dredze, 2020; Choudhury and

Deshpande, 2021; Cabello Piqueras and Søgaard,
2022).

With the help of LDA, we can illustrate the rea-
sons why Persian differs from other Indo-European
languages and does not benefit from linguistic sim-
ilarities. In Figure 3, we present a simplified ver-
sion of Figure 2, which contains only six languages.
From Figure 3, we can discern that Persian occu-
pies a distinct position along the LDA axis com-
pared to the other Indo-European mid-resource
languages. Similarly, Chinese exhibits a similar
pattern, primarily due to its affiliation with Sino-
Tibetan languages. We believe that this variance in
the LDA axis can also be interpreted as a distinct
language-specific subspace, which contributes to
the challenges in transferring translation abilities
to Persian languages.

Based on the analysis conducted on the encoder
side, we identify two factors that affect transla-
tion quality: language similarity and the amount of
training data. Language similarity impacts the level
of knowledge transfer across languages which con-
tributes to the development of high-quality repre-
sentations. And the quantity of training data plays
a crucial role in establishing language-specific sub-
spaces, which is also vital for translation quality.

5.2 SVCCA Scores of the Target Languages in
En→X Translation

We visualize the SVCCA scores on the decoder
side for 15 languages in Figure 4. We present the
results of the first decoder layer (decoder layer 0)
and the last decoder layer (decoder layer 5) to com-
pare their SVCCA scores. The results of other
layers are displayed in Appendix D.2.

When comparing the SVCCA scores of decoder
layer 5 with layer 0, we observe an increase in the
mean SVCCA scores. This gradual increase indi-
cates that, during the translation process from En-
glish to other languages, different languages tend to
utilize a more general sub-space at the top decoder
layer.

Given that the modality of the decoder side is
text, we also observe a pattern related to the writing
system correlation in the SVCCA score results. In
Figure 4(b), we observe higher SVCCA scores for
Chinese and Japanese compared to other languages.
Although Chinese and Japanese have distinct writ-
ing systems, Japanese borrow characters from Chi-
nese (e.g. Kanji). We also notice a similar pattern
between Arabic and Persian, both of which use the



(a) Decoder layer 0 (b) Decoder layer 5

Figure 4: SVCCA scores between the representations (decoder layer 0 and decoder layer 5) of En→X language
pairs. Red cells indicate that the two languages are more related to each other (higher SVCCA scores) while blue
cells indicate that the two languages are less related (lower SVCCA scores). Best viewed in color.

Arabic alphabet. This may explain that the SVCCA
scores for Arabic and Persian are higher compared
to those with other languages. This finding also in
line with the finding of Kudugunta et al. (2019).

6 Linguistic Typology

We conduct experiments on the linguistic typology
prediction for our multilingual end-to-end speech
translation model trained on the X→X direction on
the CoVoST 2 dataset.

Dataset We employ typological features from
URIEL typological database5 (Littell et al., 2017)
for experiments. URIEL is a typological com-
pendium which accommodates diverse linguistic re-
sources from several typological databases such as
WALS (Dryer and Haspelmath, 2013), PHOIBLE
(Moran and McCloy, 2019), Ethnology (Lewis
et al., 2015) and Glottolog (Hammarström et al.,
2021). We used lang2vec library to query URIEL
database which provides uniform interface to ac-
cess various linguistic features. We mainly use
syntax, phonology and phonetic inventory typolog-
ical features in our work.

Prediction Methods We adopt two methods
commonly used in previous studies: k-nearest
neighbors approach (k-NN) and logistic regres-
sion (Malaviya et al., 2017; Oncevay et al., 2020).
We utilize the averaged sentence representations

5https://www.cs.cmu.edu/~dmortens/projects/07_
project

Feature k-NN Logistic
1 3 5 7 Max

Syntax 76.13 78.74 80.60 81.05 81.05 78.62
Phonology 87.74 90.31 91.64 91.20 91.64 87.96
Inventory 83.87 87.88 88.20 88.53 88.53 85.78

Table 2: Linguistic typology test accuracy on syntax,
phonology and phonetic inventory features using the
language representations learnt by the encoder. k de-
notes the number of nearest neighbors in k-NN. Max
denotes the maximum accuracy when k varies in 1, 3, 5,
7.

obtained from the encoder for all samples on the
CoVoST 2 test set. These representations serve as
vector representations of each language, which we
employ for probing the typological features. In the
k-NN approach, we set k as odd numbers and vary
k in {1, 3, 5, 7}. We leave one language out and
take samples of the remaining languages as training
data to predict the linguistic typology feature. This
step is repeated for all languages, and we report the
average prediction accuracy across all languages.

Results We present prediction results in Table
2. A notable observation is that the vector repre-
sentations derived from our multilingual E2E ST
model demonstrate higher accuracy in predicting
phonology features and phonetic inventory features
compared to syntax features. This finding aligns
with expectations since the vector representations
are obtained through the encoder, which primarily
processes the audio modality and is more likely

https://www.cs.cmu.edu/~dmortens/projects/07_ project
https://www.cs.cmu.edu/~dmortens/projects/07_ project


to capture phonological and phonetic information.
It suggests that the multilingual E2E ST model
effectively encodes and represents phonological as-
pects of languages in its sentence representations.
However, the lower accuracy in predicting syntax
features indicates that it may be difficult for the
model to capture syntax-related information solely
from the audio modality.

7 Discussion

Our study reveals several key observations that
might be of interest to researchers and practitioners
working in multilingual E2E ST.

Our analysis identifies two factors that affect
multilingual speech translation quality: linguistic
similarity and the amount of training data. The
availability of an adequate amount of training data
is crucial for the model to learn language-specific
sub-spaces, particularly for low-resource languages.
Linguistic similarity can facilitate knowledge trans-
fer across languages, especially when low-resource
languages are not constrained by limited data.
Thus, addressing data scarcity in the multilingual
setting and improving the representation space for
individual languages should be explored to enhance
multilingual translation quality. In another perspec-
tive, learning a high-quality representation space
for a low-resource language with limited data is
also a path to achieve linguistic fairness of multi-
lingual E2E ST.

It is widely recognized that enhancing audio rep-
resentations can improve the performance of the
acoustic model, and this principle applies to multi-
lingual/bilingual E2E ST models as well.

8 Conclusion

In this study, we have analyzed language repre-
sentational similarity learnt by a multilingual end-
to-end speech translation model trained on 22 lan-
guages via SVCCA. Through our analysis, we have
findings that shed light on the performance of such
models. We observe that the amount of available
data plays a significant role in limiting the effective-
ness of knowledge transfer across languages in mul-
tilingual speech translation. Using SVCCA to eval-
uate the similarity across languages, we observe a
clustering effect in terms of language branch, in-
dicating aggregation of linguistic features within
language families. We also use learnt language
representations to probe linguistic typology and
find that the multilingual ST model performs better

on phonetic-related features compared to syntax
features.

Limitations

The main limitations of this study lie in two aspects:
the quality of the LASER-based evaluation datasets
and the analysis perspective.

In our approach, we set the threshold of 1.05
to determine semantic equivalence, which is lower
than the standard threshold of 1.2 typically used to
ensure high-quality aligned bitext. Consequently,
there is a possibility that some of the sentences iden-
tified as parallel text may possess different mean-
ings, potentially introducing a confounding factor
that could impact the reliability of our analysis re-
sults based on SVCCA, since the scarcity of audio
data is much more serious than text data.

Regarding the analysis perspective, our investiga-
tion on multilingual end-to-end speech translation
focuses on the linguistic aspect. However, we have
not conducted an analysis of the model from the
phonological perspective, which has the potential
to offer additional insights into multilingual E2E
ST. Unfortunately, due to the absence of a reliable
standard mapping between audio and phoneme,
conducting a comprehensive analysis, particularly
for low-resource languages, poses significant chal-
lenges.
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A LASER-mined Evaluation Datasets

The dataset CoVoST 2, which is based on the Com-
mon Voice project (Ardila et al., 2020) with Ver-
sion 4, has a limited amount of audio training data
for most languages in the X→En directions. This
limitation poses a challenge on the selection of se-
mantically similar sentences as evaluation datasets
for low-resource languages. To overcome this chal-
lenge, we incorporate Common Voice version 13 as
supplementary data for CoVoST 2 specifically for
the low-resource languages. We filter out the au-
dio data from version 13, which is duplicated with
the CoVoST 2 training set, reserving the remaining
data as a new evaluation set for each correspond-
ing language. Subsequently, we utilize LASER to
mine bitext (transcription of audio) between each
pair of given languages. A threshold of 1.05 is set
to determine the extracted bitext, and this process
is repeated for each language pair within all the
languages in our study. These extracted evaluation
datasets are then used to measure similarity across
different languages.

B Training Details

We used the Transformer (Vaswani et al., 2017)
as the backbone for our multilingual end-to-end
speech translation model, which has 12 layers for
the encoder and 6 layers for the decoder with 16 at-
tention heads and 1024 dimensions for embeddings,
4096 dimensions for FFNs. We set the dropout rate
to 0.3 for the multilingual models. We initialized
the transformer encoder with a pre-trained ASR
model, which shares the same configuration as our
multilingual ST model. We trained different ASR
models for different translation directions, e.g., an
English ASR model for the English→X direction,
a multilingual ASR model (contains 21 languages)
for the X→English direction and a multilingual
ASR model (contains 21 languages + English) for
the X→X direction.

We appended a language token at the beginning
of the translated sentences to denote which lan-
guage should be translated to following Johnson
et al. (2017). We did not add any language-specific
token or embedding at the source side for multilin-
gual ASR and ST models.

We optimized parameters using Adam optimizer
(Kingma and Ba, 2015) with a label smoothing rate
of 0.1. The learning rate was scheduled according
to the inverse square root of running steps with a
warm-up step of 2500. We adopted the early stop-

LANGs WER LANGs WER

en 23.14 tr 47.73
fr 16.70 et 58.83
de 18.94 mn 60.78
ca 11.33 ar 58.36
es 13.13 cy 61.66
fa 72.88 lv 48.56
it 20.47 sl 48.28
ru 30.55 sv 60.82
pt 32.63 ta 73.31
zh 38.08 id 47.39
nl 50.22 ja 47.59

Table 3: Results of the multilingual ASR model which
is used to train the multilingual ST model in the X→X
translation directions.

ping strategy with patience set to 5 for English→X
and X→X model and averaged the last 5 check-
points for inference. As for the X→English model,
we set the maximum number of updates to 10K
and averaged 5 checkpoints for inference, we chose
the best averaged model according to the average
BLEU on the validation sets and then evaluated it
on the test sets.

C Results of Multilingual ASR

In Table 3, we present the results of our multilin-
gual ASR model. A consistent pattern emerges
from these results, mirroring the findings of the
multilingual ST model in the X→En translation
directions. In these cases, the low-resource lan-
guages continue to suffer low performance, even in
the context of ASR tasks.

D Language Similarity

D.1 SVCCA Scores of the Source Languages
in X→En Translation

Figure 5 shows SVCCA scores of language pairs
in the X→En direction across all encoder layers
(from layer 0 to layer 11).

D.2 SVCCA Scores of the Target Languages
in En→X Translation

Figure 6 shows SVCCA scores language pairs in
the En→X direction across all decoder layers (from
layer 0 to layer 5).



(a) Encoder layer 0 (b) Encoder layer 1 (c) Encoder layer 2

(d) Encoder layer 3 (e) Encoder layer 4 (f) Encoder layer 5

(g) Encoder layer 6 (h) Encoder layer 7 (i) Encoder layer 8

(j) Encoder layer 9 (k) Encoder layer 10 (l) Encoder layer 11

Figure 5: SVCCA scores between the representations of X→En language pairs (i.e., pairs of X) across all encoder
layers, which is calculated on our LASER-mined evaluation datasets. Red cells indicate that the two languages are
more related to each other (higher SVCCA scores) and blue cells indicate that the two languages are less related
(lower SVCCA scores). Best viewed in color.



(a) Decoder layer 0 (b) Decoder layer 1 (c) Decoder layer 2

(d) Decoder layer 3 (e) Decoder layer 4 (f) Decoder layer 5

Figure 6: SVCCA scores between the representations of En→X language pairs across all decoder layers. Red cells
indicate that the two languages are more related to each other (higher SVCCA scores) while blue cells indicate that
the two languages are less related (lower SVCCA scores). Best viewed in color.


